diff --git a/openTEPES/openTEPES_InputData.py b/openTEPES/openTEPES_InputData.py index ed88a8cc..81fc9a61 100644 --- a/openTEPES/openTEPES_InputData.py +++ b/openTEPES/openTEPES_InputData.py @@ -621,7 +621,7 @@ def ProcessParameter(pDataFrame: pd.DataFrame, pTimeStep: int) -> pd.DataFrame: mTEPES.eb = mTEPES.gc | mTEPES.bc #%% inverse index load level to stage - pStageToLevel = pLevelToStage.reset_index().set_index(['Period','Scenario','Stage'])['Loadlevel'] + pStageToLevel = pLevelToStage.reset_index().set_index(['Period','Scenario','Stage'])['LoadLevel'] #Filter only valid indices pStageToLevel = pStageToLevel.loc[ pStageToLevel.index.isin([(p, s, st) for (p, s) in mTEPES.ps for st in mTEPES.st]) & @@ -2439,11 +2439,12 @@ def DetectInfeasibilities(mTEPES) -> None: # detecting reserve margin infeasibility for p,ar in mTEPES.p*mTEPES.ar: - if sum(mTEPES.pRatedMaxPowerElec[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g) < mTEPES.pDemandElecPeak[p,ar] * mTEPES.pReserveMargin[p,ar]: - raise ValueError('### Electricity reserve margin infeasibility ', p, ar, sum(mTEPES.pRatedMaxPowerElec[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g), mTEPES.pDemandElecPeak[p,ar] * mTEPES.pReserveMargin[p,ar]) + if sum(mTEPES.pRatedMaxPowerElec[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g) < mTEPES.pDemandElecPeak[p,ar] * mTEPES.pReserveMargin[p,ar]: + raise ValueError('### Electricity reserve margin infeasibility ', p, ar, sum(mTEPES.pRatedMaxPowerElec[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g), mTEPES.pDemandElecPeak[p,ar] * mTEPES.pReserveMargin[p,ar]) - if sum(mTEPES.pRatedMaxPowerHeat[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g) < mTEPES.pDemandHeatPeak[p,ar] * mTEPES.pReserveMarginHeat[p,ar]: - raise ValueError('### Heat reserve margin infeasibility ', p, ar, sum(mTEPES.pRatedMaxPowerHeat[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g), mTEPES.pDemandHeatPeak[p,ar] * mTEPES.pReserveMargin[p,ar]) + if mTEPES.pIndHeat == 1: + if sum(mTEPES.pRatedMaxPowerHeat[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g) < mTEPES.pDemandHeatPeak[p,ar] * mTEPES.pReserveMarginHeat[p,ar]: + raise ValueError('### Heat reserve margin infeasibility ', p, ar, sum(mTEPES.pRatedMaxPowerHeat[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if (p,g) in mTEPES.pg and (ar,g) in mTEPES.a2g), mTEPES.pDemandHeatPeak[p,ar] * mTEPES.pReserveMargin[p,ar]) DetectInfeasibilities(mTEPES) diff --git a/openTEPES/openTEPES_OutputResults.py b/openTEPES/openTEPES_OutputResults.py index 65f53252..ed5f15dc 100644 --- a/openTEPES/openTEPES_OutputResults.py +++ b/openTEPES/openTEPES_OutputResults.py @@ -1685,12 +1685,13 @@ def MarginalResults(DirName, CaseName, OptModel, mTEPES, pIndPlotOutput): OutputResults = pd.Series(data=[mTEPES.pDuals["".join([f"eAdequacyReserveMarginElec_{p}_{sc}_{st}{ar}"])] for p,sc,st,ar in sPSSTAR], index=pd.Index(sPSSTAR)) OutputResults.to_frame(name='RM').reset_index().pivot_table(index=['level_0','level_1'], columns='level_3', values='RM').rename_axis(['Period', 'Scenario'], axis=0).rename_axis([None], axis=1).to_csv(f'{_path}/oT_Result_MarginalReserveMargin_{CaseName}.csv', sep=',') - if sum(mTEPES.pReserveMarginHeat[:,:]): - if len(mTEPES.gc): - sPSSTAR = [(p,sc,st,ar) for p,sc,st,ar in mTEPES.ps*mTEPES.st*mTEPES.ar if mTEPES.pReserveMarginHeat[p,ar] and st == mTEPES.Last_st and sum(1 for g in mTEPES.g if g in g2a[ar]) and (p,sc,n) in mTEPES.psn and sum(mTEPES.pRatedMaxPowerHeat[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if g in g2a[ar] and g not in (mTEPES.gc or mTEPES.gd)) <= mTEPES.pDemandHeatPeak[p,ar] * mTEPES.pReserveMarginHeat[p,ar]] - if len(sPSSTAR): - OutputResults = pd.Series(data=[mTEPES.pDuals["".join([f"eAdequacyReserveMarginHeat_{p}_{sc}_{st}{ar}"])] for p,sc,st,ar in sPSSTAR], index=pd.Index(sPSSTAR)) - OutputResults.to_frame(name='RM').reset_index().pivot_table(index=['level_0','level_1'], columns='level_3', values='RM').rename_axis(['Period', 'Scenario'], axis=0).rename_axis([None], axis=1).to_csv(f'{_path}/oT_Result_MarginalReserveMarginHeat_{CaseName}.csv', sep=',') + if mTEPES.pIndHeat == 1: + if sum(mTEPES.pReserveMarginHeat[:,:]): + if len(mTEPES.gc): + sPSSTAR = [(p,sc,st,ar) for p,sc,st,ar in mTEPES.ps*mTEPES.st*mTEPES.ar if mTEPES.pReserveMarginHeat[p,ar] and st == mTEPES.Last_st and sum(1 for g in mTEPES.g if g in g2a[ar]) and (p,sc,n) in mTEPES.psn and sum(mTEPES.pRatedMaxPowerHeat[g] * mTEPES.pAvailability[g]() / (1.0-mTEPES.pEFOR[g]) for g in mTEPES.g if g in g2a[ar] and g not in (mTEPES.gc or mTEPES.gd)) <= mTEPES.pDemandHeatPeak[p,ar] * mTEPES.pReserveMarginHeat[p,ar]] + if len(sPSSTAR): + OutputResults = pd.Series(data=[mTEPES.pDuals["".join([f"eAdequacyReserveMarginHeat_{p}_{sc}_{st}{ar}"])] for p,sc,st,ar in sPSSTAR], index=pd.Index(sPSSTAR)) + OutputResults.to_frame(name='RM').reset_index().pivot_table(index=['level_0','level_1'], columns='level_3', values='RM').rename_axis(['Period', 'Scenario'], axis=0).rename_axis([None], axis=1).to_csv(f'{_path}/oT_Result_MarginalReserveMarginHeat_{CaseName}.csv', sep=',') sPSSTAR = [(p,sc,st,ar) for p,sc,st,ar in mTEPES.ps*mTEPES.st*mTEPES.ar if mTEPES.pEmission[p,ar] < math.inf and st == mTEPES.Last_st and (p,sc,n) in mTEPES.psn and sum(mTEPES.pEmissionVarCost[p,sc,na,g] for na,g in mTEPES.na*mTEPES.g if (ar,g) in mTEPES.a2g)] if len(sPSSTAR):