From 35d498eb7319fd2360fc5a887468550e27878452 Mon Sep 17 00:00:00 2001 From: KaiyangZhou Date: Wed, 23 Oct 2019 16:11:15 +0100 Subject: [PATCH] update docs/readme --- README.rst | 38 ++++++++++++++++-- ...ranked_results.jpg => ranking_results.jpg} | Bin docs/user_guide.rst | 8 ++-- 3 files changed, 39 insertions(+), 7 deletions(-) rename docs/figures/{ranked_results.jpg => ranking_results.jpg} (100%) diff --git a/README.rst b/README.rst index c23b7ae33..e4fbedb17 100755 --- a/README.rst +++ b/README.rst @@ -1,5 +1,20 @@ Torchreid =========== +.. image:: https://img.shields.io/github/license/KaiyangZhou/deep-person-reid + :alt: GitHub license + :target: https://github.com/KaiyangZhou/deep-person-reid/blob/master/LICENSE + +.. image:: https://img.shields.io/github/v/release/KaiyangZhou/deep-person-reid + :alt: GitHub release (latest by date) + +.. image:: https://img.shields.io/github/stars/KaiyangZhou/deep-person-reid + :alt: GitHub stars + :target: https://github.com/KaiyangZhou/deep-person-reid/stargazers + +.. image:: https://img.shields.io/github/forks/KaiyangZhou/deep-person-reid + :alt: GitHub forks + :target: https://github.com/KaiyangZhou/deep-person-reid/network + Torchreid is a library built on `PyTorch `_ for deep-learning person re-identification. It features: @@ -26,6 +41,8 @@ How-to instructions: https://kaiyangzhou.github.io/deep-person-reid/user_guide. Model zoo: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO. +Tech report: https://arxiv.org/abs/1910.10093. + Installation --------------- @@ -248,6 +265,7 @@ ReID-specific models - `PCB `_ - `MLFN `_ - `OSNet `_ +- `OSNet-AIN `_ Losses ------ @@ -257,13 +275,27 @@ Losses Citation --------- -If you find this code useful to your research, please cite the following publication. +If you find this code useful to your research, please cite the following publications. .. code-block:: bash + + @article{torchreid, + title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch}, + author={Zhou, Kaiyang and Xiang, Tao}, + journal={arXiv preprint arXiv:1910.10093}, + year={2019} + } - @article{zhou2019osnet, + @inproceedings{zhou2019osnet, title={Omni-Scale Feature Learning for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, - journal={arXiv preprint arXiv:1905.00953}, + booktitle={ICCV}, + year={2019} + } + + @article{zhou2019learning, + title={Learning Generalisable Omni-Scale Representations for Person Re-Identification}, + author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, + journal={arXiv preprint arXiv:1910.06827}, year={2019} } diff --git a/docs/figures/ranked_results.jpg b/docs/figures/ranking_results.jpg similarity index 100% rename from docs/figures/ranked_results.jpg rename to docs/figures/ranking_results.jpg diff --git a/docs/user_guide.rst b/docs/user_guide.rst index add1e1e15..8cacc7c25 100644 --- a/docs/user_guide.rst +++ b/docs/user_guide.rst @@ -201,11 +201,11 @@ Visualize learning curves with tensorboard The ``SummaryWriter()`` for tensorboard will be automatically initialized in ``engine.run()`` when you are training your model. Therefore, you do not need to do extra jobs. After the training is done, the ``*tf.events*`` file will be saved in ``save_dir``. Then, you just call ``tensorboard --logdir=your_save_dir`` in your terminal and visit ``http://localhost:6006/`` in a web browser. See `pytorch tensorboard `_ for further information. -Visualize ranked results -------------------------- -Ranked images can be visualized by setting ``visrank`` to true in ``engine.run()``. ``visrank_topk`` determines the top-k images to be visualized (Default is ``visrank_topk=10``). Note that ``visrank`` can only be used in test mode, i.e. ``test_only=True`` in ``engine.run()``. The images will be saved under ``save_dir/visrank_DATASETNAME`` where each image contains the top-k ranked list given a query. An example is shown below. Red and green denote incorrect and correct matches respectively. +Visualize ranking results +--------------------------- +This can be achieved by setting ``visrank`` to true in ``engine.run()``. ``visrank_topk`` determines the top-k images to be visualized (Default is ``visrank_topk=10``). Note that ``visrank`` can only be used in test mode, i.e. ``test_only=True`` in ``engine.run()``. The output will be saved under ``save_dir/visrank_DATASETNAME`` where each plot contains the top-k similar gallery images given a query. An example is shown below where red and green denote incorrect and correct matches respectively. -.. image:: figures/ranked_results.jpg +.. image:: figures/ranking_results.jpg :width: 800px :align: center