forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
274 lines (233 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import nltk
from nltk.corpus import stopwords
import emoji
from collections import Counter
import plotly.graph_objs as go
import numpy as np
import requests
import re
import zipfile
import io
from datetime import datetime
# Function to handle date conversion
def handle_date(date_str):
"""
Converts a date string to datetime or timedelta.
Args:
date_str (str): Date string to convert
Returns:
datetime or timedelta: Converted date/time object
"""
try:
return pd.to_datetime(date_str)
except ValueError:
# Handle incompatible format (e.g., "0 days 00:04:00")
time_part = date_str.split()[2]
return pd.to_timedelta(time_part)
# Function to convert 24-hour time to 12-hour format
def twelve_hr_convert(time_str):
"""
Converts 24-hour time format to 12-hour format.
Args:
time_str (str): Time string in 24-hour format
Returns:
tuple: (time_string, am/pm indicator)
"""
return datetime.strptime(time_str, "%H:%M").strftime("%I:%M %p")
# Function to process chat file
@st.cache_data(ttl=300) # Added TTL for cache expiration
def process_chat_file(file_contents):
"""
Processes the chat file contents and extracts relevant information.
Args:
file_contents (str): Contents of the chat file
Returns:
tuple: (full_df, message_df, emoji_df, emoji_author_df)
"""
# Combined regex for different date/time formats
pattern = r"(\d+\/\d+\/\d+), (\d+:\d+(?:\s?[ap]m)?) \- ([^\:]*):(.*)"
data = []
# Process each line of the file
for line in file_contents.split("\n"):
match = re.match(pattern, line)
if match:
groups = match.groups()
date, time = groups[0], groups[1]
# Remove any invisible or non-breaking spaces from time strings
time = re.sub(r'[\u202f\u00a0]', '', time.strip())
ampm, author, message = None, groups[2], groups[3]
if 'am' in time.lower() or 'pm' in time.lower():
ampm = time[-2:].lower() # Extract am/pm indicator
time = time[:-2].strip() # Remove am/pm from time string
if not ampm: # Convert to 12-hour format if no am/pm
time, ampm = twelve_hr_convert(time)
data.append({
"Date": date,
"Time": time,
"AM/PM": ampm,
"Author": author.strip(),
"Message": message.strip()
})
# Create DataFrame
df = pd.DataFrame(data)
# Extract emojis from messages (using emoji package for accuracy)
df["Emoji"] = df["Message"].apply(lambda text: emoji.emoji_list(text))
# Remove media and null messages
message_df = df[~df["Message"].isin(['<Media omitted>', 'null'])]
# Convert date and time columns
message_df["Date"] = pd.to_datetime(message_df["Date"])
# Convert time, accounting for am/pm format
message_df["Time"] = pd.to_datetime(message_df["Time"] + ' ' + message_df["AM/PM"], format='%I:%M %p', errors='coerce').dt.strftime('%H:%M')
# Calculate letter and word counts using vectorized operations
message_df['Letter_Count'] = message_df['Message'].str.len()
message_df['Word_count'] = message_df['Message'].str.split().str.len()
# Process emojis
total_emojis_list = [emoji['emoji'] for emojis in message_df['Emoji'] for emoji in emojis]
emoji_author_counts = {author: Counter() for author in message_df['Author'].unique()}
for emojis, author in zip(message_df['Emoji'], message_df['Author']):
for emoji_data in emojis:
emoji_author_counts[author][emoji_data['emoji']] += 1
emoji_author_df = pd.DataFrame.from_dict(emoji_author_counts, orient='index').fillna(0)
emoji_df = pd.DataFrame(sorted(Counter(total_emojis_list).items(), key=lambda x: x[1], reverse=True),
columns=["emoji", "count"])
# Combine date and time into DateTime column
message_df['DateTime'] = pd.to_datetime(message_df['Date'].dt.strftime('%Y-%m-%d') + ' ' +
message_df['Time'], errors='coerce')
message_df = message_df.sort_values(by='DateTime')
# Calculate response times
message_df['Response Time'] = pd.NaT
last_message_time = {}
for index, row in message_df.iterrows():
author, current_time = row['Author'], row['DateTime']
if author in last_message_time:
last_time = last_message_time[author]
if last_time is not pd.NaT:
message_df.at[index, 'Response Time'] = (current_time - last_time).total_seconds()
last_message_time[author] = current_time
return df, message_df, emoji_df, emoji_author_df
# Function to extract text file from zip archive
def extract_text_file(uploaded_file):
"""
Extracts a text file from a zip archive.
Args:
uploaded_file (UploadedFile): The uploaded zip file
Returns:
str: Contents of the extracted text file or an error message
"""
try:
zip_file = zipfile.ZipFile(io.BytesIO(uploaded_file.read()))
text_file_name = next((name for name in zip_file.namelist() if name.endswith(".txt")), None)
if text_file_name:
return zip_file.read(text_file_name).decode("utf-8")
else:
return "No text file found in the zip archive."
except Exception as e:
return f"Error occurred: {str(e)}"
# Main Streamlit app
def main():
"""
Main function to run the Streamlit app.
"""
st.set_page_config("WhatsApp Chat Analyzer", page_icon="📲", layout="centered")
st.title("Chat Data Visualization")
# File upload section
uploaded_file = st.file_uploader("Upload a chat file")
if uploaded_file is not None:
file_extension = uploaded_file.name.split(".")[-1]
if file_extension == "txt":
file_contents = uploaded_file.read().decode("utf-8")
elif file_extension == "zip":
file_contents = extract_text_file(uploaded_file)
else:
st.error("Please upload a .txt or .zip file")
return
# Process chat data
df, message_df, emoji_df, emoji_author_df = process_chat_file(file_contents)
# Layout enhancement with columns and expanders
with st.expander("Basic Information (First 20 Conversations)"):
st.write(df.head(20))
with st.expander("Author Stats"):
for author in message_df['Author'].unique():
req_df = message_df[message_df["Author"] == author]
st.subheader(f'Stats of {author}:')
st.write(f'Messages sent: {req_df.shape[0]}')
words_per_message = (np.sum(req_df['Word_count'])) / req_df.shape[0]
st.write(f"Words per message: {words_per_message:.2f}")
emoji_count = req_df['Emoji'].apply(len).sum()
st.write(f'Emojis sent: {emoji_count}')
avg_response_time = round(req_df['Response Time'].mean(), 2)
st.write(f'Average Response Time: {avg_response_time} seconds')
# Display emoji distribution
with st.expander("Emoji Distribution"):
fig = px.pie(emoji_df, values='count', names='emoji', title='Emoji Distribution')
fig.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig)
# Display emoji usage by author
with st.expander("Emoji Usage by Author"):
fig = px.bar(emoji_author_df, x=emoji_author_df.index, y=emoji_author_df.columns,
title="Emoji Usage by Author", barmode='stack')
fig.update_layout(xaxis_title="Authors", yaxis_title="Count", legend_title="Emojis")
st.plotly_chart(fig)
# Display top 10 days with most messages
with st.expander("Top 10 Days With Most Messages"):
messages_per_day = message_df.groupby(message_df['DateTime'].dt.date).size().reset_index(name='Messages')
top_days = messages_per_day.sort_values(by='Messages', ascending=False).head(10)
fig = go.Figure(data=[go.Bar(
x=top_days['DateTime'],
y=top_days['Messages'],
marker=dict(color='rgba(58, 71, 80, 0.6)', line=dict(color='rgba(58, 71, 80, 1.0)', width=1.5)),
text=top_days['Messages']
)])
fig.update_layout(
title='Top 10 Days with Most Messages',
xaxis=dict(title='Date', tickfont=dict(size=14, color='rgb(107, 107, 107)')),
yaxis=dict(title='Number of Messages', titlefont=dict(size=16, color='rgb(107, 107, 107)')),
bargap=0.1,
bargroupgap=0.1,
paper_bgcolor='rgb(233, 233, 233)',
plot_bgcolor='rgb(233, 233, 233)',
)
st.plotly_chart(fig)
# Display message distribution by day
with st.expander("Message Distribution by Day"):
day_df = message_df[["Message", "DateTime"]].copy()
day_df['day_of_week'] = day_df['DateTime'].dt.day_name()
day_df["message_count"] = 1
day_counts = day_df.groupby("day_of_week").size().reset_index(name='message_count')
fig = px.line_polar(day_counts, r='message_count', theta='day_of_week', line_close=True)
fig.update_traces(fill='toself')
fig.update_layout(polar=dict(radialaxis=dict(visible=True)), showlegend=False)
st.plotly_chart(fig)
# Display word cloud
with st.expander("Word Cloud"):
text = " ".join(str(review) for review in message_df.Message)
nltk.download('stopwords', quiet=True)
stopwords = set(nltk.corpus.stopwords.words('english'))
# Add custom stopwords here
stopwords_list = requests.get("https://gist.githubusercontent.com/rg089/35e00abf8941d72d419224cfd5b5925d/raw/12d899b70156fd0041fa9778d657330b024b959c/stopwords.txt").content
stopwords.update(list(set(stopwords_list.decode().splitlines())))
# Create the Word Cloud
wordcloud = WordCloud(width=800, height=400, random_state=1, background_color='white', colormap='Set2', collocations=False, stopwords=stopwords).generate(text)
fig, ax = plt.subplots(figsize=(10, 5))
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis("off")
st.pyplot(fig)
# Display Creator Details
html_temp = """
<div style="text-align: center; font-size: 14px; padding: 5px;">
Created by Aritro Saha -
<a href="https://aritro.tech/">Website</a>,
<a href="https://github.com/halcyon-past">GitHub</a>,
<a href="https://www.linkedin.com/in/aritro-saha/">LinkedIn</a>
</div>
"""
st.markdown(html_temp, unsafe_allow_html=True)
#driver code
if __name__ == "__main__":
main()