-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlowest-common-ancestor-of-a-binary-search-tree_235.py
58 lines (47 loc) · 1.72 KB
/
lowest-common-ancestor-of-a-binary-search-tree_235.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Given a binary search tree (BST), find the lowest common ancestor (LCA) node of two given nodes in the BST.
# According to the definition of LCA on Wikipedia:
# “The lowest common ancestor is defined between two nodes p and q
# as the lowest node in T that has both p and q as descendants
# (where we allow a node to be a descendant of itself).”
# Example 1:
# 
# Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
# Output: 6
# Explanation: The LCA of nodes 2 and 8 is 6.
# Example 2:
# 
# Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
# Output: 2
# Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
# Example 3:
# Input: root = [2,1], p = 2, q = 1
# Output: 2
# ---------------------------------------Runtime 92 ms Beats 67.3% Memory 20.8 MB Beats 56.47%---------------------------------------
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def lowestCommonAncestor(
self, root: TreeNode, p: TreeNode, q: TreeNode
) -> TreeNode:
def is_greater_than_node(node):
return (
True
if node and node.val > p.val and root.val > q.val
else False
)
def is_less_than_node(node):
return (
True
if node and node.val < p.val and root.val < q.val
else False
)
while True:
if is_greater_than_node(root):
root = root.left
elif is_less_than_node(root):
root = root.right
else:
return root