forked from vinayak19th/ARCNN-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model_artifact.py
76 lines (65 loc) · 3.42 KB
/
train_model_artifact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, Lambda, Conv2DTranspose, SeparableConv2D
from dataset import create_artifact_dataset
#Define the model
def get_ARCNN_v1(input_shape=(32,32,1)):
inp = Input(shape=input_shape)
conv1 = Conv2D(64,9,activation='relu', padding='same', use_bias=True,name="Feature_extract")(inp)
conv2 = Conv2D(32,1,activation='relu', padding='valid', use_bias=True,name="Feature_Enhance_speed")(conv1)
conv3 = Conv2D(32,7,activation='relu', padding='same', use_bias=True,name="Feature_Enhance")(conv2)
conv4 = Conv2D(64,1,activation='relu', padding='valid', use_bias=True,name="Mapping")(conv3)
conv_trans = Conv2DTranspose(1,7,padding='same')(conv4)
ARCNN = Model(inputs=inp,outputs=conv_trans,name="ARCNN_v1")
return ARCNN
def get_ARCNN_v2(input_shape=(32,32,1)):
inp = Input(shape=input_shape)
conv1 = Conv2D(32,5,dilation_rate=4,activation='relu', padding='same', use_bias=True,name="Feature_extract")(inp)
conv2 = Conv2D(32,1,activation='relu', padding='valid', use_bias=True,name="Feature_Enhance_speed")(conv1)
conv3 = Conv2D(32,5,dilation_rate=2,activation='relu', padding='same', use_bias=True,name="Feature_Enhance")(conv2)
conv4 = Conv2D(32,1,activation='relu', padding='valid', use_bias=True,name="Mapping")(conv3)
conv_trans = Conv2DTranspose(1,3,dilation_rate=4,name="Upscale",padding='same')(conv4)
#conv5 = Conv2D(1,5,activation='relu', padding='same', use_bias=True,name="SR_Mapping")(conv4)
ARCNN = Model(inputs=inp,outputs=conv_trans)
return ARCNN
#Define the metrics
def ssim(y_true,y_pred):
return tf.image.ssim(y_true,y_pred,max_val=1.0)
def psnr(y_true,y_pred):
return tf.image.psnr(y_true,y_pred,max_val=1.0)
@tf.function
def custom_loss(y_true, y_pred):
alpha = tf.constant(0.84)
mssim = alpha*(1-tf.image.ssim_multiscale(y_true,y_pred,max_val=1.0,filter_size=3))
mse = tf.metrics.mae(y_true, y_pred)
loss = tf.reduce_mean(mssim) + (1-alpha)*tf.reduce_mean(mse)
return loss
if __name__ == "__main__":
physical_devices = tf.config.experimental.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)
#Create Model
ver = 2
if(ver == 1):
model = get_ARCNN_v1((None,None,1))
print(model.summary())
else:
model = get_ARCNN_v2((None,None,1))
model.summary()
#Load Dataset
data = create_artifact_dataset()
data = data.prefetch(tf.data.experimental.AUTOTUNE)
#Set callbacks
tboard = tf.keras.callbacks.TensorBoard(log_dir="./logs/ARCNN_ssim",write_images=True)
filepath="./checkpoints/ARCNN_ssim/weights-improvement-{epoch:02d}-{ssim:.2f}.hdf5"
cp = tf.keras.callbacks.ModelCheckpoint(filepath,monitor="ssim",verbose=1,save_weights_only=True)
lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(monitor='ssim', factor=0.1, patience=5, verbose=1,mode='max',
min_delta=0.001,
cooldown=2,
min_lr=1e-6)
#Train Model
optim = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(optimizer=optim,loss=custom_loss,metrics=[ssim,psnr])
model.fit(data,epochs=40,callbacks=[tboard,cp,lr_reduce])
#SaveModel
model.save("./models/ARCNN_spatch",save_format="tf")