-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyze_clip_data_known_bed.py
932 lines (735 loc) · 39.7 KB
/
analyze_clip_data_known_bed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
import luigi
import sciluigi
import os
import subprocess
import logging
import itertools
import pandas as pd
import numpy as np
import ipdb
import matplotlib.pyplot as plt
import seaborn as sns
from puflibs import variables, processing, scltasks, seqmodel
log = logging.getLogger('sciluigi-interface')
class MyWorkflow(sciluigi.WorkflowTask):
# only required parameter
outdir = luigi.Parameter()
cores = luigi.IntParameter(default=1)
# genome data
genome = luigi.Parameter(default='hg38')
genome_fasta = luigi.Parameter(default='/shr/genomes/fasta/hg38/hg38.fa')
genome_size = luigi.Parameter(default='/shr/gSizes/hg38.genomsize')
# CLIP input data
input_bam = luigi.Parameter(default='CLIP/hPUM2/bams/input.ENCFF786ZZB.bam')
rep1_bam = luigi.Parameter(default='CLIP/hPUM2/bams/rep1.ENCFF231WHF.bam')
rep2_bam = luigi.Parameter(default='CLIP/hPUM2/bams/rep2.ENCFF732EQX.bam')
# CLIP processing inputs
input_bed = luigi.Parameter()
len_consensus_seq = luigi.IntParameter(default=11)
check_for_seq = luigi.Parameter(default='TGTA')
window_size = luigi.IntParameter(default=500)
temperature = luigi.IntParameter(default=0)
# RNAMap input data
model_param_basename = luigi.Parameter(default='annotations/RNAmap/qMotif_20180302_')
# transcript data
tpm_cutoff = luigi.FloatParameter(default = 0.01)
#tpm_file = luigi.Parameter(default='RNAseq/transcript_quant/rna_seq_combined.tpm.above_0.01_both.dat')
#rnaseq_file1 = luigi.Parameter(default='RNAseq/transcript_quant/ENCFF272HJP.rep1.tsv')
#rnaseq_file2 = luigi.Parameter(default='RNAseq/transcript_quant/ENCFF471SEN.rep2.tsv')
#regions = luigi.Parameter(default='RNAseq/transcript_quant/exons.st.merge_transcript.above_0.01_both.bed') # the regions in which to look for motifs
transcript_bed = luigi.Parameter(default='annotations/refseq/hg38_refGene.transcripts.st.bed')
biomart_file = luigi.Parameter(default='annotations/ensemble_gene_converter_biomart.txt')
def workflow(self):
####### CLIP ########
# download CLIP data
# TODO
# process CLIP data bams
# get the bam file of the clip data
processclipbams = {}
findtotalreads = {}
outdir_bams = os.path.join(self.outdir, 'bams')
for key, bamfile in zip(['rep1', 'rep2', 'input'], [self.rep1_bam, self.rep2_bam, self.input_bam]):
processclipbams[key] = self.new_task('processclipbam_%s'%key, ProcessRawClipBam, bamfile=bamfile, outdir=outdir_bams)
findtotalreads[key] = self.new_task('findtotalreads_%s'%key, FindTotalReads)
findtotalreads[key].in_bam = processclipbams[key].out_bam
# make bed graph of each strand of clip data
getbedgraphs = {}
outdir_clips = os.path.join(self.outdir, 'clip', 'bedgraphs')
for key, processclipbam in processclipbams.items():
getbedgraphs[key] = self.new_task('getbedgraphs_%s'%key, GetBedGraphFromBam, outdir=outdir_clips, genome_size=self.genome_size)
getbedgraphs[key].in_bam = processclipbam.out_bam
# load RNA seq data
downloadrna = self.new_task('downloadrna', DownloadRNAseq, outdir=os.path.join(self.outdir, 'expression'))
##### STARTING WITH A KNOWN BED FILE OF SITES #####
filterbed = self.new_task('getbed', scltasks.FilenameToTaskOutput, filename=self.input_bed)
i = 0
# split bed file into strands
splitbedfile = self.new_task('splitbedfile_%d'%i, DividBedByStrand)
splitbedfile.in_bed_file = filterbed.out_file
##### FIND CLIP SIGNAL #####
# go through bedgraph files and run all clip commands
outdir_clips = os.path.join(self.outdir, 'clip', 'split_%d'%i, 'strands')
combinestrandsall = {}
for key, getbedgraph in getbedgraphs.items():
# find signal in plus strand
clipsignalplus = self.new_task('getclipsignalplus_%s_%d'%(key, i), GetClipSignal, window_size=self.window_size, genome_size=self.genome_size, outdir=outdir_clips)
clipsignalplus.in_bed_file = splitbedfile.out_bed_plus
clipsignalplus.in_bg_file = getbedgraph.out_bg_plus
# find signal in minus strand
clipsignalminus = self.new_task('getclipsignalminus_%s_%d'%(key, i), GetClipSignal, window_size=self.window_size, genome_size=self.genome_size, outdir=outdir_clips)
clipsignalminus.in_bed_file = splitbedfile.out_bed_minus
clipsignalminus.in_bg_file = getbedgraph.out_bg_minus
# combine the two
combinestrands = self.new_task('combinestrands_%s_%d'%(key, i), CombineStrandData, outdir=os.path.join(self.outdir, 'clip', 'split_%d'%i))
combinestrands.in_datafiles = [clipsignalplus.out_signal, clipsignalminus.out_signal]
combinestrandsall[key] = combinestrands
####### FIND EXPRESSION OF TRANSCRIPTS AT MOTIF SITES ########
# find the transcript count per motif site based on the annotated refseq gene and the rnaseq data
outdir_tpm = os.path.join(self.outdir, 'expression', 'split_%d'%i)
findmotiftpm = self.new_task('findmotiftpm_%d'%i, ProcessRNASeq, biomart_file=self.biomart_file, outdir=outdir_tpm)
findmotiftpm.in_bed = filterbed.out_file
findmotiftpm.in_rna1 = downloadrna.out_rna1
findmotiftpm.in_rna2 = downloadrna.out_rna2
####### FIND SEQUENCE AT MOTIF SITES ########
# find sequence of intervals
outdir_seq = os.path.join(self.outdir, 'sequences', 'split_%d'%i)
findsequence = self.new_task('findsequence_%d'%i, scltasks.FindSequence, genome_fasta=self.genome_fasta,
window_size=self.window_size, outdir=outdir_seq)
findsequence.in_bed = filterbed.out_file
find_seqdata = self.new_task('findseqdata_%d'%i, FindMotifSequenceData, seq_length=self.len_consensus_seq, check_for_seq=self.check_for_seq,
window_size=self.window_size, outdir=outdir_seq)
find_seqdata.in_fasta = findsequence.out_fasta
####### PREDICT EFFECTS AT MOTIF SITES #######
outdir_model = os.path.join(self.outdir, 'effects', 'temp_%d'%(self.temperature), 'split_%d'%i)
find_effect = self.new_task('findeffect_%d'%i, FindPredictedSeqEffect, outdir=outdir_model, model_param_basename=self.model_param_basename,
temperature=self.temperature)
find_effect.in_seqdata = find_seqdata.out_seqdata
####### COMBINE INFO AT MOTIF SITES ########
# combine data in meaningful way
combinedata = self.new_task('combinedata_%d'%i, CombineDataAll,
window_size=self.window_size,
outdir=os.path.join(self.outdir, 'output', 'split_%d'%i),
temperature=self.temperature)
combinedata.in_counts = {key:target.out_signal for key, target in combinestrandsall.items()}
combinedata.in_seq = find_seqdata.out_seqdata
combinedata.in_tpm = findmotiftpm.out_motif_tpm
combinedata.in_bed = filterbed.out_file
combinedata.in_effect = find_effect.out_seqdata
return combinedata
class DownloadRNAseq(sciluigi.Task):
"""Use wget to download RNA seq data."""
# parameters
outdir = luigi.Parameter()
# input
# no inputs
# outputs
def out_rna1(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'rna_seq_rep1.dat'))
def out_rna2(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'rna_seq_rep2.dat'))
# run
def run(self):
# make out directory if it doesn't exist
dirname = os.path.dirname(self.out_rna1().path)
if not os.path.exists(dirname):
os.makedirs(dirname)
# load rep1 and rep2 of the RNA seq data
subprocess.call('wget https://www.encodeproject.org/files/ENCFF272HJP/@@download/ENCFF272HJP.tsv', shell=True)
subprocess.call('mv ENCFF272HJP.tsv %s'%self.out_rna1().path, shell=True)
# load rep1 and rep2 of the RNA seq data
subprocess.call('wget https://www.encodeproject.org/files/ENCFF471SEN/@@download/ENCFF471SEN.tsv', shell=True)
subprocess.call('mv ENCFF471SEN.tsv %s'%self.out_rna2().path, shell=True)
class DownloadGencode(sciluigi.Task):
"""Use wget to download RNA seq data."""
# parameters
outdir = luigi.Parameter()
# input
# no inputs
# outputs
def out_annotations(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'gencode.v24.primary_assembly.annotation.gtf.gz'))
# run
def run(self):
# make out directory if it doesn't exist
dirname = self.outdir
if not os.path.exists(dirname):
os.makedirs(dirname)
# download the gencode annotation file
task1 = 'wget https://www.encodeproject.org/files/gencode.v24.primary_assembly.annotation/@@download/gencode.v24.primary_assembly.annotation.gtf.gz'
log.info(task1)
subprocess.call(task1, shell=True)
subprocess.call('mv gencode.v24.primary_assembly.annotation.gtf.gz %s'%self.out_annotations().path, shell=True)
class FindTranscribedRegions(sciluigi.Task):
"""Download the exons, st, merge. """
# parameters
outdir = luigi.Parameter()
# input
in_annotations = None
def out_bed_unprocessed(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'all_unprocessed.bed'))
def out_bed_sorted(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'all_unprocessed_st.bed'))
def out_bed(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'all_unprocessed_st_merged.bed'))
def run(self):
# make out directory if it doesn't exist
dirname = os.path.dirname(self.out_bed().path)
if not os.path.exists(dirname):
os.makedirs(dirname)
# process to save exons
task2 = ('gunzip -c %s | awk \'{if (substr($1, 1, 3)=="chr") print}\' | '
'awk \'{OFS="\\t"}{n=split($0, a, "\\t"); print $1, $4-1, $5, $3"_"(NR-1), $6, $7, a[n] }\' > %s')%(self.in_annotations().path, self.out_bed_unprocessed().path)
log.info(task2)
subprocess.call(task2, shell=True)
# merge bed file
task3 = 'bedtools sort -i %s > %s'%(self.out_bed_unprocessed().path, self.out_bed_sorted().path)
log.info(task3)
subprocess.call(task3, shell=True)
task4 = 'bedtools merge -i %s -c 4 -o first | awk \'{print}\'> %s'%(self.out_bed_sorted().path, self.out_bed().path)
log.info(task4)
subprocess.call(task4, shell=True)
class MakeHomerMotif(sciluigi.Task):
"""Make a motif using HOMER and consensus seq."""
# parameters
seq = luigi.Parameter()
num_muts = luigi.IntParameter()
outdir = luigi.Parameter()
motif_name = luigi.Parameter()
# input
# no inputs
# outputs
def out_homer_motif(self):
return sciluigi.TargetInfo(self, os.path.join(self.outdir, 'motifs', '%s.%d.motif'%(self.motif_name, self.num_muts)))
# run
def run(self):
# make out directory if it doesn't exist
dirname = os.path.dirname(self.out_homer_motif().path)
if not os.path.exists(dirname):
os.makedirs(dirname)
task_call = 'seq2profile.pl %s %d %s > %s'%(self.seq, self.num_muts, self.motif_name, self.out_homer_motif().path)
subprocess.call(task_call, shell=True)
class MakeBedFileHomer(sciluigi.Task):
"""Make a bed file of motif sites using HOMER."""
# parameters
genome = luigi.Parameter()
outdir = luigi.Parameter()
motif = luigi.Parameter()
seq_length = luigi.IntParameter()
# input
#in_homer_motif = None
in_regions = None
# outputs
def out_bed(self):
basename1 = os.path.splitext(os.path.basename(self.in_regions().path))[0]
basename2 = os.path.splitext(os.path.basename(self.motif))[0]
return sciluigi.TargetInfo(self, os.path.join(self.outdir, '%s.%s.bed'%(basename1, basename2)))
# run
def run(self):
# make out directory if it doesn't exist
dirname = os.path.dirname(self.out_bed().path)
if not os.path.exists(dirname):
os.makedirs(dirname)
# find the motif
output1 = self.out_bed().path + '.tmp'
task_call = 'annotatePeaks.pl %s %s -m %s -mbed %s -noann -nogene > /dev/null'%(self.in_regions().path, self.genome, self.motif, output1)
log.info(task_call)
subprocess.call(task_call, shell=True)
# take out trackline and sort
output2 = self.out_bed().path + '.st.tmp'
sort_call = ('tail -n+2 %s | bedtools sort -i stdin | '
'bedtools merge -s -d -%d -c 4,5 -o last,min -s -i stdin | '
'awk \'{OFS="\\t"}{print $1, $2, $3, $5 "_"NR-1, $6, $4}\' > %s')%(output1, self.seq_length, output2)
log.info(sort_call)
subprocess.call(sort_call, shell=True)
# make sure its the same strand as the parent bed file, if strand info is given.
output3 = self.out_bed().path
strand_call = ('bedtools closest -d -a %s -b %s | '
'awk -F "\\t" \'{OFS="\\t"}{'
'distance=$NF; '
'motifstrand=$6; '
'peakstrand=$(NF-1); '
'if (peakstrand=="+" || peakstrand == "-") {if (peakstrand==motifstrand) print} '
'else print}\' | cut -f 1-6 > %s')%(output2, self.in_regions().path, output3)
log.info(strand_call)
subprocess.call(strand_call, shell=True)
# load bed and make sure only unique sites are reported
class AnnBedFile(sciluigi.Task):
"""Filter the bed output from HOMER for strandedness, protein-coding, etc."""
# parameters
genome = luigi.Parameter()
# inputs
in_bed = None
# outputs
def out_filt_dat(self):
outdir = os.path.dirname(self.in_bed().path)
basename = os.path.splitext(os.path.basename(self.in_bed().path))[0]
return sciluigi.TargetInfo(self, os.path.join(outdir, '%s.ann.dat'%(basename)))
# run
def run(self):
bedfile = self.in_bed().path
annfile = self.out_filt_dat().path
# filter
annotate_call = 'annotatePeaks.pl %s %s > %s'%(bedfile, self.genome, annfile)
# do calls
subprocess.call(annotate_call, shell=True)
class ApplyFilterBedFile(sciluigi.Task):
"""Filter the bed output from HOMER for strandedness, protein-coding, etc."""
# parameters
transcript_bed = luigi.Parameter()
filter_genetype = luigi.BoolParameter(default=True)
# inputs
in_filt_dat = None
# outputs
def out_file(self):
outdir = os.path.dirname(self.in_filt_dat().path)
basename = os.path.splitext(os.path.basename(self.in_filt_dat().path))[0]
return sciluigi.TargetInfo(self, os.path.join(outdir, '%s.filt.bed'%(basename)))
# run
def run(self):
annfile = self.in_filt_dat().path
interfile_basename = os.path.splitext(self.in_filt_dat().path)[0]
filtfile = interfile_basename + '.filt.bed.tmp'
# filter
process_annotations = ('awk \'BEGIN {FS="\\t"}{OFS="\\t"}{'
'if ($NF=="") {gene_type="NA"} else {gene_type=$NF}; '
'n=index($8, " ("); '
'if (n>0) {ann=substr($8, 1, n-1); notann=substr($8, n+2, length($8)-n-2);} '
'else {ann=$8; notann=""}; '
'm=index(notann, ","); '
'if (m>0) {gene=substr(notann, 1, m-1); exon=substr(notann, m+2, length(notann));} '
'else {gene=notann; exon=""}; '
'print $2, $3-1, $4, $1, $6, $5, ann, gene, exon, gene_type}\'')
# only include protein coding genes or the NORAD subset
#apply_filter = ('awk \'BEGIN {FS="\\t"}{OFS="\\t"}{'
# 'if (($NF=="protein-coding" &&($7=="exon" || index($7, "UTR")==4)) || ($NF=="ncRNA" && $8=="%s")) print}\'')%self.nc_gene
if self.filter_genetype:
apply_filter = ('awk \'BEGIN {FS="\\t"}{OFS="\\t"}{'
'if (($NF=="protein-coding" &&($7=="exon" || index($7, "UTR")==4)) || '
'($NF=="ncRNA" && $7=="non-coding")) print}\'')
filter_call_sub = process_annotations + ' | ' + apply_filter
else:
filter_call_sub = process_annotations
# process and apply filter
filter_call = ('tail -n+2 %s | ' + filter_call_sub +
' | grep -v chrUn | grep -v random | bedtools sort -i stdin > %s')%(annfile, filtfile)
log.info(filter_call)
subprocess.call(filter_call, shell=True)
# find closest transcript and only keep that which aligns
strand_call = (('bedtools closest -d -a %s -b %s | '
'awk -F "\\t" \'{OFS="\\t"}{'
'distance=$NF; '
'genemotif=$8; '
'geneclosest=$14; '
'strandmotif=$6; '
'strandgene=$16; '
'if ((genemotif==geneclosest && strandmotif==strandgene) || genemotif=="") print}\' | '
'cut -f 1-10 | awk \'{print}\'> %s')%
(filtfile, self.transcript_bed, self.out_file().path))
# do calls
log.info(strand_call)
subprocess.call(strand_call, shell=True)
# remove duplicates
bed_data = processing.load_bed(self.out_file().path, additional_cols=variables.motif_fields_additional)
bed_data = bed_data.groupby('name').first().reset_index().loc[:, variables.bed_fields + variables.motif_fields_additional]
bed_data.to_csv(self.out_file().path, index=False, header=False, sep='\t')
#subprocess.call('rm %s'%filtfile, shell=True)
class MakeRandomBed(sciluigi.Task):
"""Make bed file of intervals within regions of a certain length."""
# parameters
num_random = luigi.IntParameter()
outdir = luigi.Parameter()
window_size = luigi.IntParameter()
in_regions = None
seed = luigi.FloatParameter()
# output
def out_bed(self):
basename1 = os.path.splitext(os.path.basename(self.in_regions().path))[0]
return sciluigi.TargetInfo(self, os.path.join(self.outdir, '%s.random_%.0e.bed'%(basename1, self.num_random)))
# run
def run(self):
# make out directory if it doesn't exist
dirname = os.path.dirname(self.out_bed().path)
if not os.path.exists(dirname):
os.makedirs(dirname)
# load regions
regions = processing.load_bed(self.in_regions().path)
regions.loc[:, 'int_size'] = regions.stop - regions.start
regions.loc[:, 'cum_int_size'] = np.cumsum(regions.int_size)
# find n start sites
n = self.num_random
if not pd.isnull(self.seed):
np.random.seed(self.seed)
vals = np.sort(np.random.choice(np.arange(regions.int_size.sum()), size=n))
locations = np.searchsorted(regions.cum_int_size, vals)
strands = np.random.choice(['+', '-'], size=n)
# go through each location and get the interval
new_regions = []
for i, (loc, val) in enumerate(zip(locations, vals)):
region = regions.iloc[loc]
diff = region.cum_int_size - val
new_start = region.start + diff
new_stop = new_start + self.window_size
new_region = pd.Series({'chrm':region.chrm,
'start':new_start,
'stop':new_stop,
'name':'%s_%d'%(region.loc['name'], i),
'strand':strands[i],
'score':'.'})
new_regions.append(new_region)
new_regions = pd.concat(new_regions, axis=1).transpose().loc[:, variables.bed_fields]
processing.save_bed(new_regions, self.out_bed().path)
class DividBedByStrand(sciluigi.Task):
"""Filter the bed output from HOMER for strandedness, protein-coding, etc."""
# inputs
in_bed_file = None
# outputs
def out_bed_plus(self):
outdir = os.path.dirname(self.in_bed_file().path)
basename = os.path.splitext(os.path.basename(self.in_bed_file().path))[0]
return sciluigi.TargetInfo(self, os.path.join(outdir, '%s.plus.bed'%(basename)))
def out_bed_minus(self):
outdir = os.path.dirname(self.in_bed_file().path)
basename = os.path.splitext(os.path.basename(self.in_bed_file().path))[0]
return sciluigi.TargetInfo(self, os.path.join(outdir, '%s.minus.bed'%(basename)))
# run
def run(self):
# divide into plus and minus strands
bedfile_plus, bedfile_minus = [target().path for target in [self.out_bed_plus, self.out_bed_minus]]
for strand, bedfile in zip(["+", "-"], [bedfile_plus, bedfile_minus]):
task_call = ('awk \'{if ($6=="%s") print}\' %s > %s'%
(strand, self.in_bed_file().path, bedfile))
subprocess.call(task_call, shell=True)
class MakeFootprint(sciluigi.Task):
"""Given the alignments from ENCODE, process to get plus and minus strand bedgraph."""
# inputs
bamfile = luigi.Parameter()
outdir = luigi.Parameter()
cores = luigi.IntParameter()
in_bed = None
def out_vplot(self, ):
outname = os.path.join(self.outdir, os.path.splitext(os.path.basename(self.bamfile))[0])
return sciluigi.TargetInfo(self, outname + '.VMat')
def run(self, ):
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
if not os.path.exists(self.bamfile + '.bai'):
subprocess.call('samtools index %s'%self.bamfile, shell=True)
outname = os.path.join(self.outdir, os.path.splitext(os.path.basename(self.bamfile))[0])
call = 'pyatac vplot --bed %s --bam %s --not_atac --out %s --cores %d'%(self.in_bed().path, self.bamfile, outname, self.cores)
subprocess.call(call, shell=True)
class ProcessClipPeaks(sciluigi.Task):
"""Given the two peak calls from ENCODE, processs to get a single combined file."""
# inputs
outdir = luigi.Parameter()
bedfile1 = luigi.Parameter()
bedfile2 = luigi.Parameter()
def out_bed(self, ):
filenames = [self.bedfile1, self.bedfile2]
outname = processing.combine_filenames_split(filenames, avoid_elements=['st', 'bed']) + '.bed'
return sciluigi.TargetInfo(self, os.path.join(self.outdir, outname))
def run(self, ):
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
# combine beds, sort and merge
call = ('cat %s %s | '
'bedtools sort -i stdin | '
'bedtools merge -s -c 4,8 -o distinct,max -i stdin | '
'awk \'{OFS="\\t"}{print $1, $2, $3, $5, $6, $4}\' > %s')%(self.bedfile1, self.bedfile2, self.out_bed().path)
log.info(call)
subprocess.call(call, shell=True)
class ProcessRawClipBam(sciluigi.Task):
"""Given the alignments from ENCODE, process to get plus and minus strand bedgraph."""
# inputs
bamfile = luigi.Parameter()
outdir = luigi.Parameter()
def out_bam(self, ):
outname = os.path.join(self.outdir, os.path.splitext(os.path.basename(self.bamfile))[0] + '.R2.bam')
return sciluigi.TargetInfo(self, outname)
def run(self, ):
outfile = self.out_bam().path
if not os.path.exists(os.path.dirname(outfile)):
os.makedirs(os.path.dirname(outfile))
call = 'samtools view -bh -f 128 %s > %s'%(self.bamfile, self.out_bam().path)
subprocess.call(call, shell=True)
class GetBedGraphFromBam(sciluigi.Task):
"""Given the alignments from ENCODE, process to get plus and minus strand bedgraph."""
# inputs
outdir = luigi.Parameter()
genome_size = luigi.Parameter()
in_bam = None
def out_bg_plus(self, ):
outname = self.get_basename() + '.plus.bedGraph.gz'
return sciluigi.TargetInfo(self, outname)
def out_bg_minus(self, ):
outname = self.get_basename() + '.minus.bedGraph.gz'
return sciluigi.TargetInfo(self, outname)
def get_basename(self, ):
return os.path.join(self.outdir, os.path.basename(os.path.splitext(self.in_bam().path)[0]))
def run(self, ):
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
for strand, target in zip(['+', '-'], [self.out_bg_plus, self.out_bg_minus]):
extension = '.bedGraph.gz'
outbase= target().path[:-len(extension)]
outcov_file = outbase + '.bg.tmp'
cov_call = 'bedtools genomecov -ibam %s -strand %s -bg -5 > %s'%(self.in_bam().path, strand, outcov_file)
log.info(cov_call)
subprocess.call(cov_call, shell=True)
log.info('making sure all chromosomes get tabix')
# make a dummy bedgraph file of only chromosomes
outdummy_file = 'temp.txt'
dummy_bed_call = 'awk \'{OFS="\\t"}{print $1, "0", "1", "0"}\' %s > %s'%(self.genome_size, outdummy_file )
subprocess.call(dummy_bed_call, shell=True)
# concatenate
cat_call = 'cat %s %s | bedtools sort -i stdin | bgzip > %s'%(outcov_file, outdummy_file, outbase+extension)
log.info(cat_call)
subprocess.call(cat_call, shell=True)
# tabix index
subprocess.call('tabix -p bed %s'%outbase+extension, shell=True)
subprocess.call('rm %s'%outcov_file, shell=True)
class FindTotalReads(sciluigi.Task):
"""Find the total number of reads per clip bam."""
in_bam = None
def out_bamcount(self):
outfile = os.path.splitext(self.in_bam().path)[0] + '.bamcount'
return sciluigi.TargetInfo(self, outfile)
def run(self, ):
num_million_reads = int(subprocess.check_output('samtools view %s | wc -l'%self.in_bam().path, shell=True).strip())/1E6
np.savetxt(self.out_bamcount().path, [num_million_reads])
class GetClipSignal(sciluigi.Task):
"""Get the CLIP signal around motif sites."""
# parameters
window_size = luigi.IntParameter()
genome_size = luigi.Parameter()
outdir = luigi.Parameter()
# input
in_bed_file = None # where to find the signal
in_bg_file = None
# outputs
def out_signal(self):
return sciluigi.TargetInfo(self, '%s.tracks.txt.gz'%self.get_filename_no_ext())
def get_filename_no_ext(self):
basename = os.path.splitext(os.path.basename(self.in_bed_file().path))[0]
basename2 = os.path.splitext(os.path.basename(self.in_bg_file().path))[0]
return os.path.join(self.outdir, '%s.%s.%d'%(basename, basename2, self.window_size))
def run(self):
# make directory if it doesn't exist
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
# run pyatac signal per strand
extension = '.tracks.pkl'
outfile = self.get_filename_no_ext()
up_amount = int(self.window_size/2.)
call = 'pyatac signal --bed %s --bg %s --sizes %s --out %s --all --up %d --down %d --strand 6 --no_agg'%(self.in_bed_file().path, self.in_bg_file().path, self.genome_size, outfile, up_amount, up_amount)
log.info(call)
subprocess.call(call, shell=True)
# load and add index from bed file
bed_names = pd.read_table(self.in_bed_file().path, usecols=(3,), squeeze=True, header=None).rename('motif')
clip_data = pd.read_csv(self.out_signal().path, compression='gzip', header=None).fillna(0).astype(float)
clip_data.index = bed_names
clip_data.to_csv(self.out_signal().path, compression='gzip')
class CombineStrandData(sciluigi.Task):
"""combine the clip signal from multiple instances of getclipsignal."""
# parameters
outdir = luigi.Parameter()
# input
in_datafiles = None
# output
def out_signal(self):
basename = self.get_basename()
return sciluigi.TargetInfo(self, os.path.join(self.outdir, basename))
def get_basename(self):
name1, name2 = [os.path.basename(target().path) for target in self.in_datafiles]
return '.'.join([s for s in name1.split('.') if s in name2.split('.')])
# run
def run(self):
data = pd.concat([np.abs(pd.read_csv(target().path, compression='gzip', index_col=0)) for target in self.in_datafiles])
data.to_csv(self.out_signal().path, compression='gzip')
class ProcessRNASeq(sciluigi.Task):
"""Map the RNAseq data to the motif data."""
# parameters
biomart_file = luigi.Parameter()
outdir = luigi.Parameter()
# input
in_bed = None
in_rna1 = None
in_rna2 = None
# output
def out_motif_tpm(self):
outfile = os.path.splitext(os.path.basename(self.in_bed().path))[0] + '.tpm.peak_id'
return sciluigi.TargetInfo(self, os.path.join(self.outdir, outfile))
def run(self):
# check directory exists
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
# load tpm files
rep1 = pd.read_table(self.in_rna1().path)
rep2 = pd.read_table(self.in_rna2().path)
tpm_data = pd.concat([rep1.set_index('transcript_id').TPM.rename('rep1'), rep2.set_index('transcript_id').TPM.rename('rep2')], axis=1).reset_index().rename(columns={'transcript_id':'transcript_idx'})
tpm_data.index = [s.split('.')[0] for s in tpm_data.transcript_idx]
tpm_combined = np.exp(np.log(tpm_data.loc[:, ['rep1', 'rep2']]).mean(axis=1))
# load the biomart data mapping transcript id to refseq id
biomart_data = pd.read_table(self.biomart_file, names=['gene_id', 'transcript_id', 'gene_name', 'refseq_id', 'refseq_nc'], header=0)
# process to add nc to id column if id column is nan
biomart_data.loc[:, 'refseq_comb'] = [refseq_id if not str(refseq_id)=='nan' else refseq_nc for idx, refseq_id, refseq_nc in biomart_data.loc[:, ['refseq_id', 'refseq_nc']].itertuples()]
# annotate tpm data with refseq id
biomart_data.loc[:, 'tpm'] = tpm_combined.loc[biomart_data.transcript_id].values
# take whichever refseq id has the most tpm (or the most)
tpm_refseq = biomart_data.groupby('refseq_id')['tpm'].max()
# load bed data
bed_data = processing.load_bed(self.in_bed().path, additional_cols=variables.motif_fields_additional)
index = ~bed_data.refseq_id.isnull()
bed_data.loc[index, 'tpm'] = tpm_refseq.loc[bed_data.loc[index].refseq_id].values
log.info('%d out of %d motif sites had no TPM data'%(bed_data.tpm.isnull().sum(), len(bed_data)))
bed_data.loc[:, ['name', 'tpm']].to_csv(self.out_motif_tpm().path, sep='\t', index=False)
class FindPredictedSeqEffect(sciluigi.Task):
"""From the file with sequence info, and predict relative affinity of that site."""
model_param_basename = luigi.Parameter()
outdir = luigi.Parameter()
temperature = luigi.IntParameter()
in_seqdata = None
def out_seqdata(self):
outfile = os.path.join(self.outdir, self.get_basename() + '.affinity.gz')
return sciluigi.TargetInfo(self, outfile)
def get_basename(self, ):
basename = os.path.basename(os.path.splitext(self.in_seqdata().path)[0] )
return basename
def run(self):
# initialize out files
outdir = self.outdir
if not os.path.exists(outdir):
os.makedirs(outdir)
# load seqdata
seqdata = pd.read_table(self.in_seqdata().path, compression='gzip', index_col=0)
seqs = seqdata.seq.str.replace('T', 'U')
# run the model
flip_params, base_params, coupling_params, dflip_params = seqmodel.load_params(self.model_param_basename)
output = [seqmodel.additive_PUF_flip_model(seq, flip_params, base_params, coupling_params, dflip_params, self.temperature, return_ensemble=True)
for seq in seqs]
ddGs = pd.Series({idx:val[0] for val, idx in zip(output, seqs.index.tolist())})
ddG_ensembles = pd.concat({idx:val[1] for val, idx in zip(output, seqs.index.tolist())}).unstack()
# save
pd.concat([ddGs.rename('ddG'), ddG_ensembles], axis=1).to_csv(self.out_seqdata().path, sep='\t', compression='gzip')
class FindMotifSequenceData(sciluigi.Task):
"""From the fasta file, find data about the motif site."""
seq_length = luigi.IntParameter()
check_for_seq = luigi.Parameter()
window_size = luigi.IntParameter()
in_fasta = None
def out_seqdata(self):
outfile = self.get_basename() + '.seqdata.gz'
return sciluigi.TargetInfo(self, outfile)
def get_basename(self, ):
basename = os.path.splitext(self.in_fasta().path)[0]
return basename
def run(self):
# make the fasta file
num_up_bases = int(self.window_size/2.)
# load fasta file. save the middle sequence, and save whetehr 'check for seq' is anywhere in the window'
with open(self.in_fasta().path) as f:
lines = f.readlines()
# save to a dict
fasta_dict = {}
for name, seq in zip(lines[:-1:2], lines[1::2]):
key = name.strip()[1:]
fasta_dict[key] = seq.strip().upper()
# now locate the sequence of the motif site itself
motif_seqs = {}
has_seq = {}
where_is_seq_upstream = {}
where_is_seq_downstream = {}
for name, seq in fasta_dict.items():
motif_seqs[name] = seq[num_up_bases:][:self.seq_length]
has_seq[name] = seq.find(self.check_for_seq)>=0
# downstream distance
where_is_seq_upstream[name] = seq[:num_up_bases][::-1].find(self.check_for_seq[::-1])
where_is_seq_downstream[name] = seq[num_up_bases+self.seq_length:].find(self.check_for_seq)
motif_seqs = pd.Series(motif_seqs).rename('seq')
where_is_seq_upstream = pd.Series(where_is_seq_upstream).replace(-1, num_up_bases+1).rename('upstream_bases_to_%s'%self.check_for_seq)
where_is_seq_downstream = pd.Series(where_is_seq_downstream).replace(-1, num_up_bases+1).rename('downstream_bases_to_%s'%self.check_for_seq)
pd.concat([motif_seqs, where_is_seq_upstream, where_is_seq_downstream], axis=1).to_csv(self.out_seqdata().path, sep='\t', compression='gzip')
class CombineBamCounts(sciluigi.Task):
"""Combine al the relevant outputs into a table."""
in_bamcounts = None
outdir = luigi.Parameter()
def out_bamcounts(self, ):
return sciluigi.TargetInfo(self, self.get_basename() + '.total_bamcounts.pkl')
def get_basename(self):
name_list = list(itertools.chain(*[os.path.basename(target().path).split('.') for key, target in self.in_counts.items()]))
_, idx = np.unique(name_list, return_index=True)
name_unique = [name_list[i] for i in np.sort(idx)]
basename = '.'.join([s for s in name_unique if s not in ['ann', 'filt', 'bedGraph', 'tracks', 'txt', 'gz', 'counts', 'pkl']])
return os.path.join(self.outdir, basename)
def run(self, ):
# make directory f it doesn't exist
outdir = self.outdir
if not os.path.exists(outdir):
os.makedirs(outdir)
# load total counts
bamcounts = {}
for key, target in self.in_bamcounts.items():
bamcounts[key] = np.loadtxt(target().path)
bamcounts = pd.Series(bamcounts)
bamcounts.to_pickle(self.out_bamcounts().path)
class CombineDataAll(sciluigi.Task):
"""Combine al the relevant outputs into a table."""
in_counts = None
in_seq = None
in_tpm = None
in_bed = None
in_effect = None
outdir = luigi.Parameter()
window_size = luigi.IntParameter()
temperature = luigi.FloatParameter()
def out_table(self, ):
filenames = [target().path for target in self.in_counts.values()]
return sciluigi.TargetInfo(self, os.path.join(self.outdir, processing.combine_filenames_split(filenames) + '.temp%d.combined_data.gz'%self.temperature))
def run(self, ):
# make directory f it doesn't exist
outdir = self.outdir
if not os.path.exists(outdir):
os.makedirs(outdir)
# load counts
counts = {}
for key, target in self.in_counts.items():
data_table = pd.read_csv(target().path, compression='gzip', index_col=0)
counts['%s'%(key)] = processing.get_counts_from_counts_table(data_table, )
counts = pd.concat(counts).unstack(level=0)
# load seqdata
seqdata = pd.read_table(self.in_seq().path, compression='gzip', index_col=0)
# load seqdata_effects
seqeffect = pd.read_table(self.in_effect().path, compression='gzip', index_col=0)
#seqeffect.loc[:, 'flag'] = pd.Series({idx:seqmodel.flag_ensemble(row.drop('ddG')-row.ddG) for idx, row in seqeffect.iterrows()})
noflip_cols = [idx for idx in seqeffect if idx.find('noflip')==0]
flip_cols = [idx for idx in seqeffect if idx.find('flip')==0 or idx.find('doubleflip')==0]
seqeffect.loc[:, 'ddG_noflip_noens'] = seqeffect.loc[:, noflip_cols[0]]
seqeffect.loc[:, 'ddG_noflip'] = seqmodel.compute_ensemble_ddG_set(seqeffect.loc[:, noflip_cols], self.temperature)
seqeffect.loc[:, 'ddG_flip'] = seqmodel.compute_ensemble_ddG_set(seqeffect.loc[:, flip_cols], self.temperature)
keep_cols = [idx for idx in seqeffect if idx.find('ddG')==0]
# load bed data
beddata = processing.load_bed(self.in_bed().path, additional_cols=variables.motif_fields_additional).set_index('name')
# load tpm
expression = pd.read_table(self.in_tpm().path, index_col=0, squeeze=True)
# combine
out_data = pd.concat([beddata, counts, expression, seqdata, seqeffect.loc[:, keep_cols]], axis=1)
out_data.loc[:, 'clip_signal_per_tpm'] = (out_data.rep1 + out_data.rep2)/out_data.tpm
out_data.loc[:, 'clip_input_per_tpm'] = (out_data.input)/out_data.tpm
out_data.to_csv(self.out_table().path, sep='\t', compression='gzip')
class CombineSplitData(sciluigi.Task):
"""Combine al the relevant outputs into a table."""
in_data = None
outdir = luigi.Parameter()
def out_data(self, ):
filenames = [target().path for target in self.in_data.values()]
return sciluigi.TargetInfo(self, os.path.join(self.outdir, processing.combine_filenames_split(filenames) + '.combined_data.gz'))
def run(self, ):
# make directory f it doesn't exist
outdir = self.outdir
if not os.path.exists(outdir):
os.makedirs(outdir)
# load files
filename_dict = {key:target().path for key, target in self.in_data.items()}
table = pd.concat({key:pd.read_table(filename, compression='gzip', index_col=0) for key, filename in filename_dict.items()}, names=['split_id', 'name'])
table.reset_index().to_csv(self.out_data().path, index=False, compression='gzip', sep='\t')
if __name__ == '__main__':
luigi.run(local_scheduler=True, main_task_cls=MyWorkflow)