forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
221 lines (171 loc) · 6.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import streamlit as st
from graphviz import Digraph
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
self.height = 1 # Every new node starts with height 1
def height(node):
if node is None:
return 0
return node.height
def max(a, b):
return a if a > b else b
def newNode(data):
return Node(data)
def getBalance(node):
if node is None:
return 0
return height(node.left) - height(node.right)
# Right rotation for Left-Left case (balance > 1 and data < node.left.data)
def rightRotate(y):
x = y.left
T2 = x.right
# Perform rotation
x.right = y
y.left = T2
# Update heights of the rotated nodes
y.height = max(height(y.left), height(y.right)) + 1
x.height = max(height(x.left), height(x.right)) + 1
return x
# Left rotation for Right-Right case (balance < -1 and data > node.right.data)
def leftRotate(x):
y = x.right
T2 = y.left
# Perform rotation
y.left = x
x.right = T2
# Update heights of the rotated nodes
x.height = max(height(x.left), height(x.right)) + 1
y.height = max(height(y.left), height(y.right)) + 1
return y
# Insert a node and balance the AVL tree
def insert(node, data):
# Standard BST insertion
if node is None:
return newNode(data)
if data < node.data:
node.left = insert(node.left, data)
elif data > node.data:
node.right = insert(node.right, data)
else:
# No duplicates allowed
return node
# Update height of the current node after insertion
node.height = 1 + max(height(node.left), height(node.right))
# Get balance factor to check for imbalance
balance = getBalance(node)
# Left-Left case: single right rotation
if balance > 1 and data < node.left.data:
return rightRotate(node)
# Right-Right case: single left rotation
if balance < -1 and data > node.right.data:
return leftRotate(node)
# Left-Right case: first left-rotate the left child, then right-rotate
if balance > 1 and data > node.left.data:
node.left = leftRotate(node.left)
return rightRotate(node)
# Right-Left case: first right-rotate the right child, then left-rotate
if balance < -1 and data < node.right.data:
node.right = rightRotate(node.right)
return leftRotate(node)
# Return the (potentially rotated) root node
return node
def inOrder(root, ls):
if root is not None:
inOrder(root.left, ls)
ls.append(root.data)
inOrder(root.right, ls)
def preOrder(root, ls):
if root is not None:
ls.append(root.data)
preOrder(root.left, ls)
preOrder(root.right, ls)
# Visualizing the tree using Graphviz
def visualize_tree(node, graph=None):
if graph is None:
graph = Digraph() # Create new Digraph object
graph.attr('node', shape='circle')
if node is not None:
# Add the current node to the graph
graph.node(str(node.data), str(node.data))
# Recursively add left and right children
if node.left:
graph.edge(str(node.data), str(node.left.data)) # Add edge between parent and left child
visualize_tree(node.left, graph)
if node.right:
graph.edge(str(node.data), str(node.right.data)) # Add edge between parent and right child
visualize_tree(node.right, graph)
return graph # Return the graph
def custom_write(ls):
return ', '.join(f'{item}' for item in ls)
st.title("AVL Tree Visualizer")
# Tabs for file upload and manual entry
tab1, tab2 = st.tabs(["File Upload", "Manual Entry"])
with tab1:
st.subheader("Upload AVL Tree Data")
uploaded_file = st.file_uploader("Upload the input file", type="txt")
if uploaded_file is not None:
content = uploaded_file.read().decode("utf-8") # Read file content as text
numbers = [int(num) for num in content.strip().split() if num.isdigit()] # Extract numbers
root = None # Initialize the AVL tree root
steps = [] # Store each step of the tree construction
# Insert each number and visualize the tree after each insertion
for key in numbers:
root = insert(root, key)
current_graph = visualize_tree(root, Digraph()) # Capture tree structure at this step
steps.append(current_graph.source) # Save graph source
ino = [] # Store inorder traversal result
pre = [] # Store preorder traversal result
inOrder(root, ino)
preOrder(root, pre)
st.subheader("Construction of AVL tree:")
if steps:
# Slider to navigate through different tree construction steps
step_index = st.slider('Step', 0, len(steps)-1, 0)
st.graphviz_chart(steps[step_index])
st.subheader("Inorder Traversal of the AVL tree:")
st.write(custom_write(ino))
st.subheader("Preorder Traversal of the AVL tree:")
st.write(custom_write(pre))
st.subheader("Final AVL Tree Structure:")
final_graph = visualize_tree(root, Digraph()) # Final tree structure
st.graphviz_chart(final_graph.source)
# Write inorder traversal to output file
output_file = 'output.txt'
try:
with open(output_file, 'w') as f:
for item in ino:
f.write(str(item)+' ')
except FileNotFoundError:
st.error(f"Error: File '{output_file}' does not exist.")
with tab2:
st.subheader("Enter AVL Tree Data")
# Initialize session state for tree root and numbers
if 'root' not in st.session_state:
st.session_state.root = None
st.session_state.numbers = []
input_number = st.text_input("Enter a number:")
if st.button("Add Number"):
if input_number.isdigit():
number = int(input_number)
# Insert the number into the tree and update session state
st.session_state.root = insert(st.session_state.root, number)
st.session_state.numbers.append(number)
st.success(f"Number {number} added.")
else:
st.error("Please enter a valid number.")
# If the tree has been built, show its structure
if st.session_state.root:
ino = [] # Inorder traversal result
pre = [] # Preorder traversal result
inOrder(st.session_state.root, ino)
preOrder(st.session_state.root, pre)
st.subheader("AVL Tree Structure:")
final_graph = visualize_tree(st.session_state.root, Digraph()) # Display tree structure
st.graphviz_chart(final_graph.source)
st.subheader("Inorder Traversal of the AVL tree:")
st.write(custom_write(ino))
st.subheader("Preorder Traversal of the AVL tree:")
st.write(custom_write(pre))