-
Notifications
You must be signed in to change notification settings - Fork 0
/
disassembler_elf_32_arm.cc
528 lines (453 loc) · 16.8 KB
/
disassembler_elf_32_arm.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/disassembler_elf_32_arm.h"
#include <memory>
#include <utility>
#include <vector>
#include "base/logging.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
namespace courgette {
CheckBool DisassemblerElf32ARM::Compress(ARM_RVA type,
uint32_t arm_op,
RVA rva,
uint16_t* c_op,
uint32_t* addr) {
// Notation for bit ranges in comments:
// - Listing bits from highest to lowest.
// - A-Z or (j1), (j2), etc.: single bit in source.
// - a-z: multiple, consecutive bits in source.
switch (type) {
case ARM_OFF8: {
// Encoding T1.
// The offset is given by lower 8 bits of the op. It is a 9-bit offset,
// shifted right 1 bit, and signed extended.
// arm_op = aaaaaaaa Snnnnnnn
// *addr := SSSSSSSS SSSSSSSS SSSSSSSS nnnnnnn0 + 100
// *c_op := 00010000 aaaaaaaa
uint32_t temp = (arm_op & 0x00FF) << 1;
if (temp & 0x0100)
temp |= 0xFFFFFE00;
temp += 4; // Offset from _next_ PC.
(*addr) = temp;
(*c_op) = static_cast<uint16_t>(arm_op >> 8) | 0x1000;
break;
}
case ARM_OFF11: {
// Encoding T2.
// The offset is given by lower 11 bits of the op, and is a 12-bit offset,
// shifted right 1 bit, and sign extended.
// arm_op = aaaaaSnn nnnnnnnn
// *addr := SSSSSSSS SSSSSSSS SSSSSnnn nnnnnnn0 + 100
// *c_op := 00100000 000aaaaa
uint32_t temp = (arm_op & 0x07FF) << 1;
if (temp & 0x00000800)
temp |= 0xFFFFF000;
temp += 4; // Offset from _next_ PC.
(*addr) = temp;
(*c_op) = static_cast<uint16_t>(arm_op >> 11) | 0x2000;
break;
}
case ARM_OFF24: {
// The offset is given by the lower 24-bits of the op, shifted
// left 2 bits, and sign extended.
// arm_op = aaaaaaaa Snnnnnnn nnnnnnnn nnnnnnnn
// *addr := SSSSSSSn nnnnnnnn nnnnnnnn nnnnnn00 + 1000
// *c_op := 00110000 aaaaaaaa
uint32_t temp = (arm_op & 0x00FFFFFF) << 2;
if (temp & 0x02000000)
temp |= 0xFC000000;
temp += 8;
(*addr) = temp;
(*c_op) = (arm_op >> 24) | 0x3000;
break;
}
case ARM_OFF25: {
// Encoding T4.
// arm_op = aaaaaSmm mmmmmmmm BC(j1)D(j2)nnn nnnnnnnn
// where CD is in {01, 10, 11}
// i1 := ~(j1 ^ S)
// i2 := ~(j2 ^ S)
// If CD == 10:
// pppp := (rva % 4 == 0) ? 0100 : 0010
// Else:
// pppp := 0100
// *addr := SSSSSSSS (i1)(i2)mmmmmm mmmmnnnn nnnnnnn0 + pppp
// *c_op := 0100pppp aaaaaBCD
// TODO(huangs): aaaaa = 11110 and B = 1 always? Investigate and fix.
uint32_t temp = 0;
temp |= (arm_op & 0x000007FF) << 1; // imm11
temp |= (arm_op & 0x03FF0000) >> 4; // imm10
uint32_t S = (arm_op & (1 << 26)) >> 26;
uint32_t j2 = (arm_op & (1 << 11)) >> 11;
uint32_t j1 = (arm_op & (1 << 13)) >> 13;
bool bit12 = ((arm_op & (1 << 12)) >> 12) != 0; // D
bool bit14 = ((arm_op & (1 << 14)) >> 14) != 0; // C
uint32_t i2 = ~(j2 ^ S) & 1;
uint32_t i1 = ~(j1 ^ S) & 1;
bool toARM = bit14 && !bit12;
temp |= (S << 24) | (i1 << 23) | (i2 << 22);
if (temp & 0x01000000) // sign extension
temp |= 0xFE000000;
uint32_t prefetch;
if (toARM) {
// Align PC on 4-byte boundary.
uint32_t align4byte = (rva % 4) ? 2 : 4;
prefetch = align4byte;
} else {
prefetch = 4;
}
temp += prefetch;
(*addr) = temp;
uint32_t temp2 = 0x4000;
temp2 |= (arm_op & (1 << 12)) >> 12; // .......D
temp2 |= (arm_op & (1 << 14)) >> 13; // ......C.
temp2 |= (arm_op & (1 << 15)) >> 13; // .....B..
temp2 |= (arm_op & 0xF8000000) >> 24; // aaaaa...
temp2 |= (prefetch & 0x0000000F) << 8;
(*c_op) = static_cast<uint16_t>(temp2);
break;
}
case ARM_OFF21: {
// Encoding T3.
// arm_op = 11110Scc ccmmmmmm 10(j1)0(j2)nnn nnnnnnnn
// *addr := SSSSSSSS SSSS(j1)(j2)mm mmmmnnnn nnnnnnn0 + 100
// *c_op := 01010000 0000cccc
uint32_t temp = 0;
temp |= (arm_op & 0x000007FF) << 1; // imm11
temp |= (arm_op & 0x003F0000) >> 4; // imm6
uint32_t S = (arm_op & (1 << 26)) >> 26;
// TODO(huangs): Check with docs: Perhaps j1, j2 should swap?
uint32_t j2 = (arm_op & (1 << 11)) >> 11;
uint32_t j1 = (arm_op & (1 << 13)) >> 13;
temp |= (S << 20) | (j1 << 19) | (j2 << 18);
if (temp & 0x00100000) // sign extension
temp |= 0xFFE00000;
temp += 4;
(*addr) = temp;
uint32_t temp2 = 0x5000;
temp2 |= (arm_op & 0x03C00000) >> 22; // just save the cond
(*c_op) = static_cast<uint16_t>(temp2);
break;
}
default:
return false;
}
return true;
}
CheckBool DisassemblerElf32ARM::Decompress(ARM_RVA type,
uint16_t c_op,
uint32_t addr,
uint32_t* arm_op) {
switch (type) {
case ARM_OFF8:
// addr = SSSSSSSS SSSSSSSS SSSSSSSS nnnnnnn0 + 100
// c_op = 00010000 aaaaaaaa
// *arm_op := aaaaaaaa Snnnnnnn
(*arm_op) = ((c_op & 0x0FFF) << 8) | (((addr - 4) >> 1) & 0x000000FF);
break;
case ARM_OFF11:
// addr = SSSSSSSS SSSSSSSS SSSSSnnn nnnnnnn0 + 100
// c_op = 00100000 000aaaaa
// *arm_op := aaaaaSnn nnnnnnnn
(*arm_op) = ((c_op & 0x0FFF) << 11) | (((addr - 4) >> 1) & 0x000007FF);
break;
case ARM_OFF24:
// addr = SSSSSSSn nnnnnnnn nnnnnnnn nnnnnn00 + 1000
// c_op = 00110000 aaaaaaaa
// *arm_op := aaaaaaaa Snnnnnnn nnnnnnnn nnnnnnnn
(*arm_op) = ((c_op & 0x0FFF) << 24) | (((addr - 8) >> 2) & 0x00FFFFFF);
break;
case ARM_OFF25: {
// addr = SSSSSSSS (i1)(i2)mmmmmm mmmmnnnn nnnnnnn0 + pppp
// c_op = 0100pppp aaaaaBCD
// j1 := ~i1 ^ S
// j2 := ~i2 ^ S
// *arm_op := aaaaaSmm mmmmmmmm BC(j1)D(j2)nnn nnnnnnnn
uint32_t temp = 0;
temp |= (c_op & (1 << 0)) << 12;
temp |= (c_op & (1 << 1)) << 13;
temp |= (c_op & (1 << 2)) << 13;
temp |= (c_op & (0xF8000000 >> 24)) << 24;
uint32_t prefetch = (c_op & 0x0F00) >> 8;
addr -= prefetch;
addr &= 0x01FFFFFF;
uint32_t S = (addr & (1 << 24)) >> 24;
uint32_t i1 = (addr & (1 << 23)) >> 23;
uint32_t i2 = (addr & (1 << 22)) >> 22;
uint32_t j1 = ((~i1) ^ S) & 1;
uint32_t j2 = ((~i2) ^ S) & 1;
temp |= S << 26;
temp |= j2 << 11;
temp |= j1 << 13;
temp |= (addr & (0x000007FF << 1)) >> 1;
temp |= (addr & (0x03FF0000 >> 4)) << 4;
(*arm_op) = temp;
break;
}
case ARM_OFF21: {
// addr = SSSSSSSS SSSS(j1)(j2)mm mmmmnnnn nnnnnnn0 + 100
// c_op = 01010000 0000cccc
// *arm_op := 11110Scc ccmmmmmm 10(j1)0(j2)nnn nnnnnnnn
uint32_t temp = 0xF0008000;
temp |= (c_op & (0x03C00000 >> 22)) << 22;
addr -= 4;
addr &= 0x001FFFFF;
uint32_t S = (addr & (1 << 20)) >> 20;
uint32_t j1 = (addr & (1 << 19)) >> 19;
uint32_t j2 = (addr & (1 << 18)) >> 18;
temp |= S << 26;
temp |= j2 << 11;
temp |= j1 << 13;
temp |= (addr & (0x000007FF << 1)) >> 1;
temp |= (addr & (0x003F0000 >> 4)) << 4;
(*arm_op) = temp;
break;
}
default:
return false;
}
return true;
}
uint16_t DisassemblerElf32ARM::TypedRVAARM::op_size() const {
switch (type_) {
case ARM_OFF8:
return 2;
case ARM_OFF11:
return 2;
case ARM_OFF24:
return 4;
case ARM_OFF25:
return 4;
case ARM_OFF21:
return 4;
default:
return 0xFFFF;
}
}
CheckBool DisassemblerElf32ARM::TypedRVAARM::ComputeRelativeTarget(
const uint8_t* op_pointer) {
arm_op_ = op_pointer;
switch (type_) {
case ARM_OFF8: // Falls through.
case ARM_OFF11: {
RVA relative_target;
CheckBool ret = Compress(type_,
Read16LittleEndian(op_pointer),
rva(),
&c_op_,
&relative_target);
set_relative_target(relative_target);
return ret;
}
case ARM_OFF24: {
RVA relative_target;
CheckBool ret = Compress(type_,
Read32LittleEndian(op_pointer),
rva(),
&c_op_,
&relative_target);
set_relative_target(relative_target);
return ret;
}
case ARM_OFF25: // Falls through.
case ARM_OFF21: {
// A thumb-2 op is 32 bits stored as two 16-bit words
uint32_t pval = (Read16LittleEndian(op_pointer) << 16) |
Read16LittleEndian(op_pointer + 2);
RVA relative_target;
CheckBool ret = Compress(type_, pval, rva(), &c_op_, &relative_target);
set_relative_target(relative_target);
return ret;
}
default:
return false;
}
}
CheckBool DisassemblerElf32ARM::TypedRVAARM::EmitInstruction(
Label* label,
InstructionReceptor* receptor) {
return receptor->EmitRel32ARM(c_op(), label, arm_op_, op_size());
}
DisassemblerElf32ARM::DisassemblerElf32ARM(const uint8_t* start, size_t length)
: DisassemblerElf32(start, length) {}
// Convert an ELF relocation struction into an RVA.
CheckBool DisassemblerElf32ARM::RelToRVA(Elf32_Rel rel, RVA* result) const {
// The rightmost byte of r_info is the type.
elf32_rel_arm_type_values type =
static_cast<elf32_rel_arm_type_values>(rel.r_info & 0xFF);
// The other 3 bytes of r_info are the symbol.
uint32_t symbol = rel.r_info >> 8;
switch (type) {
case R_ARM_RELATIVE:
if (symbol != 0)
return false;
// This is a basic ABS32 relocation address.
*result = rel.r_offset;
return true;
default:
return false;
}
}
CheckBool DisassemblerElf32ARM::ParseRelocationSection(
const Elf32_Shdr* section_header,
InstructionReceptor* receptor) const {
// This method compresses a contiguous stretch of R_ARM_RELATIVE entries in
// the relocation table with a Courgette relocation table instruction.
// It skips any entries at the beginning that appear in a section that
// Courgette doesn't support, e.g. INIT.
//
// Specifically, the entries should be
// (1) In the same relocation table
// (2) Are consecutive
// (3) Are sorted in memory address order
//
// Happily, this is normally the case, but it's not required by spec so we
// check, and just don't do it if we don't match up.
//
// The expectation is that one relocation section will contain all of our
// R_ARM_RELATIVE entries in the expected order followed by assorted other
// entries we can't use special handling for.
bool match = true;
// Walk all the bytes in the section, matching relocation table or not.
FileOffset file_offset = section_header->sh_offset;
FileOffset section_end = section_header->sh_offset + section_header->sh_size;
const Elf32_Rel* section_relocs_iter = reinterpret_cast<const Elf32_Rel*>(
FileOffsetToPointer(section_header->sh_offset));
uint32_t section_relocs_count =
section_header->sh_size / section_header->sh_entsize;
if (abs32_locations_.size() > section_relocs_count)
match = false;
if (!abs32_locations_.empty()) {
std::vector<RVA>::const_iterator reloc_iter = abs32_locations_.begin();
for (uint32_t i = 0; i < section_relocs_count; ++i) {
if (section_relocs_iter->r_offset == *reloc_iter)
break;
if (!ParseSimpleRegion(file_offset, file_offset + sizeof(Elf32_Rel),
receptor)) {
return false;
}
file_offset += sizeof(Elf32_Rel);
++section_relocs_iter;
}
while (match && (reloc_iter != abs32_locations_.end())) {
if (section_relocs_iter->r_info != R_ARM_RELATIVE ||
section_relocs_iter->r_offset != *reloc_iter) {
match = false;
}
++section_relocs_iter;
++reloc_iter;
file_offset += sizeof(Elf32_Rel);
}
if (match) {
// Skip over relocation tables
if (!receptor->EmitElfARMRelocation())
return false;
}
}
return ParseSimpleRegion(file_offset, section_end, receptor);
}
// TODO(huangs): Detect and avoid overlap with abs32 addresses.
CheckBool DisassemblerElf32ARM::ParseRel32RelocsFromSection(
const Elf32_Shdr* section_header) {
FileOffset start_file_offset = section_header->sh_offset;
FileOffset end_file_offset = start_file_offset + section_header->sh_size;
const uint8_t* start_pointer = FileOffsetToPointer(start_file_offset);
const uint8_t* end_pointer = FileOffsetToPointer(end_file_offset);
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract |pointer_to_rva|.
const uint8_t* const adjust_pointer_to_rva =
start_pointer - section_header->sh_addr;
// Find the rel32 relocations.
const uint8_t* p = start_pointer;
bool on_32bit = 1; // 32-bit ARM ops appear on 32-bit boundaries, so track it
while (p < end_pointer) {
// Heuristic discovery of rel32 locations in instruction stream: are the
// next few bytes the start of an instruction containing a rel32
// addressing mode?
std::unique_ptr<TypedRVAARM> rel32_rva;
RVA target_rva = 0;
bool found = false;
// 16-bit thumb ops
if (!found && p + 3 <= end_pointer) {
uint16_t pval = Read16LittleEndian(p);
if ((pval & 0xF000) == 0xD000) {
RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva);
rel32_rva.reset(new TypedRVAARM(ARM_OFF8, rva));
if (!rel32_rva->ComputeRelativeTarget(p))
return false;
target_rva = rel32_rva->rva() + rel32_rva->relative_target();
found = true;
} else if ((pval & 0xF800) == 0xE000) {
RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva);
rel32_rva.reset(new TypedRVAARM(ARM_OFF11, rva));
if (!rel32_rva->ComputeRelativeTarget(p))
return false;
target_rva = rel32_rva->rva() + rel32_rva->relative_target();
found = true;
}
}
// thumb-2 ops comprised of two 16-bit words.
if (!found && p + 5 <= end_pointer) {
// This is really two 16-bit words, not one 32-bit word.
uint32_t pval = (Read16LittleEndian(p) << 16) | Read16LittleEndian(p + 2);
if ((pval & 0xF8008000) == 0xF0008000) {
// Covers thumb-2's 32-bit conditional/unconditional branches
if ((pval & (1 << 14)) || (pval & (1 << 12))) {
// A branch, with link, or with link and exchange.
RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva);
rel32_rva.reset(new TypedRVAARM(ARM_OFF25, rva));
if (!rel32_rva->ComputeRelativeTarget(p))
return false;
target_rva = rel32_rva->rva() + rel32_rva->relative_target();
found = true;
} else {
// TODO(paulgazz) make sure cond is not 111
// A conditional branch instruction
RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva);
rel32_rva.reset(new TypedRVAARM(ARM_OFF21, rva));
if (!rel32_rva->ComputeRelativeTarget(p))
return false;
target_rva = rel32_rva->rva() + rel32_rva->relative_target();
found = true;
}
}
}
// 32-bit ARM ops.
if (!found && on_32bit && (p + 5) <= end_pointer) {
uint32_t pval = Read32LittleEndian(p);
if ((pval & 0x0E000000) == 0x0A000000) {
// Covers both 0x0A 0x0B ARM relative branches
RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva);
rel32_rva.reset(new TypedRVAARM(ARM_OFF24, rva));
if (!rel32_rva->ComputeRelativeTarget(p))
return false;
target_rva = rel32_rva->rva() + rel32_rva->relative_target();
found = true;
}
}
if (found && IsValidTargetRVA(target_rva)) {
uint16_t op_size = rel32_rva->op_size();
rel32_locations_.push_back(std::move(rel32_rva));
#if COURGETTE_HISTOGRAM_TARGETS
++rel32_target_rvas_[target_rva];
#endif
p += op_size;
// A tricky way to update the on_32bit flag. Here is the truth table:
// on_32bit | on_32bit size is 4
// ---------+---------------------
// 1 | 0 0
// 0 | 0 1
// 0 | 1 0
// 1 | 1 1
on_32bit = (~(on_32bit ^ (op_size == 4))) != 0;
} else {
// Move 2 bytes at a time, but track 32-bit boundaries
p += 2;
on_32bit = ((on_32bit + 1) % 2) != 0;
}
}
return true;
}
} // namespace courgette