-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTransportModel_SolvedWithGAMS.py
72 lines (57 loc) · 2.82 KB
/
TransportModel_SolvedWithGAMS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pyomo.environ as pyo
from pyomo.environ import ConcreteModel, Set, Param, Var, NonNegativeReals, Constraint, Objective, minimize, Suffix
from pyomo.opt import SolverFactory
# Developed by
#
# Andres Ramos
# Instituto de Investigacion Tecnologica
# Escuela Tecnica Superior de Ingenieria - ICAI
# UNIVERSIDAD PONTIFICIA COMILLAS
# Alberto Aguilera 23
# 28015 Madrid, Spain
# Andres.Ramos@comillas.edu
# https://pascua.iit.comillas.edu/aramos/Ramos_CV.htm
#
# May 8, 2023
mTransport = ConcreteModel('Transportation Problem')
mTransport.i = Set(initialize=['Vigo', 'Algeciras' ], doc='origins' )
mTransport.j = Set(initialize=['Madrid', 'Barcelona', 'Valencia'], doc='destinations')
mTransport.pA = Param(mTransport.i, initialize={'Vigo' : 350, 'Algeciras': 700 }, doc='origin capacity' )
mTransport.pB = Param(mTransport.j, initialize={'Madrid': 400, 'Barcelona': 450, 'Valencia': 150}, doc='destination demand')
TransportationCost = {
('Vigo', 'Madrid' ): 0.06,
('Vigo', 'Barcelona'): 0.12,
('Vigo', 'Valencia' ): 0.09,
('Algeciras', 'Madrid' ): 0.05,
('Algeciras', 'Barcelona'): 0.15,
('Algeciras', 'Valencia' ): 0.11,
}
mTransport.pC = Param(mTransport.i, mTransport.j, initialize=TransportationCost, doc='per unit transportation cost')
mTransport.vX = Var (mTransport.i, mTransport.j, bounds=(0.0,None), doc='units transported', within=NonNegativeReals)
def eCapacity(mTransport, i):
return sum(mTransport.vX[i,j] for j in mTransport.j) <= mTransport.pA[i]
mTransport.eCapacity = Constraint(mTransport.i, rule=eCapacity, doc='maximum capacity of each origin')
def eDemand (mTransport, j):
return sum(mTransport.vX[i,j] for i in mTransport.i) >= mTransport.pB[j]
mTransport.eDemand = Constraint(mTransport.j, rule=eDemand, doc='demand supply at destination' )
def eCost(mTransport):
return sum(mTransport.pC[i,j]*mTransport.vX[i,j] for i,j in mTransport.i*mTransport.j)
mTransport.eCost = Objective(rule=eCost, sense=minimize, doc='transportation cost')
mTransport.write('mTransport.lp', io_options={'symbolic_solver_labels': True})
mTransport.dual = Suffix(direction=Suffix.IMPORT)
Solver= SolverFactory('gams')
solver_options = {
'file COPT / cplex.opt / ; put COPT putclose "LPMethod 4" / "RINSHeur 100" / ; GAMS_MODEL.OptFile = 1 ;'
'option LP = cplex ;',
'option MIP = cplex ;',
'option Threads = 12 ;',
'option ResLim = 36000 ;',
'option IterLim = 36000000 ;'
}
# Solver.options['LogFile'] = 'mTransport.log'
SolverResults = Solver.solve(mTransport, tee=True, keepfiles=True, symbolic_solver_labels=True, add_options=solver_options)
SolverResults.write()
mTransport.pprint()
mTransport.vX.display()
for j in mTransport.j:
print(mTransport.dual[mTransport.eDemand[j]])