-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_recognition.py
44 lines (39 loc) · 1.29 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#Importing the libaries
import face_recognition
import cv2
import os
from google. colab. patches import cv2_imshow
#Image preprocessing
def img_resize(path):
img = cv2. imread(path)
(h, w) = img. shape[:2]
width = 500
ratio = width / float(w)
height = int(h * ratio)
#resizing the image with custom width and height
return cv2. resize(img, (width, height))
#list to store the face encodings
train_enc = []
#list to store the names of person
train_names = []
#Training the model
training_images = 'train'
for file in os. listdir(training_images):
img = img_resize(training_images + '/' + file)
img_enc = face_recognition. face_encodings(img)[0]
train_enc. append(img_enc)
train_names. append(file.split('.')[0])
#Testing the model
testing_images = 'test'
for file in os. listdir(testing_images):
img = img_resize(testing_images + '/' + file)
img_enc = face_recognition. face_encodings(img)[0]
outputs = face_recognition. compare_faces(train_enc, img_enc)
#Displaying the results
for i in range(len(outputs)):
if outputs[i]:
name = train_names[i]
(top, right, bottom, left) = face_recognition.face_locations(img)[0]
cv2. rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
cv2. putText(img, name, (left+2, bottom+20), cv2. FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)
cv2_imshow(img)