-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct-binary-search-tree-from-preorder-traversal_1008.py
56 lines (39 loc) · 1.78 KB
/
construct-binary-search-tree-from-preorder-traversal_1008.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Given an array of integers preorder, which represents the preorder traversal of a BST (i.e., binary search tree), construct the tree and return its root.
# It is guaranteed that there is always possible to find a binary search tree with the given requirements for the given test cases.
# A binary search tree is a binary tree where for every node, any descendant of Node.left has a value strictly less than Node.val, and any descendant of Node.right has a value strictly greater than Node.val.
# A preorder traversal of a binary tree displays the value of the node first, then traverses Node.left, then traverses Node.right.
# Example 1:
# 
# Input: preorder = [8,5,1,7,10,12]
# Output: [8,5,10,1,7,null,12]
# Example 2:
# Input: preorder = [1,3]
# Output: [1,null,3]
# ---------------------------------------Runtime 54 ms Beats 49.84% Memory 16.3 MB Beats 71.50%---------------------------------------
from collections import deque
from typing import Optional
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def bstFromPreorder(self, preorder: list[int]) -> Optional[TreeNode]:
stack = deque(preorder)
tree = TreeNode(stack.popleft())
def insert(node):
if stack[0] > node.val:
if not node.right:
node.right = TreeNode(stack.popleft())
return
else:
insert(node.right)
elif stack[0] < node.val:
if not node.left:
node.left = TreeNode(stack.popleft())
return
else:
insert(node.left)
while stack:
insert(tree)
return tree