-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain-LesNet.py
102 lines (85 loc) · 3.26 KB
/
main-LesNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from __future__ import print_function
from matplotlib import pyplot as plt
from HodaDatasetReader import read_hoda_cdb, read_hoda_dataset
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D, Convolution2D
from keras.optimizers import Adam
from keras.utils import np_utils
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1671)
print('################################################################################')
print()
print('Reading train 60000.cdb ...')
X_train, Y_train = read_hoda_dataset(dataset_path='./DigitDB/Train 60000.cdb',
images_height=28,
images_width=28,
one_hot=False,
reshape=True)
print('Reading test 20000.cdb ...')
X_test, Y_test = read_hoda_dataset(dataset_path='./DigitDB/Test 20000.cdb',
images_height=28,
images_width=28,
one_hot=False,
reshape=True)
print('################################################################################')
print()
print('Begin Deep Learning Process (Simple Deep Learning')
NB_EPOCH = 10
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10
OPTIMIZER = Adam()
N_HIDDEN = 128
VALIDATION_SPLIT = 0.2
RESHAPE = 784
DROPOUT = 0.2
IMG_ROW, IMG_COL = 28, 28
INPUT_SHAPE = (1, IMG_ROW, IMG_COL)
K.set_image_dim_ordering("th")
X_train = X_train.reshape(60000, 1, 28, 28)
X_test = X_test.reshape(20000, 1, 28, 28)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('{} Train Samples'.format(X_train.shape[0]))
print('{} Test Samples'.format(X_test.shape[0]))
Y_train = np_utils.to_categorical(Y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(Y_test, NB_CLASSES)
model = Sequential()
model.add(Conv2D(20, kernel_size=5, border_mode="same", input_shape=INPUT_SHAPE))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(50, kernel_size=5, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy'])
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test Score:', score[0])
print('Test accuracy:', score[1])
# print(history.history.keys())
# plt.plot(history.history['acc'])
# plt.plot(history.history['val_acc'])
# plt.title('model accuracy')
# plt.ylabel('accuracy')
# plt.xlabel('epoch')
# plt.legend(['train', 'test'], loc='upper left')
# plt.show()
# plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
# plt.title('model loss')
# plt.ylabel('loss')
# plt.xlabel('epoch')
# plt.legend(['train', 'test'], loc='upper left')
# plt.show()