-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnic.py
173 lines (157 loc) · 5.9 KB
/
snic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#%% Initialization
import numpy as np
import cv2
import heapq
import matplotlib.pyplot as plt
from time import time
from scipy.io import savemat
import utils
#%% Core Functions
def find_seeds(width, height, numk):
sz = width * height
gridstep = int(np.sqrt(sz / numk) + 0.5)
halfstep = gridstep / 2
xsteps = int(width / gridstep)
ysteps = int(height / gridstep)
# no fix for gridstep
numk_new = xsteps * ysteps
seeds = np.zeros((numk_new, 2), dtype=np.int) # row and col
for y in range(0, ysteps):
for x in range(0, xsteps):
seeds[y * xsteps + x, 0] = halfstep + y * gridstep
seeds[y * xsteps + x, 1] = halfstep + x * gridstep
#print('gridstep: %d' % gridstep)
return numk_new, seeds
def snic(img, numk, compactness, verbose=False):
# heap log (d, k, i, j, pop(0)/push(1))
f = open('snic.log', 'w')
# CIELab
img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
# reduce range of lightness, or else boundaries would be wavy
img[:,:,0] = img[:,:,0] * 100 / 255
# constants
h = img.shape[0]
w = img.shape[1]
numk, seeds = find_seeds(w, h, numk)
sz = h * w
di = [-1, 0, 1, 0, -1, 1, 1, -1]
dj = [0, -1, 0, 1, -1, -1, 1, 1]
connectivity = 4
invwt = compactness * compactness * numk / sz
# variants
labels = -1 * np.ones((h, w), np.int) # pixel labels
kf = np.zeros((numk, 5), np.double) # sp features: l,a,b,i,j
ks = np.zeros(numk, np.int) # sp sizes
heap = []
for k in range(numk):
heap.append((0, k, seeds[k, 0], seeds[k, 1]))
heapq.heapify(heap)
while len(heap) > 0:
d, k, i, j = heapq.heappop(heap)
if verbose:
f.write('%.3f,%d,%d,%d,%d\n' % (d, k, i, j, 0))
if labels[i, j] < 0: # takes longer time if removed
labels[i, j] = k
l, a, b = img[i, j, :].tolist()
kf[k, :] += l, a, b, i, j
ks[k] += 1
for n in range(connectivity):
ii = i + di[n]
jj = j + dj[n]
if ii < 0 or jj < 0 or ii >= h or jj >= w:
continue
if labels[ii, jj] < 0:
pf = (*(img[ii, jj, :].tolist()), ii, jj) # pixel features
dist = kf[k, :] - [f * ks[k] for f in pf]
dist = [d * d for d in dist]
colordist = sum(dist[0:3])
spacedist = sum(dist[3:5])
slicdist = (colordist + spacedist * invwt) / (ks[k] * ks[k])
heapq.heappush(heap, (slicdist, k, ii, jj))
if verbose:
f.write('%.3f,%d,%d,%d,%d\n' % (slicdist, k, ii, jj, 1))
f.close()
return labels
def snico(img, numk):
# CIELab
img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
# reduce range of lightness, or else boundaries would be wavy
img[:,:,0] = img[:,:,0] * 100 / 255
# constants
h = img.shape[0]
w = img.shape[1]
numk, seeds = find_seeds(w, h, numk)
di = [-1, 0, 1, 0, -1, 1, 1, -1]
dj = [0, -1, 0, 1, -1, -1, 1, 1]
connectivity = 4
area = h * w / numk
DCN = 20 # default color nomalization factor
maxcdsq = np.zeros(numk) # max color distances squared
for iter in range(2):
labels = -1 * np.ones((h, w), np.int) # pixel labels
kf = np.zeros((numk, 5), np.double) # sp features: l,a,b,i,j
ks = np.zeros(numk, np.int) # sp sizes
heap = []
for k in range(numk):
heap.append((0, k, seeds[k, 0], seeds[k, 1]))
heapq.heapify(heap)
while len(heap) > 0:
d, k, i, j = heapq.heappop(heap)
if labels[i, j] < 0: # takes longer time if removed
labels[i, j] = k
l, a, b = img[i, j, :].tolist()
kf[k, :] = (kf[k, :] * ks[k] + (l, a, b, i, j)) / (ks[k] + 1)
ks[k] += 1
for n in range(connectivity):
ii = i + di[n]
jj = j + dj[n]
if ii < 0 or jj < 0 or ii >= h or jj >= w:
continue
if labels[ii, jj] < 0:
pf = (*(img[ii, jj, :].tolist()), ii, jj) # pixel features
dist = kf[k, :] - pf
dist = [d * d for d in dist]
colordist = sum(dist[0:3])
spacedist = sum(dist[3:5])
if iter == 0:
slicdist = colordist / DCN / DCN + spacedist / area
if maxcdsq[k] < colordist:
maxcdsq[k] = colordist
else:
if maxcdsq[k] == 0:
slicdist = spacedist / area
else:
slicdist = colordist / maxcdsq[k] + spacedist / area
heapq.heappush(heap, (slicdist, k, ii, jj))
return labels
def show_seeds(img, numk):
h = img.shape[0]
w = img.shape[1]
numk_new, seeds = find_seeds(w, h, numk)
for k in range(numk_new):
i, j = seeds[k, :]
cv2.circle(img, (j, i), 1, [255, 0, 0], -1)
plt.imshow(img)
plt.show()
print(seeds)
#%% Testing
def export_labels_mat():
img = cv2.imread('example.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
labels = snic(img, 200, 20)
savemat('matlab/reimpl_labels.mat', {"reimpl_labels":labels})
def test(zero_param=False):
img = cv2.imread('j20.jpg')
#img = img[0:100,0:100]
print('%dx%d' % (img.shape[0], img.shape[1]))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
t0 = time()
if zero_param:
labels = snico(img, 200)
else:
labels = snic(img, 200, 20)
print('Time used: %.3fs' %(time() - t0))
utils.show_bounaries(img, labels)
if __name__ =='__main__':
test(True)
# TODO: visualize algorithm process