You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Your exact configuration file (with system details anonymized for security)
spark-bench = {
spark-submit-config = [{
spark-args = {
master = "yarn" // FILL IN YOUR MASTER HERE
// num-executors = 3
// executor-memory = "XXXXXXX" // FILL IN YOUR EXECUTOR MEMORY
}
conf = {
// Any configuration you need for your setup goes here, like:
"spark.executor.cores" = "3"
"spark.executor.memory" = "5g"
"spark.driver.memory" = "5g"
// "spark.dynamicAllocation.enabled" = "false"
}
workload-suites = [
{
descr = "LogisticRegression Workloads"
benchmark-output = "console"
workloads = [
{
//name = "logisticregression"
name = "lr-bml"
input = "hdfs:///tmp/data/data-10M.parquet" // training dataset
testfile = "hdfs:///tmp/data/data-50M.parquet" // testing dataset
}
]
}
]
}]
}
Relevant stacktrace
[root@tug190-1 spark-bench_2.3.0_0.4.0-RELEASE]# sudo -u hdfs ./bin/spark-bench.sh examples/yf-logisticRegression.conf
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
18/10/18 06:32:53 INFO CLIKickoff$: args received: {"spark-bench":{"spark-submit-config":[{"conf":{"spark.driver.memory":"5g","spark.executor.cores":"3","spark.executor.memory":"5g"},"spark-args":{"master":"yarn"},"workload-suites":[{"benchmark-output":"console","descr":"LogisticRegression Workloads","workloads":[{"input":"hdfs:///tmp/data/data-10M.parquet","name":"lr-bml","testfile":"hdfs:///tmp/data/data-50M.parquet"}]}]}]}}
18/10/18 06:32:54 INFO SparkContext: Running Spark version 2.3.0.2.6.5.0-292
18/10/18 06:32:54 INFO SparkContext: Submitted application: com.ibm.sparktc.sparkbench.cli.CLIKickoff
18/10/18 06:32:54 INFO SecurityManager: Changing view acls to: hdfs
18/10/18 06:32:54 INFO SecurityManager: Changing modify acls to: hdfs
18/10/18 06:32:54 INFO SecurityManager: Changing view acls groups to:
18/10/18 06:32:54 INFO SecurityManager: Changing modify acls groups to:
18/10/18 06:32:54 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hdfs); groups with view permissions: Set(); users with modify permissions: Set(hdfs); groups with modify permissions: Set()
18/10/18 06:32:54 INFO Utils: Successfully started service 'sparkDriver' on port 45479.
18/10/18 06:32:54 INFO SparkEnv: Registering MapOutputTracker
18/10/18 06:32:54 INFO SparkEnv: Registering BlockManagerMaster
18/10/18 06:32:54 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
18/10/18 06:32:54 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
18/10/18 06:32:54 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-b37be4cf-6615-42ec-8bca-dd980d2b7c8d
18/10/18 06:32:54 INFO MemoryStore: MemoryStore started with capacity 2.5 GB
18/10/18 06:32:54 INFO SparkEnv: Registering OutputCommitCoordinator
18/10/18 06:32:54 INFO Utils: Successfully started service 'SparkUI' on port 4040.
18/10/18 06:32:54 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://tug190-1.yfsubnet:4040
18/10/18 06:32:54 INFO SparkContext: Added JAR file:/opt/spark-bench_2.3.0_0.4.0-RELEASE/lib/spark-bench-2.3.0_0.4.0-RELEASE.jar at spark://tug190-1.yfsubnet:45479/jars/spark-bench-2.3.0_0.4.0-RELEASE.jar with timestamp 1539858774960
18/10/18 06:32:55 INFO RMProxy: Connecting to ResourceManager at tug190-1.yfsubnet/10.200.10.191:8050
18/10/18 06:32:55 INFO Client: Requesting a new application from cluster with 1 NodeManagers
18/10/18 06:32:56 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (40960 MB per container)
18/10/18 06:32:56 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
18/10/18 06:32:56 INFO Client: Setting up container launch context for our AM
18/10/18 06:32:56 INFO Client: Setting up the launch environment for our AM container
18/10/18 06:32:56 INFO Client: Preparing resources for our AM container
18/10/18 06:32:57 INFO Client: Use hdfs cache file as spark.yarn.archive for HDP, hdfsCacheFile:hdfs://tug190-1.yfsubnet:8020/hdp/apps/2.6.5.0-292/spark2/spark2-hdp-yarn-archive.tar.gz
18/10/18 06:32:57 INFO Client: Source and destination file systems are the same. Not copying hdfs://tug190-1.yfsubnet:8020/hdp/apps/2.6.5.0-292/spark2/spark2-hdp-yarn-archive.tar.gz
18/10/18 06:32:57 INFO Client: Uploading resource file:/tmp/spark-b1d2dbb7-2f41-42f0-bd49-dd8f3c5ebecb/__spark_conf__3844613980751995533.zip -> hdfs://tug190-1.yfsubnet:8020/user/hdfs/.sparkStaging/application_1539852791165_0007/__spark_conf__.zip
18/10/18 06:32:57 INFO SecurityManager: Changing view acls to: hdfs
18/10/18 06:32:57 INFO SecurityManager: Changing modify acls to: hdfs
18/10/18 06:32:57 INFO SecurityManager: Changing view acls groups to:
18/10/18 06:32:57 INFO SecurityManager: Changing modify acls groups to:
18/10/18 06:32:57 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hdfs); groups with view permissions: Set(); users with modify permissions: Set(hdfs); groups with modify permissions: Set()
18/10/18 06:32:57 INFO Client: Submitting application application_1539852791165_0007 to ResourceManager
18/10/18 06:32:58 INFO YarnClientImpl: Submitted application application_1539852791165_0007
18/10/18 06:32:58 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1539852791165_0007 and attemptId None
18/10/18 06:32:59 INFO Client: Application report for application_1539852791165_0007 (state: ACCEPTED)
18/10/18 06:32:59 INFO Client:
client token: N/A
diagnostics: AM container is launched, waiting for AM container to Register with RM
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1539858778005
final status: UNDEFINED
tracking URL: http://tug190-1.yfsubnet:8088/proxy/application_1539852791165_0007/
user: hdfs
18/10/18 06:33:00 INFO Client: Application report for application_1539852791165_0007 (state: ACCEPTED)
18/10/18 06:33:01 INFO Client: Application report for application_1539852791165_0007 (state: ACCEPTED)
18/10/18 06:33:02 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> tug190-1.yfsubnet, PROXY_URI_BASES -> http://tug190-1.yfsubnet:8088/proxy/application_1539852791165_0007), /proxy/application_1539852791165_0007
18/10/18 06:33:02 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
18/10/18 06:33:02 INFO Client: Application report for application_1539852791165_0007 (state: ACCEPTED)
18/10/18 06:33:02 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark-client://YarnAM)
18/10/18 06:33:03 INFO Client: Application report for application_1539852791165_0007 (state: RUNNING)
18/10/18 06:33:03 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 10.200.10.191
ApplicationMaster RPC port: 0
queue: default
start time: 1539858778005
final status: UNDEFINED
tracking URL: http://tug190-1.yfsubnet:8088/proxy/application_1539852791165_0007/
user: hdfs
18/10/18 06:33:03 INFO YarnClientSchedulerBackend: Application application_1539852791165_0007 has started running.
18/10/18 06:33:03 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 41481.
18/10/18 06:33:03 INFO NettyBlockTransferService: Server created on tug190-1.yfsubnet:41481
18/10/18 06:33:03 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
18/10/18 06:33:03 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, tug190-1.yfsubnet, 41481, None)
18/10/18 06:33:03 INFO BlockManagerMasterEndpoint: Registering block manager tug190-1.yfsubnet:41481 with 2.5 GB RAM, BlockManagerId(driver, tug190-1.yfsubnet, 41481, None)
18/10/18 06:33:03 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, tug190-1.yfsubnet, 41481, None)
18/10/18 06:33:03 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, tug190-1.yfsubnet, 41481, None)
18/10/18 06:33:03 INFO EventLoggingListener: Logging events to hdfs:/spark2-history/application_1539852791165_0007
18/10/18 06:33:05 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.200.10.191:50456) with ID 1
18/10/18 06:33:05 INFO BlockManagerMasterEndpoint: Registering block manager tug190-1.yfsubnet:45980 with 2.5 GB RAM, BlockManagerId(1, tug190-1.yfsubnet, 45980, None)
18/10/18 06:33:06 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.200.10.191:50460) with ID 2
18/10/18 06:33:06 INFO BlockManagerMasterEndpoint: Registering block manager tug190-1.yfsubnet:44023 with 2.5 GB RAM, BlockManagerId(2, tug190-1.yfsubnet, 44023, None)
18/10/18 06:33:06 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8
18/10/18 06:33:06 INFO SharedState: loading hive config file: file:/etc/spark2/2.6.5.0-292/0/hive-site.xml
18/10/18 06:33:07 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('file:/opt/spark-bench_2.3.0_0.4.0-RELEASE/spark-warehouse').
18/10/18 06:33:07 INFO SharedState: Warehouse path is 'file:/opt/spark-bench_2.3.0_0.4.0-RELEASE/spark-warehouse'.
18/10/18 06:33:07 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
18/10/18 06:33:08 INFO SparkContext: Starting job: parquet at SparkFuncs.scala:124
18/10/18 06:33:08 INFO DAGScheduler: Got job 0 (parquet at SparkFuncs.scala:124) with 1 output partitions
18/10/18 06:33:08 INFO DAGScheduler: Final stage: ResultStage 0 (parquet at SparkFuncs.scala:124)
18/10/18 06:33:08 INFO DAGScheduler: Parents of final stage: List()
18/10/18 06:33:08 INFO DAGScheduler: Missing parents: List()
18/10/18 06:33:08 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at parquet at SparkFuncs.scala:124), which has no missing parents
18/10/18 06:33:08 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 89.9 KB, free 2.5 GB)
18/10/18 06:33:08 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 34.0 KB, free 2.5 GB)
18/10/18 06:33:08 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on tug190-1.yfsubnet:41481 (size: 34.0 KB, free: 2.5 GB)
18/10/18 06:33:08 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1039
18/10/18 06:33:08 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at parquet at SparkFuncs.scala:124) (first 15 tasks are for partitions Vector(0))
18/10/18 06:33:08 INFO YarnScheduler: Adding task set 0.0 with 1 tasks
18/10/18 06:33:08 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, tug190-1.yfsubnet, executor 2, partition 0, PROCESS_LOCAL, 8089 bytes)
18/10/18 06:33:08 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on tug190-1.yfsubnet:44023 (size: 34.0 KB, free: 2.5 GB)
18/10/18 06:33:10 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 2133 ms on tug190-1.yfsubnet (executor 2) (1/1)
18/10/18 06:33:10 INFO YarnScheduler: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/10/18 06:33:10 INFO DAGScheduler: ResultStage 0 (parquet at SparkFuncs.scala:124) finished in 2.256 s
18/10/18 06:33:10 INFO DAGScheduler: Job 0 finished: parquet at SparkFuncs.scala:124, took 2.320101 s
18/10/18 06:33:10 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 344.1 KB, free 2.5 GB)
18/10/18 06:33:10 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 31.6 KB, free 2.5 GB)
18/10/18 06:33:10 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on tug190-1.yfsubnet:41481 (size: 31.6 KB, free: 2.5 GB)
18/10/18 06:33:10 INFO SparkContext: Created broadcast 1 from textFile at LogisticRegressionWorkload.scala:73
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 15
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 2
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 14
18/10/18 06:33:11 INFO BlockManagerInfo: Removed broadcast_0_piece0 on tug190-1.yfsubnet:41481 in memory (size: 34.0 KB, free: 2.5 GB)
18/10/18 06:33:11 INFO BlockManagerInfo: Removed broadcast_0_piece0 on tug190-1.yfsubnet:44023 in memory (size: 34.0 KB, free: 2.5 GB)
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 3
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 1
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 25
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 17
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 5
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 23
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 7
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 16
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 18
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 19
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 24
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 4
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 9
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 20
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 8
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 26
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 6
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 12
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 13
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 22
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 10
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 11
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 21
18/10/18 06:33:11 INFO ContextCleaner: Cleaned accumulator 0
18/10/18 06:33:11 INFO CodeGenerator: Code generated in 285.084626 ms
18/10/18 06:33:11 INFO FileInputFormat: Total input paths to process : 10
18/10/18 06:33:12 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 344.2 KB, free 2.5 GB)
18/10/18 06:33:12 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 31.6 KB, free 2.5 GB)
18/10/18 06:33:12 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on tug190-1.yfsubnet:41481 (size: 31.6 KB, free: 2.5 GB)
18/10/18 06:33:12 INFO SparkContext: Created broadcast 2 from textFile at LogisticRegressionWorkload.scala:73
18/10/18 06:33:12 INFO FileInputFormat: Total input paths to process : 10
18/10/18 06:33:12 INFO CodeGenerator: Code generated in 16.343671 ms
18/10/18 06:33:12 INFO CodeGenerator: Code generated in 16.52826 ms
18/10/18 06:33:12 INFO SparkContext: Starting job: count at LogisticRegressionWorkload.scala:92
18/10/18 06:33:12 INFO DAGScheduler: Registering RDD 8 (cache at LogisticRegressionWorkload.scala:84)
18/10/18 06:33:12 INFO DAGScheduler: Registering RDD 24 (count at LogisticRegressionWorkload.scala:92)
18/10/18 06:33:12 INFO DAGScheduler: Got job 1 (count at LogisticRegressionWorkload.scala:92) with 1 output partitions
18/10/18 06:33:12 INFO DAGScheduler: Final stage: ResultStage 3 (count at LogisticRegressionWorkload.scala:92)
18/10/18 06:33:12 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 2)
18/10/18 06:33:12 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 2)
18/10/18 06:33:12 INFO DAGScheduler: Submitting ShuffleMapStage 1 (MapPartitionsRDD[8] at cache at LogisticRegressionWorkload.scala:84), which has no missing parents
18/10/18 06:33:12 INFO MemoryStore: Block broadcast_3 stored as values in memory (estimated size 23.4 KB, free 2.5 GB)
18/10/18 06:33:12 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 8.3 KB, free 2.5 GB)
18/10/18 06:33:12 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on tug190-1.yfsubnet:41481 (size: 8.3 KB, free: 2.5 GB)
18/10/18 06:33:12 INFO SparkContext: Created broadcast 3 from broadcast at DAGScheduler.scala:1039
18/10/18 06:33:12 INFO DAGScheduler: Submitting 20 missing tasks from ShuffleMapStage 1 (MapPartitionsRDD[8] at cache at LogisticRegressionWorkload.scala:84) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))
18/10/18 06:33:12 INFO YarnScheduler: Adding task set 1.0 with 20 tasks
18/10/18 06:33:12 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, tug190-1.yfsubnet, executor 1, partition 0, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:12 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 2, tug190-1.yfsubnet, executor 2, partition 1, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:12 INFO TaskSetManager: Starting task 2.0 in stage 1.0 (TID 3, tug190-1.yfsubnet, executor 1, partition 2, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:12 INFO TaskSetManager: Starting task 3.0 in stage 1.0 (TID 4, tug190-1.yfsubnet, executor 2, partition 3, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:12 INFO TaskSetManager: Starting task 4.0 in stage 1.0 (TID 5, tug190-1.yfsubnet, executor 1, partition 4, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:12 INFO TaskSetManager: Starting task 5.0 in stage 1.0 (TID 6, tug190-1.yfsubnet, executor 2, partition 5, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:12 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on tug190-1.yfsubnet:44023 (size: 8.3 KB, free: 2.5 GB)
18/10/18 06:33:12 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on tug190-1.yfsubnet:44023 (size: 31.6 KB, free: 2.5 GB)
18/10/18 06:33:12 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on tug190-1.yfsubnet:45980 (size: 8.3 KB, free: 2.5 GB)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 6.0 in stage 1.0 (TID 7, tug190-1.yfsubnet, executor 2, partition 6, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 7.0 in stage 1.0 (TID 8, tug190-1.yfsubnet, executor 2, partition 7, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 8.0 in stage 1.0 (TID 9, tug190-1.yfsubnet, executor 2, partition 8, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 9.0 in stage 1.0 (TID 10, tug190-1.yfsubnet, executor 2, partition 9, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 WARN TaskSetManager: Lost task 8.0 in stage 1.0 (TID 9, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "PAR1� ��������"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 WARN TaskSetManager: Lost task 1.0 in stage 1.0 (TID 2, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "�?&����Dѿ�6Q��s�?���l��?��?/��˿�s�TN�Ӡ�>6���� �pD�?�������?��G��ܿ�t�<Rg�?����~�������C��?�B��"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 WARN TaskSetManager: Lost task 3.0 in stage 1.0 (TID 4, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "��俲;3��?�ѹ��f�?��'�VM�?�R�����?����Ɔ�?B"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 WARN TaskSetManager: Lost task 5.0 in stage 1.0 (TID 6, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "�b���<0�.N���."
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 5.1 in stage 1.0 (TID 11, tug190-1.yfsubnet, executor 2, partition 5, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 3.1 in stage 1.0 (TID 12, tug190-1.yfsubnet, executor 2, partition 3, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 WARN TaskSetManager: Lost task 7.0 in stage 1.0 (TID 8, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "ɼ���")�}<��?4��Q�Gܿ�o�����������ѿn��(�H�����D�S�����fE��?��W�h��?�~t�'V�?�5~��ۿί��_5�?�hA�q���%kЇ�?pՂ^+�㿂���F��?P� �zX�?bT� gw��"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 6.0 in stage 1.0 (TID 7) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "PAR1� ���������") [duplicate 1]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 6.1 in stage 1.0 (TID 13, tug190-1.yfsubnet, executor 2, partition 6, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 WARN TaskSetManager: Lost task 9.0 in stage 1.0 (TID 10, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "����b� @$��1�ܿ��:�O�˿��Gg��?�~K�vI�?N�/��ǩ?&g���pۿ��s��Q�?�zЗAy�?c&h�Gn�?�z"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 9.1 in stage 1.0 (TID 14, tug190-1.yfsubnet, executor 2, partition 9, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 5.1 in stage 1.0 (TID 11) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "�b���<0�.N����.") [duplicate 1]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 5.2 in stage 1.0 (TID 15, tug190-1.yfsubnet, executor 2, partition 5, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 3.1 in stage 1.0 (TID 12) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "��俲;3��?�ѹ��f�?��'�VM�?�R�����?����Ɔ�?B") [duplicate 1]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 3.2 in stage 1.0 (TID 16, tug190-1.yfsubnet, executor 2, partition 3, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 6.1 in stage 1.0 (TID 13) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "PAR1� ���������") [duplicate 2]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 6.2 in stage 1.0 (TID 17, tug190-1.yfsubnet, executor 2, partition 6, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 9.1 in stage 1.0 (TID 14) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "����b� @$N��1�ܿ��:�O�˿��Gg��?�~K�vI�?N�/��ǩ?&g���pۿ��s��Q�?�zЗAy�?c&h�Gn�?�z") [duplicate 1]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 9.2 in stage 1.0 (TID 18, tug190-1.yfsubnet, executor 2, partition 9, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 5.2 in stage 1.0 (TID 15) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "�b���<0�.N����.") [duplicate 2]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 5.3 in stage 1.0 (TID 19, tug190-1.yfsubnet, executor 2, partition 5, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 3.2 in stage 1.0 (TID 16) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "��俲;3��?�ѹ��f�?��'�VM�?�R�����?����Ɔ�?B") [duplicate 2]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 3.3 in stage 1.0 (TID 20, tug190-1.yfsubnet, executor 2, partition 3, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 6.2 in stage 1.0 (TID 17) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "PAR1� ���������") [duplicate 3]
18/10/18 06:33:13 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on tug190-1.yfsubnet:45980 (size: 31.6 KB, free: 2.5 GB)
18/10/18 06:33:13 INFO TaskSetManager: Starting task 6.3 in stage 1.0 (TID 21, tug190-1.yfsubnet, executor 2, partition 6, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 9.2 in stage 1.0 (TID 18) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "����b� @$N��1�ܿ��:�O�˿��Gg��?�~K�vI�?N�/��ǩ?&g���pۿ��s��Q�?�zЗAy�?c&h�Gn�?�z") [duplicate 2]
18/10/18 06:33:13 INFO TaskSetManager: Starting task 9.3 in stage 1.0 (TID 22, tug190-1.yfsubnet, executor 2, partition 9, NODE_LOCAL, 7971 bytes)
18/10/18 06:33:13 INFO TaskSetManager: Lost task 5.3 in stage 1.0 (TID 19) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "�b���<0�.N����.") [duplicate 3]
18/10/18 06:33:13 ERROR TaskSetManager: Task 5 in stage 1.0 failed 4 times; aborting job
18/10/18 06:33:13 INFO TaskSetManager: Lost task 3.3 in stage 1.0 (TID 20) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "��俲;3��?�ѹ��f�?��'�VM�?�R�����?����Ɔ�?B") [duplicate 3]
18/10/18 06:33:13 INFO YarnScheduler: Cancelling stage 1
18/10/18 06:33:13 INFO YarnScheduler: Stage 1 was cancelled
18/10/18 06:33:13 INFO DAGScheduler: ShuffleMapStage 1 (cache at LogisticRegressionWorkload.scala:84) failed in 0.937 s due to Job aborted due to stage failure: Task 5 in stage 1.0 failed 4 times, most recent failure: Lost task 5.3 in stage 1.0 (TID 19, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "�b���<0�.N����."
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
18/10/18 06:33:13 INFO TaskSetManager: Lost task 9.3 in stage 1.0 (TID 22) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "����b� @$N��1�ܿ��:�O�˿��Gg��?�~K�vI�?N�/��ǩ?&g���pۿ��s��Q�?�zЗAy�?c&h�Gn�?�z") [duplicate 3]
18/10/18 06:33:13 INFO DAGScheduler: Job 1 failed: count at LogisticRegressionWorkload.scala:92, took 0.963284 s
18/10/18 06:33:13 INFO TaskSetManager: Lost task 6.3 in stage 1.0 (TID 21) on tug190-1.yfsubnet, executor 2: java.lang.NumberFormatException (For input string: "PAR1� ���������") [duplicate 4]
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 1.0 failed 4 times, most recent failure: Lost task 5.3 in stage 1.0 (TID 19, tug190-1.yfsubnet, executor 2): java.lang.NumberFormatException: For input string: "�b���<0�.N����."
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:297)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2770)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2769)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3253)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3252)
at org.apache.spark.sql.Dataset.count(Dataset.scala:2769)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$3.apply(LogisticRegressionWorkload.scala:92)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$3.apply(LogisticRegressionWorkload.scala:92)
at com.ibm.sparktc.sparkbench.utils.GeneralFunctions$.time(GeneralFunctions.scala:48)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload.doWorkload(LogisticRegressionWorkload.scala:92)
at com.ibm.sparktc.sparkbench.workload.Workload$class.run(Workload.scala:60)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload.run(LogisticRegressionWorkload.scala:62)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$SuiteKickoff$$runSerially$1.apply(SuiteKickoff.scala:98)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$SuiteKickoff$$runSerially$1.apply(SuiteKickoff.scala:98)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$.com$ibm$sparktc$sparkbench$workload$SuiteKickoff$$runSerially(SuiteKickoff.scala:98)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$2.apply(SuiteKickoff.scala:72)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$2.apply(SuiteKickoff.scala:67)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.Range.foreach(Range.scala:160)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$.run(SuiteKickoff.scala:67)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$MultipleSuiteKickoff$$runSuitesSerially$1.apply(MultipleSuiteKickoff.scala:38)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$MultipleSuiteKickoff$$runSuitesSerially$1.apply(MultipleSuiteKickoff.scala:38)
at scala.collection.immutable.List.foreach(List.scala:381)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$.com$ibm$sparktc$sparkbench$workload$MultipleSuiteKickoff$$runSuitesSerially(MultipleSuiteKickoff.scala:38)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$run$1.apply(MultipleSuiteKickoff.scala:28)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$run$1.apply(MultipleSuiteKickoff.scala:25)
at scala.collection.immutable.List.foreach(List.scala:381)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$.run(MultipleSuiteKickoff.scala:25)
at com.ibm.sparktc.sparkbench.cli.CLIKickoff$.main(CLIKickoff.scala:30)
at com.ibm.sparktc.sparkbench.cli.CLIKickoff.main(CLIKickoff.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:906)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:197)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:227)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:136)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NumberFormatException: For input string: "�b���<0�.N����."
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:284)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1$$anonfun$2.apply(LogisticRegressionWorkload.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:75)
at com.ibm.sparktc.sparkbench.workload.ml.LogisticRegressionWorkload$$anonfun$load$1.apply(LogisticRegressionWorkload.scala:74)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:295)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:266)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
18/10/18 06:33:13 INFO SparkContext: Invoking stop() from shutdown hook
18/10/18 06:33:13 INFO SparkUI: Stopped Spark web UI at http://tug190-1.yfsubnet:4040
18/10/18 06:33:13 INFO YarnClientSchedulerBackend: Interrupting monitor thread
18/10/18 06:33:13 INFO YarnClientSchedulerBackend: Shutting down all executors
18/10/18 06:33:13 INFO YarnSchedulerBackend$YarnDriverEndpoint: Asking each executor to shut down
18/10/18 06:33:13 INFO SchedulerExtensionServices: Stopping SchedulerExtensionServices
(serviceOption=None,
services=List(),
started=false)
18/10/18 06:33:13 INFO YarnClientSchedulerBackend: Stopped
18/10/18 06:33:13 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
18/10/18 06:33:13 INFO MemoryStore: MemoryStore cleared
18/10/18 06:33:13 INFO BlockManager: BlockManager stopped
18/10/18 06:33:13 INFO BlockManagerMaster: BlockManagerMaster stopped
18/10/18 06:33:13 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
18/10/18 06:33:13 INFO SparkContext: Successfully stopped SparkContext
18/10/18 06:33:13 INFO ShutdownHookManager: Shutdown hook called
18/10/18 06:33:13 INFO ShutdownHookManager: Deleting directory /tmp/spark-b1d2dbb7-2f41-42f0-bd49-dd8f3c5ebecb
18/10/18 06:33:13 INFO ShutdownHookManager: Deleting directory /tmp/spark-14c520e0-74ca-45ec-b090-43c1e6db4b4f
Exception in thread "main" java.lang.Exception: spark-submit failed to complete properly given these arguments:
/usr/hdp/2.6.5.0-292/spark2/bin/spark-submit
--class
com.ibm.sparktc.sparkbench.cli.CLIKickoff
--master
yarn
--conf
spark.executor.memory=5g
--conf
spark.driver.memory=5g
--conf
spark.executor.cores=3
/opt/spark-bench_2.3.0_0.4.0-RELEASE/lib/spark-bench-2.3.0_0.4.0-RELEASE.jar
{"spark-bench":{"spark-submit-config":[{"conf":{"spark.driver.memory":"5g","spark.executor.cores":"3","spark.executor.memory":"5g"},"spark-args":{"master":"yarn"},"workload-suites":[{"benchmark-output":"console","descr":"LogisticRegression Workloads","workloads":[{"input":"hdfs:///tmp/data/data-10M.parquet","name":"lr-bml","testfile":"hdfs:///tmp/data/data-50M.parquet"}]}]}]}}
at com.ibm.sparktc.sparkbench.sparklaunch.submission.sparksubmit.SparkSubmit$.submit(SparkSubmit.scala:51)
at com.ibm.sparktc.sparkbench.sparklaunch.submission.sparksubmit.SparkSubmit$.launch(SparkSubmit.scala:34)
at com.ibm.sparktc.sparkbench.sparklaunch.SparkLaunch$.com$ibm$sparktc$sparkbench$sparklaunch$SparkLaunch$$launch$1(SparkLaunch.scala:58)
at com.ibm.sparktc.sparkbench.sparklaunch.SparkLaunch$$anonfun$launchJobs$2.apply(SparkLaunch.scala:65)
at com.ibm.sparktc.sparkbench.sparklaunch.SparkLaunch$$anonfun$launchJobs$2.apply(SparkLaunch.scala:65)
at scala.collection.immutable.List.foreach(List.scala:381)
at com.ibm.sparktc.sparkbench.sparklaunch.SparkLaunch$.launchJobs(SparkLaunch.scala:65)
at com.ibm.sparktc.sparkbench.sparklaunch.SparkLaunch$.main(SparkLaunch.scala:38)
at com.ibm.sparktc.sparkbench.sparklaunch.SparkLaunch.main(SparkLaunch.scala)
[root@tug190-1 spark-bench_2.3.0_0.4.0-RELEASE]#
Description of your problem and any other relevant info
I'm getting an error that the input is not valid. I created the input file and the test file using the CONF file BELOW. I used 'parquet' because when I used 'cvs' I received an error message that I should use 'parquet' instead.
spark-bench = {
spark-submit-config = [{
spark-args = {
master = "yarn" // FILL IN YOUR MASTER HERE
// num-executors = 3
// executor-memory = "XXXXXXX" // FILL IN YOUR EXECUTOR MEMORY
}
conf = {
// Any configuration you need for your setup goes here, like:
"spark.executor.cores" = "3"
"spark.executor.memory" = "5g"
"spark.driver.memory" = "5g"
// "spark.dynamicAllocation.enabled" = "false"
}
workload-suites = [
{
descr = "Generate a dataset"
# benchmark-output = "hdfs:///tmp/km/results-data-gen.csv"
workloads = [
{
name = "data-generation-lr"
// rows = 10000000 // takes 1m to create
rows = 50000000 // takes 8min to create
cols = 24
output = "hdfs:///tmp/data/data-50M.parquet"
}
]
}
]
}]
}
How should I generate proper dataset and run the logistic-regression test?
The text was updated successfully, but these errors were encountered:
Spark-Bench version (version number, tag, or git commit hash)
spark-bench_2.3.0_0.4.0-RELEASE
Details of your cluster setup (Spark version, Standalone/Yarn/Local/Etc)
Centos 7.4
HDP-2.6.5.0 - standalone
spark2 (2.3.0)
Scala version on your cluster
Not sure
Your exact configuration file (with system details anonymized for security)
Relevant stacktrace
Description of your problem and any other relevant info
I'm getting an error that the input is not valid. I created the input file and the test file using the CONF file BELOW. I used 'parquet' because when I used 'cvs' I received an error message that I should use 'parquet' instead.
How should I generate proper dataset and run the logistic-regression test?
The text was updated successfully, but these errors were encountered: