-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory_allocator.h
510 lines (417 loc) · 13.2 KB
/
memory_allocator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COURGETTE_MEMORY_ALLOCATOR_H_
#define COURGETTE_MEMORY_ALLOCATOR_H_
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include "base/compiler_specific.h"
#include "base/files/file.h"
#include "base/files/file_path.h"
#include "base/logging.h"
#include "base/process/memory.h"
#ifndef NDEBUG
// A helper class to track down call sites that are not handling error cases.
template<class T>
class CheckReturnValue {
public:
// Not marked explicit on purpose.
CheckReturnValue(T value) : value_(value), checked_(false) { // NOLINT
}
CheckReturnValue(const CheckReturnValue& other)
: value_(other.value_), checked_(other.checked_) {
other.checked_ = true;
}
CheckReturnValue& operator=(const CheckReturnValue& other) {
if (this != &other) {
DCHECK(checked_);
value_ = other.value_;
checked_ = other.checked_;
other.checked_ = true;
}
return *this;
}
~CheckReturnValue() {
DCHECK(checked_);
}
operator const T&() const {
checked_ = true;
return value_;
}
private:
T value_;
mutable bool checked_;
};
typedef CheckReturnValue<bool> CheckBool;
#else
typedef bool CheckBool;
#endif
namespace courgette {
// Allocates memory for an instance of type T, instantiates an object in that
// memory with arguments |args| (of type ArgTypes), and returns the constructed
// instance. Returns null if allocation fails.
template <class T, class... ArgTypes>
T* UncheckedNew(ArgTypes... args) {
void* ram = nullptr;
return base::UncheckedMalloc(sizeof(T), &ram) ? new (ram) T(args...)
: nullptr;
}
// Complement of UncheckedNew(): destructs |object| and releases its memory.
template <class T>
void UncheckedDelete(T* object) {
if (object) {
object->T::~T();
free(object);
}
}
// A deleter for std::unique_ptr that will delete the object via
// UncheckedDelete().
template <class T>
struct UncheckedDeleter {
inline void operator()(T* ptr) const { UncheckedDelete(ptr); }
};
#if defined(OS_WIN)
// Manages a read/write virtual mapping of a physical file.
class FileMapping {
public:
FileMapping();
~FileMapping();
// Map a file from beginning to |size|.
bool Create(HANDLE file, size_t size);
void Close();
// Returns true iff a mapping has been created.
bool valid() const;
// Returns a writable pointer to the beginning of the memory mapped file.
// If Create has not been called successfully, return value is NULL.
void* view() const;
protected:
bool InitializeView(size_t size);
HANDLE mapping_;
void* view_;
};
// Manages a temporary file and a memory mapping of the temporary file.
// The memory that this class manages holds a pointer back to the TempMapping
// object itself, so that given a memory pointer allocated by this class,
// you can get a pointer to the TempMapping instance that owns that memory.
class TempMapping {
public:
TempMapping();
~TempMapping();
// Creates a temporary file of size |size| and maps it into the current
// process's address space.
bool Initialize(size_t size);
// Returns a writable pointer to the reserved memory.
void* memory() const;
// Returns true if the mapping is valid and memory is available.
bool valid() const;
// Returns a pointer to the TempMapping instance that allocated the |mem|
// block of memory. It's the callers responsibility to make sure that
// the memory block was allocated by the TempMapping class.
static TempMapping* GetMappingFromPtr(void* mem);
protected:
base::File file_;
FileMapping mapping_;
};
// A memory allocator class that allocates memory either from the heap or via a
// temporary file. The interface is STL inspired but the class does not throw
// STL exceptions on allocation failure. Instead it returns NULL.
// A file allocation will be made if either the requested memory size exceeds
// |kMaxHeapAllocationSize| or if a heap allocation fails.
// Allocating the memory as a mapping of a temporary file solves the problem
// that there might not be enough physical memory and pagefile to support the
// allocation. This can happen because these resources are too small, or
// already committed to other processes. Provided there is enough disk, the
// temporary file acts like a pagefile that other processes can't access.
template<class T>
class MemoryAllocator {
public:
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef const value_type* const_pointer;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
// Each allocation is tagged with a single byte so that we know how to
// deallocate it.
enum AllocationType : uint8_t {
HEAP_ALLOCATION = 0xF0, // Non-trivial constants to detect corruption.
FILE_ALLOCATION = 0x0F,
};
// 5MB is the maximum heap allocation size that we'll attempt.
// When applying a patch for Chrome 10.X we found that at this
// threshold there were 17 allocations higher than this threshold
// (largest at 136MB) 10 allocations just below the threshold and 6362
// smaller allocations.
static const size_t kMaxHeapAllocationSize = 1024 * 1024 * 5;
template<class OtherT>
struct rebind {
// convert a MemoryAllocator<T> to a MemoryAllocator<OtherT>
typedef MemoryAllocator<OtherT> other;
};
MemoryAllocator() {}
// We can't use an explicit constructor here, as dictated by our style guide.
// The implementation of basic_string in Visual Studio 2010 prevents this.
MemoryAllocator(const MemoryAllocator<T>& other) { // NOLINT
}
template <class OtherT>
MemoryAllocator(const MemoryAllocator<OtherT>& other) { // NOLINT
}
~MemoryAllocator() {
}
void deallocate(pointer ptr, size_type size) {
uint8_t* mem = reinterpret_cast<uint8_t*>(ptr);
mem -= sizeof(T);
if (mem[0] == HEAP_ALLOCATION)
free(mem);
else if (mem[0] == FILE_ALLOCATION)
UncheckedDelete(TempMapping::GetMappingFromPtr(mem));
else
LOG(FATAL);
}
pointer allocate(size_type count) {
// We use the first byte of each allocation to mark the allocation type.
// However, so that the allocation is properly aligned, we allocate an
// extra element and then use the first byte of the first element
// to mark the allocation type.
count++;
if (count > max_size())
return NULL;
size_type bytes = count * sizeof(T);
uint8_t* mem = NULL;
// First see if we can do this allocation on the heap.
if (count < kMaxHeapAllocationSize &&
base::UncheckedMalloc(bytes, reinterpret_cast<void**>(&mem))) {
mem[0] = static_cast<uint8_t>(HEAP_ALLOCATION);
} else {
// Back the allocation with a temp file if either the request exceeds the
// max heap allocation threshold or the heap allocation failed.
TempMapping* mapping = UncheckedNew<TempMapping>();
if (mapping) {
if (mapping->Initialize(bytes)) {
mem = reinterpret_cast<uint8_t*>(mapping->memory());
mem[0] = static_cast<uint8_t>(FILE_ALLOCATION);
} else {
UncheckedDelete(mapping);
}
}
}
// If the above fails (e.g. because we are in a sandbox), just try the heap.
if (!mem && base::UncheckedMalloc(bytes, reinterpret_cast<void**>(&mem))) {
mem[0] = static_cast<uint8_t>(HEAP_ALLOCATION);
}
return mem ? reinterpret_cast<pointer>(mem + sizeof(T)) : NULL;
}
pointer allocate(size_type count, const void* hint) {
return allocate(count);
}
void construct(pointer ptr, const T& value) {
::new(ptr) T(value);
}
void destroy(pointer ptr) {
ptr->~T();
}
size_type max_size() const {
size_type count = static_cast<size_type>(-1) / sizeof(T);
return (0 < count ? count : 1);
}
};
#else // OS_WIN
// On Mac, Linux, we use a bare bones implementation that only does
// heap allocations.
template<class T>
class MemoryAllocator {
public:
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef const value_type* const_pointer;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
template<class OtherT>
struct rebind {
// convert a MemoryAllocator<T> to a MemoryAllocator<OtherT>
typedef MemoryAllocator<OtherT> other;
};
MemoryAllocator() {
}
explicit MemoryAllocator(const MemoryAllocator<T>& other) {
}
template<class OtherT>
explicit MemoryAllocator(const MemoryAllocator<OtherT>& other) {
}
~MemoryAllocator() {
}
void deallocate(pointer ptr, size_type size) { free(ptr); }
pointer allocate(size_type count) {
if (count > max_size())
return NULL;
pointer result = nullptr;
return base::UncheckedMalloc(count * sizeof(T),
reinterpret_cast<void**>(&result))
? result
: nullptr;
}
pointer allocate(size_type count, const void* hint) {
return allocate(count);
}
void construct(pointer ptr, const T& value) {
::new(ptr) T(value);
}
void destroy(pointer ptr) {
ptr->~T();
}
size_type max_size() const {
size_type count = static_cast<size_type>(-1) / sizeof(T);
return (0 < count ? count : 1);
}
};
#endif // OS_WIN
// Manages a growable buffer. The buffer allocation is done by the
// MemoryAllocator class. This class will not throw exceptions so call sites
// must be prepared to handle memory allocation failures.
// The interface is STL inspired to avoid having to make too many changes
// to code that previously was using STL.
template<typename T, class Allocator = MemoryAllocator<T> >
class NoThrowBuffer {
public:
typedef T value_type;
static const size_t kAllocationFailure = 0xffffffff;
static const size_t kStartSize = sizeof(T) > 0x100 ? 1 : 0x100 / sizeof(T);
NoThrowBuffer() : buffer_(NULL), size_(0), alloc_size_(0) {
}
~NoThrowBuffer() {
clear();
}
void clear() {
if (buffer_) {
alloc_.deallocate(buffer_, alloc_size_);
buffer_ = NULL;
size_ = 0;
alloc_size_ = 0;
}
}
bool empty() const {
return size_ == 0;
}
CheckBool reserve(size_t size) WARN_UNUSED_RESULT {
if (failed())
return false;
if (size <= alloc_size_)
return true;
if (size < kStartSize)
size = kStartSize;
T* new_buffer = alloc_.allocate(size);
if (!new_buffer) {
clear();
alloc_size_ = kAllocationFailure;
} else {
if (buffer_) {
memcpy(new_buffer, buffer_, size_ * sizeof(T));
alloc_.deallocate(buffer_, alloc_size_);
}
buffer_ = new_buffer;
alloc_size_ = size;
}
return !failed();
}
CheckBool append(const T* data, size_t size) WARN_UNUSED_RESULT {
if (failed())
return false;
if (size > alloc_.max_size() - size_)
return false;
if (!size)
return true;
// Disallow source range from overlapping with buffer_, since in this case
// reallocation would cause use-after-free.
DCHECK(data + size <= buffer_ || data >= buffer_ + alloc_size_);
if ((alloc_size_ - size_) < size) {
const size_t max_size = alloc_.max_size();
size_t new_size = alloc_size_ ? alloc_size_ : kStartSize;
while (new_size < size_ + size) {
if (new_size < max_size - new_size) {
new_size *= 2;
} else {
new_size = max_size;
}
}
if (!reserve(new_size))
return false;
}
memcpy(buffer_ + size_, data, size * sizeof(T));
size_ += size;
return true;
}
CheckBool resize(size_t size, const T& init_value) WARN_UNUSED_RESULT {
if (size > size_) {
if (!reserve(size))
return false;
for (size_t i = size_; i < size; ++i)
buffer_[i] = init_value;
} else if (size < size_) {
// TODO(tommi): Should we allocate a new, smaller buffer?
// It might be faster for us to simply change the size.
}
size_ = size;
return true;
}
CheckBool push_back(const T& item) WARN_UNUSED_RESULT {
return append(&item, 1);
}
const T& back() const {
return buffer_[size_ - 1];
}
T& back() {
return buffer_[size_ - 1];
}
const T* begin() const {
if (!size_)
return NULL;
return buffer_;
}
T* begin() {
if (!size_)
return NULL;
return buffer_;
}
const T* end() const {
if (!size_)
return NULL;
return buffer_ + size_;
}
T* end() {
if (!size_)
return NULL;
return buffer_ + size_;
}
const T& operator[](size_t index) const {
DCHECK(index < size_);
return buffer_[index];
}
T& operator[](size_t index) {
DCHECK(index < size_);
return buffer_[index];
}
size_t size() const {
return size_;
}
size_t capacity() const {
return alloc_size_;
}
T* data() const {
return buffer_;
}
// Returns true if an allocation failure has ever occurred for this object.
bool failed() const {
return alloc_size_ == kAllocationFailure;
}
protected:
T* buffer_;
size_t size_; // how much of the buffer we're using.
size_t alloc_size_; // how much space we have allocated.
Allocator alloc_;
};
} // namespace courgette
#endif // COURGETTE_MEMORY_ALLOCATOR_H_