forked from sccn/bva-io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pop_loadbv.m
450 lines (413 loc) · 18.2 KB
/
pop_loadbv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
% pop_loadbv() - load Brain Vision Data Exchange format dataset and
% return EEGLAB EEG structure
%
% Usage:
% >> [EEG, com] = pop_loadbv; % pop-up window mode
% >> [EEG, com] = pop_loadbv(path, hdrfile);
% >> [EEG, com] = pop_loadbv(path, hdrfile, srange);
% >> [EEG, com] = pop_loadbv(path, hdrfile, [], chans);
% >> [EEG, com] = pop_loadbv(path, hdrfile, srange, chans);
%
% Optional inputs:
% path - path to files
% hdrfile - name of Brain Vision vhdr-file (incl. extension)
% srange - scalar first sample to read (up to end of file) or
% vector first and last sample to read (e.g., [7 42];
% default: all)
% chans - vector channels channels to read (e.g., [1:2 4];
% default: all)
% metadata - [true|false] when true, only read meta data. Default
% false
%
% Outputs:
% EEG - EEGLAB EEG structure
% com - history string
%
% Note:
% Import "Brain Vision Data Exchange" format files with this function.
% Brain Vision Data Exchange files consist of a set of 3 files, a header
% file (.vhdr), a marker file (.vmrk), and a data file. Export from
% BrainVision Analyzer with "Generic Data" export. Select header and
% marker file for export (text format; XML format is not yet supported).
% Binary and text data formats, in both multiplexed and vectorized data
% orientation are supported. Binary data formats offer higher precision
% and faster file import.
%
% Author: Andreas Widmann & Arnaud Delorme, 2004-
% Copyright (C) 2004 Andreas Widmann, University of Leipzig, widmann@uni-leipzig.de
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Id: pop_loadbv.m 53 2010-05-22 21:57:38Z arnodelorme $
% Revision 1.5 2010/03/23 21:19:52 roy
% added some lines so that the function can deal with the space lines in the ASCII multiplexed data file
function [EEG, com] = pop_loadbv(path, hdrfile, srange, chans, metadata)
com = '';
EEG = [];
if nargin < 5
metadata = false;
end
if nargin < 2
[hdrfile, path] = uigetfile2('*.vhdr', 'Select Brain Vision vhdr-file - pop_loadbv()');
if hdrfile(1) == 0, return; end
drawnow;
uigeom = {[1 0.5] [1 0.5]};
uilist = {{ 'style' 'text' 'string' 'Interval (samples; e.g., [7 42]; default: all):'} ...
{ 'style' 'edit' 'string' ''} ...
{ 'style' 'text' 'string' 'Channels (e.g., [1:2 4]; default: all):'} ...
{ 'style' 'edit' 'string' ''}};
result = inputgui(uigeom, uilist, 'pophelp(''pop_loadbv'')', 'Load a Brain Vision Data Exchange format dataset');
if isempty(result), return, end
if ~isempty(result{1})
srange = str2num(result{1});
end
if ~isempty(result{2})
chans = str2num(result{2});
end
end
% Header file
disp('pop_loadbv(): reading header file');
hdr = readbvconf(path, hdrfile);
% Common Infos
try
EEG = eeg_emptyset;
catch
end
EEG.comments = ['Original file: ' hdr.commoninfos.datafile];
hdr.commoninfos.numberofchannels = str2double(hdr.commoninfos.numberofchannels);
EEG.srate = 1000000 / str2double(hdr.commoninfos.samplinginterval);
% Binary Infos
if strcmpi(hdr.commoninfos.dataformat, 'binary')
switch lower(hdr.binaryinfos.binaryformat)
case 'int_16', binformat = 'int16'; bps = 2;
case 'uint_16', binformat = 'uint16'; bps = 2;
case 'ieee_float_32', binformat = 'float32'; bps = 4;
otherwise, error('Unsupported binary format');
end
end
% Channel Infos
if ~exist('chans', 'var') || isempty(chans)
chans = 1:hdr.commoninfos.numberofchannels;
EEG.nbchan = hdr.commoninfos.numberofchannels;
else
EEG.nbchan = length(chans);
end
if any(chans < 1) || any(chans > hdr.commoninfos.numberofchannels)
error('chans out of available channel range');
end
if isfield(hdr, 'channelinfos')
for chan = 1:length(chans)
try
[EEG.chanlocs(chan).labels, chanlocs(chan).ref, chanlocs(chan).scale, chanlocs(chan).unit] = strread(hdr.channelinfos{chans(chan)}, '%s%s%s%s', 1, 'delimiter', ',');
catch % Octave compatible code below
str = hdr.channelinfos{chans(chan)};
[EEG.chanlocs(chan).labels, str] = strtok(str, ',');
[chanlocs(chan).ref, str] = strtok(str, ',');
[chanlocs(chan).scale, str] = strtok(str, ',');
[chanlocs(chan).unit, str] = strtok(str, ',');
end
EEG.chanlocs(chan).labels = char(EEG.chanlocs(chan).labels);
chanlocs(chan).scale = str2double(char(chanlocs(chan).scale));
% chanlocs(chan).unit = native2unicode(double(char(chanlocs(chan).scale)), 'UTF-8');
% EEG.chanlocs(chan).datachan = chans(chan);
end
if isempty([chanlocs.scale])
chanlocs = rmfield(chanlocs, 'scale');
end
end
% [EEG.chanlocs.type] = deal([]);
% Coordinates
if isfield(hdr, 'coordinates')
hdr.coordinates(end+1:length(chans)) = { [] };
onenon0channel = 0;
for chan = 1:length(chans)
if ~isempty(hdr.coordinates{chans(chan)})
if ismatlab
[EEG.chanlocs(chan).sph_radius, theta, phi] = strread(hdr.coordinates{chans(chan)}, '%f%f%f', 'delimiter', ',');
else
str = hdr.coordinates{chans(chan)};
[EEG.chanlocs(chan).sph_radius, str] = strtok(str, ','); EEG.chanlocs(chan).sph_radius = str2num(EEG.chanlocs(chan).sph_radius);
[theta, str] = strtok(str, ','); theta = str2num(theta);
[phi, str] = strtok(str, ','); phi = str2num(phi);
end
if EEG.chanlocs(chan).sph_radius == 0 && theta == 0 && phi == 0
EEG.chanlocs(chan).sph_radius = [];
EEG.chanlocs(chan).sph_theta = [];
EEG.chanlocs(chan).sph_phi = [];
else
onenon0channel = 1;
EEG.chanlocs(chan).sph_theta = phi - 90 * sign(theta);
EEG.chanlocs(chan).sph_phi = -abs(theta) + 90;
end
end
end
try
if onenon0channel
[EEG.chanlocs, EEG.chaninfo] = pop_chanedit(EEG.chanlocs, 'convert', 'sph2topo');
[EEG.chanlocs, EEG.chaninfo] = pop_chanedit(EEG.chanlocs, 'convert', 'sph2cart');
end
catch, end
end
% Open data file and find the number of data points
% -------------------------------------------------
disp('pop_loadbv(): reading EEG data');
[IN, message] = fopen(fullfile(path, hdr.commoninfos.datafile), 'r');
if IN == -1
[IN, message] = fopen(fullfile(path, lower(hdr.commoninfos.datafile)));
if IN == -1
hdr.commoninfos.datafile = [ hdrfile(1:end-4) 'eeg' ];
fprintf(2, 'The header file points to a binary file that does not exist\n');
fprintf(2, 'trying to open a binary file with the same name as the header\nfile and a different extension...\n');
[IN, message] = fopen(fullfile(path, hdr.commoninfos.datafile), 'r');
if IN == -1
[IN, message] = fopen(fullfile(path, lower(hdr.commoninfos.datafile)));
if IN == -1
error(message)
end
end
end
end
if isfield( hdr.commoninfos, 'datapoints' ) && ~isempty( hdr.commoninfos.datapoints ) && isnumeric( str2double( hdr.commoninfos.datapoints ) ) && str2double( hdr.commoninfos.datapoints ) > 0
hdr.commoninfos.datapoints = str2double(hdr.commoninfos.datapoints);
elseif strcmpi( hdr.commoninfos.dataformat, 'binary' )
fseek( IN, 0, 'eof' );
hdr.commoninfos.datapoints = ftell( IN ) / ( hdr.commoninfos.numberofchannels * bps );
if round(hdr.commoninfos.datapoints) ~= hdr.commoninfos.datapoints
fprintf(2, 'Binary file is truncated/incomplete\n');
hdr.commoninfos.datapoints = floor(hdr.commoninfos.datapoints);
end
fseek( IN, 0, 'bof' );
else
hdr.commoninfos.datapoints = NaN;
end
if ~strcmpi(hdr.commoninfos.dataformat, 'binary') % ASCII
% tmppoint = hdr.commoninfos.datapoints;
tmpchan = fscanf(IN, '%s', 1);
% AW: Determination of number of datapoints will not work for files without chanlabels and/or multiplexed dataformat. Suggest trusting in header.
% tmpdata = fscanf(IN, '%f', inf);
% hdr.commoninfos.datapoints = length(tmpdata);
% chanlabels = 1;
if isnan(str2double(tmpchan))
% hdr.commoninfos.datapoints = hdr.commoninfos.datapoints+1;
chanlabels = 1;
else
chanlabels = 0;
end
end
% Sample range
if ~exist('srange', 'var') || isempty(srange)
srange = [ 1 hdr.commoninfos.datapoints];
EEG.pnts = hdr.commoninfos.datapoints;
elseif length(srange) == 1
EEG.pnts = hdr.commoninfos.datapoints - srange(1) + 1;
else
EEG.pnts = srange(2) - srange(1) + 1;
end
if any(srange < 1) || any(srange > hdr.commoninfos.datapoints)
error('srange out of available data range');
end
% Read data
if metadata
EEG.data = [];
elseif strcmpi(hdr.commoninfos.dataformat, 'binary')
switch lower(hdr.commoninfos.dataorientation)
case 'multiplexed'
if EEG.nbchan == hdr.commoninfos.numberofchannels % Read all channels
fseek(IN, (srange(1) - 1) * EEG.nbchan * bps, 'bof');
EEG.data = fread(IN, [EEG.nbchan, EEG.pnts], [binformat '=>float32']);
else % Read channel subset
EEG.data = repmat(single(0), [EEG.nbchan, EEG.pnts]); % Preallocate memory
for chan = 1:length(chans)
fseek(IN, (srange(1) - 1) * hdr.commoninfos.numberofchannels * bps + (chans(chan) - 1) * bps, 'bof');
EEG.data(chan, :) = fread(IN, [1, EEG.pnts], [binformat '=>float32'], (hdr.commoninfos.numberofchannels - 1) * bps);
end
end
case 'vectorized'
if isequal(EEG.pnts, hdr.commoninfos.datapoints) && EEG.nbchan == hdr.commoninfos.numberofchannels % Read entire file
EEG.data = fread(IN, [EEG.pnts, EEG.nbchan], [binformat '=>float32']).';
else % Read fraction of file
EEG.data = repmat(single(0), [EEG.nbchan, EEG.pnts]); % Preallocate memory
for chan = 1:length(chans)
fseek(IN, ((chans(chan) - 1) * hdr.commoninfos.datapoints + srange(1) - 1) * bps, 'bof');
EEG.data(chan, :) = fread(IN, [1, EEG.pnts], [binformat '=>float32']);
end
end
otherwise
error('Unsupported data orientation')
end
else % ASCII data
% disp('If this function does not work, export your data in binary format');
% EEG.data = repmat(single(0), [EEG.nbchan, EEG.pnts]);
% if strcmpi(lower(hdr.commoninfos.dataorientation), 'vectorized')
% count = 1;
% fseek(IN, 0, 'bof');
% len = inf;
% for chan = 1:hdr.commoninfos.numberofchannels
% if chanlabels, tmpchan = fscanf(IN, '%s', 1); end;
% tmpdata = fscanf(IN, '%f', len); len = length(tmpdata);
% if ismember(chan, chans)
% EEG.data(count, :) = tmpdata(srange(1):srange(2))';
% count = count + 1;
% end;
% end;
% elseif strcmpi(lower(hdr.commoninfos.dataorientation), 'multiplexed')
% % fclose(IN);
% % error('ASCII multiplexed reading not implemeted yet; export as a different format');
% if EEG.nbchan == hdr.commoninfos.numberofchannels % Read all channels
% tmpchan= fgetl(IN);
% count = 1;
% while ~feof(IN)
% tmpstr = fgetl(IN);
% if ~isempty(tmpstr)
% temp_ind = tmpstr==',';
% tmpstr(temp_ind) = '.';
% tmpdata = strread(tmpstr);
% EEG.data(:,count) = tmpdata';
% count = count + 1;
% end;
% end;
% EEG.pnts = count - 1;
% else
%
% end;
% end;
% Rewritten by AW, 2013-10-02. Old version by Arno did no longer work. MATLAB changes?
tmpdata = zeros([hdr.commoninfos.numberofchannels, hdr.commoninfos.datapoints], 'single');
fseek(IN, 0, 'bof');
switch lower(hdr.commoninfos.dataorientation)
case 'vectorized'
if chanlabels || (isfield(hdr, 'asciiinfos') && isfield(hdr.asciiinfos, 'decimalsymbol') && ~strcmp(hdr.asciiinfos.decimalsymbol, '.')) % Read line by line
for iChan = 1:hdr.commoninfos.numberofchannels
tmpstr = fgetl(IN);
if chanlabels
[tmpchan, count, errmsg, nextindex] = sscanf(tmpstr, '%s', 1);
tmpstr = tmpstr(nextindex:end);
end
if isfield(hdr, 'asciiinfos') && isfield(hdr.asciiinfos, 'decimalsymbol') && ~strcmp(hdr.asciiinfos.decimalsymbol, '.')
tmpdata(iChan, :) = sscanf(regexprep(tmpstr, hdr.asciiinfos.decimalsymbol, '.'), '%f', inf);
else
tmpdata(iChan, :) = sscanf(tmpstr, '%f', inf);
end
end
else
tmpdata = fscanf(IN, '%f', inf);
if length(tmpdata) ~= hdr.commoninfos.numberofchannels*hdr.commoninfos.datapoints
error('File truncated: cannot be imported');
end
tmpdata = reshape(tmpdata, hdr.commoninfos.datapoints, hdr.commoninfos.numberofchannels)';
end
case 'multiplexed'
if chanlabels
tmpchan = fgetl(IN);
end
if isfield(hdr, 'asciiinfos') && isfield(hdr.asciiinfos, 'decimalsymbol') && ~strcmp(hdr.asciiinfos.decimalsymbol, '.') % Read line by line
for iPnt = 1:hdr.commoninfos.datapoints
tmpstr = fgetl(IN);
tmpdata(:, iPnt) = sscanf(regexprep(tmpstr, hdr.asciiinfos.decimalsymbol, '.'), '%f', inf);
end
else
tmpdata = fscanf(IN, '%f', inf);
if length(tmpdata) ~= hdr.commoninfos.numberofchannels*hdr.commoninfos.datapoints
warning('File truncated');
hdr.commoninfos.datapoints = floor(length(tmpdata)/hdr.commoninfos.numberofchannels);
tmpdata = tmpdata(1:hdr.commoninfos.numberofchannels*hdr.commoninfos.datapoints);
srange(2) = min(srange(2), hdr.commoninfos.datapoints);
end
tmpdata = reshape(tmpdata, hdr.commoninfos.numberofchannels, hdr.commoninfos.datapoints);
end
otherwise
error('Unknown data orientation')
end
EEG.data = tmpdata(chans, srange(1):srange(2));
end
fclose(IN);
EEG.trials = 1;
EEG.xmin = 0;
EEG.xmax = (EEG.pnts - 1) / EEG.srate;
% Convert to EEG.data to double for MATLAB < R14
if str2double(version('-release')) < 14
EEG.data = double(EEG.data);
end
% Scale data
if exist('chanlocs', 'var') && isfield(chanlocs, 'scale') && ~isempty(EEG.data)
disp('pop_loadbv(): scaling EEG data');
for chan = 1:EEG.nbchan
if ~isnan(chanlocs(chan).scale)
EEG.data(chan, :) = EEG.data(chan, :) * chanlocs(chan).scale;
end
end
end
% Marker file
if isfield(hdr.commoninfos, 'markerfile')
disp('pop_loadbv(): reading marker file');
try
MRK = readbvconf(path, hdr.commoninfos.markerfile);
catch
MRK = readbvconf(path, [hdrfile(1:end-4) 'vmrk' ]);
end
if ~isequal(hdr.commoninfos.datafile, MRK.commoninfos.datafile)
disp('pop_loadbv() warning: data files in header and marker files inconsistent.');
end
% Marker infos
if isfield(MRK, 'markerinfos')
EEG.event = parsebvmrk(MRK);
% Correct event latencies by first sample offset
tmpevent = EEG.event;
for index = 1:length(EEG.event)
tmpevent(index).latency = tmpevent(index).latency - srange(1) + 1;
end
EEG.event = tmpevent;
% Remove unreferenced events
EEG.event = EEG.event([tmpevent.latency] >= 1 & [tmpevent.latency] <= EEG.pnts);
% Copy event structure to urevent structure
EEG.urevent = rmfield(EEG.event, 'urevent');
% find if boundaries at homogenous intervals
% ------------------------------------------
tmpevent = EEG.event;
boundaries = strmatch('boundary', {tmpevent.type});
boundlats = unique([tmpevent(boundaries).latency]);
if (isfield(hdr.commoninfos, 'segmentationtype') && (strcmpi(hdr.commoninfos.segmentationtype, 'markerbased') || strcmpi(hdr.commoninfos.segmentationtype, 'fixtime'))) && length(boundaries) > 1 && length(unique(diff([boundlats EEG.pnts + 1]))) == 1
EEG.trials = length(boundlats);
EEG.pnts = EEG.pnts / EEG.trials;
EEG.event(boundaries) = [];
% adding epoch field
% ------------------
tmpevent = EEG.event;
for index = 1:length(EEG.event)
EEG.event(index).epoch = ceil(tmpevent(index).latency / EEG.pnts);
end
% finding minimum time
% --------------------
tles = strmatch('time 0', lower({tmpevent.code}))';
if ~isempty(tles)
for iTLE = tles(:)'
EEG.event(iTLE).type ='TLE';
end
EEG.xmin = -(tmpevent(tles(1)).latency - 1) / EEG.srate;
end
else
for index = 1:length(boundaries)
EEG.event(boundaries(index)).duration = NaN;
end
end
end
end
EEG.ref = 'common';
try
EEG = eeg_checkset(EEG);
catch
end
if nargout == 2
com = sprintf('EEG = pop_loadbv(''%s'', ''%s'', %s, %s);', path, hdrfile, mat2str(srange), mat2str(chans));
end