-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_files2.py
146 lines (109 loc) · 3.97 KB
/
model_files2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
from casadi import *
import matplotlib.pyplot as plt
import csv
from numpy import genfromtxt
## define the model and the integrator
# NEED TO DEFINE delta = timestep, nominaly 1.3s
def thermal_int(delta):
nx = 1 #outputs
nu = 1 #inputs
np = 3 #parameters
u = SX.sym('u',nu)
x = SX.sym('y',nx)
q = SX.sym('q',np)
#Surface glass
propSurf={'rho':2.8e3,
'cp':795.00,
'k':1.43,
'd':0.20e-3} #surface thickness
# #Surface metal
#propSurf={'rho':2.710e3,
# 'cp':0.91e3,
# 'k':5,
# 'd':0.20e-3} #surface thi2ckness
#system dimensions
dim={'r':1.5e-3};
dim['vol']=3.1416*1e-2*dim['r']**2.0 #m^3 volume of plasma chamber
dim['Ac']=3.1416*dim['r']**2.0 #m^2 flow crossectional area
P=u[0]*5
T=x[0]*300
a1=q[0]*38
a2=q[1]*0.003
Tinf=q[2]+273
#Parameters
dsep=4e-3 #separation distance
# Tinf = 293.00 # K ambient temperature
eta = 0.4+0.07*dsep/4.00e-3 #power deposition efficiency
# a1=38.9
# a2=0.003
dTs_maxdt=(a2*eta*P-a1*dim['r']*2.0*3.1416*propSurf['d']*propSurf['k']*(T-Tinf))/(propSurf['rho']*propSurf['cp']*dim['Ac']*propSurf['d']);
xdot = vertcat(dTs_maxdt/300.0)
jet_dae = {'x':x, 'p':vertcat(u,q), 'ode':xdot}
opts = {'tf':delta}
I = integrator('I', 'idas', jet_dae, opts)
return I , jet_dae
# function to give next time step values
def thermal_model(I,y0,Pow,param):
y0_n=(y0+273.)/300. #normalized initial T
P_n=Pow/5. #normalized Power
y=I(x0=y0_n,p=vertcat(P_n,param))
return y['xf'].full()*300.-273
# function to give min and max achieavable temperature step values
def thermal_model_minmax(jet_dae,param):
y0_n=(param[2]-273.)/300. #normalize initial T
opts = {'tf':1e5}
I = integrator('I', 'idas', jet_dae, opts)
y_min=I(x0=y0_n,p=vertcat(1.5/5.,param))
y_max=I(x0=y0_n,p=vertcat(5./5.,param))
return y_min['xf'].full()*300.-273, y_max['xf'].full()*300.-273
# function to give SS temperature for a step power
def thermal_model_inf(jet_dae,param,power):
y0_n=(param[2]-273.)/300. #normalize initial T
opts = {'tf':1e5}
I = integrator('I', 'idas', jet_dae, opts)
y_inf=I(x0=y0_n,p=vertcat(power/5.,param))
return y_inf['xf'].full()*300.-273
######################### USAGE ########################
if __name__ == "__main__":
#load the model
I, jet_dae=thermal_int(1.3)
y0=30. #initial temperature in C
y0_Al=30. #initial temperature in C
Pow=3. #applied power in W
#nominal values for a1 and a2
#glass a1=2.39, a2=0.8177
#metal a1=0.932621, a2=0.505957
#new metal a1=1.1236, 0.71131
param=[2.39,0.8177,26] #parameters a1,a2 and Tinf in C
param=[0.932621,0.505957,26] #parameters a1,a2 and Tinf in C
# the test ones
#param=[2.39,0.8177,23] #parameters a1,a2 and Tinf in C
#param_Al=[0.3,0.08,27] # low time constant
#param_Al=[3.7, 1.2,27] #parameters a1,a2 and Tinf in C
my_data = []
my_data_Al = []
for t in range(0, 500):
#calculate next time step
y_next=thermal_model(I,y0,Pow,param)
my_data.append([t, y_next[0][0]])
print(my_data[-1])
y0 = y_next
y_next_Al=thermal_model(I,y0_Al,2.5,param_Al)
my_data_Al.append([t, y_next_Al[0][0]])
y0_Al = y_next_Al
#find min and max possible temperatures in deg C
ymin, ymax = thermal_model_minmax(jet_dae,param)
print('ymin',ymin)
print('ymax',ymax)
ymin, ymax = thermal_model_minmax(jet_dae,param_Al)
print('ymin',ymin)
print('ymax',ymax)
## predictions against data
#my_data = genfromtxt('glass_data_out.csv', delimiter=',')
my_data = np.array(my_data)
my_data_Al = np.array(my_data_Al)
plt.plot(my_data[:,0],my_data[:,1])
plt.plot(my_data_Al[:,0],my_data_Al[:,1])
plt.tight_layout()
plt.show()