-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFCTP_StoBd_Guss.gms
184 lines (143 loc) · 5.63 KB
/
FCTP_StoBd_Guss.gms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
$Title Fixed-charge transportation problem (FCTP) solved by Benders decomposition
$OnText
Developed by
Andres Ramos
Instituto de Investigacion Tecnologica
Escuela Tecnica Superior de Ingenieria - ICAI
UNIVERSIDAD PONTIFICIA COMILLAS
Alberto Aguilera 23
28015 Madrid, Spain
Andres.Ramos@comillas.edu
https://pascua.iit.comillas.edu/aramos/Ramos_CV.htm
May 8, 2023
$OffText
* relative optimality tolerance in solving MIP problems
option OptcR = 0, Decimals = 6
sets
L iterations / l001 * l200 /
LL(l) iterations subset
I origins / i1 * i4 /
J destinations / j1 * j3 /
S scenarios / s000 * s099 /
parameters
A(i) product offer / i1 20, i2 30, i3 40, i4 20 /
B(j) product demand / j1 21, j2 51, j3 31 /
BS(s, j) product demand
P (s) scenario probability
YS(s,i,j) arc investment decision
XS(s,i,j) arc flow
NS(s, j) demand not served
PI(s,i,j) dual variables of second stage constraints
PTY penalty for demand not served / 1000 / ;
table C(i,j) per unit variable transportation cost
j1 j2 j3
i1 1 2 3
i2 3 2 1
i3 2 3 4
i4 4 3 2 ;
table F(i,j) fixed transportation cost
j1 j2 j3
i1 10 20 30
i2 20 30 40
i3 30 40 50
i4 40 50 60 ;
BS(s,j) = B(j) * [1+round(uniform(-0.05,0.05),2)] ;
P(s) = 1/card(s) ;
abort $(sum[i, A(i)] < sum[j, B(j)]) 'Infeasible problem'
parameters
BdTol relative Benders tolerance / 1e-6 /
Z_Lower lower bound / -inf /
Z_Upper upper bound / inf /
Y_L (l, i,j) first stage variables values in iteration l
PI_L (l,s,i,j) dual variables of second stage constraints in iteration l
Delta (l) cut type (feasibility 0 optimality 1) in iteration l
Z2_L (l,s) subproblem objective function value in iteration l
Z2S (s) subproblem objective function value in iteration l
positive variable
X(i,j) arc flow
N( j) demand not served
binary variable
Y(i,j) arc investment decision
variables
Z1 first stage objective function
Z2 second stage objective function
Theta recourse function
equations
EQ_Z1 first stage objective function
EQ_Z2 second stage objective function
EQ_OBJ complete problem objective function
Offer (i ) offer at origin
Demand ( j) demand at destination
FlowLimit(i,j) arc flow limit
Bd_Cuts (l) Benders cuts ;
EQ_Z1 .. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + Theta ;
EQ_Z2 .. Z2 =e= sum[(i,j), C(i,j)*X(i,j)] + sum[j, PTY*N(j)] ;
EQ_OBJ .. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)] + sum[j, PTY*N(j)] ;
Offer (i ) .. sum[j, X(i,j)] =l= A(i) ;
Demand ( j) .. sum[i, X(i,j)] + N(j) =g= B(j) ;
FlowLimit(i,j) .. X(i,j) =l= 100 * Y(i,j) ;
Bd_Cuts(ll) .. Delta(ll) * Theta =g= sum[s, P(s) * (Z2_l(ll,s) + sum[(i,j), (Y(i,j)-Y_L(ll,i,j)) * 100 * PI_L(ll,s,i,j)])] ;
model Master_Bd / EQ_Z1 Bd_Cuts / ;
model Subproblem_Bd / EQ_Z2 Offer Demand FlowLimit / ;
model Complete / EQ_OBJ Offer Demand FlowLimit / ;
X.up(i,j) = 100 ;
set
scen_dem stochastic demand scenario dictionary /
s . scenario . ''
* update the LHS with values of the RHS
B . param . BS
* store in the RHS with values of the LHS
X . level . XS
N . level . NS
Y . level . YS
Z2 . level . Z2S
FlowLimit . marginal . PI / ;
parameter
scen_optn scenario options / OptFile 2, LogOption 1, SkipBaseCase 1,
UpdateType 1, RestartType 1, NoMatchLimit 999 /
loop (s, abort $(sum[i, A(i)] < sum[j, BS(s,j)]) 'Infeasible problem' ) ;
* to allow CPLEX correctly detect rays in an infeasible problem
* only simplex method can be used and no preprocessing neither scaling options
* optimality and feasibility tolerances are very small to avoid primal degeneration
file COPT / cplex.opt / ;
put COPT putclose 'ScaInd -1' / 'LPMethod 1' / 'PreInd 0' / 'EpOpt 1e-9' / 'EpRHS 1e-9' / ;
Subproblem_Bd.OptFile = 1 ;
* parameter initialization
LL (l) = no ;
Delta(l) = 0 ;
Z2_L (l,s) = 0 ;
PI_L (l,s,i,j) = 0 ;
Y_L (l, i,j) = 0 ;
* Benders algorithm iterations
Theta.fx = 0 ;
loop (l $(abs(1-Z_Lower/Z_Upper) > BdTol),
* solving master problem
solve Master_Bd using MIP minimizing Z1 ;
* storing the master solution
Y_L(l,i,j) = Y.l(i,j) ;
* fixing first-stage variables and solving subproblem
Y.fx( i,j) = Y.l(i,j) ;
* initialization of the destination demand
B(j) = BS('s000',j) ;
* solving subproblem
solve Subproblem_Bd minimizing Z2 using RMIP scenario scen_dem ;
* storing parameters to build a new Benders cut
if (Subproblem_Bd.ModelStat = 4,
Delta(l) = 0 ;
Z2_L (l,s) = Subproblem_Bd.SumInfes ;
else
* updating lower and upper bound
Z_Lower = Z1.l ;
Z_Upper = min(Z_Upper, Z1.l - Theta.l + sum[s, P(s) * Z2S(s)]) ;
Theta.lo = -inf ;
Theta.up = inf ;
Delta(l ) = 1 ;
Z2_L (l,s) = Z2S(s) ;
) ;
PI_L(l,s,i,j) = PI(s,i,j) ;
Y.lo( i,j) = 0 ;
Y.up( i,j) = 1 ;
* increase the set of Benders cuts
LL(l) = yes ;
) ;
display Z_Lower, Z_Upper, Y.l