-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathsparse-scipy.py
executable file
·174 lines (147 loc) · 6.27 KB
/
sparse-scipy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python3
#
# Copyright (c) 2017, Intel Corporation
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Intel Corporation nor the names of its
# contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
#
# *******************************************************************
#
# NAME: sparse
#
# PURPOSE: This program tests the efficiency with which a sparse matrix
# vector multiplication is carried out.
#
# USAGE: The program takes as input the 2log of the linear size of the 2D grid
# (equalling the 2log of the square root of the order of the sparse
# matrix), the radius of the difference stencil, and the number
# of times the matrix-vector multiplication is carried out.
#
# <progname> <# iterations> <2log root-of-matrix-order> <radius>
#
# The output consists of diagnostics to make sure the
# algorithm worked, and of timing statistics.
#
# HISTORY: Written by Rob Van der Wijngaart, 2009-2013
# Converted to Python by Jeff Hammond, November 2017
#
# *******************************************************************
import sys
print('Python version = ', str(sys.version_info.major)+'.'+str(sys.version_info.minor))
if sys.version_info >= (3, 3):
from time import process_time as timer
else:
from timeit import default_timer as timer
import numpy
import scipy
def offset(i,j,lsize):
return i+(j<<lsize)
def main():
# ********************************************************************
# read and test input parameters
# ********************************************************************
print('Parallel Research Kernels version ') #, PRKVERSION
print('Python SciPy Sparse matrix-vector multiplication')
if len(sys.argv) < 3:
print('argument count = ', len(sys.argv))
sys.exit("Usage: ./sparse.py <# iterations> <2log grid size> <stencil radius>")
iterations = int(sys.argv[1])
if iterations < 1:
sys.exit("ERROR: iterations must be >= 1")
lsize = int(sys.argv[2])
if lsize < 0:
sys.exit("ERROR: lsize must be >= 0")
size = 2**lsize
size2 = size**2
radius = int(sys.argv[3])
if radius < 1:
sys.exit("ERROR: Stencil radius should be positive")
if size < (2*radius+1):
sys.exit("ERROR: Stencil radius exceeds grid size")
stencil_size = 4*radius+1
sparsity = (4.*radius+1.)/size2
nent = size2*stencil_size
print('Number of iterations = ', iterations)
print('Matrix order = ', size2)
print('Stencil diameter = ', 2*radius+1)
print('Sparsity = ', sparsity)
# ********************************************************************
# Initialize data and perform computation
# ********************************************************************
matrix = numpy.zeros(nent,dtype=float)
colIndex = numpy.zeros(nent,dtype=int)
vector = numpy.zeros(size2,dtype=float)
result = numpy.zeros(size2,dtype=float)
for row in range(size2):
i = int(row%size)
j = int(row/size)
elm = row*stencil_size
colIndex[elm] = offset(i,j,lsize)
for r in range(1,radius+1):
colIndex[elm+1] = offset((i+r)%size,j,lsize)
colIndex[elm+2] = offset((i-r+size)%size,j,lsize)
colIndex[elm+3] = offset(i,(j+r)%size,lsize)
colIndex[elm+4] = offset(i,(j-r+size)%size,lsize)
elm += 4
# sort colIndex to make sure the compressed row accesses vector elements in increasing order
colIndex[row*stencil_size:(row+1)*stencil_size] = sorted(colIndex[row*stencil_size:(row+1)*stencil_size])
for k in range(0,stencil_size):
elm = row*stencil_size + k
matrix[elm] = 1.0/(colIndex[elm]+1)
for k in range(iterations+1):
if k<1: t0 = timer()
# fill vector
for row in range(0,size2):
vector[row] += row+1
# do the actual matrix-vector multiplication
for row in range(0,size2):
temp = 0.0
for col in range(stencil_size*row,stencil_size*(row+1)):
temp += matrix[col] * vector[colIndex[col]]
result[row] += temp;
t1 = timer()
sparse_time = t1 - t0
#******************************************************************************
#* Analyze and output results.
#******************************************************************************
reference_sum = 0.5 * nent * (iterations+1) * (iterations+2)
vector_sum = 0.0
for row in range(0,size2):
vector_sum += result[row]
epsilon = 1.e-8
if abs(vector_sum-reference_sum) < epsilon:
print('Solution validates')
flops = 2*nent
avgtime = sparse_time/iterations
print('Rate (MFlops/s): ', 1.e-6*flops/avgtime, ' Avg time (s): ',avgtime)
else:
print('ERROR: Vector sum = ', vector_sum,', Reference vector sum = ', reference_sum)
sys.exit()
if __name__ == '__main__':
main()