-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathMaxDoubleSliceSum.java
42 lines (34 loc) · 1.77 KB
/
MaxDoubleSliceSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
package MaxDoubleSliceSum;
class Solution {
public int solution(int[] A) {
// (X, Y, Z)
// 1st slice: A[X+1] + ... + A[Y-1]
// 2nd slice: A[Y+1] + ... + A[Z-1]
// Key Point:
// The array will be split at "Y"
// main idea:
// if the middle point is "Y",
// find "maxLeft" and "maxRight"
int maxLeft[] = new int[A.length];
int maxRight[] = new int[A.length];
// 1) find "maxLeft"
// maxLeft[i] is the maximum sum "contiguous subsequence" ending at index i
// note: because it is "contiguous", we only need the ending index (important)
for(int i=1; i< A.length ;i++){ // be careful: from i=1 (because of maxLeft[i-1])
maxLeft[i] = Math.max(0, maxLeft[i-1]+A[i] ); //golden slice algorithm: Math.max(0, maxLeft[i-1]+A[i] )
}
// 2) find "maxRight"
// maxRight[i] is the maximum sum "contiguous subsequence" starting at index i
// note: because it is "contiguous", we only need the starting index (important)
for(int i=A.length-2; i >=0; i--){ // be careful: from i=A.length-2 (because of maxLeft[i+1])
maxRight[i] = Math.max(0, maxRight[i+1]+A[i] ); //golden slice algorithm: Math.max(0, maxRight[i+1]+A[i] )
}
// 3) find the maximum of "maxLeft + maxRight"
int maxDoubleSlice =0;
for(int i=1; i < A.length-1; i++){ // where "i" means "Y" in this problem
if(maxLeft[i-1] + maxRight[i+1] > maxDoubleSlice) // be careful: left end at "i-1" and right begins at "i+1"
maxDoubleSlice = maxLeft[i-1] + maxRight[i+1]; // be careful: "not" maxLeft[i] + maxRight[i]
}
return maxDoubleSlice;
}
}