-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompressible_blasiusbl.jl
57 lines (48 loc) · 1.68 KB
/
compressible_blasiusbl.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#-----------------------------------------------------------------------
# solution to the compressible Blasius equation (boundary value problem)
# 2(ρμf'')' + ff'' = 0
# (ρμh')' + Prfh' + Pr(γ-1)Ma^{2}ρμf''^{2} = 0
# with isothermal bc f(0) = f'(0) = 0, f'(∞) = 1, h(∞) = 1, h = θ(0).
# following Howarth-Dorodnitsyn transformation θ = T/T_{∞}
#-----------------------------------------------------------------------
using Plots
using Polynomials
using FastGaussQuadrature
using NLsolve
default(linewidth=4)
γ = 1.4 # specific heat ratio
Pr = 0.7 # Prandtl number
Ma = 5.0 # Mach number
# viscosity model for now treat as constants
η_max = 10.0
N = 30
x_resid = gausslegendre(N-3)[1]
dx_dη = 2 / η_max
UnpackCheb(X) = ChebyshevT(X[1:N]), ChebyshevT(X[N+1:end])
X = zeros(2N-1)
function CompressibleBlasiusResidual(X)
f, h = UnpackCheb(X)
f_η = derivative(f, 1) * dx_dη
f_ηη = derivative(f_η, 1) * dx_dη
f_ηηη = derivative(f_ηη, 1) * dx_dη
h_η = derivative(h, 1) * dx_dη
h_ηη = derivative(h_η, 1) * dx_dη
blasius = 2 * f_ηηη + f_ηη * f
blasius_h = h_ηη + Pr * f * h_η + Pr * (γ - 1) * Ma * Ma * f_ηη * f_ηη # enthalpy equation
R = zeros(2N-1)
R[1] = f(-1)
R[2] = f_η(-1)
R[3] = f_η(1.) - 1
R[4:N] = blasius.(x_resid)
R[N+1] = h(-1.) - 2
R[N+2] = h(1) - 1
R[N+3:end] = blasius_h.(x_resid)
R
end
solution = nlsolve(CompressibleBlasiusResidual, X)
f, h = UnpackCheb(solution.zero)
f_η = derivative(f, 1) * dx_dη
f_ηη = derivative(f_η, 1) * dx_dη
x = LinRange(-1, 1, 100)
η = (x .+ 1) * η_max / 2
plot(η, [f.(x) f_η.(x) f_ηη.(x) h.(x)], label=["f" "f'" "f''" "h"], ylim=(0, 4))