-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMPC_Controller.asv
111 lines (93 loc) · 3.74 KB
/
MPC_Controller.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
% Define initial parameters
V = 40; % Velocity
x0 = [0; 0; 0; V]; % Initial state: [x, y, theta, velocity]
u0 = [0; 0]; % Initial control input: [throttle, delta]
Ts = 0.02; % Time increment
% Generate ego vehicle model
[Ad, Bd, Cd, Dd, U, Y, X, DX] = obstacleVehicleModelDT(Ts, x0, u0);
dsys = ss(Ad, Bd, Cd, Dd, Ts=Ts); % Create state-space model
dsys.InputName = {'Throttle', 'Delta'};
dsys.StateName = {'X', 'Y', 'Theta', 'V'};
dsys.OutputName = dsys.StateName;
% Define lane and obstacle parameters
lanes = 3;
laneWidth = 4;
obstacle = struct;
obstacle.Length = 10;
obstacle.Width = 4;
obstacle.X = 25;
obstacle.Y = 0;
obstacle.safeDistanceX = obstacle.Length;
obstacle.safeDistanceY = laneWidth;
obstacle = obstacleGenerateObstacleGeometryInfo(obstacle);
obstacle.DetectionDistance = 30;
% Plot initial condition
f = obstaclePlotInitialCondition(x0, obstacle, laneWidth, lanes);
% Initialize MPC object
status = mpcverbosity("off");
mpcobj = mpc(dsys);
% Set MPC properties
mpcobj.PredictionHorizon = 60; % Prediction horizon
mpcobj.ControlHorizon = 2; % Control horizon
mpcobj.ManipulatedVariables(1).RateMin = -0.2 * Ts; % Throttle rate constraints
mpcobj.ManipulatedVariables(1).RateMax = 0.2 * Ts;
mpcobj.ManipulatedVariables(2).RateMin = -pi / 30 * Ts; % Steering angle rate constraints
mpcobj.ManipulatedVariables(2).RateMax = pi / 30 * Ts;
mpcobj.ManipulatedVariables(1).ScaleFactor = 2; % Throttle scale factor
mpcobj.ManipulatedVariables(2).ScaleFactor = 0.2; % Steering angle scale factor
mpcobj.Weights.OutputVariables = [0 30 0 1]; % Output variable weights
mpcobj.Model.Nominal = struct(U=U, Y=Y, X=X, DX=DX); % Nominal conditions
% Set up mixed I/O constraints for obstacle avoidance
E1 = [0 0]; F1 = [0 1 0 0]; G1 = laneWidth * lanes / 2;
E2 = [0 0]; F2 = [0 -1 0 0]; G2 = laneWidth * lanes / 2;
E3 = [0 0]; F3 = [0 -1 0 0]; G3 = laneWidth * lanes / 2;
setconstraint(mpcobj, [E1; E2; E3], [F1; F2; F3], [G1; G2; G3], [1; 1; 0.1]);
% Define reference signal
refSignal = [0 0 0 V];
% Initialize states and arrays for simulation
x = x0;
u = u0;
egoStates = mpcstate(mpcobj);
T = 0:Ts:4;
saveSlope = zeros(length(T), 1);
saveIntercept = zeros(length(T), 1);
ympc = zeros(length(T), size(Cd, 1));
umpc = zeros(length(T), size(Bd, 2));
% Main simulation loop
for k = 1:length(T)
% Obtain new plant model and output measurements for interval |k|.
[Ad, Bd, Cd, Dd, U, Y, X, DX] = obstacleVehicleModelDT(Ts, x, u);
measurements = Cd * x + Dd * u;
ympc(k, :) = measurements';
% Determine obstacle detection and update mixed I/O constraints
detection = obstacleDetect(x, obstacle, laneWidth);
[E, F, G, saveSlope(k), saveIntercept(k)] = ...
obstacleComputeCustomConstraint(x, detection, obstacle, laneWidth, lanes);
% Prepare new plant model and nominal conditions for adaptive MPC
newPlant = ss(Ad, Bd, Cd, Dd, Ts=Ts);
newNominal = struct(U=U, Y=Y, X=X, DX=DX);
% Prepare new mixed I/O constraints
options = mpcmoveopt;
options.CustomConstraint = struct(E=E, F=F, G=G);
% Compute optimal moves using updated plant, nominal conditions, and constraints
[u, Info] = mpcmoveAdaptive(mpcobj, egoStates, newPlant, newNominal, ...
measurements, refSignal, [], options);
umpc(k, :) = u';
% Update the plant state for the next iteration |k+1|.
x = Ad * x + Bd * u;
end
% Reset MPC verbosity
mpcverbosity(status);
% Plot mixed I/O constraints and MPC trajectory
figure(f)
for k = 1:length(saveSlope)
X = [0; 50; 100];
Y = saveSlope(k) * X + saveIntercept(k);
line(X, Y, LineStyle="--", Color="g")
end
plot(ympc(:, 1), ympc(:, 2), "-k");
axis([0 ympc(end, 1) -laneWidth * lanes / 2 laneWidth * lanes / 2]) % Reset axis
% Open and simulate the Simulink model
mdl = "mpc_ObstacleAvoidance";
open_system(mdl)
sim(mdl)