Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Code Addition Request]: Groundwater quality detection #1124

Closed
3 tasks done
Stuti333 opened this issue Nov 8, 2024 · 3 comments
Closed
3 tasks done

[Code Addition Request]: Groundwater quality detection #1124

Stuti333 opened this issue Nov 8, 2024 · 3 comments

Comments

@Stuti333
Copy link

Stuti333 commented Nov 8, 2024

Have you completed your first issue?

  • I have completed my first issue

Guidelines

  • I have read the guidelines
  • I have the link to my latest merged PR

Latest Merged PR Link

#969

Project Description

Groundwater contamination with arsenic is a serious problem in many parts of the world, and can have severe health consequences for those who consume it. In this project, we aim to predict the arsenic content in groundwater using artificial neural networks (ANN), specifically backpropagation neural network (BPNN), and Whale Optimization Algorithm (WOA).The project involves collecting data on arsenic levels in groundwater from various locations, along with information on environmental factors that may affect the arsenic content. The data is then preprocessed to clean and transform it, and split into training and testing datasets.We use BPNN and WOA to build prediction models based on the training dataset. BPNN is a commonly used neural network model for regression and classification tasks, while WOA is a nature-inspired optimization algorithm that can be used to optimize the weights and biases of the neural network.The performance of the BPNN and WOA models is then evaluated using the testing dataset, and compared against each other to determine which method yields better results. We also evaluate the impact of different input variables on the prediction accuracy of the models.The results of this project can have important implications for water management and public health, as accurate prediction of arsenic levels in groundwater can help prevent exposure to this toxic element. Furthermore, the use of advanced machine learning techniques like ANN and WOA can provide insights into the complex relationships between arsenic content and environmental factors, and may lead to the development of more effective strategies for managing groundwater resources.

Full Name

Stuti Sharma

Participant Role

GSSOC

Copy link

github-actions bot commented Nov 8, 2024

🙌 Thank you for bringing this issue to our attention! We appreciate your input and will investigate it as soon as possible.

Feel free to join our community on Discord to discuss more!

@UTSAVS26
Copy link
Owner

UTSAVS26 commented Nov 9, 2024

@Stuti333 read this #1073.

@UTSAVS26 UTSAVS26 closed this as not planned Won't fix, can't repro, duplicate, stale Nov 9, 2024
Copy link

github-actions bot commented Nov 9, 2024

✅ This issue has been closed. Thank you for your contribution! If you have any further questions or issues, feel free to join our community on Discord to discuss more!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants