forked from omid3098/Parspeak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
354 lines (303 loc) · 15.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
import sys
import time
import queue
import json
import threading
from datetime import datetime
import numpy as np
import sounddevice as sd
from vosk import Model, KaldiRecognizer
from pynput import keyboard
from PyQt6.QtGui import QFontDatabase
from PyQt6.QtWidgets import (
QApplication
)
from gui.transcription_window import TranscriptionWindow
# Keep existing queue and TranscriptionState class
q = queue.Queue()
MIN_RECORDING_DURATION = 0.5
class TranscriptionState:
def __init__(self):
self.full_result = []
self.current_partial = ""
# Use consistent key format
self.hotkey_combination = {'key.ctrl', 'key.shift', 's'}
def update_hotkey(self, new_combination):
# Convert combination to lowercase set for consistent comparison
self.hotkey_combination = {k.lower() for k in new_combination}
def normalize_key(key):
"""Convert key to standardized string format"""
try:
# Handle special keys
if hasattr(key, 'char'):
if key.char == '\x03':
return 'key.ctrl'
return key.char.lower()
# Handle modifier and special keys
if hasattr(key, 'name'):
return f'key.{key.name.lower()}' # Add 'key.' prefix for special keys
# Handle normal character keys
return str(key).lower()
except AttributeError:
return str(key).lower()
transcription_state = TranscriptionState()
def check_hotkey_match(pressed_keys, target_combination):
# Normalize all pressed keys
pressed_str = {normalize_key(k) for k in pressed_keys}
print(f"Pressed keys: {pressed_str}") # Debug print
print(f"Target combination: {target_combination}") # Debug print
return pressed_str == target_combination
def audio_preprocessing(audio_data):
# Convert bytes to numpy array
audio = np.frombuffer(audio_data, dtype=np.int16)
# Convert to float32 for processing
audio = audio.astype(np.float32) / 32768.0
# Boost the signal slightly
audio = audio * 1.2
# Advanced noise gate with smoothing
noise_gate = 0.003
mask = abs(audio) > noise_gate
audio = audio * mask
# Clip to prevent distortion
audio = np.clip(audio, -1.0, 1.0)
# Convert back to int16
audio = (audio * 32768).astype(np.int16)
return audio.tobytes()
# Keep existing callback function
def callback(indata, frames, time, status):
if status:
print(status, file=sys.stderr)
q.put(bytes(indata))
# Keep existing record function unchanged
def record(transcription_queue, control_event):
try:
# Use higher sample rate for better quality
device_info = sd.query_devices(None, "input")
samplerate = 16000 # Optimal rate for Vosk small model
device = None
# Update model path to point to the extracted folder
model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models", "vosk-model-fa-0.42")
if not os.path.exists(model_path):
print(f"Error: Model not found at {model_path}")
print("Please download the model from https://alphacephei.com/vosk/models")
print("Extract it to the 'models' folder in your script directory")
sys.exit(1)
model = Model(model_path=model_path)
# Set dump_fn to None
dump_fn = None
# Get the window instance from QApplication
window = QApplication.instance().window
device = window.selected_device if window.selected_device is not None else None
with sd.RawInputStream(samplerate=samplerate,
blocksize=4000, # Smaller chunks for more frequent updates
device=device,
dtype="int16",
channels=1,
callback=callback):
print("#" * 80)
print("Press 'Ctrl+Shift+S' to start/stop the recording")
print("#" * 80)
rec = None # Move recognizer outside the recording logic
recording = False
prev_recording = False
break_loop = False # Add a flag to exit the loop
audio_data = [] # Add buffer for audio data
recording_start_time = None
def clear_audio_state():
nonlocal rec, audio_data, recording_start_time
while not q.empty():
_ = q.get() # Clear the queue
rec = None
audio_data = []
recording_start_time = None
# Don't clear full_result here anymore
pressed_keys = set()
def on_press(key):
nonlocal recording, break_loop, pressed_keys, rec, audio_data, recording_start_time
key_str = normalize_key(key)
print(f"Key pressed: {key_str}") # Debug print
pressed_keys.add(key)
try:
if check_hotkey_match(pressed_keys, transcription_state.hotkey_combination):
print("Hotkey match detected!") # Debug print
recording = not recording
if recording:
# Only clear full_result when starting a new recording
transcription_state.full_result = []
transcription_state.current_partial = ""
clear_audio_state()
rec = KaldiRecognizer(model, samplerate)
recording_start_time = datetime.now()
print("Recording started...")
# Signal the main thread to show the window
transcription_queue.put(("show", None))
else:
print("Recording stopped...")
current_rec = rec # Store current recognizer
if current_rec is not None: # Check if rec exists
time.sleep(0.2) # Slightly longer delay before processing
try:
# Process any remaining audio in the queue
while not q.empty():
data = q.get()
current_rec.AcceptWaveform(data)
final = current_rec.FinalResult()
final_dict = json.loads(final)
if final_dict.get("text"):
transcription_state.full_result.append(final_dict["text"])
transcription = " ".join(filter(None, transcription_state.full_result))
if transcription: # Only process if we have text
print("Transcription:", transcription)
# Send transcription to GUI thread for clipboard operation
transcription_queue.put(("copy", transcription))
# Send final transcription to the GUI
transcription_queue.put(("update", transcription))
except Exception as e:
print("Error processing final audio:", str(e))
finally:
clear_audio_state()
# Signal the main thread to hide the window
transcription_queue.put(("hide", None))
except AttributeError:
pass
def on_release(key):
if key in pressed_keys:
pressed_keys.remove(key)
listener = keyboard.Listener(on_press=on_press, on_release=on_release)
listener.start() # Start the listener outside the loop
try:
while not control_event.is_set(): # Change break_loop to use control_event
if recording and rec is not None: # Ensure rec exists
try:
if not q.empty():
data = q.get()
processed_data = audio_preprocessing(data)
# Accumulate small chunks before processing
audio_data.append(processed_data)
# Process in larger chunks for better accuracy
if len(audio_data) >= 4: # Process every 4 chunks
combined_data = b''.join(audio_data)
if rec.AcceptWaveform(combined_data):
result = rec.Result()
if result and len(result) > 2:
result_dict = json.loads(result)
if "text" in result_dict and result_dict["text"]:
transcription_state.full_result.append(result_dict["text"])
transcription = " ".join(filter(None, transcription_state.full_result))
if transcription_state.current_partial:
transcription += " " + transcription_state.current_partial
transcription_queue.put(("update", transcription))
audio_data = [] # Clear processed chunks
# Only show partial results after minimum duration
elif recording_start_time and (datetime.now() - recording_start_time).total_seconds() >= MIN_RECORDING_DURATION:
partial = rec.PartialResult()
if partial and len(partial) > 2:
partial_dict = json.loads(partial)
if "partial" in partial_dict:
transcription_state.current_partial = partial_dict["partial"]
transcription = " ".join(filter(None, transcription_state.full_result))
if transcription_state.current_partial:
transcription += " " + transcription_state.current_partial
transcription_queue.put(("update", transcription))
if dump_fn is not None:
dump_fn.write(processed_data)
except Exception as e:
print("Error processing audio frame:", str(e))
else:
if prev_recording and rec and audio_data:
try:
final_result = rec.FinalResult()
final_dict = json.loads(final_result)
if "text" in final_dict and final_dict["text"]:
transcription_state.full_result.append(final_dict["text"])
transcription = " ".join(filter(None, transcription_state.full_result))
print("Transcription:", transcription)
except Exception as e:
print("Error getting final result:", str(e))
finally:
audio_data = []
rec = None
time.sleep(0.1) # Pause briefly to prevent high CPU usage
prev_recording = recording
finally:
# Stop keyboard listener when recording stops
listener.stop()
except KeyboardInterrupt:
print("\nDone")
sys.exit(0)
except Exception as e:
sys.exit(type(e).__name__ + ": " + str(e))
# Signal the control event to stop the main loop
control_event.set()
# Update the main section to use PyQt instead of Kivy
if __name__ == '__main__':
try:
transcription_queue = queue.Queue()
control_event = threading.Event()
# Check audio devices
try:
device_info = sd.query_devices(None, "input")
if device_info is None:
print("Error: No input device found")
sys.exit(1)
except sd.PortAudioError as e:
print(f"Error initializing audio: {e}")
sys.exit(1)
# Start recording thread
recording_thread = threading.Thread(target=record, args=(transcription_queue, control_event))
recording_thread.start()
# Start Qt application
app = QApplication(sys.argv)
# Get script directory and construct font path
script_dir = os.path.dirname(os.path.abspath(__file__))
font_path = os.path.join(script_dir, "fonts", "Vazirmatn-Regular.ttf")
print(f"Looking for font at: {font_path}")
if not os.path.exists(font_path):
print(f"Error: Font file not found at {font_path}")
# Try alternative locations
alt_paths = [
"./fonts/Vazirmatn-Regular.ttf",
"../fonts/Vazirmatn-Regular.ttf",
os.path.expanduser("~/fonts/Vazirmatn-Regular.ttf")
]
for alt_path in alt_paths:
if (os.path.exists(alt_path)):
font_path = alt_path
print(f"Found font at alternative location: {font_path}")
break
else:
print("Using system font as fallback")
font_family = "Arial"
if 'font_family' not in locals(): # Only load font if we haven't set a fallback
font_id = QFontDatabase.addApplicationFont(font_path)
if font_id < 0:
print(f"Error: Failed to load font from {font_path}")
font_family = "Arial"
else:
font_families = QFontDatabase.applicationFontFamilies(font_id)
if not font_families:
print("Error: No font families found in the font file")
font_family = "Arial"
else:
font_family = font_families[0]
print(f"Successfully loaded font family: {font_family}")
# Create window with loaded font
window = TranscriptionWindow(transcription_queue, control_event, font_family)
window.transcription_state = transcription_state # Add this line to pass the reference
# Keep reference to window and app
app.window = window # Prevent garbage collection
# Run application
sys.exit(app.exec()) # Change this line
# Cleanup
control_event.set()
recording_thread.join()
# Check if we have the full model
model_path = os.path.join(script_dir, "model")
if not os.path.exists(model_path):
print("Warning: Full model not found. Please download the complete model for better accuracy.")
print("Visit https://alphacephei.com/vosk/models and download the Persian model")
print("Extract it to a 'model' folder in your script directory")
except Exception as e:
print(f"Fatal error: {e}")
sys.exit(1)