From ee97695707e77eda17273f9632ab2e5490fbca07 Mon Sep 17 00:00:00 2001
From: VARUNSHIYAM <138989960+Varunshiyam@users.noreply.github.com>
Date: Mon, 4 Nov 2024 19:30:52 +0530
Subject: [PATCH 1/2] Fixes thyroid detection
---
...isease-detection-using-deep-learning.ipynb | 8283 +++++++++++++++++
1 file changed, 8283 insertions(+)
create mode 100644 Deep_Learning/Thyroid_detection/thyroid-disease-detection-using-deep-learning.ipynb
diff --git a/Deep_Learning/Thyroid_detection/thyroid-disease-detection-using-deep-learning.ipynb b/Deep_Learning/Thyroid_detection/thyroid-disease-detection-using-deep-learning.ipynb
new file mode 100644
index 0000000000..fc8c53b053
--- /dev/null
+++ b/Deep_Learning/Thyroid_detection/thyroid-disease-detection-using-deep-learning.ipynb
@@ -0,0 +1,8283 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.075549,
+ "end_time": "2021-12-15T11:04:06.744715",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:06.669166",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Thyroid Disease \n",
+ "\n",
+ "The most common thyroid disorder is hypothyroidism. Hypo- means deficient or under(active), so hypothyroidism is a condition in which the thyroid gland is underperforming or producing too little thyroid hormone.. Recognizing the symptoms of hypothyroidism is extremely important.\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ "\n",
+ "### Data Set Information:\n",
+ "\n",
+ "\n",
+ "\n",
+ "#### From Garavan Institute\n",
+ "#### Documentation: as given by Ross Quinlan\n",
+ "#### 6 databases from the Garavan Institute in Sydney, Australia\n",
+ "#### Approximately the following for each database:\n",
+ "\n",
+ "* 2800 training (data) instances and 972 test instances\n",
+ "* Plenty of missing data\n",
+ "* 29 or so attributes, either Boolean or continuously-valued\n",
+ "\n",
+ "#### 2 additional databases, also from Ross Quinlan, are also here\n",
+ "\n",
+ "* Hypothyroid.data and sick-euthyroid.data\n",
+ "* Quinlan believes that these databases have been corrupted\n",
+ "* Their format is highly similar to the other databases\n",
+ "\n",
+ "#### 1 more database of 9172 instances that cover 20 classes, and a related domain theory\n",
+ "#### Another thyroid database from Stefan Aeberhard\n",
+ "\n",
+ "* 3 classes, 215 instances, 5 attributes\n",
+ "* No missing values\n",
+ "\n",
+ "#### Dataset link:\n",
+ "\n",
+ "\n",
+ "##### [Here](https://www.kaggle.com/yasserhessein/thyroid-disease-data-set)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:06.896278Z",
+ "iopub.status.busy": "2021-12-15T11:04:06.895213Z",
+ "iopub.status.idle": "2021-12-15T11:04:08.538349Z",
+ "shell.execute_reply": "2021-12-15T11:04:08.537685Z",
+ "shell.execute_reply.started": "2021-12-15T11:03:37.181275Z"
+ },
+ "papermill": {
+ "duration": 1.719652,
+ "end_time": "2021-12-15T11:04:08.538472",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:06.818820",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import statsmodels.api as sm\n",
+ "import seaborn as sns\n",
+ "\n",
+ "%matplotlib inline\n",
+ "sns.set(rc={'figure.figsize': [20, 20]}, font_scale=1.4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:08.699735Z",
+ "iopub.status.busy": "2021-12-15T11:04:08.698898Z",
+ "iopub.status.idle": "2021-12-15T11:04:08.771458Z",
+ "shell.execute_reply": "2021-12-15T11:04:08.771974Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:19.940636Z"
+ },
+ "papermill": {
+ "duration": 0.157922,
+ "end_time": "2021-12-15T11:04:08.772117",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:08.614195",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " TBG \n",
+ " referral source \n",
+ " binaryClass \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 41 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 125 \n",
+ " t \n",
+ " 1.14 \n",
+ " t \n",
+ " 109 \n",
+ " f \n",
+ " ? \n",
+ " SVHC \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 23 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 102 \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46 \n",
+ " M \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 109 \n",
+ " t \n",
+ " 0.91 \n",
+ " t \n",
+ " 120 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 70 \n",
+ " F \n",
+ " t \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 175 \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 70 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 61 \n",
+ " t \n",
+ " 0.87 \n",
+ " t \n",
+ " 70 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 3767 \n",
+ " 30 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3768 \n",
+ " 68 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 124 \n",
+ " t \n",
+ " 1.08 \n",
+ " t \n",
+ " 114 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3769 \n",
+ " 74 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 112 \n",
+ " t \n",
+ " 1.07 \n",
+ " t \n",
+ " 105 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3770 \n",
+ " 72 \n",
+ " M \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 82 \n",
+ " t \n",
+ " 0.94 \n",
+ " t \n",
+ " 87 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3771 \n",
+ " 64 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 99 \n",
+ " t \n",
+ " 1.07 \n",
+ " t \n",
+ " 92 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3772 rows × 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine query on thyroxine on antithyroid medication sick \\\n",
+ "0 41 F f f f f \n",
+ "1 23 F f f f f \n",
+ "2 46 M f f f f \n",
+ "3 70 F t f f f \n",
+ "4 70 F f f f f \n",
+ "... .. .. ... ... ... ... \n",
+ "3767 30 F f f f f \n",
+ "3768 68 F f f f f \n",
+ "3769 74 F f f f f \n",
+ "3770 72 M f f f f \n",
+ "3771 64 F f f f f \n",
+ "\n",
+ " pregnant thyroid surgery I131 treatment query hypothyroid ... \\\n",
+ "0 f f f f ... \n",
+ "1 f f f f ... \n",
+ "2 f f f f ... \n",
+ "3 f f f f ... \n",
+ "4 f f f f ... \n",
+ "... ... ... ... ... ... \n",
+ "3767 f f f f ... \n",
+ "3768 f f f f ... \n",
+ "3769 f f f f ... \n",
+ "3770 f f f f ... \n",
+ "3771 f f f f ... \n",
+ "\n",
+ " TT4 measured TT4 T4U measured T4U FTI measured FTI TBG measured TBG \\\n",
+ "0 t 125 t 1.14 t 109 f ? \n",
+ "1 t 102 f ? f ? f ? \n",
+ "2 t 109 t 0.91 t 120 f ? \n",
+ "3 t 175 f ? f ? f ? \n",
+ "4 t 61 t 0.87 t 70 f ? \n",
+ "... ... ... ... ... ... ... ... .. \n",
+ "3767 f ? f ? f ? f ? \n",
+ "3768 t 124 t 1.08 t 114 f ? \n",
+ "3769 t 112 t 1.07 t 105 f ? \n",
+ "3770 t 82 t 0.94 t 87 f ? \n",
+ "3771 t 99 t 1.07 t 92 f ? \n",
+ "\n",
+ " referral source binaryClass \n",
+ "0 SVHC P \n",
+ "1 other P \n",
+ "2 other P \n",
+ "3 other P \n",
+ "4 SVI P \n",
+ "... ... ... \n",
+ "3767 other P \n",
+ "3768 SVI P \n",
+ "3769 other P \n",
+ "3770 SVI P \n",
+ "3771 other P \n",
+ "\n",
+ "[3772 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('../input/thyroid-disease-data-set/hypothyroid.csv')\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:08.924711Z",
+ "iopub.status.busy": "2021-12-15T11:04:08.923663Z",
+ "iopub.status.idle": "2021-12-15T11:04:08.950969Z",
+ "shell.execute_reply": "2021-12-15T11:04:08.951505Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.001723Z"
+ },
+ "papermill": {
+ "duration": 0.104928,
+ "end_time": "2021-12-15T11:04:08.951652",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:08.846724",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " TBG \n",
+ " referral source \n",
+ " binaryClass \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 41 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 125 \n",
+ " t \n",
+ " 1.14 \n",
+ " t \n",
+ " 109 \n",
+ " f \n",
+ " ? \n",
+ " SVHC \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 23 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 102 \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46 \n",
+ " M \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 109 \n",
+ " t \n",
+ " 0.91 \n",
+ " t \n",
+ " 120 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 70 \n",
+ " F \n",
+ " t \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 175 \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 70 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 61 \n",
+ " t \n",
+ " 0.87 \n",
+ " t \n",
+ " 70 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine query on thyroxine on antithyroid medication sick \\\n",
+ "0 41 F f f f f \n",
+ "1 23 F f f f f \n",
+ "2 46 M f f f f \n",
+ "3 70 F t f f f \n",
+ "4 70 F f f f f \n",
+ "\n",
+ " pregnant thyroid surgery I131 treatment query hypothyroid ... TT4 measured \\\n",
+ "0 f f f f ... t \n",
+ "1 f f f f ... t \n",
+ "2 f f f f ... t \n",
+ "3 f f f f ... t \n",
+ "4 f f f f ... t \n",
+ "\n",
+ " TT4 T4U measured T4U FTI measured FTI TBG measured TBG referral source \\\n",
+ "0 125 t 1.14 t 109 f ? SVHC \n",
+ "1 102 f ? f ? f ? other \n",
+ "2 109 t 0.91 t 120 f ? other \n",
+ "3 175 f ? f ? f ? other \n",
+ "4 61 t 0.87 t 70 f ? SVI \n",
+ "\n",
+ " binaryClass \n",
+ "0 P \n",
+ "1 P \n",
+ "2 P \n",
+ "3 P \n",
+ "4 P \n",
+ "\n",
+ "[5 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:09.106919Z",
+ "iopub.status.busy": "2021-12-15T11:04:09.105905Z",
+ "iopub.status.idle": "2021-12-15T11:04:09.234330Z",
+ "shell.execute_reply": "2021-12-15T11:04:09.234812Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.031771Z"
+ },
+ "papermill": {
+ "duration": 0.207415,
+ "end_time": "2021-12-15T11:04:09.234990",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:09.027575",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " unique \n",
+ " top \n",
+ " freq \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " 3772 \n",
+ " 94 \n",
+ " 59 \n",
+ " 95 \n",
+ " \n",
+ " \n",
+ " sex \n",
+ " 3772 \n",
+ " 3 \n",
+ " F \n",
+ " 2480 \n",
+ " \n",
+ " \n",
+ " on thyroxine \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3308 \n",
+ " \n",
+ " \n",
+ " query on thyroxine \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3722 \n",
+ " \n",
+ " \n",
+ " on antithyroid medication \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3729 \n",
+ " \n",
+ " \n",
+ " sick \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3625 \n",
+ " \n",
+ " \n",
+ " pregnant \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3719 \n",
+ " \n",
+ " \n",
+ " thyroid surgery \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3719 \n",
+ " \n",
+ " \n",
+ " I131 treatment \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3713 \n",
+ " \n",
+ " \n",
+ " query hypothyroid \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3538 \n",
+ " \n",
+ " \n",
+ " query hyperthyroid \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3535 \n",
+ " \n",
+ " \n",
+ " lithium \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3754 \n",
+ " \n",
+ " \n",
+ " goitre \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3738 \n",
+ " \n",
+ " \n",
+ " tumor \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3676 \n",
+ " \n",
+ " \n",
+ " hypopituitary \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3771 \n",
+ " \n",
+ " \n",
+ " psych \n",
+ " 3772 \n",
+ " 2 \n",
+ " f \n",
+ " 3588 \n",
+ " \n",
+ " \n",
+ " TSH measured \n",
+ " 3772 \n",
+ " 2 \n",
+ " t \n",
+ " 3403 \n",
+ " \n",
+ " \n",
+ " TSH \n",
+ " 3772 \n",
+ " 288 \n",
+ " ? \n",
+ " 369 \n",
+ " \n",
+ " \n",
+ " T3 measured \n",
+ " 3772 \n",
+ " 2 \n",
+ " t \n",
+ " 3003 \n",
+ " \n",
+ " \n",
+ " T3 \n",
+ " 3772 \n",
+ " 70 \n",
+ " ? \n",
+ " 769 \n",
+ " \n",
+ " \n",
+ " TT4 measured \n",
+ " 3772 \n",
+ " 2 \n",
+ " t \n",
+ " 3541 \n",
+ " \n",
+ " \n",
+ " TT4 \n",
+ " 3772 \n",
+ " 242 \n",
+ " ? \n",
+ " 231 \n",
+ " \n",
+ " \n",
+ " T4U measured \n",
+ " 3772 \n",
+ " 2 \n",
+ " t \n",
+ " 3385 \n",
+ " \n",
+ " \n",
+ " T4U \n",
+ " 3772 \n",
+ " 147 \n",
+ " ? \n",
+ " 387 \n",
+ " \n",
+ " \n",
+ " FTI measured \n",
+ " 3772 \n",
+ " 2 \n",
+ " t \n",
+ " 3387 \n",
+ " \n",
+ " \n",
+ " FTI \n",
+ " 3772 \n",
+ " 235 \n",
+ " ? \n",
+ " 385 \n",
+ " \n",
+ " \n",
+ " TBG measured \n",
+ " 3772 \n",
+ " 1 \n",
+ " f \n",
+ " 3772 \n",
+ " \n",
+ " \n",
+ " TBG \n",
+ " 3772 \n",
+ " 1 \n",
+ " ? \n",
+ " 3772 \n",
+ " \n",
+ " \n",
+ " referral source \n",
+ " 3772 \n",
+ " 5 \n",
+ " other \n",
+ " 2201 \n",
+ " \n",
+ " \n",
+ " binaryClass \n",
+ " 3772 \n",
+ " 2 \n",
+ " P \n",
+ " 3481 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " count unique top freq\n",
+ "age 3772 94 59 95\n",
+ "sex 3772 3 F 2480\n",
+ "on thyroxine 3772 2 f 3308\n",
+ "query on thyroxine 3772 2 f 3722\n",
+ "on antithyroid medication 3772 2 f 3729\n",
+ "sick 3772 2 f 3625\n",
+ "pregnant 3772 2 f 3719\n",
+ "thyroid surgery 3772 2 f 3719\n",
+ "I131 treatment 3772 2 f 3713\n",
+ "query hypothyroid 3772 2 f 3538\n",
+ "query hyperthyroid 3772 2 f 3535\n",
+ "lithium 3772 2 f 3754\n",
+ "goitre 3772 2 f 3738\n",
+ "tumor 3772 2 f 3676\n",
+ "hypopituitary 3772 2 f 3771\n",
+ "psych 3772 2 f 3588\n",
+ "TSH measured 3772 2 t 3403\n",
+ "TSH 3772 288 ? 369\n",
+ "T3 measured 3772 2 t 3003\n",
+ "T3 3772 70 ? 769\n",
+ "TT4 measured 3772 2 t 3541\n",
+ "TT4 3772 242 ? 231\n",
+ "T4U measured 3772 2 t 3385\n",
+ "T4U 3772 147 ? 387\n",
+ "FTI measured 3772 2 t 3387\n",
+ "FTI 3772 235 ? 385\n",
+ "TBG measured 3772 1 f 3772\n",
+ "TBG 3772 1 ? 3772\n",
+ "referral source 3772 5 other 2201\n",
+ "binaryClass 3772 2 P 3481"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe().T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:09.390098Z",
+ "iopub.status.busy": "2021-12-15T11:04:09.389442Z",
+ "iopub.status.idle": "2021-12-15T11:04:09.416714Z",
+ "shell.execute_reply": "2021-12-15T11:04:09.417358Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.125928Z"
+ },
+ "papermill": {
+ "duration": 0.107524,
+ "end_time": "2021-12-15T11:04:09.417517",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:09.309993",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 3772 entries, 0 to 3771\n",
+ "Data columns (total 30 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 age 3772 non-null object\n",
+ " 1 sex 3772 non-null object\n",
+ " 2 on thyroxine 3772 non-null object\n",
+ " 3 query on thyroxine 3772 non-null object\n",
+ " 4 on antithyroid medication 3772 non-null object\n",
+ " 5 sick 3772 non-null object\n",
+ " 6 pregnant 3772 non-null object\n",
+ " 7 thyroid surgery 3772 non-null object\n",
+ " 8 I131 treatment 3772 non-null object\n",
+ " 9 query hypothyroid 3772 non-null object\n",
+ " 10 query hyperthyroid 3772 non-null object\n",
+ " 11 lithium 3772 non-null object\n",
+ " 12 goitre 3772 non-null object\n",
+ " 13 tumor 3772 non-null object\n",
+ " 14 hypopituitary 3772 non-null object\n",
+ " 15 psych 3772 non-null object\n",
+ " 16 TSH measured 3772 non-null object\n",
+ " 17 TSH 3772 non-null object\n",
+ " 18 T3 measured 3772 non-null object\n",
+ " 19 T3 3772 non-null object\n",
+ " 20 TT4 measured 3772 non-null object\n",
+ " 21 TT4 3772 non-null object\n",
+ " 22 T4U measured 3772 non-null object\n",
+ " 23 T4U 3772 non-null object\n",
+ " 24 FTI measured 3772 non-null object\n",
+ " 25 FTI 3772 non-null object\n",
+ " 26 TBG measured 3772 non-null object\n",
+ " 27 TBG 3772 non-null object\n",
+ " 28 referral source 3772 non-null object\n",
+ " 29 binaryClass 3772 non-null object\n",
+ "dtypes: object(30)\n",
+ "memory usage: 884.2+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:09.571312Z",
+ "iopub.status.busy": "2021-12-15T11:04:09.570624Z",
+ "iopub.status.idle": "2021-12-15T11:04:09.605152Z",
+ "shell.execute_reply": "2021-12-15T11:04:09.605746Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.147285Z"
+ },
+ "papermill": {
+ "duration": 0.112923,
+ "end_time": "2021-12-15T11:04:09.605909",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:09.492986",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " TBG \n",
+ " referral source \n",
+ " binaryClass \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 41 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 125 \n",
+ " t \n",
+ " 1.14 \n",
+ " t \n",
+ " 109 \n",
+ " f \n",
+ " ? \n",
+ " SVHC \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 23 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 102 \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46 \n",
+ " M \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 109 \n",
+ " t \n",
+ " 0.91 \n",
+ " t \n",
+ " 120 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 70 \n",
+ " F \n",
+ " t \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 175 \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 70 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 61 \n",
+ " t \n",
+ " 0.87 \n",
+ " t \n",
+ " 70 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 3767 \n",
+ " 30 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3768 \n",
+ " 68 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 124 \n",
+ " t \n",
+ " 1.08 \n",
+ " t \n",
+ " 114 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3769 \n",
+ " 74 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 112 \n",
+ " t \n",
+ " 1.07 \n",
+ " t \n",
+ " 105 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3770 \n",
+ " 72 \n",
+ " M \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 82 \n",
+ " t \n",
+ " 0.94 \n",
+ " t \n",
+ " 87 \n",
+ " f \n",
+ " ? \n",
+ " SVI \n",
+ " P \n",
+ " \n",
+ " \n",
+ " 3771 \n",
+ " 64 \n",
+ " F \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " f \n",
+ " ... \n",
+ " t \n",
+ " 99 \n",
+ " t \n",
+ " 1.07 \n",
+ " t \n",
+ " 92 \n",
+ " f \n",
+ " ? \n",
+ " other \n",
+ " P \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3772 rows × 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine query on thyroxine on antithyroid medication sick \\\n",
+ "0 41 F f f f f \n",
+ "1 23 F f f f f \n",
+ "2 46 M f f f f \n",
+ "3 70 F t f f f \n",
+ "4 70 F f f f f \n",
+ "... .. .. ... ... ... ... \n",
+ "3767 30 F f f f f \n",
+ "3768 68 F f f f f \n",
+ "3769 74 F f f f f \n",
+ "3770 72 M f f f f \n",
+ "3771 64 F f f f f \n",
+ "\n",
+ " pregnant thyroid surgery I131 treatment query hypothyroid ... \\\n",
+ "0 f f f f ... \n",
+ "1 f f f f ... \n",
+ "2 f f f f ... \n",
+ "3 f f f f ... \n",
+ "4 f f f f ... \n",
+ "... ... ... ... ... ... \n",
+ "3767 f f f f ... \n",
+ "3768 f f f f ... \n",
+ "3769 f f f f ... \n",
+ "3770 f f f f ... \n",
+ "3771 f f f f ... \n",
+ "\n",
+ " TT4 measured TT4 T4U measured T4U FTI measured FTI TBG measured TBG \\\n",
+ "0 t 125 t 1.14 t 109 f ? \n",
+ "1 t 102 f ? f ? f ? \n",
+ "2 t 109 t 0.91 t 120 f ? \n",
+ "3 t 175 f ? f ? f ? \n",
+ "4 t 61 t 0.87 t 70 f ? \n",
+ "... ... ... ... ... ... ... ... .. \n",
+ "3767 f ? f ? f ? f ? \n",
+ "3768 t 124 t 1.08 t 114 f ? \n",
+ "3769 t 112 t 1.07 t 105 f ? \n",
+ "3770 t 82 t 0.94 t 87 f ? \n",
+ "3771 t 99 t 1.07 t 92 f ? \n",
+ "\n",
+ " referral source binaryClass \n",
+ "0 SVHC P \n",
+ "1 other P \n",
+ "2 other P \n",
+ "3 other P \n",
+ "4 SVI P \n",
+ "... ... ... \n",
+ "3767 other P \n",
+ "3768 SVI P \n",
+ "3769 other P \n",
+ "3770 SVI P \n",
+ "3771 other P \n",
+ "\n",
+ "[3772 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:09.765075Z",
+ "iopub.status.busy": "2021-12-15T11:04:09.764365Z",
+ "iopub.status.idle": "2021-12-15T11:04:09.772214Z",
+ "shell.execute_reply": "2021-12-15T11:04:09.772731Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.181779Z"
+ },
+ "papermill": {
+ "duration": 0.090303,
+ "end_time": "2021-12-15T11:04:09.772916",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:09.682613",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "P 3481\n",
+ "N 291\n",
+ "Name: binaryClass, dtype: int64"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"binaryClass\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:09.931628Z",
+ "iopub.status.busy": "2021-12-15T11:04:09.931018Z",
+ "iopub.status.idle": "2021-12-15T11:04:09.938524Z",
+ "shell.execute_reply": "2021-12-15T11:04:09.939082Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.193074Z"
+ },
+ "papermill": {
+ "duration": 0.088527,
+ "end_time": "2021-12-15T11:04:09.939233",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:09.850706",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df[\"binaryClass\"]=df[\"binaryClass\"].map({\"P\":0,\"N\":1})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:10.100152Z",
+ "iopub.status.busy": "2021-12-15T11:04:10.099466Z",
+ "iopub.status.idle": "2021-12-15T11:04:10.107525Z",
+ "shell.execute_reply": "2021-12-15T11:04:10.108124Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.207546Z"
+ },
+ "papermill": {
+ "duration": 0.090167,
+ "end_time": "2021-12-15T11:04:10.108267",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:10.018100",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "f 3719\n",
+ "t 53\n",
+ "Name: pregnant, dtype: int64"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"pregnant\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:10.265208Z",
+ "iopub.status.busy": "2021-12-15T11:04:10.264509Z",
+ "iopub.status.idle": "2021-12-15T11:04:10.334445Z",
+ "shell.execute_reply": "2021-12-15T11:04:10.333729Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.226266Z"
+ },
+ "papermill": {
+ "duration": 0.149314,
+ "end_time": "2021-12-15T11:04:10.334572",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:10.185258",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df=df.replace({\"t\":1,\"f\":0})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:10.496573Z",
+ "iopub.status.busy": "2021-12-15T11:04:10.495874Z",
+ "iopub.status.idle": "2021-12-15T11:04:10.532914Z",
+ "shell.execute_reply": "2021-12-15T11:04:10.532197Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.276537Z"
+ },
+ "papermill": {
+ "duration": 0.120859,
+ "end_time": "2021-12-15T11:04:10.533035",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:10.412176",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " TBG \n",
+ " referral source \n",
+ " binaryClass \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 41 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 125 \n",
+ " 1 \n",
+ " 1.14 \n",
+ " 1 \n",
+ " 109 \n",
+ " 0 \n",
+ " ? \n",
+ " SVHC \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 23 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 102 \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " other \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46 \n",
+ " M \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 109 \n",
+ " 1 \n",
+ " 0.91 \n",
+ " 1 \n",
+ " 120 \n",
+ " 0 \n",
+ " ? \n",
+ " other \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 70 \n",
+ " F \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 175 \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " other \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 70 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 61 \n",
+ " 1 \n",
+ " 0.87 \n",
+ " 1 \n",
+ " 70 \n",
+ " 0 \n",
+ " ? \n",
+ " SVI \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 3767 \n",
+ " 30 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " 0 \n",
+ " ? \n",
+ " other \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3768 \n",
+ " 68 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 124 \n",
+ " 1 \n",
+ " 1.08 \n",
+ " 1 \n",
+ " 114 \n",
+ " 0 \n",
+ " ? \n",
+ " SVI \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3769 \n",
+ " 74 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 112 \n",
+ " 1 \n",
+ " 1.07 \n",
+ " 1 \n",
+ " 105 \n",
+ " 0 \n",
+ " ? \n",
+ " other \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3770 \n",
+ " 72 \n",
+ " M \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 82 \n",
+ " 1 \n",
+ " 0.94 \n",
+ " 1 \n",
+ " 87 \n",
+ " 0 \n",
+ " ? \n",
+ " SVI \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3771 \n",
+ " 64 \n",
+ " F \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 99 \n",
+ " 1 \n",
+ " 1.07 \n",
+ " 1 \n",
+ " 92 \n",
+ " 0 \n",
+ " ? \n",
+ " other \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3772 rows × 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine query on thyroxine on antithyroid medication \\\n",
+ "0 41 F 0 0 0 \n",
+ "1 23 F 0 0 0 \n",
+ "2 46 M 0 0 0 \n",
+ "3 70 F 1 0 0 \n",
+ "4 70 F 0 0 0 \n",
+ "... .. .. ... ... ... \n",
+ "3767 30 F 0 0 0 \n",
+ "3768 68 F 0 0 0 \n",
+ "3769 74 F 0 0 0 \n",
+ "3770 72 M 0 0 0 \n",
+ "3771 64 F 0 0 0 \n",
+ "\n",
+ " sick pregnant thyroid surgery I131 treatment query hypothyroid ... \\\n",
+ "0 0 0 0 0 0 ... \n",
+ "1 0 0 0 0 0 ... \n",
+ "2 0 0 0 0 0 ... \n",
+ "3 0 0 0 0 0 ... \n",
+ "4 0 0 0 0 0 ... \n",
+ "... ... ... ... ... ... ... \n",
+ "3767 0 0 0 0 0 ... \n",
+ "3768 0 0 0 0 0 ... \n",
+ "3769 0 0 0 0 0 ... \n",
+ "3770 0 0 0 0 0 ... \n",
+ "3771 0 0 0 0 0 ... \n",
+ "\n",
+ " TT4 measured TT4 T4U measured T4U FTI measured FTI TBG measured \\\n",
+ "0 1 125 1 1.14 1 109 0 \n",
+ "1 1 102 0 ? 0 ? 0 \n",
+ "2 1 109 1 0.91 1 120 0 \n",
+ "3 1 175 0 ? 0 ? 0 \n",
+ "4 1 61 1 0.87 1 70 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "3767 0 ? 0 ? 0 ? 0 \n",
+ "3768 1 124 1 1.08 1 114 0 \n",
+ "3769 1 112 1 1.07 1 105 0 \n",
+ "3770 1 82 1 0.94 1 87 0 \n",
+ "3771 1 99 1 1.07 1 92 0 \n",
+ "\n",
+ " TBG referral source binaryClass \n",
+ "0 ? SVHC 0 \n",
+ "1 ? other 0 \n",
+ "2 ? other 0 \n",
+ "3 ? other 0 \n",
+ "4 ? SVI 0 \n",
+ "... .. ... ... \n",
+ "3767 ? other 0 \n",
+ "3768 ? SVI 0 \n",
+ "3769 ? other 0 \n",
+ "3770 ? SVI 0 \n",
+ "3771 ? other 0 \n",
+ "\n",
+ "[3772 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:10.709065Z",
+ "iopub.status.busy": "2021-12-15T11:04:10.708120Z",
+ "iopub.status.idle": "2021-12-15T11:04:10.710736Z",
+ "shell.execute_reply": "2021-12-15T11:04:10.711359Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.318461Z"
+ },
+ "papermill": {
+ "duration": 0.100227,
+ "end_time": "2021-12-15T11:04:10.711495",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:10.611268",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "#df['target'].isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:10.879046Z",
+ "iopub.status.busy": "2021-12-15T11:04:10.878025Z",
+ "iopub.status.idle": "2021-12-15T11:04:10.885434Z",
+ "shell.execute_reply": "2021-12-15T11:04:10.886010Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.323649Z"
+ },
+ "papermill": {
+ "duration": 0.091853,
+ "end_time": "2021-12-15T11:04:10.886154",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:10.794301",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['sex'].isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:11.062638Z",
+ "iopub.status.busy": "2021-12-15T11:04:11.061965Z",
+ "iopub.status.idle": "2021-12-15T11:04:11.069936Z",
+ "shell.execute_reply": "2021-12-15T11:04:11.070517Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.340748Z"
+ },
+ "papermill": {
+ "duration": 0.095255,
+ "end_time": "2021-12-15T11:04:11.070664",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:10.975409",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "? 3772\n",
+ "Name: TBG, dtype: int64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"TBG\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:11.230160Z",
+ "iopub.status.busy": "2021-12-15T11:04:11.229523Z",
+ "iopub.status.idle": "2021-12-15T11:04:11.234026Z",
+ "shell.execute_reply": "2021-12-15T11:04:11.234617Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.355022Z"
+ },
+ "papermill": {
+ "duration": 0.085829,
+ "end_time": "2021-12-15T11:04:11.234752",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:11.148923",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "del df[\"TBG\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:11.408673Z",
+ "iopub.status.busy": "2021-12-15T11:04:11.408063Z",
+ "iopub.status.idle": "2021-12-15T11:04:11.435219Z",
+ "shell.execute_reply": "2021-12-15T11:04:11.435764Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.367290Z"
+ },
+ "papermill": {
+ "duration": 0.110001,
+ "end_time": "2021-12-15T11:04:11.435948",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:11.325947",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df=df.replace({\"?\":np.NAN})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:11.605681Z",
+ "iopub.status.busy": "2021-12-15T11:04:11.601494Z",
+ "iopub.status.idle": "2021-12-15T11:04:11.611027Z",
+ "shell.execute_reply": "2021-12-15T11:04:11.610345Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.392869Z"
+ },
+ "papermill": {
+ "duration": 0.096996,
+ "end_time": "2021-12-15T11:04:11.611154",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:11.514158",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "age 1\n",
+ "sex 150\n",
+ "on thyroxine 0\n",
+ "query on thyroxine 0\n",
+ "on antithyroid medication 0\n",
+ "sick 0\n",
+ "pregnant 0\n",
+ "thyroid surgery 0\n",
+ "I131 treatment 0\n",
+ "query hypothyroid 0\n",
+ "query hyperthyroid 0\n",
+ "lithium 0\n",
+ "goitre 0\n",
+ "tumor 0\n",
+ "hypopituitary 0\n",
+ "psych 0\n",
+ "TSH measured 0\n",
+ "TSH 369\n",
+ "T3 measured 0\n",
+ "T3 769\n",
+ "TT4 measured 0\n",
+ "TT4 231\n",
+ "T4U measured 0\n",
+ "T4U 387\n",
+ "FTI measured 0\n",
+ "FTI 385\n",
+ "TBG measured 0\n",
+ "referral source 0\n",
+ "binaryClass 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:11.779518Z",
+ "iopub.status.busy": "2021-12-15T11:04:11.778471Z",
+ "iopub.status.idle": "2021-12-15T11:04:11.782799Z",
+ "shell.execute_reply": "2021-12-15T11:04:11.782291Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.404679Z"
+ },
+ "papermill": {
+ "duration": 0.092536,
+ "end_time": "2021-12-15T11:04:11.782962",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:11.690426",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "F 2480\n",
+ "M 1142\n",
+ "Name: sex, dtype: int64"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"sex\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:11.950428Z",
+ "iopub.status.busy": "2021-12-15T11:04:11.949682Z",
+ "iopub.status.idle": "2021-12-15T11:04:11.983932Z",
+ "shell.execute_reply": "2021-12-15T11:04:11.983247Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.416512Z"
+ },
+ "papermill": {
+ "duration": 0.120194,
+ "end_time": "2021-12-15T11:04:11.984047",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:11.863853",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df=df.replace({\"F\":1,\"M\":0})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:12.151675Z",
+ "iopub.status.busy": "2021-12-15T11:04:12.150923Z",
+ "iopub.status.idle": "2021-12-15T11:04:12.154532Z",
+ "shell.execute_reply": "2021-12-15T11:04:12.154023Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.443634Z"
+ },
+ "papermill": {
+ "duration": 0.089992,
+ "end_time": "2021-12-15T11:04:12.154655",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:12.064663",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "other 2201\n",
+ "SVI 1034\n",
+ "SVHC 386\n",
+ "STMW 112\n",
+ "SVHD 39\n",
+ "Name: referral source, dtype: int64"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"referral source\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:12.318460Z",
+ "iopub.status.busy": "2021-12-15T11:04:12.317641Z",
+ "iopub.status.idle": "2021-12-15T11:04:12.321595Z",
+ "shell.execute_reply": "2021-12-15T11:04:12.321072Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.455547Z"
+ },
+ "papermill": {
+ "duration": 0.087762,
+ "end_time": "2021-12-15T11:04:12.321704",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:12.233942",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "del df[\"referral source\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:12.488853Z",
+ "iopub.status.busy": "2021-12-15T11:04:12.488166Z",
+ "iopub.status.idle": "2021-12-15T11:04:12.501537Z",
+ "shell.execute_reply": "2021-12-15T11:04:12.500418Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.467429Z"
+ },
+ "papermill": {
+ "duration": 0.100902,
+ "end_time": "2021-12-15T11:04:12.501714",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:12.400812",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 3772 entries, 0 to 3771\n",
+ "Data columns (total 28 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 age 3771 non-null object \n",
+ " 1 sex 3622 non-null float64\n",
+ " 2 on thyroxine 3772 non-null int64 \n",
+ " 3 query on thyroxine 3772 non-null int64 \n",
+ " 4 on antithyroid medication 3772 non-null int64 \n",
+ " 5 sick 3772 non-null int64 \n",
+ " 6 pregnant 3772 non-null int64 \n",
+ " 7 thyroid surgery 3772 non-null int64 \n",
+ " 8 I131 treatment 3772 non-null int64 \n",
+ " 9 query hypothyroid 3772 non-null int64 \n",
+ " 10 query hyperthyroid 3772 non-null int64 \n",
+ " 11 lithium 3772 non-null int64 \n",
+ " 12 goitre 3772 non-null int64 \n",
+ " 13 tumor 3772 non-null int64 \n",
+ " 14 hypopituitary 3772 non-null int64 \n",
+ " 15 psych 3772 non-null int64 \n",
+ " 16 TSH measured 3772 non-null int64 \n",
+ " 17 TSH 3403 non-null object \n",
+ " 18 T3 measured 3772 non-null int64 \n",
+ " 19 T3 3003 non-null object \n",
+ " 20 TT4 measured 3772 non-null int64 \n",
+ " 21 TT4 3541 non-null object \n",
+ " 22 T4U measured 3772 non-null int64 \n",
+ " 23 T4U 3385 non-null object \n",
+ " 24 FTI measured 3772 non-null int64 \n",
+ " 25 FTI 3387 non-null object \n",
+ " 26 TBG measured 3772 non-null int64 \n",
+ " 27 binaryClass 3772 non-null int64 \n",
+ "dtypes: float64(1), int64(21), object(6)\n",
+ "memory usage: 825.2+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:12.684475Z",
+ "iopub.status.busy": "2021-12-15T11:04:12.683489Z",
+ "iopub.status.idle": "2021-12-15T11:04:12.688237Z",
+ "shell.execute_reply": "2021-12-15T11:04:12.687665Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.493600Z"
+ },
+ "papermill": {
+ "duration": 0.105869,
+ "end_time": "2021-12-15T11:04:12.688352",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:12.582483",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 3003\n",
+ "0 769\n",
+ "Name: T3 measured, dtype: int64"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"T3 measured\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:12.858310Z",
+ "iopub.status.busy": "2021-12-15T11:04:12.857664Z",
+ "iopub.status.idle": "2021-12-15T11:04:12.864509Z",
+ "shell.execute_reply": "2021-12-15T11:04:12.865133Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.502932Z"
+ },
+ "papermill": {
+ "duration": 0.090153,
+ "end_time": "2021-12-15T11:04:12.865272",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:12.775119",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 3541\n",
+ "0 231\n",
+ "Name: TT4 measured, dtype: int64"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"TT4 measured\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:13.034730Z",
+ "iopub.status.busy": "2021-12-15T11:04:13.032985Z",
+ "iopub.status.idle": "2021-12-15T11:04:13.039964Z",
+ "shell.execute_reply": "2021-12-15T11:04:13.040470Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.519226Z"
+ },
+ "papermill": {
+ "duration": 0.09366,
+ "end_time": "2021-12-15T11:04:13.040612",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:12.946952",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 3387\n",
+ "0 385\n",
+ "Name: FTI measured, dtype: int64"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"FTI measured\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:13.210725Z",
+ "iopub.status.busy": "2021-12-15T11:04:13.208979Z",
+ "iopub.status.idle": "2021-12-15T11:04:13.215899Z",
+ "shell.execute_reply": "2021-12-15T11:04:13.216426Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.536778Z"
+ },
+ "papermill": {
+ "duration": 0.093516,
+ "end_time": "2021-12-15T11:04:13.216576",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:13.123060",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 3772\n",
+ "Name: TBG measured, dtype: int64"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"TBG measured\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:13.384959Z",
+ "iopub.status.busy": "2021-12-15T11:04:13.384286Z",
+ "iopub.status.idle": "2021-12-15T11:04:13.391514Z",
+ "shell.execute_reply": "2021-12-15T11:04:13.392175Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.548621Z"
+ },
+ "papermill": {
+ "duration": 0.092711,
+ "end_time": "2021-12-15T11:04:13.392328",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:13.299617",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 3481\n",
+ "1 291\n",
+ "Name: binaryClass, dtype: int64"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"binaryClass\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:13.560966Z",
+ "iopub.status.busy": "2021-12-15T11:04:13.560321Z",
+ "iopub.status.idle": "2021-12-15T11:04:13.567364Z",
+ "shell.execute_reply": "2021-12-15T11:04:13.567976Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.560233Z"
+ },
+ "papermill": {
+ "duration": 0.092834,
+ "end_time": "2021-12-15T11:04:13.568115",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:13.475281",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "age object\n",
+ "sex float64\n",
+ "on thyroxine int64\n",
+ "query on thyroxine int64\n",
+ "on antithyroid medication int64\n",
+ "sick int64\n",
+ "pregnant int64\n",
+ "thyroid surgery int64\n",
+ "I131 treatment int64\n",
+ "query hypothyroid int64\n",
+ "query hyperthyroid int64\n",
+ "lithium int64\n",
+ "goitre int64\n",
+ "tumor int64\n",
+ "hypopituitary int64\n",
+ "psych int64\n",
+ "TSH measured int64\n",
+ "TSH object\n",
+ "T3 measured int64\n",
+ "T3 object\n",
+ "TT4 measured int64\n",
+ "TT4 object\n",
+ "T4U measured int64\n",
+ "T4U object\n",
+ "FTI measured int64\n",
+ "FTI object\n",
+ "TBG measured int64\n",
+ "binaryClass int64\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:13.736271Z",
+ "iopub.status.busy": "2021-12-15T11:04:13.735572Z",
+ "iopub.status.idle": "2021-12-15T11:04:13.768913Z",
+ "shell.execute_reply": "2021-12-15T11:04:13.769521Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.573123Z"
+ },
+ "papermill": {
+ "duration": 0.119874,
+ "end_time": "2021-12-15T11:04:13.769673",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:13.649799",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "age float64\n",
+ "sex float64\n",
+ "on thyroxine int64\n",
+ "query on thyroxine int64\n",
+ "on antithyroid medication int64\n",
+ "sick int64\n",
+ "pregnant int64\n",
+ "thyroid surgery int64\n",
+ "I131 treatment int64\n",
+ "query hypothyroid int64\n",
+ "query hyperthyroid int64\n",
+ "lithium int64\n",
+ "goitre int64\n",
+ "tumor int64\n",
+ "hypopituitary int64\n",
+ "psych int64\n",
+ "TSH measured int64\n",
+ "TSH float64\n",
+ "T3 measured int64\n",
+ "T3 float64\n",
+ "TT4 measured int64\n",
+ "TT4 float64\n",
+ "T4U measured int64\n",
+ "T4U float64\n",
+ "FTI measured int64\n",
+ "FTI float64\n",
+ "TBG measured int64\n",
+ "binaryClass int64\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cols = df.columns[df.dtypes.eq('object')]\n",
+ "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n",
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:13.944955Z",
+ "iopub.status.busy": "2021-12-15T11:04:13.943924Z",
+ "iopub.status.idle": "2021-12-15T11:04:13.951354Z",
+ "shell.execute_reply": "2021-12-15T11:04:13.951906Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.602830Z"
+ },
+ "papermill": {
+ "duration": 0.097242,
+ "end_time": "2021-12-15T11:04:13.952050",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:13.854808",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "age 1\n",
+ "sex 150\n",
+ "on thyroxine 0\n",
+ "query on thyroxine 0\n",
+ "on antithyroid medication 0\n",
+ "sick 0\n",
+ "pregnant 0\n",
+ "thyroid surgery 0\n",
+ "I131 treatment 0\n",
+ "query hypothyroid 0\n",
+ "query hyperthyroid 0\n",
+ "lithium 0\n",
+ "goitre 0\n",
+ "tumor 0\n",
+ "hypopituitary 0\n",
+ "psych 0\n",
+ "TSH measured 0\n",
+ "TSH 369\n",
+ "T3 measured 0\n",
+ "T3 769\n",
+ "TT4 measured 0\n",
+ "TT4 231\n",
+ "T4U measured 0\n",
+ "T4U 387\n",
+ "FTI measured 0\n",
+ "FTI 385\n",
+ "TBG measured 0\n",
+ "binaryClass 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:14.123819Z",
+ "iopub.status.busy": "2021-12-15T11:04:14.123149Z",
+ "iopub.status.idle": "2021-12-15T11:04:14.128438Z",
+ "shell.execute_reply": "2021-12-15T11:04:14.128991Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.617570Z"
+ },
+ "papermill": {
+ "duration": 0.093216,
+ "end_time": "2021-12-15T11:04:14.129154",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:14.035938",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.8974019088016967"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['T4U measured'].mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:14.304382Z",
+ "iopub.status.busy": "2021-12-15T11:04:14.303712Z",
+ "iopub.status.idle": "2021-12-15T11:04:14.308506Z",
+ "shell.execute_reply": "2021-12-15T11:04:14.309081Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.625535Z"
+ },
+ "papermill": {
+ "duration": 0.092422,
+ "end_time": "2021-12-15T11:04:14.309222",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:14.216800",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['T4U measured'].fillna(df['T4U measured'].mean(), inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:14.482122Z",
+ "iopub.status.busy": "2021-12-15T11:04:14.481239Z",
+ "iopub.status.idle": "2021-12-15T11:04:14.485271Z",
+ "shell.execute_reply": "2021-12-15T11:04:14.484607Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.636726Z"
+ },
+ "papermill": {
+ "duration": 0.092283,
+ "end_time": "2021-12-15T11:04:14.485392",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:14.393109",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['sex'].fillna(df['sex'].mean(), inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:14.661600Z",
+ "iopub.status.busy": "2021-12-15T11:04:14.660547Z",
+ "iopub.status.idle": "2021-12-15T11:04:14.663044Z",
+ "shell.execute_reply": "2021-12-15T11:04:14.663514Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.648691Z"
+ },
+ "papermill": {
+ "duration": 0.092181,
+ "end_time": "2021-12-15T11:04:14.663663",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:14.571482",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['age'].fillna(df['age'].mean(), inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:14.839158Z",
+ "iopub.status.busy": "2021-12-15T11:04:14.838398Z",
+ "iopub.status.idle": "2021-12-15T11:04:15.173335Z",
+ "shell.execute_reply": "2021-12-15T11:04:15.173887Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.662786Z"
+ },
+ "papermill": {
+ "duration": 0.424718,
+ "end_time": "2021-12-15T11:04:15.174057",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:14.749339",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.impute import SimpleImputer\n",
+ "\n",
+ "imputer = SimpleImputer(strategy='mean')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:15.350600Z",
+ "iopub.status.busy": "2021-12-15T11:04:15.349874Z",
+ "iopub.status.idle": "2021-12-15T11:04:15.357269Z",
+ "shell.execute_reply": "2021-12-15T11:04:15.357822Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.674589Z"
+ },
+ "papermill": {
+ "duration": 0.097769,
+ "end_time": "2021-12-15T11:04:15.357994",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:15.260225",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['TSH'] = imputer.fit_transform(df[['TSH']])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:15.529171Z",
+ "iopub.status.busy": "2021-12-15T11:04:15.528472Z",
+ "iopub.status.idle": "2021-12-15T11:04:15.537791Z",
+ "shell.execute_reply": "2021-12-15T11:04:15.538476Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.694188Z"
+ },
+ "papermill": {
+ "duration": 0.097053,
+ "end_time": "2021-12-15T11:04:15.538629",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:15.441576",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['T3'] = imputer.fit_transform(df[['T3']])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:15.711820Z",
+ "iopub.status.busy": "2021-12-15T11:04:15.711183Z",
+ "iopub.status.idle": "2021-12-15T11:04:15.719789Z",
+ "shell.execute_reply": "2021-12-15T11:04:15.719272Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.710975Z"
+ },
+ "papermill": {
+ "duration": 0.09744,
+ "end_time": "2021-12-15T11:04:15.719934",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:15.622494",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['TT4'] = imputer.fit_transform(df[['TT4']])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:15.894086Z",
+ "iopub.status.busy": "2021-12-15T11:04:15.893331Z",
+ "iopub.status.idle": "2021-12-15T11:04:15.902015Z",
+ "shell.execute_reply": "2021-12-15T11:04:15.902528Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.722837Z"
+ },
+ "papermill": {
+ "duration": 0.095498,
+ "end_time": "2021-12-15T11:04:15.902669",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:15.807171",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['T4U'] = imputer.fit_transform(df[['T4U']])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:16.073900Z",
+ "iopub.status.busy": "2021-12-15T11:04:16.073224Z",
+ "iopub.status.idle": "2021-12-15T11:04:16.082413Z",
+ "shell.execute_reply": "2021-12-15T11:04:16.083100Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.735967Z"
+ },
+ "papermill": {
+ "duration": 0.096799,
+ "end_time": "2021-12-15T11:04:16.083248",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:15.986449",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df['FTI'] = imputer.fit_transform(df[['FTI']])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:16.258157Z",
+ "iopub.status.busy": "2021-12-15T11:04:16.255381Z",
+ "iopub.status.idle": "2021-12-15T11:04:16.261385Z",
+ "shell.execute_reply": "2021-12-15T11:04:16.261914Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.753148Z"
+ },
+ "papermill": {
+ "duration": 0.095575,
+ "end_time": "2021-12-15T11:04:16.262059",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:16.166484",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "age 0\n",
+ "sex 0\n",
+ "on thyroxine 0\n",
+ "query on thyroxine 0\n",
+ "on antithyroid medication 0\n",
+ "sick 0\n",
+ "pregnant 0\n",
+ "thyroid surgery 0\n",
+ "I131 treatment 0\n",
+ "query hypothyroid 0\n",
+ "query hyperthyroid 0\n",
+ "lithium 0\n",
+ "goitre 0\n",
+ "tumor 0\n",
+ "hypopituitary 0\n",
+ "psych 0\n",
+ "TSH measured 0\n",
+ "TSH 0\n",
+ "T3 measured 0\n",
+ "T3 0\n",
+ "TT4 measured 0\n",
+ "TT4 0\n",
+ "T4U measured 0\n",
+ "T4U 0\n",
+ "FTI measured 0\n",
+ "FTI 0\n",
+ "TBG measured 0\n",
+ "binaryClass 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:16.432642Z",
+ "iopub.status.busy": "2021-12-15T11:04:16.431999Z",
+ "iopub.status.idle": "2021-12-15T11:04:16.471290Z",
+ "shell.execute_reply": "2021-12-15T11:04:16.471942Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.767527Z"
+ },
+ "papermill": {
+ "duration": 0.126464,
+ "end_time": "2021-12-15T11:04:16.472104",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:16.345640",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " T3 measured \n",
+ " T3 \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " binaryClass \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 41.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 2.5000 \n",
+ " 1 \n",
+ " 125.000000 \n",
+ " 1 \n",
+ " 1.140 \n",
+ " 1 \n",
+ " 109.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 23.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 2.0000 \n",
+ " 1 \n",
+ " 102.000000 \n",
+ " 0 \n",
+ " 0.995 \n",
+ " 0 \n",
+ " 110.469649 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 2.0135 \n",
+ " 1 \n",
+ " 109.000000 \n",
+ " 1 \n",
+ " 0.910 \n",
+ " 1 \n",
+ " 120.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 70.0 \n",
+ " 1.0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 1.9000 \n",
+ " 1 \n",
+ " 175.000000 \n",
+ " 0 \n",
+ " 0.995 \n",
+ " 0 \n",
+ " 110.469649 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 70.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 1.2000 \n",
+ " 1 \n",
+ " 61.000000 \n",
+ " 1 \n",
+ " 0.870 \n",
+ " 1 \n",
+ " 70.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 3767 \n",
+ " 30.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 2.0135 \n",
+ " 0 \n",
+ " 108.319345 \n",
+ " 0 \n",
+ " 0.995 \n",
+ " 0 \n",
+ " 110.469649 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3768 \n",
+ " 68.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 2.1000 \n",
+ " 1 \n",
+ " 124.000000 \n",
+ " 1 \n",
+ " 1.080 \n",
+ " 1 \n",
+ " 114.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3769 \n",
+ " 74.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 1.8000 \n",
+ " 1 \n",
+ " 112.000000 \n",
+ " 1 \n",
+ " 1.070 \n",
+ " 1 \n",
+ " 105.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3770 \n",
+ " 72.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 2.0000 \n",
+ " 1 \n",
+ " 82.000000 \n",
+ " 1 \n",
+ " 0.940 \n",
+ " 1 \n",
+ " 87.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3771 \n",
+ " 64.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1 \n",
+ " 2.2000 \n",
+ " 1 \n",
+ " 99.000000 \n",
+ " 1 \n",
+ " 1.070 \n",
+ " 1 \n",
+ " 92.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3772 rows × 28 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine query on thyroxine on antithyroid medication \\\n",
+ "0 41.0 1.0 0 0 0 \n",
+ "1 23.0 1.0 0 0 0 \n",
+ "2 46.0 0.0 0 0 0 \n",
+ "3 70.0 1.0 1 0 0 \n",
+ "4 70.0 1.0 0 0 0 \n",
+ "... ... ... ... ... ... \n",
+ "3767 30.0 1.0 0 0 0 \n",
+ "3768 68.0 1.0 0 0 0 \n",
+ "3769 74.0 1.0 0 0 0 \n",
+ "3770 72.0 0.0 0 0 0 \n",
+ "3771 64.0 1.0 0 0 0 \n",
+ "\n",
+ " sick pregnant thyroid surgery I131 treatment query hypothyroid ... \\\n",
+ "0 0 0 0 0 0 ... \n",
+ "1 0 0 0 0 0 ... \n",
+ "2 0 0 0 0 0 ... \n",
+ "3 0 0 0 0 0 ... \n",
+ "4 0 0 0 0 0 ... \n",
+ "... ... ... ... ... ... ... \n",
+ "3767 0 0 0 0 0 ... \n",
+ "3768 0 0 0 0 0 ... \n",
+ "3769 0 0 0 0 0 ... \n",
+ "3770 0 0 0 0 0 ... \n",
+ "3771 0 0 0 0 0 ... \n",
+ "\n",
+ " T3 measured T3 TT4 measured TT4 T4U measured T4U \\\n",
+ "0 1 2.5000 1 125.000000 1 1.140 \n",
+ "1 1 2.0000 1 102.000000 0 0.995 \n",
+ "2 0 2.0135 1 109.000000 1 0.910 \n",
+ "3 1 1.9000 1 175.000000 0 0.995 \n",
+ "4 1 1.2000 1 61.000000 1 0.870 \n",
+ "... ... ... ... ... ... ... \n",
+ "3767 0 2.0135 0 108.319345 0 0.995 \n",
+ "3768 1 2.1000 1 124.000000 1 1.080 \n",
+ "3769 1 1.8000 1 112.000000 1 1.070 \n",
+ "3770 1 2.0000 1 82.000000 1 0.940 \n",
+ "3771 1 2.2000 1 99.000000 1 1.070 \n",
+ "\n",
+ " FTI measured FTI TBG measured binaryClass \n",
+ "0 1 109.000000 0 0 \n",
+ "1 0 110.469649 0 0 \n",
+ "2 1 120.000000 0 0 \n",
+ "3 0 110.469649 0 0 \n",
+ "4 1 70.000000 0 0 \n",
+ "... ... ... ... ... \n",
+ "3767 0 110.469649 0 0 \n",
+ "3768 1 114.000000 0 0 \n",
+ "3769 1 105.000000 0 0 \n",
+ "3770 1 87.000000 0 0 \n",
+ "3771 1 92.000000 0 0 \n",
+ "\n",
+ "[3772 rows x 28 columns]"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:16.644286Z",
+ "iopub.status.busy": "2021-12-15T11:04:16.643640Z",
+ "iopub.status.idle": "2021-12-15T11:04:16.649390Z",
+ "shell.execute_reply": "2021-12-15T11:04:16.649939Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.807713Z"
+ },
+ "papermill": {
+ "duration": 0.093601,
+ "end_time": "2021-12-15T11:04:16.650086",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:16.556485",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['age', 'sex', 'on thyroxine', 'query on thyroxine',\n",
+ " 'on antithyroid medication', 'sick', 'pregnant', 'thyroid surgery',\n",
+ " 'I131 treatment', 'query hypothyroid', 'query hyperthyroid', 'lithium',\n",
+ " 'goitre', 'tumor', 'hypopituitary', 'psych', 'TSH measured', 'TSH',\n",
+ " 'T3 measured', 'T3', 'TT4 measured', 'TT4', 'T4U measured', 'T4U',\n",
+ " 'FTI measured', 'FTI', 'TBG measured', 'binaryClass'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:16.828139Z",
+ "iopub.status.busy": "2021-12-15T11:04:16.822880Z",
+ "iopub.status.idle": "2021-12-15T11:04:16.832200Z",
+ "shell.execute_reply": "2021-12-15T11:04:16.832776Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.815502Z"
+ },
+ "papermill": {
+ "duration": 0.098301,
+ "end_time": "2021-12-15T11:04:16.832960",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:16.734659",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import seaborn as sns\n",
+ "\n",
+ "%matplotlib inline\n",
+ "sns.set(rc={'figure.figsize': [8, 8]}, font_scale=1.2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:17.008929Z",
+ "iopub.status.busy": "2021-12-15T11:04:17.008257Z",
+ "iopub.status.idle": "2021-12-15T11:04:17.424229Z",
+ "shell.execute_reply": "2021-12-15T11:04:17.424699Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:20.826448Z"
+ },
+ "papermill": {
+ "duration": 0.505848,
+ "end_time": "2021-12-15T11:04:17.424862",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:16.919014",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHqCAYAAAB7pFb5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXAU550v+m/PqzRoJKRhhBeh7D0QhID1yIcyCLGQWxawwVuVmOWQ+HIBG2rtlZFjJyiFb0A2omAtKt46Ab+UjcBl/KKr0lICZKeonPiyqSzXvoAVV6LhOBrAHO1aFrEQM0Iaad56Xu4fo2kYz0gzkkaa7pnvp4pK6H6mu9Wi3N/5PU8/jxAKhUIgIiKirKZK9wUQERFR+jEQEBEREQMBERERMRAQERERGAiIiIgIDAREREQEQJPuC0i3gYERBIMz++alyZQHu314Rs+ZyXg/U4/3NPV4T1OP93RiVCoBhYWzxtyf9YEgGAzNeCCInJdSh/cz9XhPU4/3NPV4T1OHXQZERETEQEBEREQMBERERAQGAiIiIgIDAREREYGBgIiIiMBAQERERGAgICIiIjAQEBERERgIiIiICAwEREREBAYCIiIiAgMBERERgYGAiIiIMIFA0NTUhDVr1qCiogK1tbWw2+1jtu3u7saOHTtgsVhQXV2Ns2fPSvtEUcQvf/lLPProo6ioqEB1dTVee+01+P3+qGP8/ve/x6OPPooHH3wQmzdvhtVqjdrf39+P2tpaVFRUYM2aNThx4kSyPwoRERF9S1KB4MyZMzh+/DgaGhrQ2toKp9OJurq6uG1FUURNTQ1MJhPa2tqwe/duHDhwAJ999hkAwOPx4MaNG6irq8NHH32EhoYG/Ou//iuOHz8uHePmzZv4yU9+gk2bNuHcuXNYvnw5nn76aQwODkpt9uzZA6fTidbWVjQ0NOCtt95Ce3v7VO4FERFR1hJCoVAoUaN/+Id/wCOPPILnn38eANDT04P169fj17/+NcrKyqLa/tu//Rvq6upw6dIlGAwGAMALL7wAj8eD1157Le7x3377bZw/fx7nzp0DABw5cgRffPEFmpubAQChUAjV1dX4x3/8R2zfvh02mw2PPfYYLly4gNLSUgDAq6++in//93+PqkYkw24fRjCY8BaklNlsRH+/c0bPmcl4P1OP9zT1eE9Tj/d0YlQqASZT3tj7Ex3A5/PBZrNh1apV0rbS0lKUlJSgs7Mzpr3VaoXFYpHCAABUVVXFbRsxMDAAo9EYdYz7zycIAlatWiUd4+rVqygpKZHCQOQcNpsNPp8v0Y9ERERE36JJ1GBgYADBYBAmkylqe1FRERwOR0x7h8MRt+1YYw5u3bqF06dP48UXX4w6RlFRUVS7wsJCXLt2DQBgt9vjniMQCODu3bsoLi5O9GNJxktL08lsNiZuJENOlw9ujz/uvtwcDYwG3QxfUZhS76ec8Z6mHu9p6vGepk7CQDBRSfRASAYHB1FTU4N169bhscceS/oYEzlHIuwymJgRrx8dXX1x961YMheeEe8MX5Gy76dc8Z6mHu9p6vGeTsyUuwwKCwuhUqlivuHH+xYPACaTKW7bb3+jHxkZwT/90z9h/vz5+Od//ueYY3y7+jAwMCCdb86cOXHPoVarMXv27EQ/EhEREX1LwkCg0+lQXl6OK1euSNt6enrQ29uLioqKmPYWiwVWqxVut1vadvny5ai2Ho8HzzzzDHJycvDqq69Co9HEHOP+8wHAlStXpGM8+OCD6O3tRU9PT9Q5ysvLodOlp2RNRESkZEm9drht2zacOnUKFy5cgM1mQ319PSorK1FWVgar1YqNGzeiry9cRl67di2Ki4tRX1+PGzduoK2tDefPn8f27dsBhF9LfO655+BwOHDo0CEMDg6iv78f/f390vl+/OMf449//CNOnDiBmzdv4uWXX8bIyAh+8IMfAADKy8uxYsUK1NfXw2az4cKFC3j33XfxxBNPpPr+EBERZYWkxhBs2bIFdrsdBw8ehNPpxOrVq3H48GEAgNvtRnd3N0RRBBCuKDQ1NaGhoQGbN2+G2WzGoUOHsHLlSgBAX18fLl68CAD4u7/7u6jzRAYNLly4EK+//jpeeeUVvPbaaygrK8PJkydRUFAgtT169CgOHDiAxx9/HEajEc888ww2bdo0xdtBRESUnZKahyCTcVDhxEQGFYZCIVz5cx8WzZ8NU0EOgPCgwln6lI9TTUjJ91OueE9Tj/c09XhPJybRoMKZ/683ZYRht4jrPYMQBEEKBEREpFxc3IgmZWgk3EXUf9edoCURESkBAwFNytBIeEbIAacXoj+Y5qshIqKpYiCgSRlyhQNBKATYhzxpvhoiIpoqBgKalKERH/JytQCAO+w2ICJSPA4qpElxukSYZ+dAEID+u6wQEBEpHSsENGGBQBDDbhH5s3Qwz85F/113SteXICKimcdAQBPmdIXfMMg36DBndg48vgBG3PFXQCQiImVglwFNWGRAYf4sHSCEt/H1QyIiZWMgoAmLvHJonKWFRqWCRi2gf5CBgIhIyRgIaMKGRkTk6tXQadQAAFN+Du5wYCERkaJxDAFN2JDLh3zDvWWm58zOhWPIwwmKiIgUjIGAJmxoxAfjrHuBwDw7B8EQ0HObi4wQESkVAwFNiMvjh8cXQL5BK20zz84FAHT/hYGAiEipGAhoQiJvE+TfVyHI1WuQl6vFf/5lKF2XRUREU8RAQBMSLxAAQFG+Hr13RtJxSURElAIMBDQhtwdcAADjfV0GAFBo1KN/wA2vL5COyyIioiliIKAJuT3gRl6uFmpV9D+dQqMeIQBf9w+n58KIiGhKGAhoQm4PuJE/SxuzvciYAwDouc1AQESkRAwElLRQKIT+u+6oOQgiZuVqkKtXMxAQESkUAwElbWjEF37lcFZsIBAEASVz8hgIiIgUioGAknZ79A0DY5wKAQCUmGeh5/YwglwKmYhIcRgIKGnDo8se5+jUcfeXmGfBKwa48iERkQIxEFDShj3hQKDTxv9nUzInDwDQ08duAyIipWEgoKS5PH4AgF4bv0LwwBwDVIKArziOgIhIcRgIKGkjHj8EAFpN/H82Oo0aD5gM+JqBgIhIcRgIKGkuj4jcHA0EQRizTWlxHlc9JCJSIAYCStqIxw+DXjNum9LiPNiHvBh2izN0VURElAoMBJS0EY8IQ87YgUBQCSguDC+F/GXvIEa8/qg//uBMXSkREU3U+F/3iO7jSlAhuP+Vw0v/8xvcHfZG7V+xZC40CSoMRESUHqwQUNJGPH4YcmLXMbhfrl6DHJ0aDqdnhq6KiIhSgYGAkjbiHr/LIKLQqMeA05uwHRERyQcDASUlFArB5fEjN4mSf0GeDkMjPoQ4hTERkWIwEFBSPL4AgqFQUhUCo0EHfyAEjy8wA1dGRESpwEBASYnMUjgrqUAQHmfgdPmm9ZqIiCh1GAgoKSOj6xjk6scfVAgA+aOrITpdnIuAiEgpGAgoKSOjFYJkugxm5WohgIGAiEhJGAgoKa7RCkGimQoBQK0SMCtXyy4DIiIFYSCgpEykQgCExxGwQkBEpBwMBJSUyBiCiQSCIVYIiIgUg4GAkuLy+KESBOi16qTaGw06+MQgvCJfPSQiUoKkA0FTUxPWrFmDiooK1NbWwm63j9m2u7sbO3bsgMViQXV1Nc6ePRu1v7W1FVu3bkVFRQWqq6tjPv+LX/wCixcvjvlz8uRJqU28/UNDQ8n+ODRB4WmLx1/6+H73Xj1ktwERkRIkFQjOnDmD48ePo6GhAa2trXA6nairq4vbVhRF1NTUwGQyoa2tDbt378aBAwfw2WefSW28Xi/WrVuHrVu3xj1GfX09PvnkE+nPiRMnAADr1q2Lavf6669HtTMajUn90DRxLo+IWbmJXzmMMEqvHrLbgIhICZLqEG5ubsauXbuwYcMGAEBjYyPWr1+P69evo6ysLKrtxYsX0dfXh/b2dhgMBpSVlaGjowPNzc1YuXIlAODJJ58EAJw9exYff/xxzPmMRmPUw/2TTz6BxWLBggULotoVFBTAbDZP4MelyRpxi0lNShTBCgERkbIk/C+8z+eDzWbDvn37pG2lpaUoKSlBZ2dnTCCwWq2wWCwwGAzStqqqKhw7dmxSF+j3+3H+/Hk8++yzMfv27t0Lv9+PhQsX4qc//SkefvjhCR/fZMqb1HVNldmsrGqGNxDC7PwcGAx6GPNy4rbRajVR+2blaODxBaRtBoMe5iJD3M9OldLupxLwnqYe72nq8Z6mTsJAMDAwgGAwCJPJFLW9qKgIDocjpr3D4YjbdrwxB+P59NNPMTQ0hEcffTRqe11dHaqqqgAAH374IXbu3Ilz585h0aJFEzq+3T6MYHBmF+Exm43o73fO6Dmnasjphcmoh8vlhXM4/tLGouiP2peXq4VjyCNtc7m86A+kfpChEu+n3PGeph7vaerxnk6MSiWM+yU4+RpwklK9wl17ezu+973voaioKGp7TU2N9P8tFgu+/PJLtLS0oKGhIaXnp7ARz8S6DAAgz6DFrTsj03RFRESUSgkHFRYWFkKlUsV8w3c4HDEPaQAwmUxx2367apCM4eFh/O53v8Njjz2WsO3SpUvR29s74XNQYsHRpY8NOckPKgTCaxq4vQGI/uA0XRkREaVKwkCg0+lQXl6OK1euSNt6enrQ29uLioqKmPYWiwVWqxVut1vadvny5bhtE/nNb34DvV6PRx55JGHbGzduYN68eRM+ByXm8foRQnIrHd4vb3Rg4bCbbxoQEcldUq8dbtu2DadOncKFCxdgs9lQX1+PyspKlJWVwWq1YuPGjejr6wMArF27FsXFxaivr8eNGzfQ1taG8+fPY/v27dLx+vv70dXVhVu3bsHn86GrqwtdXV0x5/3oo4+wceNG6HS6qO2XLl3C6dOn8eWXX+LmzZs4evQoLl26hB/96EdTuRc0holOWxzBVQ+JiJQjqf/Cb9myBXa7HQcPHoTT6cTq1atx+PBhAIDb7UZ3dzdEMfwffZ1Oh6amJjQ0NGDz5s0wm804dOiQ9MohEJ6Y6I033pD+vmnTJgDAtWvXpG23bt1CR0cH9uzZE3M9Wq0WLS0tOHLkCFQqFRYtWoSTJ09i2bJlk7gFlIhrNBDkTbDLIPLq4RADARGR7AmhVI8CVBi+ZZDYF//hwH9v/RP+r//zv2L+XCM6uvritqsoM6Pzen/Utn/9ty/xnbl5qPqbB7BiyVzMSmK1xIlS2v1UAt7T1OM9TT3e04lJ9JYB1zKghCIVglkTrBAAo6seulkhICKSOwYCSmiiKx3ez2jQwjnCQYVERHLHQEAJSRWCCaxlEGE06DDi8SMww90yREQ0MQwElNCIW4RGLUCnmfg/F70uvFyy6OcyyEREcsZAQAmNjE5KlOzSx/eLhAhOTkREJG8MBJSQaxLTFkdo1AwERERKwEBACY14/JN6wwAAtKwQEBEpAgMBJTTiESf1hgFwXyAIMBAQEckZAwEl5PL4J91lwAoBEZEyMBBQQiOTWOkwQssxBEREisBAQOMKBkNwe6deIfAzEBARyRoDAY3L5Z38tMUAoOEYAiIiRWAgoHFNZdpiAFAJAjRqgV0GREQyx0BA45rKwkYRGrWKgYCISOYYCGhckQrBrNzJL1us1TAQEBHJHQMBjWvEHa4QTPYtA2A0EHAMARGRrDEQ0LhckQrBJMcQAOFXD1khICKSNwYCGtdwCsYQsMuAiEj+GAhoXMMuEXqdWppPYDK0GhX87DIgIpI1BgIa17BbhDF38tUBgBUCIiIlYCCgcQ27RcyaYiDga4dERPLHQEDjGnb7UlIhCARDCARDKboqIiJKNQYCGtewW0SeYeqBAAC8Pn8qLomIiKYBAwGNa9gtIm8KbxgA9wKBxxdIxSUREdE0YCCgMfkDQbi9galXCNQMBEREcsdAQGMacYcnJcqb8hgCNQDAy0BARCRbDAQ0puGUBQIBAOAROYaAiEiuGAhoTKkLBKNdBl5WCIiI5IqBgMbkdKUmEGhGxxB4RQYCIiK5YiCgMQ2PLmxkNOimdJzIGAIOKiQiki8GAhrTsFQhmPxKh8D9rx1yDAERkVwxENCYht0i9Fq19A1/stQqASpB4FsGREQyxkBAYxp2i1OuDkRoNSp2GRARyRgDAY0pHAimNn4gQqtRsUJARCRjDAQ0plSsYxDBCgERkbwxENCYhl3ilF85jNCoVZyYiIhIxhgIaEzhLoPUBAIduwyIiGSNgYDiCgSDcHn9qasQsMuAiEjWGAgorhF3uLyfqkDAMQRERPLGQEBxOVO0jkGEVs0uAyIiOUs6EDQ1NWHNmjWoqKhAbW0t7Hb7mG27u7uxY8cOWCwWVFdX4+zZs1H7W1tbsXXrVlRUVKC6ujrm82fPnsXixYuj/tTW1ka16e/vR21tLSoqKrBmzRqcOHEi2R+FkjDs8gFASt8y8IoBBEOhlByPiIhSK6lZZ86cOYPjx4/jlVdewfz589HY2Ii6ujq89957MW1FUURNTQ2WLl2KtrY2dHZ24sCBA5g/fz5WrlwJAPB6vVi3bh0qKirw8ccfxz3nAw88gLa2Nunver0+av+ePXsgCAJaW1vx9ddf44UXXkBxcTE2bdqU9A9PYxse7TIwprDLAAC8vgBy9amZ7IiIiFInqf8yNzc3Y9euXdiwYQMAoLGxEevXr8f169dRVlYW1fbixYvo6+tDe3s7DAYDysrK0NHRgebmZikQPPnkkwDClYCxAoFarYbZbI67z2azoaOjAxcuXEBpaSmWLFmCnTt34v3332cgmCJ/EPCKftidHgCASi1gxHvvdcHgJL/ga9WR9QwYCIiI5Chhl4HP54PNZsOqVaukbaWlpSgpKUFnZ2dMe6vVCovFAoPBIG2rqqqK23Y8t2/fxtq1a7F+/Xq89NJLGBgYkPZdvXoVJSUlKC0tjTqHzWaDz+eb0Hkomlf0o6OrD9e+Ct9v238OoKOrT/rjDwYndVwucEREJG8Jv6oNDAwgGAzCZDJFbS8qKoLD4Yhp73A44rYdb8zBty1YsAC//OUv8d3vfhfffPMNfvWrX6G2thYtLS0QBAF2uz3uOQKBAO7evYvi4uKkz2Uy5SXdNpXMZmNazptIyOGCMS8HoZAAjVpAYYEhar9Wq4ExLyfuZ8fbl58XDmo5Bv20/OxyvZ9Kxnuaerynqcd7mjopr92GUjBo7KGHHsJDDz0EAFi8eDEWLVqE6upqXL16FRaLJSXniLDbhxGcbB18ksxmI/r7nTN6zmS5vH44hz1wurzQadVwDnui9ouiP2ZbUvv84crAX/qGUJiiBZMi5Hw/lYr3NPV4T1OP93RiVCph3C/BCbsMCgsLoVKpYr7hOxwOFBUVxbQ3mUxx2377G/1EzJs3D7Nnz0Zvby8AYM6cOXHPoVarMXv27Emfh+7x+gLI0U1t2eP73T+GgIiI5CdhINDpdCgvL8eVK1ekbT09Pejt7UVFRUVMe4vFAqvVCrfbLW27fPly3LbJun37Nu7evYuSkhIAwIMPPoje3l709PREnaO8vBw6XWpW58t2Hl8Aem0KAwHHEBARyVpS8xBs27YNp06dwoULF2Cz2VBfX4/KykqUlZXBarVi48aN6OvrAwCsXbsWxcXFqK+vx40bN9DW1obz589j+/bt0vH6+/vR1dWFW7duwefzoaurC11dXdL+t99+G59++il6enrw+eef4/nnn8eyZcuwbNkyAEB5eTlWrFiB+vp62Gw2XLhwAe+++y6eeOKJVN6brOYVpycQuL2sEBARyVFSnblbtmyB3W7HwYMH4XQ6sXr1ahw+fBgA4Ha70d3dDVEMz2yn0+nQ1NSEhoYGbN68GWazGYcOHZJeOQTCExO98cYb0t8jrwpeu3YNAOB0OlFfX487d+6gqKgIq1evxs9//nOo1fceUEePHsWBAwfw+OOPw2g04plnnuErhynkFQPQp7LLgBUCIiJZE0KpHKGnQBxUGG3E68eVL75B88fXYVlowkOL5kTtrygzo/N6f9zPjrcvFArh//74Oh5d9df4b//7wpRes5zvp1LxnqYe72nq8Z5OzJQHFVL28fnDZf1UVggEQYBep+GgQiIimWIgoBiRh3ZOCscQAECOTg2Pl10GRERyxEBAMbxi6isEAKDXqlkhICKSKQYCihFZpjiVbxkAQI5ezUGFREQyxUBAMaarQpCjVcPNCgERkSwxEFCM6aoQcFAhEZF8MRBQDK8YgFoVXtwolXJ07DIgIpIrBgKKEZm2WBCmIRBwpkIiIlliIKAYw24Rs1K8IiEQHpPg9vlTulolERGlBgMBxXC6RBgNqV8kSq9VIxQCfP5gyo9NRERTw0BAUXz+AFweP4wGbcqPnaMPVx04sJCISH4YCCiKfdADANNSIYjMfMjZComI5IeBgKLcuRsOBPnTUCGIzGvACgERkfwwEGQJfyCIm7cGcel/fgN/YOw+/P5BNwAgbzoqBFIgYIWAiEhuUj+UnGSl984Imn97Df/rL0MQRwfzaTQqrCgvjtv+zl03dBoV9NrUZ0WdJhwIOKiQiEh+WCHIcJe/+AY3vh7EI/+1BLs3/Q20GhVu9g6O2b7/rgdGgy7lcxAAgFYT/ufmExkIiIjkhhWCDPdV3zDmzTHg/1i3CADw//yhBzdvjR0I7tx1T8sbBgCgG606+PwcQ0BEJDesEGS4r/qc+M5co/T3hfPy8Z/fDMcdR+APBOEY8kxbINBGugxEBgIiIrlhIMhgd4e9GBzx4a/vCwQL5hXAHwii5/ZwTHv7kAfB0PS8cggAukiXAccQEBHJDgNBBvuqzwkA+M7cPGnbgr/KBwD8r1tDMe1vD4TfMDDOmqYKQaTLgBUCIiLZYSDIYP/5TSQQ3KsQFOXrUZCnizuOIBII8qepQqBVc1AhEZFcMRBksK/6hlFcmItc/b2xo4IgYMFf5Y9ZIdBpVdJ8AakmCAJ0GpX0+iMREckHA0EG8geBEa8f//GNEyXmPIx4/dIffxBYWFKA2wNuDLvFqM/dHnBhTkHutLxyGKHTquHlWwZERLLDQJCBvKIfn1hvwT7kARBCR1ef9Mcr+u8bRxDdbXD7rhvm2bnTem06rYpjCIiIZIiBIEMNDHkBAKb8nJh9/9tfGSEI0QMLg8EQ+u+6YZ4d2z6VtBo1uwyIiGSIgSBDOYbCixQV5etj9uXoNCiZk4eb9wWCAacX/kAIcwqmt0Kg16g4qJCISIYYCDKUfcgDQ44GObr4k1EuLMlH960hBEMhAOHxAwAwZ5orBDqtGl52GRARyQ4DQYZyOL0oMsZWByIW/FU+XF4/+hzhINB3N/zK4XSPIdDyLQMiIlliIMhAPjGAoWEfiuKMH4hYUFIAAPh/rX+BPxBE/4AbGrUKs8cJEamg16o5qJCISIa4uFEG6r0zghDijx+I+CuTAcv+SxH+x5Wv0NHVB61GDfPsHKim8ZVDIPyWgZcVAiIi2WGFIAN9PbpOwXgVApUgoO7HFdjz4woU5OnxjcOFB4oM035t4S4DVgiIiOSGFYIM1Ns/DJ1WhVk54/96BUHAgwtM+Jv/UoQbXw+OW1FIFZ1WzbcMiIhkiIEgA90ecKNgli7pGQcFQUBZ6WwA4RkOp5NewzEERERyxC6DDNR/1z1tCxRNlVajgs8fRGj0dUciIpIHBoIM4xUDuDvsg3GWPAOBbnQJZL56SEQkLwwEGebeEsbaNF9JfDpteCVFHwMBEZGsMBBkmMhEQ0aZdhnoNOF/chxHQEQkLwwEGeb26IyD+bLtMmCFgIhIjhgIMkyfwwWjQQutRp6/Wp1mNBCwQkBEJCvyfGrQpPUNuKd9PYKpiAwqZIWAiEheOA9BhukbcGHJXxeOuV9QCePONRCc5rcBOYaAiEiekg4ETU1N+OCDD+B0OvG3f/u3OHz4MEwmU9y23d3dOHDgADo7OzFnzhz85Cc/webNm6X9ra2t+PDDD/HnP/8ZJpMJv/vd76I+/9vf/hbNzc2w2WxQqVRYvnw59u3bh+985ztSm8WLF8ect6OjA/n5+cn+SBnH4/NjcNiHOeNUCLxiAJ3X+8fcX1Fmno5Lk0hjCDhbIRGRrCTVZXDmzBkcP34cDQ0NaG1thdPpRF1dXdy2oiiipqYGJpMJbW1t2L17Nw4cOIDPPvtMauP1erFu3Tps3bo17jE+//xzrFu3Du+//z6am5sBAE8//TREUYxq9/rrr+OTTz6R/hiNxqR+6EwVeeWwWM5dBpEKAdczICKSlaQqBM3Nzdi1axc2bNgAAGhsbMT69etx/fp1lJWVRbW9ePEi+vr60N7eDoPBgLKyMnR0dKC5uRkrV64EADz55JMAgLNnz+Ljjz+OOd/+/fuj/v7yyy+jqqoKN2/eRHl5ubS9oKAAZvP0fqNVkkggMM/OxV/sI2m+mvhYISAikqeEFQKfzwebzYZVq1ZJ20pLS1FSUoLOzs6Y9larFRaLBQbDvZXzqqqq4rZN1sDAAADEdAfs3bsXq1evxo4dO/CHP/xh0sfPFH0D4TkI5D2oMPLaISsERERykrBCMDAwgGAwGDNeoKioCA6HI6a9w+GI29Zut0/6Il999VVUVVVh3rx50ra6ujpUVVUBAD788EPs3LkT586dw6JFiyZ0bJMpb9LXNRVmc+q7NwZdfhQa9SicbYAxL/7Sx1qtZsx9U92f6LMGgx55ozMo6vTalN6D6bif2Y73NPV4T1OP9zR1Uv6WQaoXrTl27Bj+9Kc/4fTp01Hba2pqpP9vsVjw5ZdfoqWlBQ0NDRM6vt0+jOB0D63/FrPZiP5+Z8qP+59/GYS5IAculxfOYU/cNqLoH3PfVPcn+qzL5UXAFx4H4rjrStk9mK77mc14T1OP9zT1eE8nRqUSxv0SnLDLoLCwECqVKuYbvsPhQFFRUUx7k8kUt+1YbySM55133kFraytOnTqFBx54YNy2S5cuRW9v74TPkUn6BtwoLjIkbphGGrUKapXAMQRERDKTMBDodDqUl5fjypUr0raenh709vaioqIipr3FYoHVaoXb7Za2Xb58OW7b8bS0tODNN9/E22+/jYULFyZsf+PGjaguhWzj9voxNOLD3EL5jh+I0GlVHENARCQzSZt3nkIAACAASURBVL12uG3bNpw6dQoXLlyAzWZDfX09KisrUVZWBqvVio0bN6Kvrw8AsHbtWhQXF6O+vh43btxAW1sbzp8/j+3bt0vH6+/vR1dXF27dugWfz4euri50dXVJ+9vb29HY2IjDhw9j7ty56O/vR39/PzyecDn60qVLOH36NL788kvcvHkTR48exaVLl/CjH/0olfdGUSJvGMwtlHeFAAhPX8wKARGRvCQ1hmDLli2w2+04ePAgnE4nVq9ejcOHDwMA3G43uru7pTkCdDodmpqa0NDQgM2bN8NsNuPQoUPSK4dAeGKiN954Q/r7pk2bAADXrl0DEJ73QBRF/OxnP4u6jiNHjmDz5s3QarVoaWnBkSNHoFKpsGjRIpw8eRLLli2bwq1QtsgbBsWsEBAR0SQkPaiwpqYmaiBfRGVlpfQgj1iwYAE++OCDMY/13HPP4bnnnhtz/3ifBYCHH34Y7e3tCa44u/TdVyHwp3hgZ6rpNGqIrBAQEckKFzfKELcdLszO00GvU6f7UhLSaVXwskJARCQrDAQZou+uG8UKGD8AcAwBEZEcMRBkiMFhL4qM+nRfRlK0WhVEVgiIiGSFgSBDOF2iNAug3OlZISAikh0Gggwg+oPw+AIwGnTpvpSk6LQqeEVWCIiI5ISBIAM4XT4AgFEhFQKtRg3RzwoBEZGcMBBkAKcrPAeEMVcZgYDzEBARyQ8DQQYYdo8GAoV0Gei1HENARCQ3DAQZQHldBioEgiH4AwwFRERywUCQAaQuA4VUCHSa8ORJHEdARCQfDAQZwOn2QRAAQ07SM1GnlV4b/mfn45sGRESywUCQAZwuEXm5WqgEId2XkhTtaIXAxwoBEZFsMBBkgGGXqJjuAiD8lgHACgERkZwwEGQAp8unmFcOAUCnZYWAiEhuGAgygNMtKuYNAwDQaVghICKSGwaCDOBUXJcBKwRERHLDQKBwwWAII+7woEKlYIWAiEh+GAgUbtgjIgTlTEoEsEJARCRHynhxnaL4g4BX9AMAbt91AwB0OjVGvOFtwVDaLi0prBAQEckPA4ECeUU/Orr6AADfOFwAgN7+YQRHk0BFmTlt15YMqULA9QyIiGSDXQYK5/WFv2Xn6NRpvpLkSRUCrnhIRCQbDAQK5xkNBHqtcoo9WqnLgBUCIiK5YCBQOK8vPG5Ar6AKgSAI0GlVrBAQEckIA4HCeXwBaDUqqFXKWMcgQqdR8y0DIiIZYSBQOI8voKjxAxE6rYpvGRARyQgDgcJ5RIUGAo2aYwiIiGSEgUDhvL4A9FolBgIVRHYZEBHJBgOBwoW7DJTzhkGETquGl10GRESywUCgYKFQCF6fX1FvGETwLQMiInlhIFAw0R9EMKSsSYkidBo1RI4hICKSDQYCBfMocJbCCJ1WBS/HEBARyQYDgYJF+uAV2WWgUfO1QyIiGWEgUDAlVwi0Wr5lQEQkJwwECiYFAgWtYxChZ4WAiEhWGAgUTInrGESE3zIIIhQKpftSiIgIDASK5vEFoFYJ0uqBShK5ZnYbEBHJg/KeJCTx+gKKrA4A4YmJAHCBIyIimWAgUDClrmMAQJpumeMIiIjkQXmj0UiitJUOBZWAEW943ENwdOzAoMsHvT78z1Cv1UCBvR9ERBmBgUDBvL4ACmbp0n0ZSfOKAXRe7wcAfNXnBAD88Xo/ivJzAAArlsyFRs9/kkRE6cDvYwrm8fkVudIhAKhV4X96/gDfMiAikoOkA0FTUxPWrFmDiooK1NbWwm63j9m2u7sbO3bsgMViQXV1Nc6ePRu1v7W1FVu3bkVFRQWqq6vjHuP3v/89Hn30UTz44IPYvHkzrFZr1P7+/n7U1taioqICa9aswYkTJ5L9UTJCIBiCPxBS7KBCjVoAAASCHFRIRCQHSQWCM2fO4Pjx42hoaEBrayucTifq6urithVFETU1NTCZTGhra8Pu3btx4MABfPbZZ1Ibr9eLdevWYevWrXGPcfPmTfzkJz/Bpk2bcO7cOSxfvhxPP/00BgcHpTZ79uyB0+lEa2srGhoa8NZbb6G9vX0iP7uiiaMrBeoU2umuVrNCQEQkJ0k9TZqbm7Fr1y5s2LABS5YsQWNjIy5fvozr16/HtL148SL6+vrQ2NiIsrIy/OhHP8Lf//3fo7m5WWrz5JNP4qmnnkJZWVnc850+fRoPPfQQampq8N3vfhf19fUwGAz49a9/DQCw2Wzo6OhAY2MjlixZgg0bNmDnzp14//33J3MPFMk3ulKgEucgAO6rEARYISAikoOETxOfzwebzYZVq1ZJ20pLS1FSUoLOzs6Y9larFRaLBQaDQdpWVVUVt+1YrFZr1PkEQcCqVaukY1y9ehUlJSUoLS2NOofNZoPP50v6PEoWmdBHp9gxBOFAwAoBEZE8JBzSPTAwgGAwCJPJFLW9qKgIDocjpr3D4YjbdrwxB/GOUVRUFLWtsLAQ165dAwDY7fa45wgEArh79y6Ki4uTPpfJlJd021Qym42T/mzI4YJaEw4CBcYcGPNyovZrtZqYbcnsm+r+iXw2cv0ajVraZjDoYS4yjPn58UzlflJ8vKepx3uaerynqZPyd7xSMTd9omOkcv57u30YweDMfks1m43o73dO+vMurx+DTg8AwC/64Rz2RO0X42xLZt9U90/ks5EKx4jbJ21zubzoD0x8oqKp3k+KxXuaerynqcd7OjEqlTDul+CEXQaFhYVQqVQx3/DjfYsHAJPJFLftt7/Rj8dkMsVUHwYGBqTzzZkzJ+451Go1Zs+enfR5lCzyQFXqGAK1OtJlwDEERERykPBpotPpUF5ejitXrkjbenp60Nvbi4qKipj2FosFVqsVbrdb2nb58uW4bcdisViizgcAV65ckY7x4IMPore3Fz09PVHnKC8vh06nnIl6psInvWWgzDEEKkGAWiUwEBARyURSXy+3bduGU6dO4cKFC7DZbKivr0dlZSXKyspgtVqxceNG9PX1AQDWrl2L4uJi1NfX48aNG2hra8P58+exfft26Xj9/f3o6urCrVu34PP50NXVha6uLmn/j3/8Y/zxj3/EiRMncPPmTbz88ssYGRnBD37wAwBAeXk5VqxYgfr6ethsNly4cAHvvvsunnjiiVTeG1lTeoUAADRqFQcVEhHJRFJjCLZs2QK73Y6DBw/C6XRi9erVOHz4MADA7Xaju7sboigCCFcUmpqa0NDQgM2bN8NsNuPQoUNYuXKldLzW1la88cYb0t83bdoEANKgwYULF+L111/HK6+8gtdeew1lZWU4efIkCgoKpM8cPXoUBw4cwOOPPw6j0YhnnnlGOk428IlBaNQCVKOj9ZVIoxbg52qHRESykPSgwpqaGtTU1MRsr6yslB7kEQsWLMAHH3ww5rGee+45PPfcc+Oe75FHHsEjjzwy5n6z2Yy33norwVVnLtEfhFah3QUR4QoBAwERkRwot96c5Xz+gGJnKYzQqAV2GRARyYSynyhZLFwhUPavjxUCIiL5UPYTJYv5/EHotMr+9TEQEBHJh7KfKFlMFAMZMIaAXQZERHLBQKBQPn8wA8YQsEJARCQXyn6iZLGMGEOg4TwERERyoewnSpbyB4IIBEOKXekwItxlwAoBEZEcMBAokNvrB6DsWQqBcJdBIBhCMIWLVRER0eQo+4mSpTy+yDoGyv71qdXh6w+w24CIKO2U/UTJUplTIeCKh0REcqHsJ0qWigQCpa50GKEdrRAwEBARpR8DgQJFugy0GTAxEQC+aUBEJAPKfqJkqXsVAmX/+thlQEQkH8p+omQpj3e0QqDwLgMNuwyIiGSDgUCB3L5MqRCwy4CISC6U/UTJUm6vHxq1AJVKSPelTInUZeBnhYCIKN0YCBTI4wso/pVDgF0GRERyovynShZye/2Kf+UQYJcBEZGcMBAokMfrz5AKAd8yICKSC+U/VbKQO0O6DFQqAQIYCIiI5ED5T5Us5Pb6Fb/SIQAIggCNmksgExHJAQOBAnm8mVEhAACNhksgExHJQWY8VbKM2+dX/BwEEeEKAQMBEVG6ZcZTJYv4A0GI/mBGdBkAYJcBEZFMMBAojCtDlj6O0KjZZUBEJAeZ8VTJIpmysFEEuwyIiOQhM54qWcSdcRUCdhkQEclBZjxVsojbE6kQZMYYAjW7DIiIZIGBQGFckaWPtZnxq2OXARGRPGTGUyWLZNoYAi27DIiIZCEznipZ5N4YgszoMoi8ZRAKMRQQEaUTA4HCZFqFQKNWIRQCggwERERplRlPlSzi8oZnKVSphHRfSkpISyD7GQiIiNKJgUBh3F4/cvSadF9GynAJZCIieWAgUBi3149cfWaMHwDuqxAwEBARpRUDgcK4vX7k6jKoQqCJBAJ2GRARpRMDgcK4vIGM6jJQq9hlQEQkBwwEChOuEGROl4FWzQoBEZEcMBAoTMYNKtSwQkBEJAcMBAoTHlSYQYGAgwqJiGSBgUBB/IEgfP5gRnUZMBAQEclD0oGgqakJa9asQUVFBWpra2G328ds293djR07dsBisaC6uhpnz56N2u/3+3HkyBFUVlZi+fLl2LdvH1wul7T/F7/4BRYvXhzz5+TJk1KbePuHhoYm8rMrTmSWwozqMuAYAiIiWUgqEJw5cwbHjx9HQ0MDWltb4XQ6UVdXF7etKIqoqamByWRCW1sbdu/ejQMHDuCzzz6T2rz55ps4f/48jh07hnfffRdWqxWHDx+W9tfX1+OTTz6R/pw4cQIAsG7duqhzvf7661HtjEbjhG+AkkQCQSZVCNScmIiISBaS+qrZ3NyMXbt2YcOGDQCAxsZGrF+/HtevX0dZWVlU24sXL6Kvrw/t7e0wGAwoKytDR0cHmpubsXLlSgSDQbS0tGDv3r2oqqoCALz44ot46qmnsG/fPuTn58NoNEY93D/55BNYLBYsWLAg6lwFBQUwm81TugFK4h5d+jhHr4FPDKT5alJDJQhQqwQGAiKiNEtYIfD5fLDZbFi1apW0rbS0FCUlJejs7Ixpb7VaYbFYYDAYpG1VVVVS256eHgwMDEQdb+XKlQiFQvjiiy9ijuf3+3H+/Hls2rQpZt/evXuxevVq7NixA3/4wx8S/SiK5/GNdhlkUIUACHcbsMuAiCi9ElYIBgYGEAwGYTKZorYXFRXB4XDEtHc4HHHbRsYcRP73/jZqtRoFBQVxxyV8+umnGBoawqOPPhq1va6uTqowfPjhh9i5cyfOnTuHRYsWJfqRophMeRNqnypm88S7N7pvjwAAZufnIiSMneW0Wg2MeTkT3jfV/ZP9rFajgiAIMBj0MBcZ4nwyscncTxof72nq8Z6mHu9p6qR8dFqide0nuu59e3s7vve976GoqChqe01NjfT/LRYLvvzyS7S0tKChoWFCx7fbhxEMzuy3U7PZiP5+54Q/1xf5TDAI57BnzHai6B9z/3j7prp/sp9VqwS4vX64XF70BybeFTLZ+0lj4z1NPd7T1OM9nRiVShj3S3DCLoPCwkKoVKqYb+8OhyPmIQ2Ev/nHaxupCMyZMwcAotoEAgEMDg7GVBaGh4fxu9/9Do899liiy8TSpUvR29ubsJ2SuX2jYwgyrsuAYwiIiNItYSDQ6XQoLy/HlStXpG09PT3o7e1FRUVFTHuLxQKr1Qq32y1tu3z5stS2tLQUhYWFUcfr6OiAIAhYunRp1LF+85vfQK/X45FHHkn4g9y4cQPz5s1L2E7J7o0hyJzXDoHRMQR+BgIionRK6smybds2NDY2YsmSJZg/fz4aGxtRWVmJsrIyWK1WvPDCC3jvvfcwd+5crF27FsXFxaivr8fu3bvR2dmJ8+fP45133gEAqFQqbN26FUePHsW8efNgMBjw8ssv44c//CEKCgqizvvRRx9h48aN0Ol0UdsvXbqEnp4eLF++HIIg4KOPPsKlS5dw+vTpFN0WeXJ7AxAA6LSZNZ+URq2Cx5cZb00QESlVUoFgy5YtsNvtOHjwIJxOJ1avXi3NG+B2u9Hd3Q1RFAGEKwpNTU1oaGjA5s2bYTabcejQIaxcuVI63rPPPouRkRE8//zzEEUR3//+9/HSSy9FnfPWrVvo6OjAnj17Yq5Hq9WipaUFR44cgUqlwqJFi3Dy5EksW7Zs0jdCCTw+P3L0agiCkO5LSSl2GRARpV/SteeampqogXwRlZWVuHbtWtS2BQsW4IMPPhj7pBoN9u/fj/3794/ZZt68ebDZbHH3Pfzww2hvb0/yyjOHxxvIuO4CIPLaIQMBEVE6ZVbtOcN5fP6MG1AIABoN5yEgIko3BgIFcfsytULALgMionRjIFCQjK0QqFUIBEMITnCOCiIiSh0GAgXxeAPIzaCVDiPUoyseiiKrBERE6cJAoCCZWyEIvzXhzZAFm4iIlIiBQEE8vgByM3AMgXa0QpApKzgSESkRA4FChEIhuL0B5OgzsUIwGgg4WyERUdowECiE6A8iGAqxy4CIiKYFA4FC3FvYKPO6DDTsMiAiSjsGAoWILGyUm8ldBnzLgIgobRgIFMLjzeQKQbjLwOdnhYCIKF0YCBRCqhBk5BgCdhkQEaUbA4FCuCMVggyemMjLLgMiorRhIFCISIUgE98y0Ea6DFghICJKGwYChcjktwxUKgECGAiIiNKJgUAhMrlCIAgCNGoVuwyIiNKIgUAh3N4ABAD6DAwEAKDRCKwQEBGlEQOBQnh8fuh1aqgEId2XMi00ahU8DARERGnDQKAQHl9mLn0codOo4PUxEBARpQsDgUJ4vJm59HGEVqOWxkkQEdHMYyBQCI8vkJFvGERoNSp4WCEgIkobBgKFcPsyvUKgkqZnJiKimcdAoBCZPoYgXCFglwERUbowEChE5o8hCHcZhEKhdF8KEVFWYiBQCI8vgNwMH0MQCIYg+jk5ERFROjAQKEAoFILbG0COPrMrBMC9KZqJiGhmMRAogOgPIhgKZXSXgU4T/tk8Xo4jICJKBwYCBcjkhY0i7lUIGAiIiNKBgUABMnlhowgpEPDVQyKitGAgUIDI+/mZ/tohwC4DIqJ0YSBQgGyoEOjYZUBElFYMBAoQGUOQDRUCdhkQEaUHA4ECRMromVwhuBcIWCEgIkoHBgIF8GTBWwZqlQoatcAuAyKiNGEgUAB3FowhAMKBhwscERGlBwOBAni8AQgA9BkfCNSsEBARpQkDgQK4fX7odWqoBCHdlzKtcvSsEBARpQsDgQJ4fIGM7y4ARisEHFRIRJQWDAQK4PH6M/qVwwh2GRARpQ8DgQJkT4VAwwoBEVGaMBAogNvnz+hXDiPCXQYcQ0BElA5JB4KmpiasWbMGFRUVqK2thd1uH7Ntd3c3duzYAYvFgurqapw9ezZqv9/vx5EjR1BZWYnly5dj3759cLlc0v6zZ89i8eLFUX9qa2ujjtHf34/a2lpUVFRgzZo1OHHiRLI/iuJkU4XAwy4DIqK0SOpr55kzZ3D8+HG88sormD9/PhobG1FXV4f33nsvpq0oiqipqcHSpUvR1taGzs5OHDhwAPPnz8fKlSsBAG+++SbOnz+PY8eOYdasWdi3bx8OHz6MI0eOSMd54IEH0NbWJv1dr9dHnWfPnj0QBAGtra34+uuv8cILL6C4uBibNm2a1I2QM483kBVjCHL1avgDIYj+oDRzIRERzYyknjLNzc3YtWsXNmzYAABobGzE+vXrcf36dZSVlUW1vXjxIvr6+tDe3g6DwYCysjJ0dHSgubkZK1euRDAYREtLC/bu3YuqqioAwIsvvoinnnoK+/btQ35+PgBArVbDbDbHvR6bzYaOjg5cuHABpaWlWLJkCXbu3In3338/MwOBz581FQIg3EWi1ejSfDVERNkl4dcwn88Hm82GVatWSdtKS0tRUlKCzs7OmPZWqxUWiwUGg0HaVlVVJbXt6enBwMBA1PFWrlyJUCiEL774Qtp2+/ZtrF27FuvXr8dLL72EgYEBad/Vq1dRUlKC0tLSqHPYbDb4fL5kf3ZFCIVC8Piyo0IQCT1cApmIaOYlfMoMDAwgGAzCZDJFbS8qKoLD4Yhp73A44raNjDmI/O/9bdRqNQoKCqR9CxYswC9/+Ut897vfxTfffINf/epXqK2tRUtLCwRBgN1uj3uOQCCAu3fvori4OJmfffQ68pJum0pmszGpdl4xgEAwBFOhQfpMyOGCMS9nzM9otZox94+3b6r7p3rsyLRLOQZ90vcnYqLtKTHe09TjPU093tPUSfnXzlAoNKX9APDQQw/hoYceAgAsXrwYixYtQnV1Na5evQqLxZLUMZJltw8jGEzd8ZJhNhvR3+9Mqu3QSLjiERAD0mdcXj+cw54xPyOKY+8fb99U90/12AV54XEif+kbQr4++S6SidxPSg7vaerxnqYe7+nEqFTCuF+CE3YZFBYWQqVSxbxV4HA4UFRUFNPeZDLFbRv5Rj9nzhwAiGoTCAQwODgY860/Yt68eZg9ezZ6e3ulY8Q7h1qtxuzZsxP9SIqSLQsbAfd+Rhe7DIiIZlzCQKDT6VBeXo4rV65I23p6etDb24uKioqY9haLBVarFW63W9p2+fJlqW1paSkKCwujjtfR0QFBELB06dK413D79m3cvXsXJSUlAIAHH3wQvb296OnpiTpHeXk5dLrMGowWmds/O8YQhH9GrmdARDTzknq3a9u2bTh16hQuXLgAm82G+vp6VFZWoqysDFarFRs3bkRfXx8AYO3atSguLkZ9fT1u3LiBtrY2nD9/Htu3bw+fUKXC1q1bcfToUVy+fBlWqxUvv/wyfvjDH6KgoAAA8Pbbb+PTTz9FT08PPv/8czz//PNYtmwZli1bBgAoLy/HihUrUF9fD5vNhgsXLuDdd9/FE088MR33KK08WVgh4PTFREQzL6mvnVu2bIHdbsfBgwfhdDqxevVqHD58GADgdrvR3d0NURQBhCsKTU1NaGhowObNm2E2m3Ho0CFpDgIAePbZZzEyMoLnn38eoiji+9//Pl566SVpv9PpRH19Pe7cuYOioiKsXr0aP//5z6FW33soHj16FAcOHMDjjz8Oo9GIZ555JiNfOXT7wt+Ws2GmwkgVhNMXExHNvKSfMjU1NaipqYnZXllZiWvXrkVtW7BgAT744IOxT6rRYP/+/di/f3/c/Xv27MGePXvGvR6z2Yy33noriStXtsgreLkTGGSnVBq1ALVKgMfHLgMiopnG6eBkLpsqBIIgIFfPBY6IiNKBgUDmIg9HQ07mBwKACxwREaULA4HMjXhEqFUCdFkyt3+ungscERGlQ3Z87VQYfxDwiuGH4tCIiFy9Bq77+tVneB6lGZWrU7PLgIgoDRgIZMgr+tHRFX6Ns7d/GIIA6e8AUFEWf9GnTJCj12BwOLPWoyAiUoLsqEMrmM8fgF6b+W8YROTqNZyHgIgoDRgIZM4nBqHNkvEDwOgYAnYZEBHNuOx50iiUzx+ELpsqBDq19KolERHNHAYCmfOJgax5wwAIjyEQ/UH4A8F0XwoRUVbJnieNQmVjhQAAZyskIpphDAQy5g8EEQyGsqpCEFnPgEsgExHNrOx50iiQTwyXzXXa7Pk13VsCmYGAiGgmZc+TRoF8/nDZPKu6DEYXceLkREREM4uBQMbESIVAk02BYHQJZI4hICKaUQwEMnavQpA9v6ZIIGCXARHRzMqeJ40CSWMIsmlQ4ehbBqwQEBHNrOx50ihQNo4hyGGFgIgoLRgIZCwbKwQ6jQoqQeB6BkREMyx7njQK5PMHoFYJUKuz59ckCAJy9Wq4PewyICKaSdnzpFEgnxjMqgGFETk6rnhIRDTTsu9poyA+fzCrXjmMyNWrOQ8BEdEMYyCQMZ8YyKqljyNy9BquZUBENMOy72mjINm2sFFErk7DtQyIiGYYA4GMZdvSxxGzcjRwecR0XwYRUVbJvqeNgohZWiHIM2jhdDEQEBHNJE26L4DiC4VC8IqBrHrLQFAJGPH6kaMLjyG4O+KTxlDotRpkYbGEiGjGMBDIlD8QQiiUXZMSecUAOq/3486gGwDw6dVbmJWjBQCsWDIXGj3/uRIRTZfsedoojJiF0xZH5IyuZ8A3DYiIZg4DgUxl47TFEfrRQOBlICAimjHZ97RRiGxc2CgiRzu6wBEDARHRjGEgkKlsrhDc6zLgXARERDMl+542CuHzjwaCLKwQ6LQqCAK7DIiIZhIDgUz5xEiXQfb9igRBgF6rZpcBEdEMyr6njUJEKgTaLFzcCAh3GzAQEBHNHAYCmfKJAWjUAtQqId2XkhY5Og28IgMBEdFMYSCQKZ8/mLXVASD86iErBEREM4eBQKZ8WTZt8beFuwz4lgER0UzJ3ieOzPn8QeiyuUKgVcMnBhEMhtJ9KUREWYGBQKZEVggAgOMIiIhmSPY+cWQuXCHI3l8P1zMgIppZ2fvEkbnw0sfZ22WQowtPX8zJiYiIZkbSgaCpqQlr1qxBRUUFamtrYbfbx2zb3d2NHTt2wGKxoLq6GmfPno3a7/f7ceTIEVRWVmL58uXYt28fXC6XtP+3v/0tduzYgRUrVqCyshK7d+/GV199FXWMxYsXx/wZGhpK9seRtVAoBFHM7gqBntMXExHNqKSeOGfOnMHx48fR0NCA1tZWOJ1O1NXVxW0riiJqampgMpnQ1taG3bt348CBA/jss8+kNm+++SbOnz+PY8eO4d1334XVasXhw4el/Z9//jnWrVuH999/H83NzQCAp59+GqIoRp3r9ddfxyeffCL9MRqNE74BcuQVAwghO6ctjmCXARHRzNIk06i5uRm7du3Chg0bAACNjY1Yv349rl+/jrKysqi2Fy9eRF9fH9rb22EwGFBWVoaOjg40Nzdj5cqVCAaDaGlpwd69e1FVVQUAePHFF/HUU09h3759yM/Px/79+6OO+fLLL6Oqqgo3b95EeXm5tL2goABms3lKN0CO3N7wt+KsrhBoGQiIiGZSwkDg8/lgs9mwb98+aVtpaSlKSkrQ2dkZEwisVisshf2LaAAAFiJJREFUFgsMBoO0raqqCseOHQMA9PT0YGBgAKtWrZL2r1y5EqFQCF988YUUEu43MDAAAMjPz4/avnfvXvj9fixcuBA//elP8fDDDyfzM0cxmfIm/JlUMJvHrmb02MPdJwXGHBjzcmL2a7WauNuT2T+Vz870sfU6NYIAjHk5MBj0MBcZxvzsePeTJof3NPV4T1OP9zR1EgaCgYEBBINBmEymqO1FRUVwOBwx7R0OR9y2kTEHkf+9v41arUZBQcGY4xJeffVVVFVVYd68edK2uro6KTx8+OGH2LlzJ86dO4dFixYl+pGi2O3DM/6uu9lsRH+/c8z9jrtuAEAgEIBz2BOzXxT9cbcns38qn53pY+u1ajhHfHAOe+ByedEfiF8tSHQ/aeJ4T1OP9zT1eE8nRqUSxv0SnFSXwUSEQuM/XBPt/7Zjx47hT3/6E06fPh21vaamRvr/FosFX375JVpaWtDQ0DCh48vRvS6D7B1DAHC2QiKimZSwk7qwsBAqlSrm27vD4UBRUVFMe5PJFLdtpCIwZ84cAIhqEwgEMDg4GFNZeOedd9Da2opTp07hgQceGPc6ly5dit7e3kQ/jiK4IoEgiycmAsKBgK8dEhHNjIRPHJ1Oh/Lycly5ckXa1tPTg97eXlRUVMS0t1gssFqtcLvd0rbLly9LbUtLS1FYWBh1vI6ODgiCgKVLl0rbWlpa8Oabb+Ltt9/GwoULE/4gN27ciOpSULJIhSCbFzcCwl0GHFRIRDQzkuoy2LZtGxobG7FkyRLMnz8fjY2NqKysRFlZGaxWK1544QW89957mDt3LtauXYvi4mLU19dj9+7d6OzsxPnz5/HOO+8AAFQqFbZu3YqjR49i3rx5MBgMePnll/HDH/4QBQUFAID29nY0NjbiX/7lXzB37lz09/cDAIxGI3JycnDp0iX09PRg+fLlEAQBH330ES5duhTTraBUfMsgLEenDr+COcFuJiIimrikAsGWLVtgt9tx8OBBOJ1OrF69Wpo3wO12o7u7W5ojQKfToampCQ0NDdi8eTPMZjMOHTqElStXSsd79tlnMTIygueffx6iKOL73/8+XnrpJWn/mTNnIIoifvazn0Vdx5EjR7B582ZotVq0tLTgyJEjUKlUWLRoEU6ePIlly5ZN+YbIgdvrh1atgkolpPtS0ipHp0EoBPjEYLovhYgo4yU9qLCmpiZqIF9EZWUlrl27FrVtwYIF+OCDD8Y+qUaD/fv3x8w3EDHeZwHg4YcfRnt7exJXrUxDIz5ppr5spufkREREMya7a9Iy5RjyIi9Xm+7LSDtptkKRbxoQEU03BgIZsg95GAhwr0LANw2IiKYfA4HMiP4ghkZ8mJWb8ikiFIfrGRARzRwGAplxDIVn6mOFgIGAiGgmMRDIzB0GAolapYJWrWKXARHRDGAgkBn7YDgQzGIgABAeR8Dpi4mIph8DgczcGXRDJQAGPccQAJH1DFghICKabgwEMmMf9GC2UZ/1kxJFMBAQEc0MBgKZuTPoQVF+TrovQzb0o9MXExHR9GIgkBkGgmg5Og08Pq5nQEQ03RgIZMQfCOLusBdFRn26L0U2DHoNgsEQht1iui+FiCijMRDIiMPpRSgEmApYIYjIn6UDAPQPuBO0JCKiqWAgkJHIK4fsMrgnf1b49cvbdxkIiIimEwOBjNwZDD/02GVwz6xcLVQCcJsVAiKiacVAICP2QQ8EAZjNQCBRCQKMBh0DARHRNGMgkBH7oAez8/TQqPlruZ9xlg63B1zpvgwioozGJ4+M3Bn0YA4HFMbIN2jRf9eNIF89JCKaNgwEMmIfYiCIJ3+WDv5ASFoJkoiIUo+BQCYCwSAcQ16+chhH5NXDPgfHERARTRcGApkYcHoRDIUwpyA33ZciO/mGcCD4xsFxBERE04WBQCYicxCYOAdBjFy9GnqtGn0MBERE04aBQCbujAYCjiGIJQgCigtz8Q3fNCAimjYMBDLBWQrHZy7MZYWAiGgaMRDIxJ0hDwrydNBq+CuJp3h2Lu4MeiD6g+m+FCKijMSnj0zcuetmd8E4igtzEQoB/VzTgIhoWjAQyMCwW8SNrwexcF5Bui9FtooLDQDAbgMiomnCQCADV/7ch0AwhNV/80C6L0W2zLPDr2NyYCER0fRgIJCBT6/+BaXFefjOXGO6L0W2DDka5Bu0nJyIiGiaMBCkWe+dEfzHN078LasDCRUXGdhlQEQ0TRgI0uz/u/oXqAQBlcsYCBJ5oNDALgMiomnCQJBGwWAIl774Bg8uKELB6Hz9NLa5RbkYHPbB7fWn+1KIiDIOA0EaOF3/f3t3HhR13ccB/L27HIIYp/aYbubxrCByiHGJ92Rqlmc1pSDWaJjSlDZerWEJmmOjeZVAM0WFxnixY+pMJqOdovSIrIlr4sUCigQLcQns8n3+MH4P+3hx7iK8XzM7zu/3/e739/19cGY/v/NTi8oaI85cKkJpRS2e9uqFyhqj9Klnld97+pdbdwBAflGllWdCRNT52Fh7Al1R9W0jMi4U4qesAtjZynG79s5yAz9VTyvOruMa/KQLFHIZzvxZhEF9+YgmEVFb4hkCK/mrrBq5NyvQv/djUMj5Z2gKJwdbePd3Q4auEELwNAoRUVviL5EVlFXU4MSZAjjYK+A3yN3a03mkBHn1QvHfNbhc8Le1p0JE1KkwIbAwo6keOw9oUVNnwriAPuhmx6s2zTHs3z1ho5DjdHbhwzsTEVGTMSGwsG/TLuGSvhQjhv6LlQ1bwMHeBr4D3ZFx8RbqefclEVGbYUJgQT9lFeD4mXxMDOmH/k88Zu3pPLKCvHqhrKIWl/JKrT0VIqJOgwmBhVzOL0Py0YvwfsoVs8YNsvZ0Hml+Az1gZyvH6Qu3rD0VIqJOgwmBBZRW1ODT1HNwcbJH1LShfKqgleztFPAf5IHfL96Cqb7e2tMhIuoU+MvUzuqM9fgs9Q9U1Rjx1ixfODnYWntKnUKg5+Mor6rDfy4WWXsqRESdQpMTgoSEBIwcORJ+fn5YtGgRiouL79v36tWriIiIgK+vL8aPH48DBw6YtRuNRnz00UcIDg5GQEAAVq1ahaoq83fUnzhxApMnT4aPjw9mzpwJrVZr1l5UVIRFixbBz88PI0eORGJiYlN3xWJuFFdiffJ/kJNfhtef84Kyl5O1p/TIksllZm9zHNjXGU94dEfid9k4cDwHRp4oICJqlSYlBPv370d8fDzWrFmDlJQUlJeXY+nSpffsW1dXh6ioKLi7u2Pfvn148803ERMTg9OnT0t9PvvsMxw+fBhbtmxBUlIStFotYmNjpfbLly8jOjoa06dPR2pqKgICArBgwQKUlZVJfZYsWYLy8nKkpKRgzZo12LlzJzQaTUvj0KaEEDh+Jg8ffpmBv0qrsXjGUAR5PW7taT3SaupMyLhQKH3OXirCaL/eeNzVAV8eOo8DP+bwZUVERK3QpIfgk5OT8dprr2HChAkAgPXr1+OZZ57Bn3/+CZVKZdb3p59+QmFhITQaDRwdHaFSqZCRkYHk5GQEBQWhvr4eu3fvxrJlyxAaGgoAWL16NebPn49Vq1bhsccew549e+Dv74+oqCgAgFqtRlpaGr777juEh4dDp9MhIyMDx44dg1KphJeXF+bNm4evv/4a06dPb1YA5HJZs/rfT25hOU5fuIVbpdW4ZahG1e06BA15HC+NG3RX4SIhl8Gx2/0vHdgo5O3W3pnGduxmixfC+uOPqyU482cRrhT8jV4u3eDh4nDn0owMkEEGGQBZw59Zdme5oa0jE7BegtPd0Q6VVbUP7tSB86+OODVHRztUNcSUyWuLNQ6dg6Mdqh/2/9TCBIA6Uz3qjPWoqzOhssaEquo79Wtqakyo/acNABztbeBgbwNHewUcu9nCsZsNHO1toVAACrkMCoUcw/7ds82K3z3s9+6hCUFtbS10Oh1WrVolrVMqlejTpw+ysrLuSgi0Wi18fX3h6OgorQsNDcWWLVsAAHq9HgaDASEhIVJ7UFAQhBA4f/48QkNDodVqERYWJrXLZDKEhIQgKysL4eHhOHfuHPr06QOlUmm2jYSEBNTW1sLOrunBc3Xt3uS+D+Lu7oRhQ3o3uf+UUQMf2D6gr2u7tXe2sV8Y88AhiYioCR56ycBgMKC+vh7u7uav2HVzc0NJScld/UtKSu7Zt+Geg4Z/G/dRKBRwdnaW2kpKSuDm5mY2hqurq7S94uLie27DZDKhtJTPphMRETVXmz9l8LDruE25ztsWYxAREVHTPTQhcHV1hVwuv+upgnsdxQN3jvzv1bfhiN7DwwMAzPqYTCaUlZVJfdzd3e86+2AwGKTteXh43HMbCoUCLi4uD9slIiIi+j8PTQjs7Ozg6emJU6dOSev0ej3y8/Ph5+d3V39fX19otVpUV1dL69LT06W+SqUSrq6uZuNlZGRAJpNhyJAh0hiN2wHg1KlT0hg+Pj7Iz8+HXq8324anp2ez7h8gIiKiO5p0yWDOnDn48ssvcezYMeh0OqjVagQHB0OlUkGr1WLSpEkoLLxTfW7UqFHo1asX1Go1Ll26hH379uHw4cMIDw+/s0G5HK+++io++eQTpKenQ6vVYt26dZg6dSqcnZ0BAC+//DIyMzORmJiIy5cvY926daisrMQLL7wAAPD09ERgYCDUajV0Oh2OHTuGpKQkzJ07tz1iRERE1OnJRBMvyCckJOCbb75BeXk5RowYgdjYWHh4eODUqVOYO3cu0tLS0LdvXwDAlStXsGbNGpw9exY9e/ZEdHQ0Zs6cKY1lNBqxceNGaDQa1NXVYeLEiYiJiTF7MuH48ePYuHEj9Ho9VCoVPvjgA/j6+krtRUVFiImJwW+//YYePXpg7ty5eOONN9oqLkRERF1KkxMCIiIi6rxYy4CIiIiYEBARERETAiIiIgITAiIiIgITAotqTgnpru7o0aOIjIzE8OHDMXjw4Lvas7KyMHPmTPj4+OC5557Djz/+aNZeWVmJlStXIiAgAMHBwdiwYQNMJpOlpt8h7dy5E9OmTYO/vz9Gjx6NuLg4VFZWmvVhXJtn27ZtmDhxInx9fTFixAi8++67KCoqktoZz9ZZvHgxBg8ebPZeGsa0/TAhsJDmlJAmoLq6GiEhIfd8lNRgMGDBggUICAhAamoqpk2bhujoaFy7dk3qs3btWpw7dw5JSUnYsmULDh06hJ07d1pwDzqezMxMzJ8/HwcOHMCmTZvwyy+/IC4uTmpnXJtvwIAB+PDDD3HkyBHEx8fjxo0bWLlyJQDGs7U0Go3ZC+4AxrTdCbKI6dOni61bt0rLubm5QqVSiYsXL1pxVh1fenq6UKlUZuu++uorMW7cOFFfXy+tmz17ttiwYYMQQojS0lLh5eUlTp48KbXv3btXhIaGCpPJZJmJPwKOHDkiAgMDpWXGtfXS0tKEv7+/EILxbI2bN2+KsWPHivz8fKFSqUR6eroQgjFtbzxDYAENJaQbl3xuXEKamker1SI4OBgy2f9qe4eGhkqxPH/+PGQyGQIDA83ai4uLkZeXZ/H5dlQGgwE9evSQlhnX1ikvL8ehQ4cQEBAAgPFsDbVajaioKDzxxBNm6xnT9sWEwAKaW0KaHux+5bEbl9h2dnaGQqGQ2hv6876NO8rLy/HFF19g1qxZ0jrGtWUOHjyIYcOG4emnn0ZeXh42bdoEgPFsqZSUFBiNRrzyyit3tTGm7YsJAT1yRAvKYzc+oujqamtr8dZbb0GpVJrdo8G4tsz48eORmpqKpKQk2NjYICYmBgDj2RIFBQXYsWOH2b0tjTGm7cvG2hPoChqXkB44cKC0/n4lpOnB7lceu3GJ7bKyMphMJulIoeHo4P/P0nQ1RqMRS5YsQWVlpfQD1oBxbRknJyc4OTnhqaeewoABAzB69Gjk5OQwni2QnZ2Nv/76C88++6zZ+nnz5mHGjBmMaTvjGQILaG4JaXqwe5XHblxie8iQIRBC4Pfffzdrd3d3lwpwdUX19fVYsWIFcnNz8fnnn6N79+5m7Yxr6zUcocrlcsazBUJCQnDw4EFoNBrpAwBxcXF4++23GdP2ZpVbGbugvXv3imHDhokffvhBXLhwQURERIiIiAhrT6vDMhgMIjs7W+zZs0eoVCqRnZ0tsrOzRU1NjSgpKRGBgYEiLi5O5OTkiISEBDF06FBx9epV6fvLli0Tzz//vMjKyhInT54UI0eOFNu3b7feDnUA7733nggLCxPZ2dni1q1b0sdoNAohBOPaTLW1tWLz5s0iKytL5OXliYyMDBEeHi5mzJghTCYT49lGGj9lwJi2LyYEFhQfHy/CwsKEr6+vWLhwoSgqKrL2lDqs/fv3C5VKdddHr9cLIYTIzMwUM2bMEN7e3mLSpEnixIkTZt+vqKgQy5cvF/7+/iIwMFCsX79e+uHrqu4Vz8YxFYJxbY66ujqxePFiERYWJry9vcXYsWOFWq0WhYWFUh/Gs/UaJwRCMKbtieWPiYiIiPcQEBERERMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCImoDv/76KyIiIhAUFIThw4cjPDwcWq1Watfr9Xj99dfh4+ODsWPHYteuXYiIiIBarZb6GI1GbN++HePHj4ePjw+mTJmClJQUa+wOUZfE8sdE1GpVVVWYPXs2PD09YTQakZSUhPnz5+P777+Hi4sLoqOjYWdnh127dsHW1habN29GdnY2nnzySWmM1atX4/z581i7di369euHc+fOISYmBgqFAi+99JIV946oa2BCQEStNmHCBLPl2NhYHD16FD///DPc3d2h0+lw9OhR9OvXDwDw8ccfY8yYMVJ/vV4PjUaDw4cPY+DAgQAApVKJK1euIDk5mQkBkQUwISCiVtPr9di2bRvOnj2L4uJiCCFQXV2NgoICGAwGuLq6SskAALi4uKB///7S8h9//AEhBF588UWzcY1GIxQKhcX2g6grY0JARK22cOFCuLq6IiYmBr1794atrS1mz56Nuro6ODg4QCaTPfD7DUVXv/32Wzg4OJi1Pey7RNQ2mBAQUasYDAbk5OQgMTERo0aNAgDcvHkTxcXFAIBBgwahpKQE169fl84SlJWV4dq1a/D29gYA6d8bN25g3LhxVtgLIuJTBkTUKs7OznBzc8PevXtx9epVZGZmYunSpejWrRsAYMSIEfD09MSKFSug1Wqh0+mwfPlyKBQK6ei/X79+mDVrFt5//31oNBpcv34dOp0O+/btQ2JiojV3j6jLYEJARK0il8uxdetW5ObmYurUqVi5ciUiIyPRs2dPAHdO+e/YsQMODg6YM2cOoqKiMHr0aPTv3x/29vbSOLGxsYiMjER8fDymTJmCyMhIaDQaKJVKa+0aUZciEw0X74iILKSiogJjxozBO++8g4iICGtPh4jAewiIyALS0tJgY2ODAQMGoKSkBDt27IBMJsPkyZOtPTUi+gcTAiJqd7dv38ann36K/Px8ODg4wNvbG7t374aHh4e1p0ZE/+AlAyIiIuJNhURERMSEgIiIiMCEgIiIiMCEgIiIiMCEgIiIiAD8FyIGFvwEZoKpAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['age'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:17.607076Z",
+ "iopub.status.busy": "2021-12-15T11:04:17.604380Z",
+ "iopub.status.idle": "2021-12-15T11:04:17.913201Z",
+ "shell.execute_reply": "2021-12-15T11:04:17.912499Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:21.170392Z"
+ },
+ "papermill": {
+ "duration": 0.400954,
+ "end_time": "2021-12-15T11:04:17.913322",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:17.512368",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAHqCAYAAACqdS94AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXycdb33//dMJvtkz2RPmqZt0jVpKZRCS6GsgggIN4JHAVFPOeqN3ug5D+vhRo8iy9HbheWngCtHHooiiBxFDktlK1BaSltK9zVpkmbfJzPJzFy/P0JiW5omk8xc1yyv5+ORR2mazPX5MjPXe67v9V1shmEYAgAAprBbXQAAAPGE4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAEzkMOtAXV0DCgQid+ZSXp5THR39VpcRMrQnstGeyBZr7ZFir02R3B673aacnPRx/9204A0EjIgOXkkRX1+waE9koz2RLdbaI8Vem6K1PXQ1AwBgIoIXAAATEbwAAJiI4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABM5rC4AAGKdLyB5h32W1pDiHrL0+PgHghcAwsw77NPGnS2W1nDu0grZLK0Ao+hqBgDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATEbwAAJiI4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAExE8AIAYCKCFwAAE00YvGvXrlVNTc1xX7/+9a9NKA0AgNjjmMwPXXrppbr99tvH/u50OsNWEAAAsWxSwZuSkiKXyxXuWgAAiHmTuse7bt06LV++XB/72Mf08MMPy+fzhbsuAABiks0wDONUP/Dss8/K6XSqsLBQ77//vr73ve/pE5/4hL761a+aVSMARLXWTrc27261tIbTagpUkJtmaQ0YMWHwnujpp5/Wt7/9bW3evFk2m23Sv9fR0a9AIKhDmcrlylBbW5/VZYQM7YlstCeyhbo9A16fNu5sCdnjTcW5Sytk8/strSGUIvk1Z7fblJc3/liooKcTLViwQG63W11dXdMqDACAeBR08O7du1epqanKyckJRz0AAMS0CUc133PPPbrsssuUl5enHTt26J577tF1110XVDczAAAYMWHw7tu3T7fccov6+/tVUlKi6667TmvWrDGjNgAAYs6EwfuLX/zCjDoAAIgLrNUMAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATEbwAAJiI4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATEbwAAJiI4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATBR28X/rSl1RTU6MNGzaEox4AAGJaUMH79NNPa3BwMFy1AAAQ8yYdvC0tLbrvvvv03e9+N5z1AAAQ0xyT/cHbb79dt9xyi0pKSqZ0oLw855R+z0wuV4bVJYQU7YlstCeyhbI9RqdbGc6UkD3eVPEcRYZJBe/jjz8un8+n66+/fsoH6ujoVyBgTPn3w83lylBbW5/VZYQM7YlstCeyhbo9bq9Pff2ekD3eVPEcmcNut53yYnPC4G1qatKDDz6oxx9/PKSFAQAQjyYM3h07dqi9vV0XX3zxcd//zGc+o49//OO6++67w1YcAACxZsLgXb58uZ555pnjvvexj31M3/3ud7Vy5cqwFQYAQCyaMHidTqeqq6s/9P2ysjIVFhaGpSgAAGIVK1cBAGCiSU8nOtbu3btDXQcAAHGBK14AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATEbwAAJiI4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATEbwAAJiI4AUAwEQELwAAJiJ4AQAwEcELAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMBHBCwCAiQheAABMRPACAGAighcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXAAATOSbzQ/fff7/++te/qrm5WU6nU2eddZbWrl0rl8sV7voAAIgpk7riraqq0re//W09++yzeuihh9Tc3Ky1a9eGuzYAAGLOpK54L7/88rH/Lisr0+c//3l97WtfC1tRAADEqqDv8fb19ekvf/mLTjvttHDUAwBATLMZhmFM5gefeeYZfetb35Lb7VZdXZ0eeeQRZWdnh7s+AIh6rZ1ubd7damkNp9UUqCA3zdIaMGLSwdvf36/29nY1NzfrgQceUH5+vu6///5JH6ijo1+BwKQOZQmXK0NtbX1WlxEytCey0Z7IFur2DHh92rizJWSPNxXnLq2Qze+3tIZQiuTXnN1uU16ec9x/n9Q9XklyOp1yOp2qrKxUVVWVVq1apX379mn27NkhKRQAgHgwpXm8oxfJdjvTgAEACMaEV7zDw8N68MEHdcEFFygvL0/Nzc267777tGDBAlVWVppQIgAAsWPC4LXZbNq/f7+efPJJdXd3y+VyacWKFfryl7/MFS8AAEGaMHgdDocefPBBM2oBACDmcckKAICJCF4AAExE8AIAYCKCFwAAExG8AACYiOAFAMBEBC8AACYieAEAMNGkN0kAAESXrj6v3njvqBIT7XIPBbRwRrbKC5yy2WxWlxbXCF4AiEFHO936++ZGORJsSg4k6I/r9uqPkpYvKNQ/Xz6f8LUQwQsAMebw0T69tq1ZGamJuuD0MjlTE1VbXaDn3zyk5zc2aNHMPJ21sMjqMuMW93gBIIa0drn1ypYm5WUm65IzK+RMTZQk5WSk6BOrZ2tOWZYee2G32nsGLa40fhG8ABBDtuzrUEpSgi48vVwpSQnH/ZvdbtPnL5+vgCH94i87FQgYFlUZ3wheAIgRrV1uHe1wa+HMXCU6Tn56d2Wn6p8unKPdDd16fmODyRVCIngBIGZs/eBqt7oi+5Q/t3JRsepm5em/3zgk77DfpOowiuAFgBjQ1j2o5g635s/MlSPh1Kd2m82mj5xZoUGvT5t2tZpUIUYRvAAQA7bt71ByYoJqyk99tTuqujxbRblpemVLU5grw4kIXgCIcu09HjW2DWh+Zc6493ZPZLPZtKquRPsae9TY1h/mCnEsghcAoty+I91yJNhUM2NyV7ujViwqkiPBple2ctVrJoIXAKJYwDBU39KvMpdTSY6EiX/hGBlpSTqt2qU3tx/VsI9BVmYheAEgirV2Dsoz5NeMoowp/f65dSUa8Pi0aXdbiCvDeAheAIhih1v6lGC3qSQ/fUq/XzMjRwU5qQyyMhHBCwBRyjAM1bf0qdSVPulBVSey22w6p7ZYexq61dnrCXGFOBmCFwCiVGv3oAa9U+9mHlU3O1+StP1gZyjKwgQIXgCIUvVH+2W321Tmck7rcUrz05Wbmaz39neEqDKcCsELAFHIMAwdbulTSf7Uu5lH2Ww2LarK0/uHOuXzB0JUIcZD8AJAFGrv8cjt8WlG4fSudkfVVuXJM+TXviM9IXk8jI/gBYAodPhon+w2qbwgNME7d0aOEuw2bTtAd3O4EbwAEIWaO9wqyE1TUmJwi2aMJzXZoerybL1H8IYdwQsAUcYz5FNXn1fFuWkhfdxFVXlqbBtgWlGYEbwAEGVaOgclSUWhDt5ZeZJEd3OYEbwAEGWOdrrlSLApLyslpI9bkpemvMwUphWFGcELAFHmaIdbhTlpstttIX1cm82mRbPytONwF9OKwojgBYAo4vb41DMwpMK80HYzj1pUlSvvkF/7G5lWFC4ELwBEkZZOt6TQ398dVV0+sqfvHubzhg3BCwBRpLnTrUSHXbmZyWF5/PSURJW60llII4wIXgCIIi2dbhXmpsluC+393WPNKc3SvsYeBQJG2I4RzwheAIgS/YPD6nMPqyg3NazHmVOWrUGvT43tA2E9TrwieAEgSoze3y0O08CqUXPKsiRJe490h/U48cphdQEIjz73kAa8PktrSE50aJqbpgA4xtEOt5ITE5TtDM/93VF5WSnKdiZp75EenX9aWViPFY8I3hg16PFp484WS2s4Y16hHMm8xIBQaekaVGFuqmxhvL8rjcznnVOWrX1c8YYF1yMAEAUGvT71Dw7LlR3e+7uj5pRlqaPXq44e1m0ONYIXAKJA+wcB6MoO7TKR45lTNjKfd28jV72hRvACQBRo6x6UzSblZpoTvGUF6UpOStBe5vOGHMELAFGgvduj3IxkORLMOW0n2O2aXZLJQhphQPACQIQLGIbaewaVb9L93VFzyrJ1pLVfbo+1MyRiDcELABGup39IPr+h/BBvAziROWVZMiTtY8OEkCJ4ASDCtXePbHxv1ojmUTNLMmWzSQeaCN5QIngBIMK19XiUlGhXRlqiqcdNSXKoJC9dh472mXrcWEfwAkCEa+8elCsr/AtnnExlcYYONffKMNgwIVQIXgCIYEM+v7r7h5Rv0vzdE1UWZarXPayuPq8lx49FBC8ARLDRlaPys8y9vzuqsjhDknSwudeS48cighcAIlh79wfBa9EVb0WBUwl2G/d5Q4jgBYAI1tY9qMz0JCUnJlhy/ERHgkpd6VzxhhDBCwARyjAMtfd45DJ5/u6JZhZn6lBzHwOsQoTgBYAINeDxyTPkV55F3cyjKosy5Pb61PbBfGJMD8ELABGqs3fk/m6eSRsjjKeyKFOSdLCZ+7yhQPACQITq6PXKZpNyMpItraPUlS5Hgl2HjnKfNxQIXgCIUJ09HmWlJ5m2I9F4HAl2VRQ6ueINEYIXACKQYRjq6PVY3s08amZRpg639CkQYIDVdBG8ABCBBr1+eYb8yrV4RPOoyuIMeYf8au50W11K1CN4ASACdYwNrLL2/u6oyqKRFawOMZ932gheAIhAoyOaczIi44q3OC9dyYkJOsR93mkjeAEgAnX0epWVnqRER2Scpu12m8oLnKpvJXinKzKeUQDAcTp7PMqNkG7mUeWFTjW09ivAClbTQvACQIQZ9Prk9vqUFyEDq0ZVFDjlGfKr/YMdkzA1BC8ARJjO3pG9b3MjZCrRqIrCkQFWDS10N08HwQsAEWZ0RHOuxStWnag0P102m9TQ2m91KVHNMdEP/PSnP9Vzzz2nw4cPKzMzUxdffLFuu+02paenm1EfAMSdzl6PMtISlWTRVoDjSUpMUFFumupbCN7pmDB43333XX3+85/XggUL1NHRoTvuuEMDAwO65557zKgPAOJOR49HruxUq8s4qYrCDO070m11GVFtwuB95JFHxv67qqpKX/nKV/Stb30rrEUBQLzyDPk14PGpJsJGNI8qL3Bqw44WDXiGlZ6SaHU5USnoe7xdXV3KyMgIRy0AEPdGF86ItIFVoyoKnJKkBrqbp2zCK95j9fX16Ze//KWuueaaoA+Ul+cM+nfM5nLFzgeK1k63MpzWvnHT0pLlyk0L2ePF0vMj0Z5IF8r2GEG8H92NI0syVhRnKTU5qFP0hELRpsUpiZK2qtM9bPlzbvXxp2rSz+rQ0JBuvfVWlZeXa82aNUEfqKOjP6J3tXC5MtTWFkND5BMS1Ndv7Vw7t9urNr8/JI8Va88P7YlsoW6P2+ub9PvxaMeA0lIc8g371DfsC1kNkkLWpqz0JO080K6z5xWE5PGmIpJfc3a77ZQXm5MKXp/Pp9tuu00DAwP69a9/LYcjtJ/CAAAjOns9ETeN6ETlBU66mqdhwnu8gUBAX//611VfX6+f/exnTCMCgDDx+wPqGRhSToTe3x1VXuhUY/uAfP6A1aVEpQmD94477tCGDRv0ve99T8PDw2pra1NbW5v8IepCBACM6O4fkmFE3sIZJ6ooyJA/YKi5g715p2LCPuM//vGPkqSrrrrquO+/9NJLKisrC09VABCHOvtGRzRHdvCWfzCyub6lb+y/MXkTBu/u3bvNqAMA4l5nr1eJCXY5UyN7fmxRbpqSHHaWjpwi1moGgAjR1edVTmaybDab1aWckt1uU6nLqXo2S5gSghcAIoBhGOrq9Sonwu/vjqr4YG9eg715g0bwAkAE6B8c1rA/EPH3d0eVFzg14PGpq89rdSlRh+AFgAgwtgdvRmRPJRpVUTCyahQ7FQWP4AWACNDZ55XNJmU7k6wuZVJKXemySWpo5T5vsAheAIgAXb0eZaUnKSEhOk7LqckOuXJSVc/I5qBFxzMMADGusy96BlaNqmDpyCkheAHAYp4hn9weX8RuBTie8sIMtXYPatAb2s0cYh3BCwAWGx0ZHG1XvKOrVh1p46o3GAQvAFhsbERzlEwlGlUxtnQkwRsMghcALNbV51VaskMpSdG15WpORrKcqYksHRkkghcALNbZ61FOlF3tSpLNZhvZm5cpRUEheAHAQqN78Eb6VoDjKS9w6kjbgPwB9uadLIIXACw0tgdvlI1oHlVR6NSwL6CWzkGrS4kaBC8AWCha9uAdz9jSkXQ3TxrBCwAWipY9eMdTlJcmR4KNhTSCQPACgIWiZQ/e8TgS7CrJT2dkcxAIXgCwSLTtwTueioIM1bfQ1TxZBC8AWCTa9uAdT3mhU73uYfX0szfvZBC8AGCRaNuDdzxjK1jR3TwpBC8AWKSz1xNVe/COp3xs6Ui6myeD4AUAi3T2eaNqD97xpKUkKj8rhQFWkxTdzzYARLGuXm/ULpxxopGlIwneySB4AcACniGf3F5f1I9oHlVRmKGjHW55h/xWlxLxCF4AsEC0bgU4nooCpwxJR9q56p0IwQsAFujqGwneWLniHR1gxQpWEyN4AcACnb0epaVE3x6848nLSlFqsoMpRZNA8AKABbr6vFG7FeDJ2Gw2VRQ41cCUogkRvABgMt/oHrwxMqJ5VHnhyN68gYBhdSkRjeAFAJON7sEbK/d3R1UUZMg77FdrN3vzngrBCwAm6+qN7j14x1NRyApWk0HwAoDJOvu8SnRE7x684ynJT1eC3cZCGhMgeAHAZJ29HuVkRO8evONxJNhVnJeueqYUnRLBCwAmMgwj5kY0H6ui0Kn6VrqaT4XgBQAT9bmH5fMbyomxEc2jKgqc6ukfUu/AkNWlRCyCFwBM1Nk3ugdvbF7xlhdmSBL3eU+B4AUAE3XFyB684xnbm5fu5nERvABgoljZg3c8ztRE5WUms2bzKcTmMw8AEaozhvbgHU95QQZrNp8CwQsAJhn0+jTo9cXs/d1R5QVONXcMaGiYvXlPhuAFAJOMbQUYYytWnaii0CnDkBrbB6wuJSIRvABgkn+MaI7xruYPRjazdOTJEbwAYJKuXo/SUxxKTkqwupSwys9KUWpyAlOKxkHwAoBJOnu9Mbcj0cnYbTaVu5wMsBoHwQsAJhj2jezBm5cV293Mo8oLMtTQ2q+Awd68JyJ4AcAEnR9sBZgX41OJRpUXOuUd8quNvXk/hOAFABN0jAZvnFzxju7Ny0IaH0bwAoAJOno8Skt2KDXZYXUppijNT5fdZmPpyJOIj1dAHHB7fHp+Y70a2wfU0eNRZ59XackO1VRkq7zAKbs9tvb9BKJNR683bq52JSnRkaDi/DSueE+C4I0B2/Z36NHndqm736vCnDTlZaWotCBDW/a06pUtTUpNdmjRrFzNrcixulQgLg16feodGFJVSabVpZiqosCpXfXdVpcRcQjeKOYd8uux53dr/fajKs1P15c+vmjsjW0kJOjvm5xqbBvQjkOdentHqwYGfTqtOl82G1e/gJmOtI1c9eXF+IpVJyovyNCb77eozz2kjLTY3I1pKgjeKBUIGHr4mfe1dX+7Lj+7Uh87u1KJjuNv2dttNpUXOFXmSteGHa16/2Cnhn1+nTm/kPAFTFT/QXdrrG+OcKLy0QFWrf2aX5lrcTWRg+CNUo+v26st+9r1qYuqdcHSslP+rM1m05nzC5TksGv7wU75/IZWLCoifAGTNLT0KS0lfgZWjar4YG/ewy19BO8x4utVECNe3NSgFzcd0cVnlE8YuqNsNptOq3HJkWDTln0dys9K0dwZ3PMFzFDf0q/8OBpYNSojLUl5mSk6fJSRzcdiOlGU2X6gQ797aa+WzMnXJ1bPDvr3F83KU6krXe/sblP3Bwu2Awgft8entu7BuOtmHlVZnKFDzQTvsQjeKOIZ8unXz+1SSV661nxswZSmCNlsNp29sEiJDrte29YsfyAQhkoBjDr8wQ498bJi1YkqizLU2j2oAc+w1aVEDII3ivz59YPq7PXqpo/MndbuJqnJDp29sEhdfV69u6c9hBUCONGho72SpLys+BrRPKqyeGSmxSG6m8cQvFGivqVPL2w8onMXl2h2Wda0H6+swKnq8mztONTFWqpAGB0+2qfczGSlJMXnkJrKopG9eQ8191pcSeQgeKNAIGDo0ed2y5nq0P86b1bIHndpjUupyQnatKtNBjuIAGFxqLlPFQUZVpdhmfSURBVkp3LFewyCNwq8vKVRB5t7dd0Fc5Sekhiyx0102FU3O19t3YNsWA2EQf/gsFq7B8fms8YrBlgdj+CNcN4hv/78+kHNrcjW8vmFIX/82aVZykpP0ju72xQIcNULhNKBppHu1ZnF8bVU5IkqizLV0etRr3vI6lIiAsEb4dZtPqI+97CuXjUrLAte2O0j83v73MPa08CaqkAoHWjqkc0mVRTGb1ez9I/7vMznHUHwRrBBr09/21CvhVW5IRlQNZ4yV7oKc1K1bX+Hhnz+sB0HiDf7G3tU5nJOaxZCLJjBAKvjELwRbN3mI+ofHNZVK6vCehybzaalcwvkGfJr16GusB4LiBcBw9CB5l7NirMdiU4mNdmhotw0Blh9gOCNUINen57bUK/aWXmmbCWWn5WiUle6dh7uls/PohrAdDV3uDXo9auqJHy9VdGksiiD4P0AwRuhXtjUoAGPT1edM9O0Yy6sypV32K99R3pMOyYQqw40jryPZpVyxSuNBG9Xn1fd/SxVS/BGIO+QXy9sbNDi2fmqLDLvTVuYkyZXdoreP9jJCGdgmvY39Sg9xaHC3DSrS4kIrGD1DwRvBFq/vVkDHp8uWz7D9GMvrMrTgMc3tswdgKnZ39SrmSWZsrP9piSpotApmxhgJU0yeJ9//nnddNNNWrp0qWpqasJdU1wLGIae39igqpJMS7qoylzpynYmafuBTlazAqZo0OtTU9uAZnF/d0xKkkMl+ek6QPBOLngHBwe1fPlyrVmzJtz1xL2t+9rV2jWoi88ot2SjepvNpgUzc9XdP6TGtgHTjw/EgoPNvTLE/d0TzSrN1IHGXgXi/EP9pIL3yiuv1Be+8AUtXrw43PXEveffblBeZrKW1rgsq2FmcabSUhzawdQiYEr2fzCwqirOV6w60aySLLm9PrV0uq0uxVLc440gh472andDty5YWq4Eu3VPjd1uU01Fto52utXdxwhEIFj7m3pVnJemtBCurR4LZpWOdL3va4zvmROm7VOVlxf5i4S7XNYu6/Zfz+9RanKCrr6gWump03vDtna6leGc+sbbS2oKtW1fhw409+nc4qndp0pLS5YrhCM6rX5+Qo32RLaptscwDB1s7tOZC4rGHsOY5vsxVKx+jvLynEpPTVRT52BIarG6PVNlWvB2dPRH9BQVlytDbW3WDXPv7vfqtS2NWn1aqdz9Hrn7PdN7wIQE9U3zMSqLM7TrcKcWzsxRUmLwS9653V61+UOzBKXVz0+o0Z7INp32tHS61eceUmle6thjuL2+ab8fQyESnqOZRRnavr992rVE8mvObred8mKTruYI8drWJvkDhi44rczqUsbMrciRz29ofyOjEIHJGt1sZHYpI5pPZlZplpraBuT2+KwuxTIEbwQIBAy9urVJ82bkRNRk+7ysFLmyU7SrvoupRcAk7W7oljM1USX56VaXEpFmlWbKkHQwjtcKmFTwdnd3a+fOnaqvr5ck7dy5Uzt37tTQEHsrhsJ7BzrU0evV6iWlVpfyITUVOepzD6upPb5HIQKTtbu+WzUV2ZZMB4wGVcVZsukfI7/j0aTu8a5bt07f+MY3xv5+1VVXSZJeeukllZVFTtdotHr53UZlpidp8Zx8q0v5kBlFGdq0q1W76rtU6uITPHAq7T2D6uj16JJl5VaXErHSUkYW0ojnW1iTCt6rr75aV199dbhriUsdPR5tO9Chy5bPkCMh8nr+E+w2zSnP1nv7O9Q/OCznNEdbA7Fsd/3I/d2aihyLK4lsVSWZ2rynTQHDiMslNSPvTB9nXt3aJBnSuXUlVpcyrjllH8y9Y9ci4JR2N3QrPcVB79AEZpVmacATvwtpELwW8vkDenVbkxZW5Sk/O9XqcsblTE1UaX669h7piegpYYDV9tR3q7o8Oy6v4oIxupBGvHY3E7wW2rqvQz39QzpvSeRe7Y6aU56lQa9PR9r6rS4FiEidvR61dg+qpjzb6lIiXnFemtKSHdrfFJ+9aASvhV7e0qicjGTVzsqzupQJlbmcSkt2aG9DfL5RgInsbuD+7mTZbTZVlWTG7e0rgtcird2Dev9gp1bVlVi6LvNk2e02zS7LUmP7gPrdw1aXA/dcXAoAAB+3SURBVESc3fXdSk12qLwg8pfHjQQ1FdlqbB9Qrzv+pqVG/hk/Rr2ypVE2m3RObbHVpUza7LKR+Xd7j3RbXQoQcXY3dKu6LEt2O/d3J2O0Z2BPffydTwheC/j8Ab2+rVmLZ+crN9P6hdMny5maqBJXuvY1MsgKOFZ3v1ctnW66mYNQWZShpET7WBd9PCF4LbB5T5v63MM6LwJXqppIdXm2Br1+BlkBx9gzdn+XgVWT5Uiwa05plnbXx9++3wSvBV5+t1H5WSlaMDPX6lKCVpqfrrQUx9iJBoC0/UCn0pIdqijk/m4waipydKRtQH1xdp+X4DVZc8eAdtV369zFJVE5189ut2l2aZaa2t1x92YBTsYwDL13sEMLZuZGxUDJSDJ39D5vnH2Q51Visle2NCnBbtPKRdEzqOpEc8pHBlnF61QA4FgNrf3q6R/SoqrInxYYaSqLM5TksI8ttRkvCF4TDQ37tf69Zi2pdinLmWx1OVOWnpKoUgZZAZJGdheTpEVV0XfryGqOBLtml2VpF8GLcNm0u1UDHp9WL478laomMjrIqqGVQVaIb+/t71BFoTOqP0xbaeQ+b7/6B+NnfQCC10Qvv9ukwtw0zZ0R/VMOSlwMsgLcnmHta+ylm3kaRpfYjKdzCcFrkobWfu1r7NF5i0tiYoNsu82mOWVZau5gkBXi145DXQoYBsE7DTOLM5XksGtXHE0rInhN8vKWRjkS7FoRxYOqTjRndCUr1m9GnNp2oEOpyQ7NKs20upSoleiwa1ZpVlwNsCJ4TeAZ8unN7Ud1xtyCmNpIPi0lUaUFTu1r7JGfQVaIM4ZhaPuBDi2ozGEa0TTNnZGjhtZ+9Q7ER+8ZrxYTbNjRIs+QX6ujcKWqiVSXZ8kzxCArxJ+G1n51M40oJEZHhG8/2GFxJeYgeMPMMAz9/d1GlbnSY7I7qiQ/XekpDu2No4ERgPSPaUQLCd5pqyjMUGZ6krbtJ3gRAoeO9qm+pV/nLSmNiUFVJzp2kFW8dBMBkrR5T7tmFGYoJ4NpRNNlt9m0aGau3j/YGRdrAxC8Yfb3dxuVnJigsxYUWV1K2Mwuy5bNJu1lJSvEibbuQR1s7tUZ8wqsLiVmLJqVpwGPTweae60uJewI3jBye4b19o4WnTm/UKnJDqvLCZu0FIfKXE7tZ5AV4sTGXa2SpDPmEryhsmBmrmy2kQVJYh3BG0Zvvt+iIV9A5y2J/pWqJlJdni3PkF/1LX1WlwKE3ds7WzSzOFOu7FSrS4kZ6SmJmlWapW0HCF5MkWEYevndRlUWZaiyKPYGVZ2oJD9NztRE7TrMICvEtpZOt+pb+rWMbuaQW1SVp8NH+9QT4+NFCN4w2XukR43tA1G52f1U2Gw2za3IVlv3oDp6PVaXA4TN23Qzh03tByPEt8f4VS/BGyYvb2lUanKCzpxXaHUpppldliVHgk27DsfP0m+IPxt3tmh2aZZyM1OsLiXmVBQ6lZWeNDZVK1YRvGHQ3e/Vxp2tOnthsZKTEqwuxzRJiQmqKsnUweY+eYZ8VpcDhFxT+4COtA0wmjlMbDabFlXl6f2DnfIHAlaXEzYEbxis29yoQMDQhaeXWV2K6eZW5CgQMJhahJi0cVerbJJOryF4w6X2g2lF+2L4HELwhtjQsF8vv9uoutn5KsxJs7oc02VnJKsoN02767uZWoSYEjAMvfX+Uc0pz2bRjDBaWJWrJId9bMpWLCJ4Q+ytHS3qHxzWxWeUW12KZebOyJbb49N7+9utLgUImZ2Hu9TSNahz62J/eqCVUpIcqp2dr02722J2FSuCN4QMw9ALGxtUUeBUTUW21eVYpqzAKWdqov6+udHqUoCQ+fvmRjlTE3U6o5nDbtncAvUODGl3jK4BT/CG0I5DXWpsH9BFZ5TH5LrMk2W32TSvMkcHmnq190hsvnEQXzp7PXp3b5tW1ZUo0cFpM9wWzcpTUmLsdjfzCgqh5zc2KDM9ScviaArReGaXZiktxaHnNtRbXQowbS9vaZIM6bzFdDObITkxQYtn5+ud3a0xObqZ4A2RI239eu9Ah84/rZRPxJISHXatqivRu3vb1dwxYHU5wJT5/AG9urVJtbPylM8SkaY5Y26h+tzD2l0fe71mJESI/PXNw0pOStD5p8XfFKLxrFpcoiSHnateRLXNe9rUOzCk1by3TbWoKlfJSQl6e2fsdTcTvCHQ0unW2ztbdP6SUjlTE60uJ2JkpCVpZW2x3nz/qLr6vFaXA0zJus2NcmWnaGFVrtWlxJWkxAQtmZ2vzXva5PPHVnczwRsCf33rsBwJdl28rMLqUiLOxcsq5A8YenFTg9WlAEHb09CtPQ3dOv+0MtnjeMCkVc6YW6D+wWHtjLFlaAneaero8ejN7Ue1qq5EWelJVpcTcQqyU3XG3AKt29yoXnds7ziC2GIYhp58Zb+ynElxs9lJpFlYlSdnaqJe29pkdSkhRfBO0982HJYkXXomV7vjuXLlTA35/NzrRVTZfrBTe4/06IqzK5WcGD9rrkeSRIddKxcV69297eruj53bVQTvNHT3e/Xq1madvbCInUpOoTgvXcvnF2rdO0fUE0NvHsSuQGDkajc/K0XnsFKVpc5dXCJ/wNBr25qtLiVkCN5peGb9IRmGoY+eNcPqUiLeFStnyuc39Ne3DltdCjChN95rUn1Lv646Z6YcCZwmrVSYm6Z5M3L06pbGmFlCklfUFB3tdOvVLU06d3GJCuJwM4RgFeak6exFRXr53SZ19nqsLgcYlz8Q0GN/26WS/HQtn19kdTmQtHpJqTp6vdp+MDb26SV4p+jJV/YrMdGuK1bMtLqUqHHF2ZUyDEN/fZOrXkSu5zbUq7GtX1evqpLdzkjmSLB4Tr6y0pP08ruxMciK4J2C/Y09emd3mz6yrEKZjGSetPzsVK2qK9GrW5tYzQoRqb6lT0+/dlAr6kq0ZE6+1eXgA44Eu86pK9bW/e3q6In+HjOCN0iGYeiJl/crMy1RlyyL363/purKlTOVlJig3720V4YRG/drEBuGfQH9/C87lZ6aqC9cXRvXG51EolV1JZIhvbwl+nc9I3iDtGVfu/Y0dOuKlTOVkuSwupyok5mepCtXVGr7gU5t3R8b92sQG/78+kEdaevXZy6dqywnG91HmvysVC2tcWnd5iPqHxy2upxpITmC4B3y67cv7FVxXtrIpy9MyflLy/TK1iY9/tJeLajMZVOJGOcLSN5hn2XHT050aKKX2M7DXfrbhsNaVVesxbPpYo5UV6yYqU272/TCxgatqYjeJTwJ3iA8s/6gOno9Wvup05hiMA2OBLs+ecEc/fAPW/XipgZdupzpWLHMO+zTxp0tlh3/jHmFciSPf6o7dLRXDzy5TUW5abru/DkmVoZglRU4tbTGpRffadA/XTrP6nKmjPSYpCOt/Xp+Y4POqS1WdXm21eVEvYVVeVo8O1/PvHGI6UWwTHPHgH74+61KT0nU165brNRTBDQiwxUrZmrQ69efXz1gdSlTRvBOQsAw9Ohzu5Sa7NC1q2dbXU7MuP7COTIMQ7/+2y4GWsF07d2D+n+Pb5HdbtO/fnIxq89FifICp5ZWu/TMa/s14InOe70E7yS88m6j9jf16rrzZ7PtXwgVZKfqE6tna/vBTr0SY4ugI7JtP9ih7zy6Sd4hv776iToVsghOVPnYikq5PT69sDE6dz0jeCfQ1D6g36/bpwWVOTp7IavYhNp5S0o1b0aOfr9un9q6B60uBzEuEDD01KsH9KPfb1WWM0m337hUFYUZVpeFIFUUZmhFbYme21AflecNgvcUhob9eujP25WclKDPXT6feX1hYLfZ9NnL5skm6Zd/3akAXc4IA8Mw9P6hTt392Dv6yxuHtGJRsf7vjaerOC/d6tIwRZ+7YqFsdpt+8/zuqLtVRfCewu/X7dORtgF9/vL5ymZeX9jkZaXokxfM0e6GbpaTREgFDEO7DnfpP3/7rn7w+BZ19Xn1z5fP12c/Oo+t/qKcKydVV59Tpe0HOrVxV6vV5QSFIXzj2LSrVX9/t1EfWVahRVV5VpcT81bWFmvn4S49/eoBVRQ4VcdcSkyRd8ivtp5BNbT0q6G1X54hv7KcSfrURdVaVVfCvPEYcsHSMr3x/lH99sW9WjAzV+kp0TEGh+A9icNH+/SLZ3dqZnGGrj63yupy4oLNZtNNl85VU8eAHvnv9+kGxLj8gYAGPX65vcNye3xye31ye3zqHxxWZ693bFUjR4JNZS6nzl9apmVzC5TEFW7Msdtt+sxH5uo7j27UE3/fr89cOtfqkiaF4D1Be/egfvzEVqWnOPS/r65loQwTJScm6H9fvUjf+fUmPfjUe/q/N57OvMo4M+wLqNc9pH73P0J18Lgvv7zD/g/9XoLdpvQUh/KyUlRdnqXczBQV5qQqIcGuJdUuQjeGzSjK0MVnlOt/3m7QvBk5OnN+odUlTYiz2jH6B4f1oye2atgX0L9+cqlyMriva7b8rFR96eML9f3fbdEDT27TV66t415cDDIMQ33uYbX3eNTZ61FXn1ddfV55ho4PVbtNSk12KDXZoYy0JBXkJCg12aG0FIfSkhM/+NOhpEQ7gx/j2DXnztKBpl796tmdKspN04yiyB6pTvB+wO0Z1v1PblNb96C+dt1ilebTzWmVmoocfe7yefr5f+/Qg09u05f/V63VJWGaDMNQd/+QmjsG1NI5qLbuwbGQtdttynEmqdSVrqz0JGWkJSkjLVFpKYlKJlAxCY4Eu7748UX6zq836sGntumOz5yhzLTI3bKV4JXUMzCkux57R4eaenXLFQtUU5FjdUlx76wFRQoEDP3yrzv1wFPv6Tu3nG11SQjS0LBf7x/q1Ns7W7Vtf7sGvSNBm5GWqNL8dLlyUuXKTlVWehIbzmPastKTdOs1i3TPY5v10z9t11evWxyxA+niPnjbugf1g99vUXf/kG69pla1sxjBHClWLCqWPzCypOR3frFBn79srtKiZNRivBr0+vTegQ69s7tN2/Z3yDvsV2qyQ4U5aSrOT1dxXhqrvyFsKosydfOlc/XIf+/Qj5/YqluvWRSR27dGXkUm2tPQrZ/+ebt8voDu+pezlZfOCSHSrKorkc0m/eZ/duvO/3pHX75mEaOdI0z/4LC2vl2vV95p0PaDnfL5A8pMS9RZCwp1Wo1LFYUZ2rynzeoyESeWLyiSP2DoV8/u0v97fIv+z7V1EfdhLy6D1+cP6Jn1h/TXNw/JlZ2qf71+ieZW5qqtrc/q0nAS59SWqGZmvu761QZ997/e0S1XzFftLOb5Wqmn36vNe9r0zp427TrcrYBhKC8zWauXlGppjUuzS7PGuo8HvNbtxYv4tGJRsVKTHXroz9v1n7/drK9cU6v87FSryxoTd8Hb2NavX/1tlw409WrlomL900VzIrIrAsdbUJWnO246XQ88+Z5+/MQ2raor1idWz6br2UTt3YPavKdNm/a0af+RHhmSCnNS9ZEzK3Th8hnKSk5gIBQixmnVLt12bZ0eeOo93fHLt/XJC+bonNriiHiNxk3idPZ69PRrB7V+e7NSkxz6lysXaNm8yJ/vhX/Iz0rV7Tcs1Z9fP6jn3q7X1v0d+vRFNTqtOj8i3kyxxjAM1bf0a9v+dm3e067DLSM9QmUup65cOVOn1bhUmp8um80mlyuDHiNEnHmVufrOZ5fpl8/u1K//tkvv7G7TDZdUKz/L2qvfmA5ewzB06GifXtvWrNe3NUsydPEZ5froWZUR1+ePyUlKTNC1q2fr9LkF+tWzu/T//ek9zSrN1JUrZ2pBZS4BPE2DXp92HOrUtv0d2nagQz39Q5KkmcWZuva8WTqtxsUWeogq+dmp+tdPLtG6d47ojy/v1zcefktnzi/UpWdWqNTltKSmmAtenz+gw0f7tKu+Sxt2tOpIW78SHXYtn1+oK1ZWWv5JB6ExszhT3/zM6XptW7P++uYh/fD3WzWrJFMXLC3TaaxUNGmeIZ8ONPVq35Ee7arv0t4jPfIHDKUmO7RgZq5qq/K0qCpXWWwSgihmt9l04enlOq3apeferterW5v0xvajmjcjR4tn56t2dp6pHyijLni9Q369teOofH5DdptkSOruH1JXr0ftPR4dOto3tqRcZVGGbrikRmfOK1RaStQ1FRNwJNi1ekmpVi4q1vr3mvXsW4f1yH/vUGpygpbNK9TpNQWqLs9SooMQlkZ26uns8ejg0T7tbejW3sYeNbT0K2AYskkqK3Dq4mXlqq3K06zSLJZLRczJzUzRP11YrY+dXal1mxu1cVerfvfSXv3upb06fW6BvnjVQlPqmHQaPfzww/rNb36jvr4+rVixQnfeeafy8syf89rQ1q/f/M+e4/ZttdmknIxk5WakaMWiItVU5Ki6PFtZ6ZG7cglCJ9Fh13lLSrVqcYl213fr9W3NenP7Ub2ypUlJDrvmzsjR3IocVRZlaEZRRsyv/+wPBNTdN7JK1JG2ATW1D6ixvV9N7e6xD6VJDruqSjJ12VkzNKcsS7NKsvhwiriRkZakK1fO1JUrZ6q1e1Db9rUr3cTbj5N6pz355JN66KGH9L3vfU9lZWW6++679dWvflWPPvpouOv7kNmlWXrg/5yjYX9ARmAkfJ1piUqw8+k83tltNs2bkaN5M3J04yU12lXfpe0HO7X9QIe27e+QJNk0so9nUW6aCnJSVZCdqixnsjLTEuVMS1JmWqLSUxNlj7B7xYGAIbfXpwHPsAYGR/8cVp97WJ19HnX2esf+7O736th9wTPTk1San65zaotV4kpXRUGGKgqdXNECkgqyU3Xh6eWmHnNSwfvYY4/p5ptv1kUXXSRJuvvuu3XhhRdqz549qq6untSBQrkkXLg+mcTSsnWG3Wb5VBtHgj2k/0+DeazUFIeWVLu0pNolaWSRh8a2ATW09am53a32Ho921XePBfJxx7HZlJY6sk5woiNByQ67Ese+EuRIsGnkc55NdptNdptks9tkl02yj/y+XTYFZMgwRgb5jXyNdPcahqGkpER5PEPyG5LPF9CwP6DhYb98AUPDwyN/H/u+L6ChYb+MD1U6wuGwKys9SYU5aaopz1amM1nZzmQVZKeoMCfNtE/y4z0/jgS7pa/Fqb4OQ/natfr/gTTSHpsRO+c4KXLP2RPVZTMMY7z3syRpaGhIdXV1evTRR7Vs2bKx759//vn6whe+oGuvvTY0lQIAEAcm7Gvq6upSIBD40P3c3NxcdXZ2hq0wAABiETd5AAAw0YTBm5OTI7vdro6O4++FdXZ2Kjc3N2yFAQAQiyYM3qSkJM2dO1cbNmwY+15DQ4MaGxtVV1cX1uIAAIg1kxrV/KlPfUp333235s2bNzad6Mwzz5z0iGYAADBiwlHNo45dQOPss8/WnXfeqfx8tmYDACAYkw5eAAAwfYxqBgDARAQvAAAmIngBADARwQsAgIniNngffvhhrVy5UnV1dfriF7/4oQVCjrVz5059+ctf1sqVK7VkyRJ94hOf0BtvvGFitR8WTP0HDx7UDTfcoNraWp1//vl66qmnTKx08ibbpkh8Pk4mmOdo1Pbt27VgwQLdcMMNJlQYnGDa4/P5dP/99+u8887TwoULdckll2j9+vUmVjuxYNrz0ksv6aqrrlJdXZ1WrVqlu+66S0NDQyZWe2rPP/+8brrpJi1dulQ1NTUT/nyknxOCaU+0nA+OY8ShP/7xj8bixYuN559/3tixY4fx6U9/2rjxxhtP+fP33nuvsWnTJuPQoUPGfffdZyxatMjYt2+fiVUfX89k6x8aGjIuuugi4ytf+Yqxe/du4w9/+IOxYMECY8OGDSZXfWrBtCnSno+TCfY1ZhiG4fV6jcsvv9y46aabjE9/+tMmVTo5wbbnG9/4hnHFFVcYr7/+utHQ0GC8/fbbxu7du02s+NSCac/hw4eNBQsWGD//+c+N+vp644033jBWrVpl3HfffSZXPb6nn37a+MlPfmI89NBDRnV19Sl/NhrOCcG0JxrOByeKy+C96qqrjnvT1NfXG9XV1UGdGC677DLj0UcfDUd5Ewqm/hdffNGora01BgYGxr73b//2b8att95qSq2TNd3nxMrn42Sm0p57773XuPPOO437778/4oI3mPbs2rXLmD9/vlFfX29miUEJpj3PPvussWzZsuO+d8899xhr1qwJe53BeuuttyYMqmg5JxjG5NpzMpF2PjhR3HU1Dw0NadeuXVq+fPnY98rLy1VaWqqtW7dO6jEMw1B3d7cyMzPDVea4gq1/27Ztqq2tVVpa2tj3zjrrrEm31QzTfU6sfD5OZirteeedd7Ru3Tp97WtfM6vMSQu2Pa+88ooqKir07LPP6txzz9VHPvIR/eQnP5Hf7zez7HEF256FCxdqYGBAL774ogzDUHNzs1577TWtWLHCzLJDJhrOCdMRaeeDk5nUkpGxJBTbHD722GPy+/1avXp1OEo8pWDr7+zsPOnPTuZ+o1mm+5xY+XycTLDtGRwc1L//+7/rzjvvVGpqqlllTlqw7Tly5IgaGhr0+uuv6/7771dra6u++c1vKjExUf/8z/9sVtnjCrY95eXl+ulPf6rbbrtNg4OD8vl8+uQnP6kbb7zRrJJDKhrOCdMRaeeDk4mp4F27dq3+9Kc/jfvvH//4x3XbbbdN6xivvvqqfvCDH+jBBx9UVlbWtB7LDEaML0wWbc/HyfzgBz/QypUrtWzZMqtLCQnDMDQ8PKx7771XpaWlkqSmpib99re/jYjgDVZLS4u+/e1va82aNVq1apWampp011136Ve/+pVuvvlmq8sLWiyfE6LlfBBTwXv77befsqsuJSVFycnJY9sczpo1a+zfJrPN4aZNm/SVr3xFd911l1auXBmyuoNx7DaNk6k/Ly9Phw8fPu57J/vEa6Vg2zQqEp6Pkwm2PRs3btTevXv1u9/9TpIUCARkGIbmz5+vF154YSy8rDKV11xSUtJxdc+cOVNHjx41pd6JBNue3/72t6qoqNCaNWskSXPnztXAwIDuueeeqAzeaDgnTEWkng9OJqbu8WZkZMjlco37lZGRMeVtDrdt26ZbbrlFa9eu1Uc/+lEzmnNSwdZfW1urbdu2aXBwcOx7b731VkRt6TiV5yRSno+TCbY9DzzwgJ5++umxr+uvv14LFy7U008/rYKCAjNLP6lg27N48WINDQ0dF7T19fUqLi42pd6JBNsej8cju/34U6XdblcgEAh7reEQDeeEYEXy+eCkrBvXZZ0nnnjCWLJkifHCCy8YO3fuNG644QbjhhtuGPv3rVu3Gpdccolx9OhRwzBGRmmeccYZxn/+538ara2tY1+9vb0RV/+JtXu9XuPCCy80brvtNmPPnj3GE088EXFTBwwjuDZF2vNxMsG050SROKo5mPYMDw8bl156qfG5z33O2LNnj7F+/Xpj5cqVxi9/+Usrm3CcYNqzfv16Y+7cucZvfvObselEF110kbF27Vorm3Ccrq4uY8eOHcYf/vAHo7q62tixY4exY8cOw+v1RuU5IZj2RMP54ERxGbyGYRgPPfSQsWLFCqO2ttb4l3/5F6OtrW3s30aHsDc0NBiGMXIirK6u/tDX17/+davKH7f+E2s3DMPYv3+/8elPf9pYuHChsXr1auPJJ5+0quxTmmybIvH5OJlgnqNjRWLwGkZw7amvrzc++9nPGrW1tcbq1auNn/zkJ4bP57Oq9JMKpj1PPfWUcfnllxu1tbXGOeecY/zHf/yH0dfXZ1XpH/Lkk0+e9D3R0NAQleeEYNoTLeeDY7EtIAAAJoqpe7wAAEQ6ghcAABMRvAAAmIjgBQDARAQvAAAmIngBADARwQsAgIkIXgAATETwAgBgIoIXiEKbNm3S9ddfryVLlmjJkiW64oor9Nprr0mS2tvbtXbtWi1fvlxLlizR9ddfr40bN0oa2RJuzZo1uuaaazQ8PCxpZDekz3zmM7r++uvl8/ksaxMQLwheIMr4/X598YtfVF1dnf70pz/pT3/6k2699ValpqbK4/Hoxhtv1MDAgH72s5/p6aef1rnnnqubb75Z+/fvl81m07333qvW1lb98Ic/lCQ9/PDD2rFjh374wx/K4YipnUKBiMS7DIgy/f396unp0fnnn6/KykpJGvvzqaeeUn9/v370ox+NhegXvvAFvfnmm3r88cd1++23Kzc3V9///vf12c9+Vunp6frpT3+qH/3oRyopKbGoRUB8IXiBKJOVlaVrr71Wn/vc57R8+XItW7ZMF154oaqqqvTee++pvb1dZ5xxxnG/MzQ0pJSUlLG/L1++XDfffLMeeOABXX/99br44ovNbgYQtwheIAp997vf1Y033qj169dr/fr1uu+++3THHXcoEAho1qxZevDBBz/0O8cGr9/v1+bNm5WQkKD6+noZhiGbzWZmE4C4xT1eIEpVV1fr5ptv1s9//nNdc801+sMf/qCFCxeqoaFBTqdTM2bMOO6rsLBw7HcfeOABHTp0SL/73e/0/vvv62c/+5mFLQHiC8ELRJnDhw/r+9//vjZt2qTGxka9++67eueddzRr1ixdccUVKisr05o1a/T666/ryJEj2rp1qx5++GG9+OKLkqS3335bjzzyiO69917V1dXpzjvv1P33368tW7ZY3DIgPtgMwzCsLgLA5LW2tuo73/mOtm3bps7OTmVnZ+u8887T17/+dWVkZKirq0s//vGPtW7dOnV1dSknJ0e1tbX60pe+pJKSEl155ZW69NJLtXbt2rHH/OY3v6nXX39df/7zn5WRkWFh64DYR/ACAGAiupoBADARwQsAgIkIXgAATETwAgBgIoIXAAATEbwAAJiI4AUAwEQELwAAJvr/AepCuZsKX7bqAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['sex'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:18.096601Z",
+ "iopub.status.busy": "2021-12-15T11:04:18.095868Z",
+ "iopub.status.idle": "2021-12-15T11:04:18.495219Z",
+ "shell.execute_reply": "2021-12-15T11:04:18.496142Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:21.457133Z"
+ },
+ "papermill": {
+ "duration": 0.493331,
+ "end_time": "2021-12-15T11:04:18.496291",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:18.002960",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAHqCAYAAAAkr2YEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de3yU9Z3//fc1p5wJSQinEBCw4aASD4tQTOuh2rK6/lTqVrfWUnZbad2qd+12t8h62FrRdh+2q3Vb6dZaV37WvVcU27W39cDWY0Vq20QhBMRoIEAIk9MkmWRmruu6/0gyEJJJJjAz1yTzej4eFjNzTeaTy2nefM+Gbdu2AABA2nI5XQAAABgZYQ0AQJojrAEASHOENQAAaY6wBgAgzRHWAACkOY/TBYyktbVLlpXclWUlJfny+zuT+h4TAfcpPtyn+HCfRsc9is9EuU8ul6GioryYz6d1WFuWnfSwHngfjI77FB/uU3y4T6PjHsUnE+4T3eAAAKQ5whoAgDRHWAMAkOYIawAA0hxhDQBAmiOsAQBIc4Q1AABpjrAGACDNEdYAAKQ5whoAgDRHWAMAkOYIawAA0hxhDQBAmiOsAQBIc4Q1AABpjrAGACDNEdYAAKQ5whqj+t8/7ldjc6fTZQBAxoorrF944QWtXr1a55xzjhYsWDDq9ZFIRA8++KAuuOACnX766frMZz6jN95446SLRepZlq3HX9it//3DPqdLAYCM5YnnomAwqOXLl2vFihX6wQ9+MOr1d9xxh3bs2KF77rlHc+bM0cGDB1VYWHjSxSL1TMuSJPWGTYcrAYDMFVdYX3HFFZKkbdu2jXptXV2dnn32WT3//PMqLy+XJM2aNeskSoSTTMuWJIUjlsOVAEDmSviY9SuvvKLZs2frN7/5jc4//3ytXLlSP/7xj2WatMzGo4GwDtGyBgDHxNWyHov9+/dr3759ev311/Xggw/q8OHDuuOOO+T1evWVr3xlTN+rpCQ/0eUNq7S0ICXvMx55A72S+rrBuU/x4T7Fh/s0Ou5RfDLhPiU8rG3bVjgc1n333aeysjJJ0oEDB/TEE0+MOaz9/k5Z/S27ZCktLVBzcyCp7zGetfaHdThicZ/iwOcpPtyn0XGP4jNR7pPLZYzYQE14N3hJSYl8Pl80qCVp7ty5OnToUKLfCilgmkwwAwCnJTyszzzzTIVCoUHh3NDQoBkzZiT6rZACps2YNQA4La6wbmtrU21trRoaGiRJtbW1qq2tVSgUUk1NjVauXKmmpiZJUlVVlebPn69//ud/1p49e/Tmm29q48aNuuaaa5L3UyBpTLN/NniY2eAA4JS4xqy3bt2qdevWRb++8sorJUkvv/yygsGg6uvrFQ6H+76hx6ONGzfqrrvu0tVXX62SkhJ9/vOf1xe/+MUklI9kG5gNTjc4ADgnrrBetWqVVq1aNexzs2bNUl1d3aDHysvL9cgjj5x8dXDcwKYo4QhhDQBOYW9wjGigG7yXbnAAcAxhjRGxKQoAOI+wxoiObjdKWAOAUwhrjOjoQR50gwOAUwhrjGhgzNqy7GhwAwBSi7DGiI7d7jVE6xoAHEFYY0TmMWHNMZkA4AzCGiOKHNP1TVgDgDMIa4xoYMxakkLMCAcARxDWGBHd4ADgPMIaI7IIawBwHGGNER3bsg4R1gDgCMIaIzJNJpgBgNMIa4xo8Jg1E8wAwAmENUYUYcwaABxHWGNEFmPWAOA4whojMtkUBQAcR1hjRMduikJYA4AzCGuMyLRseT19HxN2MAMAZ3icLgDpzTRted0uWZZNyxoAHEJYY0QRy5bLZcjrcam7N6Ku3sig57O8HnnonwGApCKsMaJQxJRp2TIMQ43Nndpe2zTo+aWLpsmTxccIAJKJ37IYkWlachmS4TIGbZACAEgdwhojMvu7wd0u16CZ4QCA1GG0ESMyLVsuw5DbbQzazQwAkDqENUZkWbYMQ/K4XYMO9QAApA5hjRENdIN73IxZA4BTCGuM6Gg3uIuwBgCHENYYkWlZfS1rF93gAOAUwhojMs2+MWs33eAA4BjCGiOy7L5u8L4JZoQ1ADiBsMaITPPoBLOIRTc4ADiBsMaIjp1gZtENDgCOIKwxIsuy5TIkj8tQxLRl2wQ2AKQaYY0RmZYlo79lLfWNYQMAUouwxoiOborS91FhkhkApB5hjRFZ1sBscEOSWL4FAA4grDGivpa1ot3gETZGAYCUI6wxor5NUWhZA4CTCGuM6NilWxJj1gDgBMIaI7L6u8E9rv6wpmUNACkXV1i/8MILWr16tc455xwtWLAg7m/+3nvv6bTTTtP1119/wgXCWaZlHTfBjDFrAEi1uMI6GAxq+fLluuGGG+L+xqFQSOvWrdPSpUtPuDg4y7ZtWbYGrbOmGxwAUs8Tz0VXXHGFJGnbtm1xf+Mf/vCHWrZsmQoLC/X222+fWHVw1ECX98De4Mc+BgBInbjCeqzeeecdbd26VVu2bNHPfvazE/4+JSX5CawqttLSgpS8z3jT0xuRJOVkeaMta6/XrYL87Og1ublZKi3OdaS+dMXnKT7cp9Fxj+KTCfcp4WEdDAZ122236e6771ZOTs5JfS+/vzPph0eUlhaouTmQ1PcYr7p7+sI6HI5EdzDr7A4p0Nlz9JruXjWbpiP1pSM+T/HhPo2OexSfiXKfXC5jxAZqwmeD33///aqqqtK5556b6G+NFBuYTGa4DHlc/d3gjFkDQMolvGW9fft27dmzR7/85S8lSZZlybZtLV68WC+++KLKysoS/ZZIkuiY9bETzJgNDgApl/Cw/tGPfqSenqPdpE888YTeffdd3XvvvZo6dWqi3w5JNNCKdrnEBDMAcFBcYd3W1qaDBw+qoaFBklRbWytJmj9/vnbt2qV//Md/1GOPPaZp06Zp9uzZg15bUlKi3NxcVVRUJLh0JNtAK9plGDIMQy6j70xrAEBqxRXWW7du1bp166JfX3nllZKkl19+WcFgUPX19QqHw8mpEI4ZaEUbRl+r2u02kj7hDwAwVFxhvWrVKq1atWrY52bNmqW6urqYr73ppptOrDI47th11pLkdhmcugUADmBvcMQUHbPuy2p53C7GrAHAAYQ1Yjp2NrjU17ImrAEg9QhrxBRdZ33MmLVJNzgApBxhjZgs6+jSLal/zJqWNQCkHGGNmCJDusFd7GAGAA4grBHT0U1RjukGZwczAEg5whoxHT9m7WGCGQA4grBGTNEx6/6lW2433eAA4ATCGjENtykK3eAAkHqENWI6uinKMWFNyxoAUo6wRkyRYw7ykPq6wVm6BQCpR1gjpuhBHsess7YsW7ZNYANAKhHWiMk6fp01Z1oDgCMIa8R0/Ji1p38rM8atASC1CGvENNxs8GMfBwCkBmGNmMzoBLO+r492g7N8CwBSibBGTAPd3cYxs8GPfRwAkBqENWKKzgYfaFn3N7FZvgUAqUVYIybTsuV2GUdb1gNj1pxpDQApRVgjJtOyogEtsXQLAJxCWCMm07SjAS0ds3SLsAaAlCKsEZNp2dE11tIxLWu6wQEgpQhrxNQ3Zn30I8I6awBwBmGNmEzLGtQNPhDcEZZuAUBKEdaIaWA2+AA2RQEAZxDWiMk07ehWo5LkiS7domUNAKlEWCOm41vWLsasAcARhDViso4La8Mw5HYZdIMDQIoR1ogpYllyuQZ/RNxugwlmAJBihDViMs3BLWtJ/S1rwhoAUomwRkymNXgHM6lv+RabogBAahHWiMm0rEE7mEmSx03LGgBSjbBGTNYwLWsX3eAAkHKENWIabszaZRiyCGsASCnCGjEdvze41DfBzLIJawBIJcIaMUWsoS1rw0XLGgBSjbBGTKZpDdpuVJLchiGyGgBSi7BGTJY9zJg1LWsASDnCGjENP8FMhDUApBhhjZiG2xTFxQQzAEi5uML6hRde0OrVq3XOOedowYIFI15bW1urm2++WVVVVTrrrLP0uc99Tm+++WZCikVqmZY1ZDY4S7cAIPXiCutgMKjly5frhhtuGPXanTt3qqysTA888IC2bNmiqqoqffWrX9XevXtPulik1vHnWUu0rAHACZ54LrriiiskSdu2bRv12s9+9rODvr755pv129/+Vm+88Ybmz59/AiXCKcefZy0NTDBzqCAAyFBJH7O2bVttbW2aNGlSst8KCWTb9vBhTTc4AKRcXC3rk7Fp0yaZpqkLL7xwzK8tKclPQkVDlZYWpOR9xpOBk7Wys7wqyM+WJBXkZys7yyPLtqOP5eZmqbQ417E60xGfp/hwn0bHPYpPJtynpIb1q6++qvvvv18PPfSQCgsLx/x6v78z6a240tICNTcHkvoe41EobEqSTNNUoLNHBfnZCnT2KGJasixbgc4eSVJ3d6+aTdPJUtMKn6f4cJ9Gxz2Kz0S5Ty6XMWIDNWnd4H/4wx90yy236J577lFVVVWy3gZJMnCy1nDrrG2JSWYAkEJJCeuamhqtXbtW3/72t3XZZZcl4y2QZEfD+rilW/3hbTNuDQApE1dYt7W1qba2Vg0NDZL61lLX1tYqFAqppqZGK1euVFNTkySprq5OX/7yl3XNNdfooosuUnNzs5qbmxUIjP9uikwyENYu99C9wSXJpGUNACkT15j11q1btW7duujXV155pSTp5ZdfVjAYVH19vcLhsKS+DVTa29v1yCOP6JFHHom+5qqrrtJ9992XyNqRRAMTzIY7dUtiy1EASKW4wnrVqlVatWrVsM/NmjVLdXV10a9vuukm3XTTTYmpDo6JNWY90LJmrTUApA57g2NYscI62rKmGxwAUoawxrCiY9bHt6z7PzF0gwNA6hDWGNbRMeuhB3lItKwBIJUIawwr5jprJpgBQMoR1hhWNKyPP8/aIKwBINUIawxrIIwHwnmAiwlmAJByhDWGFR2zjtmyTnlJAJCxCGsMa9Qxa1rWAJAyhDWGFRllb3DGrAEgdQhrDMs0Y5+6JR1teQMAko+wxrAGurmP3xSFbnAASD3CGsOKdZCHm25wAEg5whrDirk3ODuYAUDKEdYYVqxNUY62rFNeEgBkLMIaw4q1N7jBDmYAkHKENYYV+9QtusEBINUIawwr9qYofX/SsgaA1CGsMayYYc0EMwBIOcIaw4q1dMswDBkGLWsASCXCGsOKNWYt9bWuaVkDQOoQ1hiWadlyGUZ09vexXC6DpVsAkEKENYZlWvaQNdYDaFkDQGoR1hiWadpDxqsHuFwGB3kAQAoR1hiWaVmxw5oJZgCQUoQ1htXXDT78x8PlohscAFKJsMawTCt2N7jbZdCyBoAUIqwxrJHGrA3DEFkNAKlDWGNYI41Z07IGgNQirDGskcasDYOwBoBUIqwxrJG6wd1MMAOAlCKsMSzLtofdalTqO3mLljUApA5hjWGZpiVPzHXWtKwBIJUIawxrpKVbLiaYAUBKEdYYVmSkTVGYYAYAKUVYY1ij7Q1OVgNA6hDWGJZljTTBjJY1AKQSYY1hjXyQBxPMACCVCGsMa+SDPFi6BQCpRFhjWKZps3QLANIEYY1hjdgN7jJk0rIGgJSJK6xfeOEFrV69Wuecc44WLFgw6vX19fW6/vrrtWTJEl100UV6+umnT7pQpJY50gQzw5BtSzatawBIibjCOhgMavny5brhhhtGvTYcDmvt2rUqKSnRU089pa997Wu644479Pbbb590sUidkcasB1rcNK4BIDU88Vx0xRVXSJK2bds26rWvvvqqmpqatGXLFuXm5qqiokLbt2/Xpk2bdO65555ctUiZEc+zHghr0hoAUiLhY9Y1NTVasmSJcnNzo499/OMfV3V1daLfCkk00najbmOgZU1YA0AqxNWyHouWlhaVlJQMeqy4uFh+v3/M36ukJD9RZY2otLQgJe8znpiWrYL8LOXmZqkgP1uSon/m5nj7//QpNzdLpcW5Mb9PJuLzFB/u0+i4R/HJhPuU8LBO5KQjv78z6V2tpaUFam4OJPU9xiPTstTbG1Z3d68CnT0qyM9WoLNHkhQKRSRJHYEedXf3qtk0nSw1rfB5ig/3aXTco/hMlPvkchkjNlAT3g1eUlIypBU9XGsb6cuybdm25HbF2hSFbnAASKWEh/WSJUtUU1OjYDAYfeytt95SZWVlot8KSWKafSE80jpriQlmAJAqcYV1W1ubamtr1dDQIEmqra1VbW2tQqGQampqtHLlSjU1NUmSPvGJT2jq1Klav3699uzZo6eeekrPPfecvvCFLyTvp0BCmZYlSXK7Y6+zlli6BQCpEteY9datW7Vu3bro11deeaUk6eWXX1YwGFR9fb3C4bAkyefzaePGjbrzzju1atUqlZaW6jvf+Q7LtsaRgd3JRu0GJ60BICXiCutVq1Zp1apVwz43a9Ys1dXVDXps3rx5evzxx0++OjjiaFiP0rImrAEgJdgbHEOMPmbd9ycTzAAgNQhrDBEdsx5lghmHeQBAahDWGCLaDT7qBDPCGgBSgbDGEEe7wZlgBgDpgLDGENYoE8zcLN0CgJQirDHEqLPBaVkDQEoR1hgibPZNMPN6YnSDs3QLAFKKsMYQ4cgoYc3e4ACQUoQ1hhgIa0/MsO77k5Y1AKQGYY0hoi1r9yjd4LSsASAlCGsMEe4/n3rUbnBa1gCQEoQ1hhh1zJqlWwCQUoQ1hohEw9o97PP9WU3LGgBShLDGEKONWRuGIZdhsDc4AKQIYY0hRltnLfXNCLeZYAYAKUFYY4jo0q0YB3lIfZPMaFkDQGoQ1hgiHLHk9bhkGCOEtWHQsgaAFCGsMUQ4YsUcrx5AyxoAUoewxhBh0xpxvFrqO+SD2eAAkBqENYYY6AYficswWGcNAClCWGOIuMKaljUApAxhjSHiGrM2DPYGB4AUIawxRDxj1i4XO5gBQKoQ1hgi7jFrwhoAUoKwxhDhiCVPHEu36AYHgNQgrDFE/BPMUlQQAGQ4whpDxDVmzQQzAEgZwhpDRCJmXDuYMWYNAKlBWGOI+CaYiZY1AKQIYY0hwqYlTxxj1uwNDgCpQVhjiHiXbnHqFgCkBmGNQSzbVsS0OXULANIIYY1BTLNvPRanbgFA+iCsMUg4MhDW7hGvMzh1CwBShrDGIEfDOr6WNePWAJB8hDUGiYZ1HGPWkmhdA0AKENYYJBznmHV/Vstkz1EASDrCGoPE2w0+0LI2TZrWAJBshDUGiTusjf6wph8cAJKOsMYgYx2zHljqBQBIHsIag8Q/Zt0X1hG6wQEg6eIO640bN6qqqkqVlZW68cYb5ff7Y1778ssv68orr1RlZaU++clP6p577lEoFEpIwUiuMY9Z0w0OAEkXV1hv3rxZDz/8sO688049+eSTCgQCuvXWW4e9tqGhQbfccosuv/xy/c///I++973v6YUXXtDDDz+c0MKRHGOfYEY3OAAkmyeeizZt2qQ1a9bokksukSRt2LBBF198sXbv3q2KiopB1+7YsUN5eXn6u7/7O0lSeXm5/vIv/1I7duxIcOlIhrjHrPuXbkVoWQNA0o0a1qFQSLt27dK6deuij5WXl6usrEzV1dVDwvr0009XV1eXXnrpJX3qU5/SoUOH9Nprr+maa64Zc3ElJfljfs2JKC0tSMn7jAfZOUckSdOnTVLRpGzZLd0qyM+WpOifkpQX6BvW8Ho93L/jcD/iw30aHfcoPplwn0YN69bWVlmWpZKSkkGPFxcXq6WlZcj15eXl+slPfqJvfOMbCgaDikQi+pu/+Rt98YtfHHNxfn9n0g+LKC0tUHNzIKnvMZ60tAUlSR3t3Yr0htXdG1Ggs0cF+dkKdPZEr+vtDUuSurp7uX/H4PMUH+7T6LhH8Zko98nlMkZsoCZ8NnhTU5P+5V/+RTfccIM2b96sn/zkJ3rttdf06KOPJvqtkAThiCkpvr3BJSnCmDUAJN2oLeuioiK5XC75/X7Nnz8/+nhLS4uKi4uHXP/EE09o9uzZuuGGGyRJCxcuVFdXl+69916tWbMmgaUjGQbGrD2jjln37w3OmDUAJN2oLWufz6eFCxdq27Zt0cf27dunxsZGVVZWDrm+p6dHLtfgb+tyuWSxh/S4EDYtedwuGf1hHIvLxTprAEiVuLrBr7vuOj366KN66aWXtGvXLq1fv17Lli1TRUWFampqtHLlSjU1NUmSzj//fL3xxhvatGmT9u3bp9///vd64IEHdOGFFyb1B0FihCPWqF3gEuusASCV4lq6dfXVV8vv9+uuu+5SIBDQihUrdPfdd0uSgsGg6uvrFQ73TThasWKFNmzYoJ///Of613/9VxUWFupTn/qUvvnNbybvp0DCROINa07dAoCUiSusJWnt2rVau3btkMeXLVumurq6QY9dddVVuuqqq06+OqRcOGKNusZaohscAFKJvcExSNiMt2U9MMGMljUAJBthjUHGOmZNyxoAko+wxiBjnmBGWANA0hHWGCTuMWtjYDY43eAAkGyENQaJe8x6oBucpVsAkHSENQaJuxt8YOkW240CQNIR1hgk3rA2DEOGwaYoAJAKhDUGiXfMWuo7zIMJZgCQfIQ1Bol3zFrqm2RGyxoAko+wxiDhiCVPvGHtMjgiEwBSgLDGIPGOWUu0rAEgVQhrRNm2rYgZ/5i1y2UwGxwAUoCwRtRAl3b8LWvWWQNAKhDWiApHBsLaHdf1LmaDA0BKENaIOhrWY+gGZ7tRAEg6whpR0bCOd8zaoGUNAKlAWCMqPNYxaxezwQEgFQhrRI25G9xgnTUApAJhjagTG7OmZQ0AyUZYIyq6dGss66wJawBIOsIaUWPvBueITABIBcIaUSfSDR5hNjgAJB1hjaixzgZ3G6yzBoBUIKwRNdCy9sR7nrXbiL4GAJA8hDWixtoN7vO4FeyNyLbpCgeAZCKsETXmsPa6FDFthcK0rgEgmQhrRIXHuHQry9t34EdXTzhpNQEACGscIzpmHXfLeiCsI0mrCQBAWOMY4Yglj9uQyzDiuj7asg7SsgaAZCKsERWOWHGPV0t9Y9YS3eAAkGyENaLCphX3eLV07Jg13eAAkEyENaLCEXOMLWsmmAFAKhDWiApHLHk87riv97gNuV2GuoK0rAEgmQhrRIUjY+sGNwxDudkeddOyBoCkIqwRFTbHNsFMknKzPepkzBoAkoqwRlRkjLPBJSk3y8vSLQBIMsIaUWNduiVJedkeddOyBoCkIqwRNdYxa0nKyfYwGxwAkoywRtSJjFnnZXsJawBIMsIaUSfSDZ6b7VGw15RpcfIWACRL3L+ZN27cqKqqKlVWVurGG2+U3++PeW0kEtGDDz6oCy64QKeffro+85nP6I033khIwUieEwrrLI8kMW4NAEnkieeizZs36+GHH9b3v/99zZo1Sxs2bNCtt96qxx57bNjr77jjDu3YsUP33HOP5syZo4MHD6qwsDChhSPxTmTMOje77yPU1RNRQa4vGWUBQMaLK6w3bdqkNWvW6JJLLpEkbdiwQRdffLF2796tioqKQdfW1dXp2Wef1fPPP6/y8nJJ0qxZsxJcNpLhxNZZeyWx5SgAJNOov5lDoZB27dql5cuXRx8rLy9XWVmZqqurh1z/yiuvaPbs2frNb36j888/XytXrtSPf/xjmaaZ2MqRULZtn/CYtSS2HAWAJBq1Zd3a2irLslRSUjLo8eLiYrW0tAy5fv/+/dq3b59ef/11Pfjggzp8+LDuuOMOeb1efeUrXxlTcSUl+WO6/kSVlhak5H3SWTjS95epyYU5g+6H3dKtgvxsSYr+eaySybmSJLfXzX3sx32ID/dpdNyj+GTCfYqrG3wsbNtWOBzWfffdp7KyMknSgQMH9MQTT4w5rP3+TlmWnegSByktLVBzcyCp7zEeDEwQC/WEB92P7t6IAp09KsjPVqCzZ8jrXFP6wvpQcyf3UXye4sV9Gh33KD4T5T65XMaIDdRR+zyLiorkcrmGzP5uaWlRcXHxkOtLSkrk8/miQS1Jc+fO1aFDh8ZSN1IsbPYtvRprN3hO1kA3OGPWAJAso/5m9vl8WrhwobZt2xZ9bN++fWpsbFRlZeWQ688880yFQqFB4dzQ0KAZM2YkqGQkw0A3uGeMYe12GcrJcquTCWYAkDRx/Wa+7rrr9Oijj+qll17Srl27tH79ei1btkwVFRWqqanRypUr1dTUJEmqqqrS/Pnz9c///M/as2eP3nzzTW3cuFHXXHNNUn8QnJxw5MRa1lLfLmasswaA5IlrzPrqq6+W3+/XXXfdpUAgoBUrVujuu++WJAWDQdXX1ysc7mtZeTwebdy4UXfddZeuvvpqlZSU6POf/7y++MUvJu+nwEmLhrXbPebX5mZ76AYHgCSKe4LZ2rVrtXbt2iGPL1u2THV1dYMeKy8v1yOPPHLy1SFlTnTMWhrYH5yWNQAkC3uDQ1LfWdbSCYZ1Dod5AEAyEdaQdLJj1h5a1gCQRIQ1JB07Zn2C3eDBsGw7uWviASBTEdaQdJJj1jkemZatUJhjMgEgGQhrSDr5pVsSh3kAQLIQ1pB0dAeygR3JxiKv/zCPTpZvAUBSENaQJDW39yjb544G71gMtKzZGAUAkoOwhiTpSFtQUwpzZBjGmF8bPSaTbnAASArCGpKkI+09Kp089AjMeOTnDIxZ07IGgGQgrCHbttXcHlTp5JwTej0TzAAguQhrqKM7rFDY0pTCE2tZ+7wuuV2GuoK0rAEgGQhr6EhbUJI05QRb1oZhsOUoACQRYQ0194f1iXaDS2w5CgDJRFhDze09knTC3eDS0S1HAQCJR1hDR9qCmpTnU5Z37GdZD+hrWRPWAJAMhDXU3BY84WVbA/JyvGyKAgBJQlijb4114YmPV0t9G6PQsgaA5CCsM1zEtNTS0aspJ9myzs/2KthryrQ4eQsAEo2wznAtgV5Ztn3SLeu8/l3MAt20rgEg0cZ+agMmlKbWvmVb+Xk+dfUOHXO27Pi+z4ySXElS45EuTc7PSlh9AADCOuMd8ndJkhoPd6q9s3fI85UVpXF9n/Kp+ZKkfU2dOu2U4sQVCACgGzzTHWnvkWEcPTnrRBXk+lRUkKV9hwMJqgwAMICwznD+jh7lZXvlco39aMzjlU/NV8PhzgRUBQA4FmGd4Vrae5Sf6z3h1xsuQ129EXX1RjSjJFcH/d1q61B32KEAACAASURBVApFH4swORwAThpj1hnuSHtPdHLYiegNm6re3SxJCoZMWZatl/+wTyX9W5cuXTRNniw+ZgBwMmhZZ7CeUESdwbDyc068ZX2s4oK+WeCtgaET1QAAJ46wzmBH+g/wOJlu8GMV5HrlcRtqCfQk5PsBAPoQ1hls4GjMggS1rA3DUFFBllo7aFkDQCIR1hnsSFtiW9aSVFSQpZZAr2w7zt1UAACjIqwzWFNrt3xe10kdjXm84oJshSOWuoKcwAUAiUJYZ7Daj1o1b2ahDOPk11gPKJrUN8mMcWsASBzCOkMdbgvqoL874VuDDuwLzoxwAEgcwjpDvbvXL0laPDexYe31uDQpz6cWJpkBQMIQ1hmqZq9f04pyNLXo5I7GHE5RQRYtawBIIMI6A/WGTe1qaNUZ80uS8v2LC7LUGQwrFDaT8v0BINMQ1hmorqFV4YilJckK60mMWwNAIhHWGah6r18+r0sLyicn5fsXT+rbF9zfwYxwAEgEwjrD2Latd/f6tXhOsbyexK2vPlZOlkc5WR4mmQFAghDWGeagv1tH2nuS1gU+oGRSlvzttKwBIBEI6wxT079k64x5yQ3r4knZau8KqTfEJDMAOFlxh/XGjRtVVVWlyspK3XjjjfL7/aO+5r333tNpp52m66+//qSKROL8aU+zyqbkRc+bTpaB77+/uTOp7wMAmSCusN68ebMefvhh3XnnnXryyScVCAR06623jviaUCikdevWaenSpQkpFCev/mCH9uxv13lnzEj6e5X0TzLb10RYA8DJiiusN23apDVr1uiSSy7RokWLtGHDBr311lvavXt3zNf88Ic/1LJly3TOOeckrFicnN+89ZFyszw6/8yZSX+v3GyPcrLcajgcSPp7AcBEN2pYh0Ih7dq1S8uXL48+Vl5errKyMlVXVw/7mnfeeUdbt27VN7/5zcRVipPS1NKtP9Y168Kzy5ST5UnJexZPyqZlDQAJMOpv7dbWVlmWpZKSwROSiouL1dLSMuT6YDCo2267TXfffbdyck5uK8uSkvyTen28SksLUvI+Tvqv3+2Vx+PSNZ9ZqKKCo+PVdku3CvJjj197vZ7o88Ndd+zzx5sxJV/v7GpSwaQcZafoLwjpIBM+T4nAfRod9yg+mXCfEv4b9P7771dVVZXOPffck/5efn+nLMtOQFWxlZYWqLl5YnfV+jt69fL2Bi1bPF3t7UG1twejz1m2FOiMvcQqHI4o0NmjgvzsYa8beH44BTke2bb0x50H9bFZydmAJd1kwucpEbhPo+MexWei3CeXyxixgTpqWBcVFcnlcsnv92v+/PnRx1taWlRcPPTEpu3bt2vPnj365S9/KUmyLEu2bWvx4sV68cUXVVZWdiI/B07CC9sbFDFtlU7O1vbapkHPVVaUJu19S/q3Hf3wUCBjwhoAkmHUsPb5fFq4cKG2bdsWbS3v27dPjY2NqqysHHL9j370I/X0HG1pPfHEE3r33Xd17733aurUqQksHfGImJZerzmo2dPyNSnPl9L3zsnyqCDXq4ZD4/9vvQDgpLhmg1933XV69NFH9dJLL2nXrl1av369li1bpoqKCtXU1GjlypVqauprsc2ePVsVFRXRf0pKSpSbm6uKigp5vd6k/jAYas++NgV7I5o3c1LK39swDJVPzdeHTYQ1AJyMuMasr776avn9ft11110KBAJasWKF7r77bkl9E8rq6+sVDoeTWihOTM0HfnnchmaU5Dny/uXTClT7doN6w6ayvMnZixwAJrq4J5itXbtWa9euHfL4smXLVFdXF/N1N91004lVhoSo2evXqWWF8nqc2Vm2fGq+bFvad7hTp5YVOlIDAIx37A0+gTW3BXXQ363Fc4dOBEyV2dP6Zjd+eLDDsRoAYLwjrCewdz/o27/9NAfDenJ+loonZaluX5tjNQDAeEdYT2A1e/2aOjlHpZNPbnOak2EYhhbPKdauj1qTvmYeACYqwnqCCoVN7fqoVWfML5FhGI7WsuiUInX1RNgnHABOEGE9QdXta1MoYmnJ/OSeWx2PxXOKJEk7P2x1uBIAGJ8I6wmqZq9fPo9LC8qd3zmsMD9LZaV52vnh0L3kAQCjI6wnINu2VbP3iBbOKZIvTdY2L5pTpD372xWOmE6XAgDjDmE9ATW1BtXc1pMWXeADFp9SrHDE0vv7250uBQDGHcJ6AtpR39fdfLqDS7aOt6B8slyGoZ0fMW4NAGNFWE9AOz9s0ZTCbE0tynW6lKicLI/mzZzEJDMAOAGE9QRjWpZ2NbQ6uhFKLItPKdKHhzrU3cM+8gAwFoT1BFN/IKBgr6nTTkmPsDZchrp6I+rqjWjuzELZtvTnvf7oYxHL6QoBIP3FfZAHxocdH7bIkLSwf22z03rDpqp3N0uSTMuWx23oteoDCoX7ZoUvXTRNniw+hgAwElrWE8yOD1s0Z3qB8nPS7+xwt8tQSWG2Wjp6nC4FAMYVwnoCCfZG9EFjR1qOVw+YnJ+ltkBIts0+4QAQL/ofJ4CIJfWGI3p3r1+WbWteWaG6eiPR59Pp/Iyi/CyFTUtdPZG0bP0DQDoirCeA3nBE22ub9PbOJnnchlo6gtpe2xt9vrKi1MHqBptc4JMktQV6CWsAiBPd4BPIQX+3phblyu1K3/+sk/OzJEltnb2jXAkAGJC+v9UxJl09YbV3hTSzJH02QhmOz+tWbrZHbZ0hp0sBgHGDsJ4g9h/ukiTNmJLncCWjK8rPUmuAljUAxIuwniDe39+uyfk+Tc73OV3KqCYX+NTeFZKVTjPfACCNEdYTwP7DnfJ39Ohj5ZNlGIbT5Yxqcn6WLMtWoJttRwEgHoT1BPD7HYfkchmaN2OS06XEhUlmADA2hPU4Fwqb2l57WHOm5SvL53a6nLgU9nfVE9YAEB/Cepx7p65Zwd6IPjZrstOlxM3jdqkg16s2JpkBQFwI63Hu1eoDmlKYrWnFOU6XMiZFBVlqZfkWAMSFsB7HDrV0q25fmz5++vRxMbHsWJPzsxToCinMGZkAMCrCehx7871DchmGli2e5nQpYzY53ydbUlNLt9OlAEDaI6zHsT372nTKjAIV9s+uHk8mF/TVfNDf5XAlAJD+COtxyrQs1R/q0LyZ42O51vEm5frkMqQDR2hZA8BoCOtxqrG5S6GwpfkzC50u5YS4XIYm5floWQNAHAjrcWpvY7skaf44bVlLfTPCDxwhrAFgNIT1OLX3QIcm5flUUpjtdCknrKig70CPrh62HQWAkRDW49TeAx2aP3PSuFuydayigr6/aOw/3OlwJQCQ3gjrcagzGFZTS/e4nVw2oKh/RngDYQ0AIyKsx6EPDnRI0ridXDYgJ8ut/Byv9jUR1gAwEsJ6HNrb2C7DkOaOk1O2YjEMQ7NK87SPljUAjIiwHoc+ONCu8tLxc8rWSMpK89V4pEumxbajABALYT3OWLatDw52aF7Z+O4CH1BWmqeIaemQn81RACAWwnqcOejvVrDXHNfrq49VVpovSXSFA8AI4g7rjRs3qqqqSpWVlbrxxhvl9/uHva62tlY333yzqqqqdNZZZ+lzn/uc3nzzzYQVnIkiltTVG1FXb0S1H7VKkmZMyYs+ZtkOF3gSphXlyOM2mBEOACOIK6w3b96shx9+WHfeeaeefPJJBQIB3XrrrcNeu3PnTpWVlemBBx7Qli1bVFVVpa9+9avau3dvQgvPJL3hiLbXNml7bZPerm2Sz+vSR4c6oo9FxvF4r9vt0swSJpkBwEg88Vy0adMmrVmzRpdccokkacOGDbr44ou1e/duVVRUDLr2s5/97KCvb775Zv32t7/VG2+8ofnz5yeo7Mx1pC2oKYU543ozlOOVT8vXux+0OF0GAKStUVvWoVBIu3bt0vLly6OPlZeXq6ysTNXV1aO+gW3bamtr06RJE2OM1UmhiKm2zpBKJ4/fLUaHUz61QB1dIbV3hZwuBQDS0qgt69bWVlmWpZKSkkGPFxcXq6Vl9NbQpk2bZJqmLrzwwjEXV1KSP+bXnIjS0oKUvM+Jslu6VZCfrX1NAUnS7OmFKsg/Gther2fQ18cb6fmxvHa4607mvSUpNzdLZ1SU6smX96ij19Spp6T3f4t4pPvnKV1wn0bHPYpPJtynuLrBT9Srr76q+++/Xw899JAKC8e+1Mjv75SV5NlTpaUFam4OJPU9TlZ3b0SBzh41HOrbuSwvy6VAZ0/0+XA4Mujr4430fLyvLcjPHva6k3lvSeru7lVB/3rx93YfVnlxTsxrx4Px8HlKB9yn0XGP4jNR7pPLZYzYQB21G7yoqEgul2vI7O+WlhYVFxfHfN0f/vAH3XLLLbrnnntUVVU1hpIRy5G2oArzfPJ5x/9mKMfKz/GqqCCLSWYAEMOoYe3z+bRw4UJt27Yt+ti+ffvU2NioysrKYV9TU1OjtWvX6tvf/rYuu+yyxFWbwWzbVnNbj6ZMsPHqAbOn5hPWABBDXEu3rrvuOj366KN66aWXtGvXLq1fv17Lli1TRUWFampqtHLlSjU1NUmS6urq9OUvf1nXXHONLrroIjU3N6u5uVmBwPjvpnBSoDus3rCp0snju5v4eIbLUFdvRNNLcnXQ36WWzt7o+vHI+F2RBgAJFdeY9dVXXy2/36+77rpLgUBAK1as0N133y1JCgaDqq+vVzgcliS98MILam9v1yOPPKJHHnkk+j2uuuoq3XfffUn4ETLDkfagJE24meC9YVPVu5tl25JlS8++9kH0gJKli6bJk5XUaRUAMC7E/Ztw7dq1Wrt27ZDHly1bprq6uujXN910k2666abEVIeo5rYeedyGCvOznC4lKaYV5yg326MPDnSM+9PEACDRaLakgYjVt0tZLJZ9dDMU1wTaDOVYhmFo7oxJ2vlhi3pCEWX7+GgCwAB+I6aBge1EY1k0t1gtgV6dPjf27PuJYN7MSdpR36L6gwEtmlPkdDkAkDYI63Fg/+FO2bY0ZYJNLjteUUGWigqyVH+gQ4vmFEUnn8WS5fXIw7lxADIAYT0OfHSobyb9lMKJNblsOPNmTtI7dc3q6ApFJ5/FwgQ0AJmCdsk48NGhgPJzvMrJgGAamFz2wYEOhysBgPRBWKc5y7L14cGOCbdkK5bcbI9mlOTqgwMdsu1xfFA3ACQQYZ3m9uxvV6A7rFMyaDnTvJmT1BkMq+6jNqdLAYC0QFinsXDEUvX7RzR35iTNKs1zupyUOWV6gQpyvXr6lb2KmGxjBgCEdRrrW3Ns6q/OO0XGBF1fPRy326WPnzZd/vYeVb/vH/0FADDBEdZpKtgb0Y76Fs2elp9RXeADppfk6tzF07Tzwxa1dMQ+YhMAMgFhnaZq9vplWrbO+lip06U45vKqU5Tldev37zXJYrIZgAxGWKehDw50aPe+Nn1sVqEK831Ol+OY3Gyvli6aKn9Hj3Y3MNkMQOYirNOIaVl6a0eTXq85qNLJOTozg1vVA06ZXqDpxbmqft+vUMR0uhwAcARhnSYC3SE9/1aDdu9r02lzi/TppeXK9rmdLstxhmHonAWl6g2b2lHf6nQ5AOAIwjoNvLvXr+fe/Egd3WFdeHaZzlkwVS5X5sz+Hk1JYbZOmV6g2g9b1N0Te69wAJioCGsHmZal//7f9/XTX+1Qfq5Xf7Vijsqn5jtdVlo6q2KKLMtW9ftHnC4FAFJu4m82naZaA73a+Ox72r2/XVVLZmjOtHy53fzdKZaCXJ8qZk9WXUObFp9SpML8LKdLAoCUIR0cUPthi/7l0bf1YVNAN1y+WNd86mMEdRyWzC+Rx+XSH3fTugaQWWhZp9iLf9inJ1/eo+nFufrW589W2ZS8Ec9sxlHZPo9Om1esP+85osOt3U6XAwApQ3Muhf60p1m/fGmPzvpYqW5f/Rcqm5I5+30nyqI5RcrJcuudumZO5QKQMQjrFDno79J//Hqn5kwv0A2XL1a2j06NE+H1uFR56hQ1t/WoZi/7hgPIDIR1CnT3RPTg5nflcbv0d3+1SGHLVldvJPqPRQNxTE4tK1Rhnk+/fqNepsWpXAAmPpp3SWbbth55bqea24K6+C9m6f397ZLaB11TWcFOZWPhchk6q2KKfvenA3qt5qAuOLPM6ZIAIKloWSfZH3c36097juj/nHeKphfnOl3OhFE+NV/zZk7S5t/t1UF/l9PlAEBSEdZJ1Bs29eTLezSrNF8XnD3L6XImFMMwdP3KBXK7DP3w/61WR1fI6ZIAIGkI6yR67vcfyd/Rqy98ukJutg9NuCmFObr56kp1dIX04OYa9YY56APAxERYJ0lTa7ee3/aRlp82TRXlk50uZ8KaN3OSbvg/p6n+QIf+49c7OfcawIREWCeBbdv65Ut75Ha79LkLT3W6nAnv7IpSXXPRqfrj7ma9uH2f0+UAQMIR1knwm7c+Us1ev66smqvJ7GGdEpcsLddZH5uip363Vx8e6nC6HABIKMI6wV6tPqDNr3yg5adN0yVLy50uJ2MYhqE1ly7SpDyfHn52h4Js4QpgAmGddRxs21ZDU6eq9x7Ru3v9CkcsLZhdpIVzJmv+zELl53rlMgy9U3dYjz2/S2fMK9HfXrpILoNJZclkuIxB+6obLkNfXLlQDz5VrV88v0tfufx0efjrKIAJgLAeRXdPWN//5Z/U0NQpQ9Kc6QXKzvLod39q1It/6BsfNQwpN9urnt6I5s2cpBuvPF0eTtFKut6wqerdzUMeXzK/RNtrDyvLW6svfmYB/y0AjHuE9QhMy9JPnt2hxuYufe6iU2XbtnKy+m7Z0oWlam7rUWugV71hU5PyfMryunVF1Vxl+dwOV57ZzphfonDE0us1B3XQ36UbrzxDHrehN949pDffO6jCPJ9WLpujxacUyaD3A8A4QFiP4L9efl876lv0pb9cqHMWTtX22qboc263S9NLcjW9pG9XsnNPmy67f5Pv4Y68ZP/v1HEZhv5i4VQtP32GNv12l27/2TaFIqYipq25MyZpX3OX7v+vP6t8ar4uX3GKzllQSmgDSGuEdQy/+1OjXnpnvz69tFyfrJw56pnTsbpkB7D/d+qdNq9YK8+drXd2N6sg16uKWZM1uSBLpmXpgwMd2tvYoR9veU9zZxTo6gtO1aI5RU6XDADDIqyH0dAU0P99cbeWzC9hnfQ4N7kgS586Z/BWr26XSx+bNVnXfqpC1XuO6JnXPtC//vJPOrWsUDOn5Kq4IFuTC7Lk87jkcbvkchlq7+xVc3uPjrT3yLJsZXndys5yq3xqvs47fYa8zGQDkESE9XEsy9Yv/r9dysvx6iuXL5aLbUInLJfLUNWSGTp30VRt/WOj3q5t0p/f98fcZ9zjNlRSmCOP21BPr6meUET/+8dGPffmh/qrFafovDNmpPgnAJApCOt+EUvqDUe09Y/79eGhgNZcukgyji4NYsx54jl26dcnzpypT5w5U5IUjlgKdIckudQTCss0LRXk+TQpzxddjpfl9cht2Nr5Yaueee0DPfZ8nf7nzQ+1csVcnTWvWMWTsp36sQBMQIR1v95wRP/7zn79+o16lZXmKWKagyaUMeY88cQzz2BvY6sk6VBL96DnBiYUnjJzkv6fz1VqR32LfvenRv3f53fpCUNaOKdI82ZM0oySXE0vztPkfJ/ysr3yeV1MZgMwZoR1P9u2tW1nXzgvWzyNX6gY0XBBv2zxNC1dPF3Ve5rV3BrU8w0NMo/rkvG4XZpenKN5Mydp3sxClZXmacqkbBXk+WRICnSHdailW929EZ0+t5g14gAkEdaS+sapn32tXo1HurR04VTl53idLgnjVGF+ls762BSde9p0RcKmmtt7dLi1W53dYXX3RNQZDOuAv0vv1DXr1eqD0dd53Ia8HpeCvUeP+ZxRkqvPX1yh0+YWO/GjAEgjcYf1xo0b9fjjjysQCOi8887T3XffrZKSkmGvra+v1x133KHq6mpNmTJFX//617Vq1aqEFZ1I3T1hPfT0u/rz+0e0YPZkLZjDcZY4ece3vL0elwrzfSrM96msNE83rjpDh1uCOtzarZZAr1o7ehWKmCqdnKOpRTmKmNIzr7yv+//rzzpjfomWLZ6meTMnqSDXpyyvZ0zbqEZMS26XMWxvkW3b8rf36P0D7TrcGlQobCkUMWVZtgpy++otys9S+dR8FRVk0eMEOCSusN68ebMefvhhff/739esWbO0YcMG3XrrrXrssceGXBsOh7V27VotXrxYTz31lKqrq3XHHXdo1qxZOvfccxP+A5yonlBE7ze26+lX69VwKKC/vvBU5WSx8xhSIxSx9FH/6WA5PrdypuRGn+sKhlVZUarPBMu188NWvfuBX+/u9UuSCnK9mpTnU3dPRF09YdmWlOVzK8vrls/bt8zM7XJJstUVjKizJ6zeUF9r3ed1yec5em2W162WQO+g2e9ulyGf1y1DUvdxewsU5Ho1Z1qB5s4s1PyZBTpl+iRNyvOd0M9vWbZ6QpHoMIGhvo2GfJ7Uj+nbtq32rpBaA70KdIfVGQzJNG1NLcrR9JI8Tcr18pcUOC6usN60aZPWrFmjSy65RJK0YcMGXXzxxdq9e7cqKioGXfvqq6+qqalJW7ZsUW5urioqKrR9+3Zt2rRpzGGdqGVT9Qc79H5ju4L9y20OtwbV2Nwp07KVm+3Vui+crVnTClT9/pGY38Pjdik3O3b3+Mk8n8zvnaj3zsnyyIwMvS4danPi+VjPDdynRLx3QV6Wlp02XUsXTVVbIKQjHT1q6ehRfo5XvWGzP9iksGnLNG1FTEu2LRXkeSVbys7yKC/bo2yfR5ZlK2xaCoVNmZat3rCpcNjUqeWTVT41X7Om5mvq5Bx53C5ZtvTu3iOyLFu9oYi6e021dfaqLdCrls5evb3zkLbtPCRJ8nnd8npc8rld8vb/ZcDrdcnrcSnL3ffvLpeh7p6IAt0hBbrD6u6NKBwxZQ+zwsLtMpTl8ygny62c/j+zfR5l+9zKyfIoO8sty7L7ewAsdQXD6giG1dHZq55eUxHbkhnp+8YDr8nJ8ig3y63sLK9ystyybVvhiK1QxFRbZ0hH2oLqDZtDi+nXt6beI6/bkNfjls/T9/P1/eOWz9v3uKG+v4SF+/+JREz1mrYs05LP41KWz6Msn1vZXnf0L1juEX7H5eb61N09/DLC49mSTNNST6jvd1xPyFJPKKLesKlQ2JLP61aWz6Usr0fZ3r5asn2uY97fOOZ/+847GMQY/PzAvxhy/i8xubn+uO/TsWwd/f+NadoKW5bMiKWIZSliSmbEUtiyJEnZA59Fr0dud182ed1unbtoanQL6pM1Wt4Ztj3c/2WOCoVCqqys1GOPPTYobC+66CJ97Wtf01//9V8Puv6HP/yh/vjHP+rxxx+PPvbMM8/o3/7t3/TKK6+cyM8AAEBGG3Xkq7W1VZZlDRmfLi4uVktLy5DrW1pahr3W7/efZKkAAGSmhK8LGaWhDgAAxmjUsC4qKpLL5RrSMm5paVFx8dAlJSUlJcNeG2vmOAAAGNmoYe3z+bRw4UJt27Yt+ti+ffvU2NioysrKIdcvWbJENTU1CgaD0cfeeuutYa8FAACji6sb/LrrrtOjjz6ql156Sbt27dL69eu1bNkyVVRUqKamRitXrlRTU9/uX5/4xCc0depUrV+/Xnv27NFTTz2l5557Tl/4wheS+oMAADBRxTXn/Oqrr5bf79ddd92lQCCgFStW6O6775YkBYNB1dfXKxwOS+priW/cuFF33nmnVq1apdLSUn3nO99JqzXWAACMJ6Mu3QIAAM7ilAAAANIcYQ0AQJojrAEASHOENQAAaS6jw3rjxo2qqqpSZWWlbrzxRrZEPc5PfvITXXHFFTrzzDP1yU9+Ut/97nfV1dXldFlp7e///u+1YMGCQfsS4KgdO3Zo9erVqqys1NKlS3XLLbc4XVLa6ejo0G233abzzjtPZ511lq699lpt377d6bIc9cILL2j16tU655xztGDBgiHPV1dXa9WqVTrjjDN06aWXTshzKDI2rAeO/bzzzjv15JNPKhAI6NZbb3W6rLTypz/9SV/+8pf19NNP6/7779frr7+u7373u06Xlba2bNkyaDMgDLZ3716tXr1aS5cu1VNPPaUnn3xSl112mdNlpZ17771XO3bs0I9//GM9++yzOuOMM7R27VoFAgGnS3NMMBjU8uXLdcMNNwx5rrW1VV/5yld09tln65lnntEVV1yhr3/96/rwww9TX2gy2RnqyiuvtB944IHo1w0NDXZFRYVdV1fnYFXp7Te/+Y29dOlSp8tIS4cOHbIvuOACu7Gx0a6oqLDfeustp0tKO1//+tft2267zeky0t6ll15qP/7449GvA4GAXVFRYdfU1DhYVXp466237IqKikGPPfbYY/aFF15oW5YVfezzn/+8fd9996W6vKTKyJZ1KBTSrl27tHz58uhj5eXlKisrU3V1tYOVpbfW1lYVFBQ4XUZaWr9+vdauXauZM2c6XUpaMk1Tr732mmbOnKnrr79e5513nv72b/9Wu3fvdrq0tHPmmWfqxRdfVGtrq0zT1ObNmzV9+nSdeuqpTpeWlmpqarRs2TIZxxzC/fGPf3zC/S7PyLAe67GfkAKBgH7+85/rs5/9rNOlpJ0nn3xSkUhE1157rdOlpK2WlhYFg0H97Gc/02WXXaaf/vSnmjZtmtasWaPOzk6ny0srt99+uwoKCrR8+XKdccYZ+o//+A9t3LhROTk5TpeWloY7VKqoqGjCzUHKyLDG2IRCId10000qLy8fdswokx04cEAPPfQQY/mjsCxLkrRy5Upde+21Ou200/Sd73xHlmXpd7/7nbPFpZnHHntMjY2N+sUvfqGnnnpKl156qW688Ua1t7c7XVpasjNkE86MDOuxHvuZySKRiL7xjW+oq6tLDz30kDyeuLaTzxg7d+7UkSNH9OlPf1qLFy/W4sWLJUlf+tKXdNtttzlcXfooKiqSTXGt8gAAA9NJREFU2+3W3Llzo495vV6Vl5fr4MGDDlaWXnp6evSjH/1It99+uz7+8Y9r8eLFuu222+T1evXcc885XV5aKikpGdIj2traOuGOZc7I37zHHvs5cMDISMd+ZirLsvRP//RPamho0OOPP668vDynS0o7y5cv169+9atBj11++eX67ne/q6qqKoeqSj8+n0+LFi3SRx99FH0sEomosbGRcf5jRCIRhcNhud3uQY8bhpExLcixWrJkiX7xi18MemwiHsuckS1raeRjP9Hn9ttv17Zt2/T9739f4XBYzc3Nam5ulmmaTpeWNvLz81VRUTHoH0maNWuWpk2b5nB16eVLX/qSfv3rX+tXv/qV6uvrtWHDBrlcLl1wwQVOl5Y28vPzdfbZZ2vDhg2qqanRRx99pB/84AdqbGzUihUrnC7PMW1tbaqtrVVDQ4Mkqba2VrW1tQqFQrr88svV2dmpe+65R3v37tVPf/pTVVdX65prrnG46sTK6FO3Nm7cqMcff3zQsZ9Tpkxxuqy0MdzmA5L08ssva9asWSmuZvxYsGCB/vM//1PLli1zupS084tf/EKPPvqoOjo6tGTJEt1+++3Mcj5OU1OTvve97+mtt95SMBjU/PnzdfPNN+uTn/yk06U55umnn9a6deuGPD7wu+jPf/6zvvOd72j37t0qLy/Xt7/9bZ1//vkOVJo8GR3WAACMBxnbDQ4AwHhBWAMAkOYIawAA0hxhDQBAmiOsAQBIc4Q1AABpjrAGACDNZeR2o0CmirXRzYCysjJt3bpVjzzyiLZs2aLGxkbZtq05c+Zo9erVuuqqq1JUKYBjEdZABnn99dej/15TU6Mbb7xR//3f/60ZM2ZIUnRP6rKyMv3DP/yDZs+eLZfLpa1bt2r9+vUqKCjQxRdf7EjtQCYjrIEMUlpaGv33wsJCSX3nuB/7uNR3lOWx1qxZo2effVZvv/02YQ04gDFrACOyLEuvvvqq6uvr2e8ccAgtawDDqqur07XXXqve3l55PB7dfvvt+tSnPuV0WUBGIqwBDGvu3LnasmWLurq69Prrr+vee+/V1KlTJ9xpRsB4QFgDGJbP59OcOXMkSYsXL9b+/fv17//+74Q14ADGrAHExbIshUIhp8sAMhItawBD3Hvvvbrkkks0ffp0BYNBvfLKK3rmmWf0rW99y+nSgIxEWAMY4vDhw/rWt76l5uZm5eXlae7cubrvvvt0+eWXO10akJEM27Ztp4sAAACxMWYNAECaI6wBAEhzhDUAAGmOsAYAIM0R1gAApDnCGgCANEdYAwCQ5ghrAADS3P8Px1LHuaGIe/AAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['T3'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:18.716059Z",
+ "iopub.status.busy": "2021-12-15T11:04:18.715029Z",
+ "iopub.status.idle": "2021-12-15T11:04:19.096128Z",
+ "shell.execute_reply": "2021-12-15T11:04:19.096702Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:21.815477Z"
+ },
+ "papermill": {
+ "duration": 0.50071,
+ "end_time": "2021-12-15T11:04:19.096927",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:18.596217",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHqCAYAAAB7pFb5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3CT94E3+q/utmzZlmWZi3HbQBAGFjknp9jYC50TA1uy87ZhOaQ5DJDA2WQdnG62uEOn4AQzsMAk804hl0kxZEqa+vXrZQw46fHpNK+303KS5eJmW0SzFhjqNsaAkSVZlnW/nT9kKQjbWAbLeiR9PzOewvP89Dw/PVXMV7+rKBQKhUBEREQZTZzsChAREVHyMRAQERERAwERERExEBAREREYCIiIiAgMBERERARAmuwKJJvV6kAwmJyZlxpNLszmkaTcOxPw+SYen3Fi8fkmXiY9Y7FYBLU6Z8LzGR8IgsFQ0gJB5P6UOHy+icdnnFh8vonHZxzGLgMiIiJiICAiIiIGAiIiIgIDAREREYGBgIiIiMBAQERERGAgICIiIjAQEBERERgIiIiICAwEREREhCkEgqamJqxcuRLl5eWoq6uD2WyesGxvby+2bt0KvV6PmpoanDlzJnrO5/PhjTfewNNPP43y8nLU1NTg7bffht/vj7nGb3/7Wzz99NNYtmwZNmzYAIPBEHPeZDKhrq4O5eXlWLlyJY4fPx7vWyEiIqL7xBUITp8+jWPHjqGxsRGtra2w2+2or68ft6zP50NtbS00Gg3a2tqwY8cO7N27F5cuXQIAuN1u9PT0oL6+Hh9//DEaGxvxb//2bzh27Fj0Gjdu3MD3v/99rF+/HmfPnsWTTz6Jl156CTabLVpm586dsNvtaG1tRWNjI37605+ivb39UZ4FERFRxhKFQqFJd3X4h3/4Bzz11FN49dVXAQB9fX1Ys2YNfvnLX0Kn08WU/fd//3fU19fj/PnzUCqVAIAf/ehHcLvdePvtt8e9/vvvv4+Ojg6cPXsWAHD48GF88cUXaG5uBgCEQiHU1NTgH//xH7FlyxYYjUY888wz6OzsRGlpKQDgrbfewu9+97uY1oh4mM0jSdvYQqtVwWSyJ+XemYDPN/H4jBOLzzfxMukZi8UiaDS5E5+f7AJerxdGoxErVqyIHistLUVJSQkuX748przBYIBer4+GAQCoqqoat2yE1WqFSqWKuca99xOJRFixYkX0GleuXEFJSUk0DETuYTQa4fV6J3tLREREdJ9Jtz+2Wq0IBoPQaDQxxwsLC2GxWMaUt1gs45adaMzBrVu3cOrUKbz22msx1ygsLIwpp1arcfXqVQCA2Wwe9x6BQABDQ0MoLi6e7G1FPSgtzQStVjV5IXpofL6Jx2ecWHy+icdnHDZpIJiqOHogomw2G2pra7F69Wo888wzcV9jKveYDLsM0hefb+LxGScWn2/iZdIzfuQuA7VaDbFYPOYb/njf4gFAo9GMW/b+b/QOhwP/9E//hHnz5uFf//Vfx1zj/tYHq9UavV9RUdG495BIJCgoKJjsLREREdF9Jg0EcrkcZWVluHjxYvRYX18f+vv7UV5ePqa8Xq+HwWCAy+WKHrtw4UJMWbfbjZdffhlZWVl46623IJVKx1zj3vsBwMWLF6PXWLZsGfr7+9HX1xdzj7KyMsjl8sneEhEREd0nrmmHmzdvxsmTJ9HZ2Qmj0YiGhgZUVlZCp9PBYDBg3bp1GBgYAACsWrUKxcXFaGhoQE9PD9ra2tDR0YEtW7YACE9L/Od//mdYLBbs378fNpsNJpMJJpMper/vfe97+MMf/oDjx4/jxo0bOHjwIBwOB77zne8AAMrKyrB8+XI0NDTAaDSis7MTH3zwAZ5//vnpfj6URvxBwOHxT/jjDya7hkREyRPXGIKNGzfCbDZj3759sNvtqK6uxoEDBwAALpcLvb298Pl8AMItCk1NTWhsbMSGDRug1Wqxf/9+VFRUAAAGBgZw7tw5AMDf/d3fxdwnMmhwwYIFeOedd/Dmm2/i7bffhk6nw4kTJ5Cfnx8te+TIEezduxfPPfccVCoVXn75Zaxfv/4RHwelM4/Pj67ugQnPL188C1LFtA+rISJKCXGtQ5DOOKgwfd3/fB2eyQNBDgPBlPAznFh8vomXSc/4kQcVEhERUfpjICAiIiIGAiIiImIgICIiIjAQEBERERgIiIiICAwEREREBAYCIiIiAgMBERERgYGAiIiIwEBAREREYCAgIiIiMBAQERERGAiIiIgIDAREREQEBgIiIiICAwERERGBgYCIiIjAQEBERERgICAiIiIwEBAREREYCIiIiAgMBERERAQGAiIiIgIDAREREYGBgIiIiMBAQERERGAgICIiIjAQEBERERgIiIiICAwEREREBAYCIiIiAgMBERERgYGAiIiIwEBAREREYCAgIiIiMBAQERERGAiIiIgIDAREREQEBgIiIiICAwERERFhCoGgqakJK1euRHl5Oerq6mA2mycs29vbi61bt0Kv16OmpgZnzpyJOd/a2opNmzahvLwcNTU1Y17/4x//GIsWLRrzc+LEiWiZ8c4PDw/H+3aIiIjoHnEFgtOnT+PYsWNobGxEa2sr7HY76uvrxy3r8/lQW1sLjUaDtrY27NixA3v37sWlS5eiZTweD1avXo1NmzaNe42GhgZ8+umn0Z/jx48DAFavXh1T7p133okpp1Kp4nrTREREFEsaT6Hm5mZs374da9euBQAcOnQIa9aswbVr16DT6WLKnjt3DgMDA2hvb4dSqYROp0NXVxeam5tRUVEBAHjhhRcAAGfOnMEnn3wy5n4qlSrmH/dPP/0Uer0e8+fPjymXn58PrVY7hbdLRERE45m0hcDr9cJoNGLFihXRY6WlpSgpKcHly5fHlDcYDNDr9VAqldFjVVVV45aNh9/vR0dHB9avXz/m3K5du1BdXY2tW7fi97///UNdn4iIiOJoIbBarQgGg9BoNDHHCwsLYbFYxpS3WCzjln3QmIMH+eyzzzA8PIynn3465nh9fT2qqqoAAB999BG2bduGs2fPYuHChVO6vkaT+1D1mi5aLbs5Eune5xuyOKHKzZqwrFKpgLZQOeF5Gh8/w4nF55t4fMZhcXUZTEUoFJrW67W3t+Nb3/oWCgsLY47X1tZG/6zX63H9+nW0tLSgsbFxStc3m0cQDE5vneOl1apgMtmTcu9McP/zdXr8sI+4JyzvdHpgCgRmomppg5/hxOLzTbxMesZiseiBX4In7TJQq9UQi8VjvuFbLJYx/0gDgEajGbfs/a0G8RgZGcFvfvMbPPPMM5OWXbJkCfr7+6d8DyIiIoojEMjlcpSVleHixYvRY319fejv70d5efmY8nq9HgaDAS6XK3rswoUL45adzK9+9SsoFAo89dRTk5bt6enB3Llzp3wPIiIiinPa4ebNm3Hy5El0dnbCaDSioaEBlZWV0Ol0MBgMWLduHQYGBgAAq1atQnFxMRoaGtDT04O2tjZ0dHRgy5Yt0euZTCZ0d3fj1q1b8Hq96O7uRnd395j7fvzxx1i3bh3kcnnM8fPnz+PUqVO4fv06bty4gSNHjuD8+fN49tlnH+VZEBERZay4xhBs3LgRZrMZ+/btg91uR3V1NQ4cOAAAcLlc6O3thc/nAxBuUWhqakJjYyM2bNgArVaL/fv3R6ccAuGFid59993o3yMzCK5evRo9duvWLXR1dWHnzp1j6iOTydDS0oLDhw9DLBZj4cKFOHHiBJYuXfoQj4CIiIhEoekeBZhiOKgwfd3/fM12N1o7e1D2dTUkYtGY8ssXz0KOYtrH2aY1foYTi8838TLpGT/yoEKidPHHnkF8ftWELwcy4z9+IqKpYCCgjHFr0AEA6L3FPS+IiO7HQEAZ447ZCSAcDDxerjdARHQvBgLKGLfNDhTkyhEMAX9ltwERUQwGAsoITrcPQyNePDY3D3lKGf5ym4GAiOheDASUEfpHxw+ocxX4xpw83LE44XT7klwrIiLhYCCgjNBvCgeCglwFHpuTBwD4yx22EhARRTAQUEboH3RAIZMgJ1uK/Fw5CvMU6L3FQEBEFMFAQBmh3zSCORolRKLwgkSPzcmDediNYYc3yTUjIhIGBgLKCLcGHZitUUb//rVZ4dW67licyaoSEZGgMBBQ2ht2eDHs9GFOUU70WPboEsUeH9cjICICGAgoA0RmGMzVfBUIpBIxJGIRvAwEREQAGAgoA0SWLJ5zT5cBAChkEni8wWRUiYhIcBgIKO31m0aQkyVFXo485rhcJmaXARHRKAYCSnv9gw7MLcqJzjCIUMgk7DIgIhrFQEBpLRQKod/kQIl27B7gCrmELQRERKMYCCitDY144fT4UXLPDIMIuYyBgIgogoGA0lr/4AgAjBsIFDIJPL4gQqHQTFeLiEhwGAgorUX2MJirHS8QiBEMhuAPMBAQETEQUFq7bXYgN1uGPKV8zDmFTAIAHFhIRAQGAkpzd8zOMesPRMhHAwHHERARMRBQmrttmTgQKOQMBEREEQwElLZGnF7YnT7MLhw7fgC4t8uAqxUSETEQUNq6aQrPMJg9UQuBLPzxZwsBEREDAaWxmwPhQDCncJIxBF4GAiIiBgJKW/2mEUjEIhQVZI17PrLjIVsIiIgYCCiN3bxrR7E6GxLxxB/z8H4GHENARMRAQGmr3zSCOZrxBxRGcD8DIqIwBgJKS4FgELcHHZg9wfiBCG6BTEQUxkBAaWlwyA1/IDThGgQR3AKZiCiMgYDS0m2zEwAmbSFQcMdDIiIADASUpu5YRgPBJC0EcpkEHi93PCQiYiCgtHTb7EBBrgI5WbIHllPIxAiGuOMhEREDAaWlOxYnSopzJy3H/QyIiMIYCCgt3TY7MS+eQMAtkImIADAQUBoacfkw4vLFFQi4BTIRURgDAaWdO6MzDEq08bcQeLhaIRFlOAYCSju3LQ4AwLxi1aRlo10G3OCIiDIcAwGlnTtmJ6QSEYonWYMA4BbIREQRDASUdm6bnShWKyERiyYtK5GIIZVwx0MiIgYCSiuhUAh/vmXDY7Mn7y6IkHO1QiIiBgJKL6YhF4adPiwoyY/7NdwCmYhoCoGgqakJK1euRHl5Oerq6mA2mycs29vbi61bt0Kv16OmpgZnzpyJOd/a2opNmzahvLwcNTU1Y15/5swZLFq0KOanrq4upozJZEJdXR3Ky8uxcuVKHD9+PN63QmnsRv8wAODxKQQC7nhIRARI4yl0+vRpHDt2DG+++SbmzZuHQ4cOob6+Hj//+c/HlPX5fKitrcWSJUvQ1taGy5cvY+/evZg3bx4qKioAAB6PB6tXr0Z5eTk++eSTce85e/ZstLW1Rf+uUChizu/cuRMikQitra24efMmfvSjH6G4uBjr16+P+81T+rneb0OWXIK5RTlxv0Yhk8Dm8CawVkREwhdXIGhubsb27duxdu1aAMChQ4ewZs0aXLt2DTqdLqbsuXPnMDAwgPb2diiVSuh0OnR1daG5uTkaCF544QUA4ZaAiQKBRCKBVqsd95zRaERXVxc6OztRWlqKxYsXY9u2bfjwww8ZCNKcPwh4fP4Jz1/vt2HB3DyI4xhQGMEtkImI4ggEXq8XRqMRu3fvjh4rLS1FSUkJLl++PCYQGAwG6PV6KJVfTfmqqqrC0aNHp1Sxu3fvYtWqVVAoFKiqqkJ9fT3UajUA4MqVKygpKUFpaWnMPZqamuD1eiGXy+O+j0Yz+eI1iaTVxj/4jYC7FieMfx6/u8rrC+CmaQTPrVkUfa73Pt+QxQlVbtaY16ly5PD0B5GdLYdWE3/LAoXxM5xYfL6Jx2ccNmkgsFqtCAaD0Gg0MccLCwthsVjGlLdYLOOWfdCYg/vNnz8fb7zxBh5//HHcuXMHP/nJT1BXV4eWlhaIRCKYzeZx7xEIBDA0NITi4uK472U2jyAYTM5Od1qtCiaTPSn3TlVOjx/2Efe4526bHQiFgLnqLJhM9jHP90GvDYZCGLK5IA5ycOFU8DOcWHy+iZdJz1gsFj3wS3BcXQZTMR37yj/xxBN44oknAACLFi3CwoULUVNTgytXrkCv13PvehqXaSj8j/38uXlTel1kcSKH24dClWKS0kRE6WnSWQZqtRpisXjMN3yLxYLCwsIx5TUazbhl7/9GPxVz585FQUEB+vv7AQBFRUXj3kMikaCgoOCh70OpzTTkwhyNEsos2ZReF1m+2OGeeGwCEVG6mzQQyOVylJWV4eLFi9FjfX196O/vR3l5+Zjyer0eBoMBLpcreuzChQvjlo3X3bt3MTQ0hJKSEgDAsmXL0N/fj76+vph7lJWVTWn8AKWPUCgE05ALj82ZWusA8FUgcLp9010tIqKUEdc6BJs3b8bJkyfR2dkJo9GIhoYGVFZWQqfTwWAwYN26dRgYGAAArFq1CsXFxWhoaEBPTw/a2trQ0dGBLVu2RK9nMpnQ3d2NW7duwev1oru7G93d3dHz77//Pj777DP09fXh888/x6uvvoqlS5di6dKlAICysjIsX74cDQ0NMBqN6OzsxAcffIDnn39+Op8NpRCbwwuvL4jHpthdAHy1BbKTLQRElMHiGkOwceNGmM1m7Nu3D3a7HdXV1Thw4AAAwOVyobe3Fz5f+NuVXC5HU1MTGhsbsWHDBmi1Wuzfvz865RAIL0z07rvvRv8emSp49epVAIDdbkdDQwMGBwdRWFiI6upq/PCHP4REIom+5siRI9i7dy+ee+45qFQqvPzyy5xymMEi4wcepYXA4WILARFlLlEow0focZZBanF4/OjqHhhz/D/+dAdfDtjx31/5W+SOjiG4//lO9NpAIIj/8b968N/+9hvYsGp+4iqfhvgZTiw+38TLpGc82SwD7mVAacE05IK2IBsiUfwLEkVEdjxkCwERZTIGAkp5Pn8QthEvivLHLjoUL7lUApeHYwiIKHMxEFDKMw+Hxw88UiCQieHycPliIspcDASU8sy2cCDQPEIgkEnFbCEgoozGQEApz2xzIydLiiz5wy+8KZexy4CIMhsDAaU887D7kVoHAEDOFgIiynAMBJTSPL4A7E7fIwcCmVQCt5djCIgoczEQUEqLjh/Ie8QWApkYTo+fG2cRUcZiIKCUNh0DCoFwl0EwGILXx+2PiSgzMRBQSjMPu6FSyqLLDz8suXR0PwOOIyCiDMVAQCnNbHM/cncBAMhk4f8UGAiIKFMxEFDKcnn8cLj9j9xdAHzVQsCZBkSUqRgIKGVNxwqFEfJICwG3QCaiDMVAQCkrMqCwcBq6DOTSSJcBNzgioszEQEApy2xzIz9HDpn00T/Gclmky4BrERBRZnr4tV6JkigUCsE87MYcTU7McZFYBMfoOICQxRkzSDD4gCUGIqHC6WYLARFlJgYCSklubwAuT2DMDAOPL4DL10wAAFVuFuwj7ui5cp12wutJxCJIJSLOMiCijMUuA0pJdmf4m7wqRzYt1xOJRMiSS9llQEQZi4GAUtKIKxwIcrOnJxAAQLZCyi4DIspYDASUkhIWCNhlQEQZioGAUtKIy4dshQRSyfR9hLMVEi5MREQZi4GAUtKI04ecrOlrHQAiXQYMBESUmRgIKCWNuHzIVSYgELCFgIgyFAMBpZxgMASH2wfVNI4fAMKBgF0GRJSpGAgo5TjdfoRC0zugEAiPIfD6gvAHgtN6XSKiVMBAQCknOsMgAV0GALdAJqLMxEBAKScRUw4BIFseDgTsNiCiTMRAQClnxOWDCEjILAOAWyATUWZiIKCUM+LyQZklhVgsmtbrssuAiDIZAwGlHLvTN+3dBUB4UCEAuNhCQEQZiIGAUo4jAWsQAGwhIKLMxkBAKcXnD8Lp8SeohYBjCIgoczEQUEqx2t0Apn+GAQAo5BKIwFkGRJSZGAgopZhtiQsEYpGIyxcTUcZiIKCUEg0ECRhDAADKLC5fTESZiYGAUop52AOxSATlaH//dOOOh0SUqRgIKKWYh93IyZZCJJreNQgilOwyIKIMxUBAKcVscydk/EAEdzwkokzFQEApxTKc2ECgzGKXARFlJgYCShlurx8jCVqUKIJdBkSUqRgIKGUMJnDKYUS2Qgq3x49gKJSwexARCVHcgaCpqQkrV65EeXk56urqYDabJyzb29uLrVu3Qq/Xo6amBmfOnIk539raik2bNqG8vBw1NTVjXv/rX/8aW7duxfLly1FZWYkdO3bgyy+/jCmzaNGiMT/Dw8Pxvh1KQYlcgyBCmSVFCIDbE0jYPYiIhCiuQHD69GkcO3YMjY2NaG1thd1uR319/bhlfT4famtrodFo0NbWhh07dmDv3r24dOlStIzH48Hq1auxadOmca/x+eefY/Xq1fjwww/R3NwMAHjppZfg8/liyr3zzjv49NNPoz8qlSquN02pyebwAkDCphzee22nxzdJSSKi9BLXb9bm5mZs374da9euBQAcOnQIa9aswbVr16DT6WLKnjt3DgMDA2hvb4dSqYROp0NXVxeam5tRUVEBAHjhhRcAAGfOnMEnn3wy5n579uyJ+fvBgwdRVVWFGzduoKysLHo8Pz8fWq12Cm+XUtnQiAcAkJXAQBDZz8DFFgIiyjCTthB4vV4YjUasWLEieqy0tBQlJSW4fPnymPIGgwF6vR5KpTJ6rKqqatyy8bJarQCAvLy8mOO7du1CdXU1tm7dit///vcPfX1KDTaHFzlZUkjEiVmDAAh3GQCA080WAiLKLJN+1bJarQgGg9BoNDHHCwsLYbFYxpS3WCzjln3QmIPJvPXWW6iqqsLcuXOjx+rr61FVVQUA+Oijj7Bt2zacPXsWCxcunNK1NZrch67XdNBq2c0RL7cviHyVAqrcrAnLyGTSmPP3/vn+c/dTKhUomZ0fLquQ8f+bOPE5JRafb+LxGYdNe9traJpHZx89ehR//OMfcerUqZjjtbW10T/r9Xpcv34dLS0taGxsnNL1zeYRBIPJGVGu1apgMtmTcu9UdNfiQG6WDPYR94RlfD5/9LwqNyum7L3nxuN0euB2hccp3DHZYTIlNyymAn6GE4vPN/Ey6RmLxaIHfgmetMtArVZDLBaP+YZvsVhQWFg4prxGoxm37P2tBvH42c9+htbWVpw8eRKzZ89+YNklS5agv79/yveg1GEb8SI/R57Qe0QHFXJxIiLKMJMGArlcjrKyMly8eDF6rK+vD/39/SgvLx9TXq/Xw2AwwOVyRY9duHBh3LIP0tLSgvfeew/vv/8+FixYMGn5np6emC4FSi+hUAg2hxd5CQ4E2dFZBgwERJRZ4pp2uHnzZpw8eRKdnZ0wGo1oaGhAZWUldDodDAYD1q1bh4GBAQDAqlWrUFxcjIaGBvT09KCtrQ0dHR3YsmVL9Homkwnd3d24desWvF4vuru70d3dHT3f3t6OQ4cO4cCBA5g1axZMJhNMJhPc7nBz7/nz53Hq1Clcv34dN27cwJEjR3D+/Hk8++yz0/lsSEBcngB8/mDCA4FUIoZcJuZ+BkSUceIaQ7Bx40aYzWbs27cPdrsd1dXVOHDgAADA5XKht7c3ukaAXC5HU1MTGhsbsWHDBmi1Wuzfvz865RAIL0z07rvvRv++fv16AMDVq1cBhNc98Pl8+MEPfhBTj8OHD2PDhg2QyWRoaWnB4cOHIRaLsXDhQpw4cQJLly59hEdBQmZzhKcc5uXIp32cyv2U3AKZiDKQKJTo364Cx0GFqcH4Vyve/J9/wPf/z2UYHl2gaDzlOi0uXzMBGDuo8N5z41m+eBZyFFK89v5FzNEo8co/LJu+N5Cm+BlOLD7fxMukZ/zIgwqJhCCySmF+jiLh98pWSNhlQEQZh4GAUoJtJNJlkLh9DCJysmRwuBgIiCizMBBQSrA5vJBKxNFZAImkypbB7pq4W4KIKB0xEFBKGBpdg0AkStyyxRG5ShlGnFy6mIgyCwMBpYRhhwf5uYmdchihUsrh9Qfh8XKDIyLKHAwElBJsjsSvUhihyg6PU7A72W1ARJmDgYBSwtCIF/m5iZ9hAIRbCADA7mK3ARFlDgYCEjx/IIgRlw8FM9VCoGQLARFlHgYCErzIQkR5MzSGIDcaCNhCQESZg4GABO+rRYlmagzBaJcBAwERZRAGAhK8SCAomKExBNkKCSRiEdciIKKMwkBAghdZpXCmWghEIhFUShlbCIgoozAQkOBFWggSvfXxvVRKORcnIqKMwkBAgmcb8SI3WwapZOY+rrlcvpiIMgwDAQneTC5KFMEuAyLKNAwEJHi2kZlbtjhCpZQzEBBRRmEgIMFLVguBy+OHPxCc0fsSESULAwEJWigUCgeCGZpyGBFdvpitBESUIRgISNBcHj98/uDMtxCMbnA0wv0MiChDMBCQoM30KoUR3M+AiDINAwEJ2tDIaCCY4S6DXHYZEFGGYSAgQbM5ZnaVwgi2EBBRpmEgIEEbHonsYzCzgSA3SwYR2EJARJmDgYAEbcjhhVQiRrZCOqP3FYtFyMmWcVAhEWUMBgISNNtIeA0CkUg04/cOr1bILgMiygwMBCRoNodnxrsLIlTZXL6YiDIHAwEJms3hndFdDu+lUsphZ5cBEWUIBgISNNuIFwUzPOUwQqWUYYRdBkSUIRgISLD8gSBGXL4Zn3IYkauUYcTlRzAUSsr9iYhmEgMBCdbw6CqFeUkbQyBHMBSC0+1Pyv2JiGYSAwEJVmTZ4oKc5HUZAFyciIgyAwMBCZYtumxx8gYVAlyciIgyAwMBCdZQkpYtjviqhYCBgIjSHwMBCVZk2eJkTTvMHd0C2e5ilwERpT8GAhIsm8OL3GwZpJLkfEzZZUBEmYSBgARraMSTtPEDACCTipEll3BQIRFlBAYCEqxhhzdp4wciwosTsYWAiNIfAwEJ1tCIF/lJmnIYweWLiShTMBCQIIVCIdgc3qR2GQDhgYXsMiCiTMBAQILk8vjhDwQF0WXAQYVElAmkya4A0f38QeC2xQUAyFJI4fB8tXRwcIa3FchTymF3+hAKhSASiWb25kREMyjuFoKmpiasXLkS5eXlqKurg9lsnrBsb28vtm7dCr1ej5qaGpw5cybmfGtrKzZt2oTy8nLU1NSMe43f/va3ePrpp7Fs2TJs2LABBoMh5rzJZNgmrQYAACAASURBVEJdXR3Ky8uxcuVKHD9+PN63QgLn8fnR1T0AALg96EBX90D0xx8MJuy+IrEIDo8/5ic7Swp/IAiTzQ1/4m5NRJR0cQWC06dP49ixY2hsbERrayvsdjvq6+vHLevz+VBbWwuNRoO2tjbs2LEDe/fuxaVLl6JlPB4PVq9ejU2bNo17jRs3buD73/8+1q9fj7Nnz+LJJ5/ESy+9BJvNFi2zc+dO2O12tLa2orGxET/96U/R3t4+lfdOAuYcbRXIVkhm7J4eXyAmfHR1D8BscwMAPrtyCx4fNzkiovQVVyBobm7G9u3bsXbtWixevBiHDh3ChQsXcO3atTFlz507h4GBARw6dAg6nQ7PPvss/v7v/x7Nzc3RMi+88AJefPFF6HS6ce936tQpPPHEE6itrcXjjz+OhoYGKJVK/PKXvwQAGI1GdHV14dChQ1i8eDHWrl2Lbdu24cMPP3yYZ0AC5I4GguT2ailH788dD4ko3U0aCLxeL4xGI1asWBE9VlpaipKSEly+fHlMeYPBAL1eD6VSGT1WVVU1btmJGAyGmPuJRCKsWLEieo0rV66gpKQEpaWlMfcwGo3wejkiPB24vH6IxSLIpMkd95qdFQ4EDgYCIkpzk379slqtCAaD0Gg0MccLCwthsVjGlLdYLOOWfdCYg/GuUVhYGHNMrVbj6tWrAACz2TzuPQKBAIaGhlBcXBz3vTSa3LjLJoJWq0rq/YUoZHHCFwBysmTIU2XHnJPJpFDlZk342vvP3/vnqb4WAJTK8DoIgWD4z9pC5XgvzWj8DCcWn2/i8RmHTXt7bCj06MPAJ7vGdNwjwmweQXCmh66P0mpVMJnsSbm3kDk9ftgdHihkYthH3DHnfD7/mGMTnVflZsWUncpr75Ull8Bqd8Pp9MAUCEz17aQ1foYTi8838TLpGYvFogd+CZ60PVatVkMsFo/5hj/et3gA0Gg045a9/xv9g2g0mjGtD1arNXq/oqKice8hkUhQUFAQ931IuFweP5RZwpgVm5MlhYtdBkSU5iYNBHK5HGVlZbh48WL0WF9fH/r7+1FeXj6mvF6vh8FggMvlih67cOHCuGUnotfrY+4HABcvXoxeY9myZejv70dfX1/MPcrKyiCXJ3chG5oeLk8AWXJhBILsLFl01gMRUbqKa8TW5s2bcfLkSXR2dsJoNKKhoQGVlZXQ6XQwGAxYt24dBgbC88ZXrVqF4uJiNDQ0oKenB21tbejo6MCWLVui1zOZTOju7satW7fg9XrR3d2N7u7u6Pnvfe97+MMf/oDjx4/jxo0bOHjwIBwOB77zne8AAMrKyrB8+XI0NDTAaDSis7MTH3zwAZ5//vnpfDaUJP5AEB5fYEanHD6IUiGFw83VCokovcX1FWzjxo0wm83Yt28f7HY7qqurceDAAQCAy+VCb28vfL7wL0y5XI6mpiY0NjZiw4YN0Gq12L9/PyoqKqLXa21txbvvvhv9+/r16wEgOmhwwYIFeOedd/Dmm2/i7bffhk6nw4kTJ5Cfnx99zZEjR7B3714899xzUKlUePnll6PXodQW2Tsg2VMOI5RZUnh9QXj9AeQIpE5ERNNNFJrOEXopiIMKhee//mrFf/+ff8BTT5agtDh2AEy5TovL10wTvvbe8/cPKpzKa+91/aYN//GnO9i7fTm+MYujke/Fz3Bi8fkmXiY940ceVEg004YdwmshAADbiCfJNSEiShwGAhKcrwKBQMYQjAaCoREuekVE6YuBgATHNhoIhDLL4KtAwBYCIkpfDAQkOHanFwqZBBKxMLYblkslkEpEsLGFgIjSGAMBCY7N4RVMd0GEMkvGFgIiSmsMBCQ4thEPlFmyZFcjhjJLyhYCIkprDAQkOEN2r2CWLY5QKqRsISCitMZAQILiDwRhd3qhFMiUwwhllhQ2hxfBzF62g4jSGAMBCYptxIsQwhsKCYlSIUUwGILdwW4DIkpPDAQkKFZ7uFlecF0Go/WxstuAiNIUAwEJSuQfXOENKgzXJxJYiIjSDQMBCYp1OLz3gOBaCEbHNDAQEFG6YiAgQbHYPZBJxZBLhfXRzFJIIBYxEBBR+hLWb13KeEMjHhTkKiASCWOVwgixSIS8HDmGGAiIKE0xEJCgWOweFKjkya7GuApyFRxUSERpi4GABMU67EFBjiLZ1RhXQa6CXQZElLYYCEgwgqFQuMtAJcxAkJ8rZyAgorTFQECCYXf6EAiGkJ8r3C4DtzcAl8ef7KoQEU07BgISjMiAvYJcYbYQRFou2EpAROmIgYAEw2IPr0GgFmgg0ORlAQBMQ64k14SIaPoxEJBgRL55C7XLoKggHAjuMhAQURpiICDBsNo9kIhFUCmFGQhys2VQyCUwWRkIiCj9MBCQYFjtHhTkyiEWC2tRogiRSITigmy2EBBRWmIgIMGw2oU75TCiuCAbd9lCQERpiIGABMNq90Ctykp2NR6oWJ2NQZsLwWAo2VUhIppWDAQkCKFQCFa7B4UCbyHQqrPhD4Q49ZCI0g4DAQmCyxOAxxcQ7BoEEcUF2QA404CI0g8DAQmCdXQNgsK8FAkEVmeSa0JENL0YCEgQIk3waoF3GRTmZUEiFrGFgIjSDgMBCUI0EAi8y0AsFqGoIJtrERBR2mEgIEGIBAKhTzsEwLUIiCgtMRCQIFjsHuTlyCGVCP8jWVyQDdOQC6EQpx4SUfoQ/m9fyghDIx7BdxdEaNXZcHkCsLt8ya4KEdG0YSAgQbAMewQ/oDAiMtOA4wiIKJ0wEJAgWO1uqAU+5TCiWM21CIgo/TAQUNK5PH443H4U5Ql72eIIbUEWRGALARGlFwYCSjrL6AyDwhQJBDKpBAUqBQYYCIgojTAQUNKZbeFVCjUpEgiAr2YaEBGlCwYCSjrL8GggyBd2IBCJRXB4/HB4/FDnKTBgdUb/7g8mu3ZERI9GmuwKEJmH3ZCIRcjPkSe7Kg/k8QVw+Zop/GdvAHanD/9x5TZkUjGWL54FqYL/ORFR6uJvMJpx/iDg8fmjfx+wupCfK4fLFwAABFNgvR+VUgYAGHF5oVYJu2WDiCgeDAQ04zw+P7q6B6J//3LADplEHD1WrtMmq2pxUynDrRnDDh8DARGlhbjHEDQ1NWHlypUoLy9HXV0dzGbzhGV7e3uxdetW6PV61NTU4MyZMzHn/X4/Dh8+jMrKSjz55JPYvXs3nM6vtpP98Y9/jEWLFo35OXHiRLTMeOeHh4en8t5JIBwuH3KyZcmuxpTk5cghwlczJIiIUl1cgeD06dM4duwYGhsb0draCrvdjvr6+nHL+nw+1NbWQqPRoK2tDTt27MDevXtx6dKlaJn33nsPHR0dOHr0KD744AMYDAYcOHAger6hoQGffvpp9Of48eMAgNWrV8fc65133okpp1KppvwAKLmCwRCcHj9yslKrsUomFaNApYDZxpkGRJQe4vot3NzcjO3bt2Pt2rUAgEOHDmHNmjW4du0adDpdTNlz585hYGAA7e3tUCqV0Ol06OrqQnNzMyoqKhAMBtHS0oJdu3ahqqoKAPDaa6/hxRdfxO7du5GXlweVShXzj/unn34KvV6P+fPnx9wrPz8fWq3wm5dpYi6PH6EQUq6FAAjPivhywM5NjogoLUwaCLxeL4xGI3bv3h09VlpaipKSEly+fHlMIDAYDNDr9VAqldFjVVVVOHr0KACgr68PVqsVK1asiJ6vqKhAKBTCF198EQ0JEX6/Hx0dHXjllVfG1G3Xrl3w+/1YsGAB/uVf/gXf/OY343zbX9Focqf8mumk1WZeq0bI4oQqN9zvPuIODyTUqpXRYzKZNPrn+z3o3Hjn7/3zVF872fmSYhWu37QhJBJDqVRAW6ic8LXpLBM/wzOJzzfx+IzDJg0EVqsVwWAQGo0m5nhhYSEsFsuY8haLZdyykTEHkf+9t4xEIkF+fv644xI+++wzDA8P4+mnn445Xl9fHw0PH330EbZt24azZ89i4cKFk72lGGbzCIJJGtau1apgMtmTcu9kcnr8sI+E1x64a3EAAEQIRY/5fF+dv9+Dzt1/XpWbFVN2Kq+N53yuQgIA+OttG5zOYpgCgQlfm64y9TM8U/h8Ey+TnrFYLHrgl+Bp77idrPl0qs2r7e3t+Na3voXCwsKY47W1tdE/6/V6XL9+HS0tLWhsbJzS9Sm5HO7wFsI5WanXZaBWKSAWi6IrLRIRpbJJBxWq1WqIxeIx394tFsuYf6SB8Df/8cpGWgSKiooAIKZMIBCAzWYb07IwMjKC3/zmN3jmmWcmfSNLlixBf3//pOVIWBwuPxQyCWTS1Fs0UywWoVClwCADARGlgUl/C8vlcpSVleHixYvRY319fejv70d5efmY8nq9HgaDAS7XV6OvL1y4EC1bWloKtVodc72uri6IRCIsWbIk5lq/+tWvoFAo8NRTT036Rnp6ejB37txJy5GwONw+5GSn1gyDexXlZ8Ey7E5atxMR0XSJ62vZ5s2bcfLkSXR2dsJoNKKhoQGVlZXQ6XQwGAxYt24dBgbCi8qsWrUKxcXFaGhoQE9PD9ra2tDR0YEtW7aEbygWY9OmTThy5AguXLgAg8GAgwcP4rvf/S7y8/Nj7vvxxx9j3bp1kMtjl7Q9f/48Tp06hevXr+PGjRs4cuQIzp8/j2effXY6ngnNIIfLl5LdBRGa/Cz4AyHcsTgnL0xEJGBxfTXbuHEjzGYz9u3bB7vdjurq6ui6AS6XC729vfD5wn3BcrkcTU1NaGxsxIYNG6DVarF//35UVFREr/fKK6/A4XDg1Vdfhc/nw7e//W28/vrrMfe8desWurq6sHPnzjH1kclkaGlpweHDhyEWi7Fw4UKcOHECS5cufegHQcnhcPsxW5O6o/OLRjdk+nLAjoUl+ZOUJiISrrjbamtra2MG8kVUVlbi6tWrMcfmz5+PX/ziFxPfVCrFnj17sGfPngnLzJ07F0ajcdxz3/zmN9He3h5nzUmovL4AfP5gSrcQ5OXIIZOK8dc7mTFKmYjSV+qN5KK0EZlhkJuCixJFiEQiaPKyGAiIKOUxEFDSOFzhHQ9Tbdni+2nys3Br0AGfP5jsqhARPTQGAkqaEdfoGgQp3EIAhMcRBIIh9N0dSXZViIgeGgMBJY3D7YdYLEKWXJLsqjwSzejAwt7b3G2TiFIXAwElTXjKoRQikSjZVXkkOVlS5OXIcb3fluyqEBE9NAYCShqHO7XXIIgQiUTQlebD+Fcrdz4kopTFQEBJ43D5U3qVwnvpSgtgc3hx28wFiogoNTEQUFIEgyE4Pf60aCEAgIXzCgAA3X+1JrkmREQPh4GAkiK6y2GKzzCI0ORnQZOXBSMDARGlKAYCSgqHOz3WIIgQiURY/HU1jF9aEeQ4AiJKQQwElBQOV+qvUni/xV9Xw+H2o2+A6xEQUephIKCkiLQQKNOkhQAAyr6uBgAYv2S3ARGlHgYCSgqHy4csuQRSSfp8BNUqBWYXKjmwkIhSUvr8NqaU4nD70mZA4b3Kvq7G1b4h+APc14CIUgsDASWFw+VPmwGF91r8dTU83gB3PySilMNAQDMuFAqlzSqF91v0Na5HQESpiYGAZpzT7Yc/EEqrGQYReUo55mlzObCQiFIOAwHNOMuwGwDSZtni+z0+Lx+9t4e5HgERpRQGAppxFrsHANKyywAA5s/Jg8sT4L4GRJRSGAhoxlkjgSBNWwgWlOQBAP58i9shE1HqYCCgGWcZdkMiFkEhkyS7Kgkxq1CJbIUUvbeGk10VIqK4MRDQjLPaPcjJlkEkEiW7KgkhFokwf44KNxgIiCiFMBDQjLPaPWm5BsG9Hpubj5umEXi8gWRXhYgoLgwENOMsw+60XKXwXvPn5iEUAv5yh60ERJQaGAhoRvn8AdidPuSmWQuBSCyCw+OP/szWKAEAxr4hODx++LmSMREJXHr9VibBi045TLMWAo8vgMvXTDHHcrNl+MM1E/Jz5Fi+eBakCv7nRkTCxRYCmlFm2+iiRGm6BsG9ivKzMDj6fomIhI6BgGaUOc1XKbxXUUEWnG4/nG5/sqtCRDQpBgKaUZZhD0QAlBnQQqDNzwYADNpcSa4JEdHkGAhoRpltbuTlyCERp+caBPcqzFNALAJMQ+w2ICLhYyCgGWUedkOdp0h2NWaERCKGWpXFFgIiSgkMBDSjLMNuFKqykl2NGVNUkAWzzc2dD4lI8BgIaMYEQyGYhz1QqzKjhQAA1CoF/IEQLJxtQEQCx0BAM8bu9MEfCGZMlwGAaPi5ZXYkuSZERA/GQEAzxjI65TCTugwKckcDgYmBgIiEjYGAZkxkkZ5MaiGQScXIzZbh1iADAREJGwMBzZjIaHtNXua0EADhbgN2GRCR0DEQ0IwZtLmRkyVFdoat6a9WKXDX6oLPz62QiUi4GAhoxgwOuaHJz6zWAQAoUCkQCgG3Bp3JrgoR0YQYCGjGDNpc0eV8M4k6Vw4AuGkaSXJNiIgmxkBAMyIUCsFsy8wWApVSDqlExEBARIIWdyBoamrCypUrUV5ejrq6OpjN5gnL9vb2YuvWrdDr9aipqcGZM2dizvv9fhw+fBiVlZV48sknsXv3bjidXzWnnjlzBosWLYr5qauri7mGyWRCXV0dysvLsXLlShw/fjzet0JJYHf64PUHUZSBgUAsFmGOJgc3OfWQiAQsrtFdp0+fxrFjx/Dmm29i3rx5OHToEOrr6/Hzn/98TFmfz4fa2losWbIEbW1tuHz5Mvbu3Yt58+ahoqICAPDee++ho6MDR48eRU5ODnbv3o0DBw7g8OHD0evMnj0bbW1t0b8rFLFT1Xbu3AmRSITW1lbcvHkTP/rRj1BcXIz169c/1IOgxDKNzjAoysAuAwCYU5SDq19ak10NIqIJxRUImpubsX37dqxduxYAcOjQIaxZswbXrl2DTqeLKXvu3DkMDAygvb0dSqUSOp0OXV1daG5uRkVFBYLBIFpaWrBr1y5UVVUBAF577TW8+OKL2L17N/Ly8gAAEokEWq123PoYjUZ0dXWhs7MTpaWlWLx4MbZt24YPP/yQgUCgzKNrEBQVZF4LAQDMLcrBpf8agN3phUopT3Z1iIjGmLTLwOv1wmg0YsWKFdFjpaWlKCkpweXLl8eUNxgM0Ov1UCqV0WNVVVXRsn19fbBarTHXq6ioQCgUwhdffBE9dvfuXaxatQpr1qzB66+/Dqv1q29XV65cQUlJCUpLS2PuYTQa4fV6433vNIMiixJl2hoEEXOLwv89sNuAiIRq0hYCq9WKYDAIjUYTc7ywsBAWi2VMeYvFMm7ZyJiDyP/eW0YikSA/Pz96bv78+XjjjTfw+OOP486dO/jJT36Curo6tLS0QCQSwWw2j3uPQCCAoaEhFBcXx/PeR+uRG3fZRNBqVUm9/0wZ8QSgUsrxtXlq3LU4ocqdOBjIZNIJzz/o3Hjn7/3zVF87nfVaUJIPABhy+dLu//N0ez9Cw+ebeHzGYdO+Qkxokm1eJzsPAE888QSeeOIJAMCiRYuwcOFC1NTU4MqVK9Dr9XFdI15m8wiCweRsTavVqmAy2ZNy75l2884wCvMUMJnscHr8sI9MvPufzzfx+Qedu/+8KjcrpuxUXjvd9ZJJ8pGbLcOfrg9C/1hhzDmFTAppis73yaTPcDLw+SZeJj1jsVj0wC/Bk/4aUqvVEIvFY2YVWCwWFBYWjimv0WjGLRv5Rl9UVAQAMWUCgQBsNtuYb/0Rc+fORUFBAfr7+6PXGO8eEokEBQUFk70lSoJBmxvaDJxhEOH1B5GbLUNP3xC6ugdifjw+f7KrR0Q0eSCQy+UoKyvDxYsXo8f6+vrQ39+P8vLyMeX1ej0MBgNcLlf02IULF6JlS0tLoVarY67X1dUFkUiEJUuWjFuHu3fvYmhoCCUlJQCAZcuWob+/H319fTH3KCsrg1zOAVtCEwqFYB52Z+wMg4gClRxDI55pbeEiIpoucTVUbt68GSdPnkRnZyeMRiMaGhpQWVkJnU4Hg8GAdevWYWBgAACwatUqFBcXo6GhAT09PWhra0NHRwe2bNkSvqFYjE2bNuHIkSO4cOECDAYDDh48iO9+97vIzw/3s77//vv47LPP0NfXh88//xyvvvoqli5diqVLlwIAysrKsHz5cjQ0NMBoNKKzsxMffPABnn/++UQ8I3pENocXPn8wIxclupdapYA/EMKIy5fsqhARjRHXGIKNGzfCbDZj3759sNvtqK6uxoEDBwAALpcLvb298PnCv+TkcjmamprQ2NiIDRs2QKvVYv/+/dE1CADglVdegcPhwKuvvgqfz4dvf/vbeP3116Pn7XY7GhoaMDg4iMLCQlRXV+OHP/whJBJJtMyRI0ewd+9ePPfcc1CpVHj55Zc55VCgIjMMMnFRonupc8NraVjtHk49JCLBiXtQYW1tLWpra8ccr6ysxNWrV2OOzZ8/H7/4xS8mvqlUij179mDPnj3jnt+5cyd27tz5wPpotVr89Kc/jaPmlGyRbY+LCjK7yyD/nkDwtVkc1UxEwpKiY5splQwOjbYQZOgaBBEyqRgqpQxDdk+yq0JENAYDASXcoM0NlVIGhVwyeeE0p1YpYB3h4llEJDwMBJRwZpsr48cPRBTkKmB3eOEPBJNdFSKiGAwElHCDNk45jFCrFAgBsLGVgIgEhoGAEioYXYOALQRAuIUACA8sJCISEgYCSijbiBf+QIiBYJQqRwaJWIShEQYCIhIWBgJKqMiUQw27DAAAYpEIBblythAQkeAwEFBCRaYcagvYQhBRoFKwhYCIBIeBgBLKFGkhyPA1CO6lzlXA5QnA7eWmRkQkHAwElFADFhfUKgXkMq5BEFGg4sBCIhIeBgJKCH8QcHj8uGNxoig/Cw6PP/oTzPDN/tSjgWDIzqmHRCQcce9lQDQVHp8fXd0DuDXowNdm5aKreyB6rlynTWLNki9bIUWWXAIrxxEQkYCwhYASxusLwOMLQJXDnf3uV6BSsMuAiASFgYASZtgZ3hI7TylLck2ER52rgG3Eg1Aow/tPiEgwGAgoYeyOcB+5SskWgvsVqBTwB0Kwj4YmIqJkYyCghBl2RgIBWwjup+ZMAyISGAYCShi70wdllhRSCT9m91Or5BCLRBi0uZNdFSIiAAwElEDDDi/y2F0wLolYjMI8BUxDrmRXhYgIAAMBJZDd6WN3wQNoC7JhtrkRCASTXRUiIgYCSgyn2wePL4A8TjmckLYgC4FgCP2DjmRXhYiIgYASwzS6qRFbCCZWVBDeAbL39nCSa0JExEBACRLpG+cYgonlZEmRrZDiL7ftya4KEREDASVGJBCwhWBiIpEI2oIs/IUtBEQkAAwElBAmqws5WVJIOOXwgbQF2Ri0uTHs4EZHRJRc/G1NCWEacnGFwjgUFWQBAG7csiW5JkSU6RgIKCFMQy7k5bC7YDKavCyIxSLc6Ge3ARElFwMBTTuH2weH288WgjhIJWLM0+bgz2whIKIkYyCgaTdg4YDCqfjGnDz8+fYwAkEuUEREycNAQNPurtUJAFyUKE6PzcmD1xdEv4kLFBFR8jAQ0LQbsLogAqDKZgtBPL4xWwUAuNHPbgMiSh4GApp2A1Yn1HkKTjmMkyY/C5o8Bf543ZzsqhBRBuNvbJp2t0wOzCpUJrsaKUMkEmHF0tn4U68ZQyOeZFeHiDIUAwFNq2AwhNsWJ+ZocpJdlZRS/TezEQoBF74YSHZViChDMRDQtDINueDzBzFHwxaCqZijycH8uXn4jz/dRigUSnZ1iCgDMRDQtLo5OlKeLQRTV/03s3HT5EDf3ZFkV4WIMhADAU2rW4Phf8xmcwzBlFUsngWJWITPrtxJdlWIKAMxENC06h90oCg/Cwq5JNlVSTm52TI88XgRLv7XHfgDXKSIiGYWAwFNq/5BB0qK2F3wsKr/ZjaGnT580WtJdlWIKMMwENC08QeCuGN2Yq6WgeBhLVugQW62DJ2/70OQgwuJaAYxENC0uWt1IRAMsYXgEUglYnznb7+BL/5ixa8u/DXZ1SGiDMJAQNOmfzA8w6CkKDfJNUlta/73eahcMgtnfvdn/KmXqxcS0cyIOxA0NTVh5cqVKC8vR11dHczmiX9R9fb2YuvWrdDr9aipqcGZM2dizvv9fhw+fBiVlZV48sknsXv3bjidzuj5X//619i6dSuWL1+OyspK7NixA19++WXMNRYtWjTmZ3iYe8onU79pBCIRuAbBIxKJRNi2rgwl2hw0ffQFTEOuZFeJiDJAXIHg9OnTOHbsGBobG9Ha2gq73Y76+vpxy/p8PtTW1kKj0aCtrQ07duzA3r17cenSpWiZ9957Dx0dHTh69Cg++OADGAwGHDhwIHr+888/x+rVq/Hhhx+iubkZAPDSSy/B5/PF3Oudd97Bp59+Gv1RqVRTfgA0fW4NOqAtyIZcxhkGUyESi+Dw+GN+/KEQ/u//tgTBEPD2aQOGHd5kV5OI0pw0nkLNzc3Yvn071q5dCwA4dOgQ1qxZg2vXrkGn08WUPXfuHAYGBtDe3g6lUgmdToeuri40NzejoqICwWAQLS0t2LVrF6qqqgAAr732Gl588UXs3r0beXl52LNnT8w1Dx48iKqqKty4cQNlZWXR4/n5+dBqtY/0AGj6cIbBw/H4Arh8zTTuub9dNhu/++MtHGr+HK9sWIbCvKyY8wqZFFJ2/BHRNJj0V4nX64XRaMSKFSuix0pLS1FSUoLLly+PKW8wGKDX66FUftVsXFVVFS3b19cHq9Uac72KigqEQiF88cUX49bBarUCAPLy8mKO79q1C9XV1di6dSt+//vfT/ZWKIF8/iAGLC6UcIbBtJpblIN/Wr8UVrsHb/yP/8T/6voSXd0D0R+Pz5/sKhJRmpi0hcBqtSIYDEKj0cQcLywshMUydq60xWIZt2xkzEHkf+8tI5FIkJ+fP+G4hLfeegtVVVWYO3du9Fh9fX20heGjjz7Ctm3bcPbsA5se+gAAG1JJREFUWSxcuHCytxRDo0nuADitNj26Of5yexjBUAhljxVBq1UhZHFClZs1blmZTDrhucnOT/W19/75Ue473fWaymsXfV2NDf/H4/j4//szPrnUh/9r7SLkZMsAAEqlAtokrwqZLp9hoeLzTTw+47C4ugymYrKNWaa6ccvRo0fxxz/+EadOnYo5XltbG/2zXq/H9evX0dLSgsbGxild32weQTCYnPneWq0KJpM9KfeebleuhXfpy1NIYDLZ4fT4YR9xj1vW55v43GTnp/JaVW5WTNlHue901uthXquQirB2+Tz8P5/9Fef+cBMr9XMAAE6nB6ZAYMLXJlo6fYaFiM838TLpGYvFogd+CZ60y0CtVkMsFo/59m6xWFBYWDimvEajGbdspEWgqKgIAGLKBAIB2Gy2MS0LP/vZz9Da2oqTJ09i9uzZD6znkiVL0N/fP9nboQS5NeiAWCTCLO5hkDAFuQos+YYaf741zJkHRDTtJg0EcrkcZWVluHjxYvRYX18f+vv7UV5ePqa8Xq+HwWCAy/XVL6wLFy5Ey5aWlkKtVsdcr6urCyKRCEuWLIkea2lpwXvvvYf3338fCxYsmPSN9PT0xHQp0MzqNzkwqzAbMo5wS6hlCzTIVkhwqfsut0kmomkV12/vzZs34+TJk+js7ITRaERDQwMqKyuh0+lgMBiwbt06DAyEm4xXrVqF4uJiNDQ0oKenB21tbejo6MCWLVvCNxSLsWnTJhw5cgQXLlyAwWDAwYMH8d3vfhf5+fkAgPb2dhw6dAgHDhzArFmzYDKZYDKZ4HaHm1XPnz+PU6dO4fr167hx4waOHDmC8+fP49lnn03EM6I43DSNcIbBDJBJxXhSp4XZ5saNfq67QUTTJ64xBBs3boTZbMa+fftgt9tRXV0dXTfA5XKht7c3ukaAXC5HU1MTGhsbsWHDBmi1Wuzfvx8VFRXR673yyitwOBx49dVX4fP58O1vfxuvv/569Pzp06fh8/nwgx/8IKYehw8fxoYNGyCTydDS0oLDhw9DLBZj4cKFOHHiBJYuXfrID4SmzubwwjTkxlP/27xkVyUjzJ+bh6tfDuE/r5mw/lvzkaOY9qFARJSB4v5NUltbGzOQL6KyshJXr16NOTZ//nz84he/mPimUin27NkzZr2BiAe9FgC++c1vor29PY5a00y4fnMIAPD4vPwk1yQziEQiVCwuxv974Ut8duU2nvnbx5JdJSJKA+zwpUd2vd8GqUSMr8/i1J2ZUlSQjWJ1Nj4z3OauiEQ0LRgI6JFdv2nDN+aoOKBwhi0qLcCgzY3/6h27HggR0VTxNzg9Ep8/gL/csWNhCbsLZtrXZuciN1uG3/wnp9sS0aNjIKBH0nvbjkAwhMcZCGacRCxG1d/MxuUbgzDbJl7YiIgoHgwE9Eiu99sAAAs4oDApVurnACHgd5fZSkBEj4aBgB7J9Zs2zCpUIk8pT3ZVMlJhXhb0CzQ4d/k2/IFgsqtDRCmMgYAeWigUwvX+/7+9O4+K6rz7AP69szEM+6YgoLiNLIKgIihqgkmMzeZ2To5tjUn6JjEnwdNjFmtKo201xpqTNKlNoulpoolNrCu10b6vSzWpUSgqQiLggiKLyiKLMAwzc+887x/IhFFAVMJA+H5O5sA8z713fvfROL/73Oc+Tz3HD7hY6tgwXDNZcaKDJZSJiLqCCQHdsSs1TWg02zj/gIuNHuaPAb7u2Hes1NWhEFEfxoSA7ljr+AEOKHQtlSThgcRwFJVfc/yZEBHdLiYEdMfOldXDQ69BcABXOHS1lNhgGNw02JvNXgIiujNMCOiOyHbgTFkdIkK8YbYqMFlkp5edk+f1KL1Og3sSBuH46UpUc2lkIroDTAjojlypMaGixgydVoXsgoqbXrKdI9572n1jw6CSJOw/XubqUIioD2JCQHckK/8KACAimOsX9Bb+3nokRg3A17mXYLbIrg6HiPoYJgR02+xCIOtUBYL9DfDi/AMuJakkp1s1U8YMQrNVwf7jZTBZZMjsqCGiLuJC6nTbTpfUobq+uWWWPHIpi01B7g3zDwQHGLD7aDE0aglT40OhceP/5kR0a+whoNt2OO8S3N3UGDzQ09WhUDuSogZAlgWyCypdHQoR9SFMCOi2NDXbcOx0FcaNGgCNmn99eiMfTzfEjQhA8ZUGfFt01dXhEFEfwX/R6bZkFVTCJtsxMSbY1aFQJ2KG+sPXU4ct/z7LAYZE1CVMCOi2HM67hLAgT4TzdkGvplZJmDQ6GPUmK744cBZCcGIIIuocEwLqsqLyely43IApcSGQJMnV4dAtBPq64/7x4Ticdxnv7/yOPQVE1CkmBNQlFpuCv+4ugJ+XG1Ji+XRBX/FoSgTmTRuBk2ersfLTY7h81eTqkIiol2JCQF2y9eA5XKlpwv88HAWDno+x9RWSJGH6hMF4eV48Gs02/O6TbHz6f6dRXs3EgIic8V92uqVvz1/Fv0+U44Hx4YiO8Hd1OHQHoob4YflTicj4zwUczruMQznliBrih8dTR2AIZ5skIrCHgDog2wGTRUZlnRl/3V2AYH8DZkwczMWL+jB/bz1+8XAU3n5xEubeMwzlVY1YsfEYdnxdBBunNCTq99hDQO2y2GR8k3cJ+4+VobHJiiljQpB7ttpRP8YY5MLo6G54GXR4eGIE7okPxeYDZ/HlkYs4caYaCx+LQfgAPj1C1F+xh4Da1dQsY/+xMly91oyp8YMQ4K13dUh0B25c66DtS1JJWPCTaDw/azRMZhve3HQcx85UOurZaUDUv7CHgG7S1GzDBzu/Rc21ZtwTPwiDB/Iec1/V3loHbY0xBqGp2YYHEsNw4Hg5Ptz5HSbGBGNEmA8SowZyHQSifoQ9BOSksrYJb/7tBMoqG3FPQiiTgX7CoNfiwaRwBPsbcOS7KzhxpgoKB4oQ9StMCMjhVHENVmw8hroGC56fNZr3k/sZnUaNaePCMCLMB9+dr8Habbmoudbs6rCIqIcwISDIih27jxbjnb+fhK+XG15/cjwih/i5OixygdYpjyfHBaO0shHLP/4vjp+u5NTHRP0AbxD2c6dLarFp7xmUV5swflQQfvFwFPQ6DUyc5rZfGzbIB6ljw7BxTyHe3/kdRoT6YM7UYUwUiX7EmBD0U7UNFmw5eA5Z+RUI9NFj0dxYxI8I5BoF5DAwwAMvzYvH0VNX8L+ZJVjzRQ6M4b6YNi4MURF+cNdpXR0iEXUjJgT9jKzYsf9YGf7xzQUoisBjKRF4KHkIdFq1q0OjXqb1CQU3rRoPTxqCMyV1OFVcg3UZ38HLoMX0CYMxZ5rR1WESUTdhQtDL2RSB2sZmuOs0UKluvnp302qg6eJIkIKLtfjbvjO4VG1C3PAAPD5tJHw8dbDZBWw33CLgAHNqS6NWIXqoP0YN8UPJlQYUXKzF9kNF+Md/ziN2WACSY4IRE+EHg569BkR9FROCXsomK/hvQSX2ZpeitLIRkgTodRp46DWICPHCiDAf6DTqTp8Vl+0tMw7WNVqw8+vzOHG6Cv7ebnjusRjEDg+AXQDZBRXt7suZCKk9apWEoYO8MXSQN0ICPHC6rB4Hj5ci5/oslgP9DRgW4oWIEG8MC/HG4IGe0GrY+0TUFzAh6GWEEDiUU46MwxfQ0GRDsL8BCSMDISt2mC0K6hotOFZYhdyzVzEizAdhQZ4YEerT7rGu1DTi7wfO4XRJLewCiBsegNHD/NFslZFdUMEvfbor4cFeMEYEIDV+EIrK63H+8jVcvNKAU8W1OHqqJdFUqyQMD/XBvQmDMH7UAGjUfLCJqLdiQtALtF7JN1tlfLHvLE6cqYIx3BdP/iQcI8J8ceJ0pdP21fXNKCiuQWFJLVZ9dhxhQR6YEDUQoYEeaLYpsNgUFF6sxbHCSggBDA72wlhjILwMOhedIf0YWWwKCi5WoqGxZa4Cfy83+Hu5IWFkIIyD/VB8PUHIOVOFj3bl4wvDWUyOC8G0cWHw8dB3+VYXEfUMJgS9gMUmY+9/S/BVTjkazDaMNQYiZqg/rpmsUNp5/jvQR48pYwZhfKQMAeDk2Wrs+Pq80zbubhqkjg2Dj6cOnu68r0s9y12vgdWmICTAgODkwbhU3YTCklr8K7MEB0+UY849wzEtIbTdcTFE5BpMCHqBvKJq/CvzIrQaFaYnhmOgv6FL+7m7aZAYNRAPJQ1BzbVmNDTZ4KZTw02rhqe7FlbF3uEYAaKeIkkSQoM8EBrkgeo6M7ILK/H5vjM4nHcJj0yMQIIxEGoVuwuIXI0JgQsJIfCvrIvYdrAI/j56pCaEwqC/sz8Sf289/G9YkdCqcLk66l0Cfd0xI2kwVCoV9hwtxgcZ3yHA2w3TxoUhYWQQBvi5Q8W5MIhcggmBi1isCt77ew4OZJciwRiEqCG+dzTgqnV52/bw0UHqjSRJwvjIAZgSG4Lcc9XYd6wUWw8WYevBIri7aTA0xAsD/Azw0GvgodfCw10DT70WHu4tL0+9Bga9FtpOBiE0NdtQXd+Mq9eaUd9ohanZBpNZhk22w12vhsFNCy+DFmFBnggN8uBgRyIwIXCJC5ev4aNdp1BZZ8ZjKRG4LzEcxwsrb71jOzpb3pZPEVBvJakkmG0KjEP8YBzih4qaJpy/1DIIsaSiASUVlTA129DZEgo6rQp6nQZ6rRo6rRo2xY5mi4wmS8sX/420GhW0GhXMFtnpuBq1hEGBHhgR5ovYYQGIHOwLN07URf1QlxOC9evX47PPPkNDQwNSUlKwYsUKBAQEtLvthQsXsGzZMuTm5iIwMBBpaWmYM2eOo16WZbz11lvIyMiAzWbDgw8+iNdffx0Gw/f3zg8dOoQ//OEPKCsrw8iRI/Hb3/4WcXFxjvqqqiosX74c33zzDby8vLBgwQI899xzd9IGPcZskbEvuxS7vimGr5cObzyfgmAfN64bQP1Oe4msRi1heKg35qQOR+6ZKgghYJPtsNgUWG0tPy02BcEBHpBtCkzNckuZtaVcq1HB3U0DjVqFukYLPN1behcMbhrotGpo1CqMMQbh5OlK2OSWx3hrGppRc60Z1XXNOHSiHP8+XgaNWsLIMF9ER/ghZqg/Bg/04m0M6he6lBBs374d69atw5o1axAWFoZVq1bhpZdewsaNG2/a1mazYeHChYiOjsa2bduQm5uLZcuWISwsDBMmTAAAfPDBB9i9ezfeffddeHh44LXXXsOKFSvw5ptvAgCKioqQlpaGRYsW4b777sPmzZvx7LPPYu/evfDxaXnmfvHixZAkCZs3b0ZZWRmWLFmCAQMGYNasWd3VNt1CCIHSykYcOnkJR09dgcWqICl6IJ6YbsSQcH9UVTW4OkSiXkmSJOiuX/23NSEmGKKT+2F2ARwv7Hgwbdvj+njqMDTEGwBgk+3w9XJDUVk98otrsP2r89j+1Xlo1CoE+OgR6KOHr6cOep0Gblo13HRqeOo1Lbcx2rw83LXsYSAALYmvyWxDo9kGU3PLhZ+Xe8vtKk+DttcNpu1SQrBp0yY8/fTTeOCBBwAAq1atwv33348zZ87AaHSey/zrr79GRUUFMjIyYDAYYDQakZ2djU2bNmHChAmw2+34/PPP8eqrr2LixIkAgN/85jd45pln8Nprr8Hb2xtbtmxBfHw8Fi5cCABIT0/HgQMH8M9//hPz589HYWEhsrOzsX//foSHhyMqKgpPPfUUPv3009tOCLrrsafyKhMKLtbAJgtYFQVNZhmVdWZU1ZlhtSnQaFS4b1wokqODMXigl9Pna9SqDqd87azuVvWu2re3xOXupoEia9utc2VcvWXf7jj2jW3cE5+r2AUKLtR0WB811P+Ojx03MghxwwMx+57haGiy4vyla6ioaUJdowX1Jhsqas2w2eywyArsnSQlGo0KHnot3N000KpVUBQ77EJAVuxQ7AKKXcBuF5AkCZLUkqSoAEACVG3KNBpVS/JzvV6tlqDTqOB2PSnRaVWOnypJAlr+u06CBMDRuSFJ39dJLbUC18+h7Y8291OEczXw/R6A+L5cdLqP85vWersQkGU7rLICWWnpDbIqCmTZDlkRsMp2yLLSksBp1NBqVdBdv+2j06qhVaug1argplFDo5HQenZtTteZ5Fzf+ouHwQ1NTdbvz66Dtmh921piv96D1fJSYG5W0GixoalZRlOzDLNFhnyLgd0GNw0Meg083HXwvN6b5eGuhUYtQa2SoFapkGAMgo9H98whc8vvO3ELFotFREZGiqysLKfy1NRUsWXLlpu2f+edd8T8+fOdynbs2CGmTp0qhBCiuLhYGI1GUVZW5qiXZVlERUWJI0eOCCGEmDdvnli7dq3TMZYuXSpeeeUVIYQQW7ZsEampqU71WVlZIioqSlgslludEhEREd3glv0VtbW1sNvtN40X8Pf3R03NzVl6TU1Nu9tevXoVABw/226jVqvh4+PjqKupqYG/v7/TMfz8/Byfd/Xq1XY/Q1EU1NXV3eqUiIiI6AbdfgNDdDYsuAv13XUMIiIi6rpbJgR+fn5QqVSOq/dW7V3FAy1X/u1t23pFHxgYCABO2yiKgvr6esc2AQEBN/U+1NbWOj4vMDCw3c9Qq9Xw9fW91SkRERHRDW6ZEOh0OkRGRiIrK8tRVlpaivLycowZM+am7ePi4pCXlwez2ewoy8zMdGwbHh4OPz8/p+NlZ2dDkiRER0c7jtG2HgCysrIcx4iNjUV5eTlKS0udPiMyMhI6HRfwISIiul1dumXw85//HJ988gn279+PwsJCpKenIykpCUajEXl5eZgxYwYqKloe85kyZQoGDBiA9PR0nD17Ftu2bcPu3bsxf/78lg9UqfDTn/4Uf/zjH5GZmYm8vDy88cYbeOyxxxyPFD7++OPIycnBRx99hKKiIrzxxhswmUx49NFHAQCRkZFITExEeno6CgsLsX//fmzYsAELFiz4IdqIiIjoR08SXbwh33ZiokmTJmHFihUIDAxEVlYWFixYgAMHDiAsLAwAcP78eSxfvhwnT55EUFBQuxMTrVmzxmliomXLljlNTHTw4EGsWbMGpaWlMBqN7U5MtGzZMhw5cqTPTExERETUW3U5ISAiIqIfr941TRIRERG5BBMCIiIiYkJARERETAiIiIgITAhcZv369Zg8eTLGjBmDF1544aaJlqh9e/fuxZNPPolx48Zh1KhRN9Xn5uZizpw5iI2NxUMPPYSvvvrKqd5kMmHp0qUYO3YskpKSsHr1aiiK0lPh93offvghZs6cifj4eEydOhUrV66EyWRy2oZtfPf+9Kc/4cEHH0RcXBwmTZqEl19+GVVV3y8HzTbuPi+++CJGjRrlNLcN27d9TAhcoHU56eXLl2Pz5s1oaGjASy+95Oqw+gSz2Yzk5OR2HzGtra3Fs88+i7Fjx2Lnzp2YOXMm0tLSUFxc7Njm97//Pb799lts2LAB7777Lr788kt8+OGHPXgGvVtOTg6eeeYZ7NixA2+//TYOHz6MlStXOurZxt1j2LBh+N3vfoc9e/Zg3bp1uHz5MpYuXQqAbdydMjIynCbJA9i+nXLdukr916xZs8R7773neF9SUiKMRqM4ffq0C6PqWzIzM4XRaHQq27hxo0hNTRV2u91R9rOf/UysXr1aCCFEXV2diIqKEkePHnXUb926VUycOFEoitIzgfcxe/bsEYmJiY73bOMfxoEDB0R8fLwQgm3cXa5cuSLuvfdeUV5eLoxGo8jMzBRCsH07wx6CHma1WlFYWIjk5GRHWXh4OEJDQ5Gbm+vCyPq+vLw8JCUlQWqzEPrEiRMd7Xrq1ClIkoTExESn+qtXr6KsrKzH4+0Lamtr4eXl5XjPNu5+DQ0N+PLLLzF27FgAbOPukp6ejoULF2LQoEFO5WzfjjEh6GG3u5w0dV1Hy2a3XXrbx8cHarXaUd+6Pcdw3KyhoQEff/wx5s6d6yhjG3efXbt2ISEhAePHj0dZWRnefvttAGzj7rB582bIsox58+bdVMf27RgTAvrREHewbHbbqwT6ntVqxaJFixAeHu40XoNt3H2mTZuGnTt3YsOGDdBoNFi2bBkAtvHdunTpEv785z87jX1pi+3bMY2rA+hv2i4nPXz4cEd5R8tJU9d1tGx226W36+vroSiKI/tvzfhv7LHpz2RZxuLFi2EymRxfVq3Yxt3H09MTnp6eiIiIwLBhwzB16lScO3eObXyX8vPzUV1djenTpzuVP/XUU5g9ezbbtxPsIehht7ucNHVde8tmt116Ozo6GkIIHDt2zKk+ICDAsTBXf2e32/GrX/0KJSUl+Mtf/gIPDw+nerbxD6P1qlSlUrGN71JycjJ27dqFjIwMxwsAVq5ciV/+8pds3864ZChjP7d161aRkJAg9u3bJwoKCsQTTzwhnnjiCVeH1SfU1taK/Px8sWXLFmE0GkV+fr7Iz88XFotF1NTUiMTERLFy5Upx7tw5sX79ejF69Ghx4cIFx/6vvvqqeOSRR0Rubq44evSomDx5sli7dq3rTqiX+fWvfy1SUlJEfn6+qKysdLxkWRZCCLZxN7BareKdd94Rubm5oqysTGRnZ4v58+eL2bNnC0VR2MY/gLZPGbB9O8aEwEXWrVsnUlJSRFxcnHj++edFVVWVq0PqE7Zv3y6MRuNNr9LSUiGEEDk5OWL27NkiJiZGzJgxQxw6dMhp/8bGRrFkyRIRHx8vEhMTxapVqxxfdiTabdu27SsE2/hu2Ww28eKLL4qUlBQRExMj7r33XpGeni4qKioc27CNu1fbhEAItm9HuPwxERERcQwBERERMSEgIiIiMCEgIiIiMCEgIiIiMCEgIiIiMCEgIiIiMCEgIiIicC0DIrpLo0aN6rQ+NDQU5eXlnW6TlpaGRYsWOd7b7XY8/fTTyMzMxJo1azBz5sxuiZWIOsaEgIjuyuHDhx2/5+Xl4YUXXsDWrVsREhICoGWxpLYLJK1evRrl5eVYu3ato8xgMDgd8/3334e7u/sPHDkRtcWEgIjuSlBQkON3Hx8fAC3rx7ctb0uv10Or1XZYn5mZie3bt2Pnzp1ITk7u/oCJqF1MCIio16iursaSJUvw1ltvwc/Pz9XhEPUrHFRIRL2C3W7HK6+8grlz5yIpKcnV4RD1O0wIiKhXWLduHSwWC9LS0lwdClG/xISAiHqFo0eP4uTJk4iNjUV0dDSio6MBAEuXLsWMGTNcHB3Rjx/HEBBRr7Bq1SqYzWanskcffRSLFy/G9OnTXRQVUf/BhICIeoXw8PB2ywcOHIiIiIieDYaoH+ItAyIiIoIkhBCuDoKIiIhciz0ERERExISAiIiImBAQERERmBAQERERmBAQERERmBAQERERmBAQERERmBAQERERgP8HgaCyjkjf+osAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['TT4'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:19.289747Z",
+ "iopub.status.busy": "2021-12-15T11:04:19.288031Z",
+ "iopub.status.idle": "2021-12-15T11:04:19.638776Z",
+ "shell.execute_reply": "2021-12-15T11:04:19.638202Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:22.162490Z"
+ },
+ "papermill": {
+ "duration": 0.450966,
+ "end_time": "2021-12-15T11:04:19.638922",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:19.187956",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 49,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAHqCAYAAADRUe20AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXRkd333+c+tvUoq7aVudUu92S3ZbtON8YI34HkawxACoWOSCRlw7JzxmIQckpCcHGCMIQHGnOGcJEA8YTsh6UOeJ2SwgTDYEMcmyfM4sRsbbLft3tyb1FJL6mqttam2e+ePUqlXtbaqurfqvl/n6Li7qlT6+vaVPvrthmVZlgAAgCN47C4AAACcQzADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIL5afaGpqZRMk5VZq9XZ2ayJiaTdZTQ8rnPtcK1rh2tdO52dzZqaSqm9vWnV71GzYDZNi2BeI65fbXCda4drXTtc69pZ67WmKxsAAAchmAEAcBCCGQAAByGYAQBwEIIZAAAHIZgBAHAQghkAAAchmAEAcBCCGQAAByGYAQBwEIIZAAAHIZgBAHAQghkAAAchmAEAcBCCGQAAByGYAQBwEIIZAAAHIZgBAHAQn90FALVUMKVsvrDo86F0robVAMClCGa4SjZf0PMHxxd9/m03bpJRw3oA4GJ0ZQMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOQjADAOAgBDMAAA5CMAMA4CAEMwAADkIwAwDgIAQzAAAOsuJg/r3f+z0NDAxo37591agHAABXW1Ew/+AHP1Amk6lWLQAAuN6yg3l8fFxf/vKX9fnPf76a9QAA4GrLDuYHH3xQH/7wh7Vhw4Zq1gMAgKv5lvOi73znOyoUCvrABz6w6i/U2dm86s9FSSwWtbuEumdNphVtDl3xNVzn2uFa1w7XunbWmndLBvPp06f1yCOP6Dvf+c6avtDERFKmaa3pPdwsFosqHk/YXUbdS2cLSiTnrvgarnNtcE/XDte6dmKxqCYmkmsK5yWD+cCBAzp79qze+c53XvD4fffdp1/91V/Vww8/vOovDgAALrRkMN9666364Q9/eMFj733ve/X5z39ed955Z9UKAwDAjZYM5ubmZvX391/yeG9vr9atW1eVogAAcCt2/gIAwEGWNSv7YocPH650HQAAQLSYAQBwFIIZAAAHIZgBAHAQghkAAAchmAEAcBCCGQAAByGYAQBwEIIZAAAHIZgBAHAQghkAAAchmAFJyUxe/+3JIzo5Omt3KQBcjmAGJE0lsiqalobGCGYA9iKYAUmpTF6SNJ3M2lwJALcjmAFJqbmCJGk6QTADsBfBDOi8FjPBDMBmBDOgcy3mKYIZgM0IZkBSao4xZgDOQDDD9UzTUmauIMOQEqmcCkXT7pIAuBjBDNfLZAuyJHVEQ7IkzaZydpcEwMUIZrheuRu7qy0kiXFmAPYimOF65YlfsbawJMaZAdiLYIbrlZdKxeZbzNNJurIB2Idghuul5goK+DxqDvvl9Rh0ZQOwFcEM10vNFdQU9sswDLU2B+nKBmArghmul8rkFQn5JElt0SAtZgC2Ipjheum5gppCfklSe5QWMwB7EcxwtXzBVDZfVFN4vsVMVzYAmxHMcLX0/Brmcou5LRpUJlvUXK5gZ1kAXIxghquV1zA3nTfGLLFkCoB9CGa4WnnXr6ZweYx5fi0zE8AA2IRghqulMqUWcyR4boxZkqYYZwZgE4IZrpaayysS9MnjMSSd35VNMAOwB8EMV0vNFRbWMEtSOOhTMOBlLTMA2xDMcLV0Jr8wvlzW3hxk8hcA2xDMcC3LskrbcZ7XYpaktuYAk78A2IZghmtl80UVTWthDXMZu38BsBPBDNcqz8gu7/pVVt79y7IsO8oC4HIEM1wrddGuX2VtzUEVipaS8+c0A0AtEcxwrUx2fg3zRWPM7ez+BcBGBDNcK5c3JUkB34XfBgubjDABDIANCGa4Vq5gymMY8novCuZoQBKbjACwB8EM18oXigr4L/0WKLeYCWYAdiCY4Vq5gim/79JvAZ/Xo4DPo7ls0YaqALgdwQzXyhfMS8aXy0IBL2cyA7AFwQzXyuVN+X3eyz4XCvg0l6PFDKD2CGa41mJjzFK5xUwwA6g9ghmutdgYs0RXNgD7EMxwrXzeVGCxruygTxlazABsQDDDlUzLUr64VIuZYAZQewQzXKlQmN/160pjzFm6sgHUHsEMV8rNBzOzsgE4DcEMV8oXSqF7pXXM2XxRJkc/AqgxghmuVD7AYvEx5tKJU1lazQBqjGCGK+WXMcYsie5sADVHMMOVymPMiy6XWghmJoABqC2CGa6Uy5dawkt1ZdNiBlBrBDNcadld2SyZAlBjBDNcKVcw5fEY8noWCeYgY8wA7EEww5XyheKiS6UkurIB2IdghiuVjnxc/PYPM/kLgE0IZrhSvrD4ARYSLWYA9iGY4Uq5QlH+RSZ+SaVJYYYhTpgCUHMEM1yp1GJe/PY3DIMzmQHYgmCGKy01xixxkAUAexDMcKVcoXjFMWaJM5kB2INghuuYlqVC0Vp0c5EyzmQGYAeCGa6TL1z5ZKkyurIB2IFghuvk81c+wKKMyV8A7EAww3VyhSsfYFHGGDMAOxDMcJ2lDrAooysbgB0IZrhObmGMma5sAM5DMMN1ymcxX2mDEakUzIWipULRrEVZACCJYIYLraQrW2K/bAC1RTDDdVbSlS2JtcwAaopghuvkC0V5PYa8HuOKrwsFaTEDqD2CGa6znH2ypfNazAQzgBoimOE6S50sVXYumOnKBlA7BDNcJ1cw5fdfeXxZksJM/gJgA99yXvSVr3xFjz/+uEZHR9Xc3KzbbrtNn/jEJxSLxapdH1BxuXxxRS3mDC1mADW0rBbztm3b9Gd/9md64okn9LWvfU2jo6P6xCc+Ue3agKrIF5Y5xszkLwA2WFaL+T3vec/Cn3t7e3X//ffrj//4j6tWFFBNuYK55AEWEpO/ANhjxWPMiURCP/rRj/SmN72pGvUAVZcvFJfcXESSfF6PfF6DdcwAampZLWZJ+uEPf6jPfOYzSqfT2rVrl77xjW+s6At1djavuDhcKBaL2l1C3SucTapQtNQcCSjaHLrsa86/zuGgX/J6uPZVwnWtHa517aw175YdzLt379bOnTs1Ojqqv/qrv9KnP/1pfeUrX1n2F5qYSMo0rVUVidI3VTyesLuMujc5k5EkWaalRHLusq85/zoH/R5Nz2S49lXAPV07XOvaicWimphIrimclx3Mzc3Nam5u1pYtW7Rt2za99a1v1dGjR3X11Vev+osDtZaZ75ZezuQviTOZAdTeqtYxW1ap5evxsAwa9WUuO3+y1DLGmCXOZAZQe0u2mPP5vB555BG9/e1vV2dnp0ZHR/XlL39ZO3bs0JYtW2pQIlA5q2kxp+by1SwJAC6wZDAbhqFjx47pscce0/T0tGKxmO644w79/u//Pi1m1J3yZiHLWS4llYJ5YvbyY9EAUA1LBrPP59MjjzxSi1qAqsvMd2Uvv8VMVzaA2qLJC1cpr0le/hizl0MsANQUwQxXKXdl+5fblR0szcouT3gEgGojmOEqc9mivB5DXo+xrNeHAj5ZVukMZwCoBYIZrpLOFpbdjS1xJjOA2iOY4SrJdF6hwLL31eEgCwA1RzDDVZKZ/ELYLkc5xAlmALVCMMNVEumcgisKZrqyAdQWwQxXSWbyCq+gKzscLL02Q4sZQI0QzHCNfKGouVxxhV3Z8y1mzmQGUCMEM1wjkS7teb2yrmzGmAHUFsEM15hN5yRpdS1mghlAjRDMcI1yi3klY8xBJn8BqDGCGa4xmyq1mFfSle0xDAX9XlrMAGqGYIZrlFvMoeDyg1niIAsAtUUwwzUS6Zx8XkN+78pu+1Iw02IGUBsEM1xjNp1Tc9gvw1jeARZloaBv4RxnAKg2ghmukUjnFY0EVvx5kaBPGdYxA6gRghmukUjn1Bzxr/jzIiGf0gQzgBohmOEas6m8msOrCOagT+m5fBUqAoBLEcxwjUQmt7qubFrMAGqIYIYrZHNF5fKmoqtsMefypgpFswqVAcCFCGa4Qnk7ztWNMZc+h1YzgFogmOEK5c1FVjvGLEmZOYIZQPURzHCFcot5NWPM5TOZaTEDqAWCGa6QmN8ne1Ut5tB8MNNiBlADBDNcIZGZ78pezRgzLWYANUQwwxVmUzkF/V4F/Ss7wEI612Jm9y8AtUAwwxUS6Zyiq2gtS+eNMdOVDaAGCGa4wmr3yZZKp0sZhpTOsvsXgOojmOEKs+mcWlbZYjYMY35bTlrMAKqPYIYrrKXFLLEtJ4DaIZjR8CzLKo0xN62uxSxJkaCfFjOAmiCY0fAy2aIKRUsttJgB1AGCGQ0vsbDr11pazD625ARQEwQzGl55n+y1tJjDtJgB1AjBjIa3ln2yy5iVDaBWCGY0vIp0ZYd8yuaLKpqcyQygughmNLzZ+a7stbaYpdJEMgCoJoIZDS+Ryikc9MnvW/3tfm5bTnb/AlBdBDMaXiKTX1M3tnTe0Y9MAANQZQQzGt5sKremGdnSeUc/MgEMQJURzGh441NpdbQE1/QekVCpxU0wA6g2ghkNbSqR1eRsVts2tK7pfRZazHRlA6gyghkN7fjpWUnStg0ta3qfhTFmWswAqoxgRkM7Pjojr8fQ5nXNa3qf4MKZzAQzgOoimNHQjo/MatO6qPw+75rexzN/JjP7ZQOoNoIZDatomjoxNrvmbuyycNCndJZ1zACqi2BGwxqJp5TLm7qqQsEcCfnY+QtA1RHMaFiVmvhVVjrIghYzgOoimNGwjp+eVXPYr1hbuCLvFwn5mfwFoOoIZjSsY6dndNWGFhmGUZH3iwQ5kxlA9RHMaEjpubxGJ9IV68aWSmPMrGMGUG0EMxrSidGEJGnbxrXt+HW+cNCnuRxnMgOoLoIZDenY6RkZkraur2CLmTOZAdQAwYyGdPz0rHq6mha20qwEjn4EUAsEMxpOvmDq2MhMRceXpfNazIwzA6gighkN5+mfDys1V9At13ZX9H3PHWTBWmYA1UMwo6Ek0jn9f/95Utdv69D1Wzsr+t7hhaMfGWMGUD0EMxrKPz1zQtlcUb+xe3vF3/vcGDMtZgDVQzCjYZw+m9K/vXhab7thgzZ2NVX8/SNBvyTGmAFUF8GMhvH//utRBQNeve/OrVV5/1DQK0PMygZQXQQzGsLR4RntPzah99y+WS2RQFW+hscwSkc/0mIGUEUEMxrCv7xwSpGgT7tv6K3q14mE2C8bQHURzKh7k7Nz+vnhuN6yq0fBgLeqXytCixlAlRHMqHv/9tKILMvS7jdVt7Us0WIGUH0EM+pavlDUv790Wruu7qrYuctXwhgzgGqr3EbCgA1+dvCMEum87rrpXGu5YErZ/OXD07Su/H6FoqncIi3ioN+nSMinFDt/Aagighl1pxy8lmXpyedPaX1HRJvWR5WaD1TTkn5+aPyyn7urP3bF987mi3rh4OU/9+Zr16mtOajZVE6mZcljGGv7HwGAyyCYUXey+YKePziu+FRGp84k9ebr1umFQ2cWnl8qfNeiPRpU0bSUSOfV2lSdZVkA3I0xZtSt4XhShqGKnyJ1Je3NQUnSVGKuZl8TgLsQzKhbY5NpdbWG5PfV7jZub5kP5tlszb4mAHehKxuOtNQErnzB1NmZOe3Y2lHTutqjIUnSVJJgBlAdBDMcqTyOfDm7+mOKT2dkWdL6jkhN64pG/PJ6DE0lCGYA1UFXNurS2GRahqGarF0+n8cw1NYc1CRd2QCqhGBGXRq3YXy5rL0lyOQvAFVDMKPuZHNFnZ2Z07oad2OXtTcHNZXM2fK1ATQ+ghl15+TorC3jy2Xt0VKL2bKW2EYMAFaBYEbdOTYyY8v4cllHNKhc3uQwCwBVseSs7K9+9av6yU9+osHBQbW0tOid73ynPvaxj6mpqakW9QGXODo8Y9v4siS1RcubjGTVFPLbUgOAxrVkML/44ou6//77tWPHDk1MTOihhx5SKpXSF77whVrUB1wgXzB16kxS121pt62GjvJa5kRWvbFm2+oA0JiWDOZvfOMbC3/etm2b/uAP/kCf+cxnqloUsJj4dEamadk2viyVxpglsZYZQFWsuC9wampK0Wi0GrUASxqfTMtj4/iyJLU2B2SIYAZQHSva+SuRSOhb3/qW3v/+96/4C3V20uW3VrGYe34hsibTijaHLnl8JpXX+q4mdbQt3mL2+32X/dylnitb7PlIJKjYfEu9LRpUJm+66t+kGrh+tcO1rp215t2ygzmXy+mjH/2o+vr69MADD6z4C01MJGUudUo9FhWLRRWPJ+wuo2bS2YISyUs38YhPp7Vja+dlnyvL5y//uUs9V7bY8+l0VvFiUZLU2hTQ6XjCVf8mlea2e9pOXOvaicWimphIrimclxXMhUJBH/vYx5RKpfR3f/d38vnYYhu1N5crKJMtakOX/SsC2qNBxaczdpcBoAEtOcZsmqY+/vGPa2hoSN/85jdZJgXblPen7onZfw+WNhlhjBlA5S0ZzA899JD27dunL37xi8rn84rH44rH4yrOd+kBtVIOQqe0mFNzBWXzfB8AqKwl+6QfffRRSdKePXsuePzpp59Wb29vdaoCLmMqkVU46FNz2P5NPcpLpqYTWdv27AbQmJYM5sOHD9eiDmBJU4msOuYD0W7t85uMTBLMACqMvbJRF4qmpZlkdqGlareOhU1GOP4RQGURzKgLM8msTKt0FrITtLH7F4AqIZhRF8oB6JQWc9DvVVPIRzADqDiCGXVhKpGV12OoJRKwu5QFLJkCUA3sFIK6MJnIqq05KI/HsK0Gw2Modd4ZzNGmgM7OzC08FvT7ZNNJlAAaCMEMx7MsS1OzWfWts3e/9Wy+qJePxBf+ni+YOjuT0fMHxyVJN1+7Tr4g31IA1obf7+F4mWxR2XzRMePLZU0hnzLZoorsAQ+ggghmOF55SZJT1jCXlTc6SaZzNlcCoJEQzHC8SYfNyC4r1zPJBDAAFUQww/GmZrNqCvkU8HvtLuUCrc0BGQZrmQFUFsEMx5t20I5f5/N6PGptChDMACqKYIajmaal2VRObc3OC2ZJ6mgJLRxHCQCVQDDD0RLpnEyr1G3sRO3RoDLZguZyhaVfDADLQDDD0aaTpRnPTm0xt7NnNoAKI5jhaDPJUuA5tcXcMX+oBt3ZACqFYIajTSdzag775fM681YNBXwKBznMAkDlOPOnHTBvOpl1bGu5rIPDLABUEMEMxyrNyM47dny5rL0lqOlkVvmCaXcpABoAwQzHSmbyMi1LbQ5vMbdHg7IsaXwybXcpABoAwQzHmnb4xK+y8h7ew/GkzZUAaAQEMxyrvFSqtcnZXdnRpoC8HkMj8ZTdpQBoAAQzHGsmWdoj2+9z9m3qMQy1R4MaOUuLGcDaOfsnHlxtOuncrTgv1h4NauRMSpbF2cwA1oZghiOZpqWZVM7x48tl7dGg0tkCy6YArBnBDEeamJ2TaVp102LuaAlJkk6MJmyuBEC9I5jhSKMTpYlU9dJi7mwNyu/16MipabtLAVDnCGY40thEaU1wvQSz1+PRlp6oDp+asrsUAHWOYIYjjU2kFQn5FPB57S5l2a7ubdOp8aTSc3m7SwFQxwhmONLoZNrxO35dbHtvqyxJR07N2F0KgDpGMMNxTNPS+GTa8RuLXGxzT1Q+r0F3NoA1IZjhOPHpjPIFU23R+grmgM+rbT0tOjzEBDAAq0cww3HKe063R+urK1uSBja1a3A8oUy2YHcpAOoUwQzHGY6nZEh1s4b5fAOb2mRZ0uvDtJoBrA7BDMcZjifV1RaSz1t/t+dVG1vl9Rh0ZwNYtfr7yYeGNxJPqaerye4yViXo92prT4sOs9EIgFUimOEouXxR41Npbeisz2CWSt3ZJ0cTmssxzgxg5QhmOMroRFqWJW2o0xazVApm07J0dJj1zABWjmCGo5RnZNdrV7YkXb2xVR7DoDsbwKoQzHCU4XhSPq9Hsbaw3aWsWijgK+2bzQQwAKtAMMNRRuIpbeiKyOsx7C5lTQY2tenE6KyyuaLdpQCoMwQzHGU4nlRvrNnuMtZsoK9dRdPS0dOMMwNYGYIZjpHM5DWdzGljrH7Hl8u297bKMER3NoAVI5jhGCPzE7/qtcVseAylsgWlsgWZkvq6ozo4OKlUtqCCaXd1AOqFz+4CgLLheEpS/QZzNl/Uy0fiC39vDvt0aHBaz746qtuu75EvyLcbgKXRYoZjjMSTagr56u4c5sWs74jItCydnZ6zuxQAdYRghmMMx1PaGGuWYdT3jOyy7vbSkq+xybTNlQCoJ/StwREsy9LI2aRu27He7lIqJuD3qqMlqPGp9ML482KCfp98/JoMQAQzHGJidk6ZbFEb63R8eTHr2iM6fGpayUxeB45PLPq6m69dxxg0AEl0ZcMhBsdKM7I3rWuwYO4IyzQtDY0n7C4FQJ0gmOEIg+MJeQxDfQ3YYpak4yNsNAJgeQhmOMLgWEIbuiIK+L12l1JRwYBX7dGgjo3M2l0KgDpBMMN2lmVpcGxWm9dH7S6lKmJtYQ2NJWRalt2lAKgDBDNsN53MaTad1+Z1jRnM3e1hZfNFTSeydpcCoA4QzLDdybFSN++W9S02V1Id3fNHWJ6ZythcCYB6QDDDdoNjCRmG1NfdWBO/yprCPrU0BRSfJpgBLI1ghu0GxxLq6WxSMNBYE7/KDMPQlp4oLWYAy0Iww3YnxxMNO75ctrWnRam5gtJzebtLAeBwBDNsNZ3MaiaZ05YGnZFdtqWnNH5+hgMtACyBYIatBsdKO2I16lKpso2xJnk9huJ0ZwNYAsEMWw2OJWSocSd+lXm9HnW1hhhnBrAkghm2GhxPaF1HRGEXHODQ3R7WZGJO+YJpdykAHIxghq1OjiUafny5LNYWlmVJEzOMMwNYHMEM28ymcppKZBt+fLksVt5ohPXMAK6AYIZtBuePQmz0pVJlwYBXrc0BJoABuCKCGbY5cXpWhhp/Rvb5Ym1hxaczsjjQAsAiCGbYomBKR4antb4zIlNSKlu44MNs0NzqbgsrVzA1k8zZXQoAh2r8qbBwpLlcXsdGZtXX3aznD45f8vyu/pgNVVVfd/u5cea2aNDmagA4ES1m2OLszJyy+aK62kJ2l1JT0YhfoYCXcWYAiyKYYYuTo6WjHmMuC2bDMBRrCzMzG8CiCGbY4uRYQj6vodZm93XnxtrDSqTzymQLdpcCwIEIZtji5GhCnS0heQzD7lJqrnu+l4DzmQFcDsGMmssXihqJJ9U1v+GG25R/IWHfbACXQzCj5obGkyqaluvGl8u8Xo86W4O0mAFcFsGMmjt2ujTxq6vVnS1mqbRsamImq2KRAy0AXIhgRs0dPz2jtuaAIiH3LqOPtYVlWpYmZjnQAsCFCGbU3PHTs9qyvsXuMmy1cKAF48wALkIwo6ZmUzmdnZnTlh737I99OeGgT9GIX2emaTEDuBDBjJo6Pj++vNnlLWaptG92fIoDLQBcaFnB/OSTT+ree+/VjTfeqIGBgWrXhAZ2fHRGHsPQpnXNdpdiu1h7WNl8UYl03u5SADjIsoI5k8no1ltv1QMPPFDtetDgjg7PqK+7WQG/1+5SbLdwoAXjzADOs6xpse973/skSfv27atqMWhsRdPU8dFZvWXnBrtLcYTWpoACPg/7ZgO4AGPMqJnhMynl8qau3thqdymOYBiGYu1hTpoCcIGaLSTt7GRMca1isfqeyfzcobgk6ZadGyRLijYvvvOX3+9b9PkrPbfWz5UWr6saX7e3O6p9r43JNDx1/++7Gm78f7YL17p21pp3NQvmiYmkTJPZp6sVi0UVjyfsLmNNXjo8rvZoUEahqFS2oERy8aVC+fziz1/pubV+rqSaft3WiF+SdOBYXNGAuzqwGuGerhdc69qJxaKamEiuKZzd9ZMAtjo2MkM39kW62kIyjHPLyACAYEZNTM7OaWI2SzBfxOf1qKMlpBMEM4B5y+rKnp6e1ujoqIaGhiRJBw8elCRdddVVCgQC1asODePoyIwk6epegvli3W1hHR2eUaFoyufld2XA7ZYVzD/96U/1yU9+cuHve/bskSQ9/fTT6u3trU5laChHR2YU8HnU180kwIvF2sM6ODilofGktm1gRzTA7ZYVzHfffbfuvvvuateCBnZ0eEZbe1poEV5G9/yBFkeHpwlmAIwxo/qyuaKGxpN0Yy8iEvKpoyW40N0PwN0IZlTdybFZmZbFxK8r2LahRa+PzHCgBQCCGdX3+nCpJXgVwbyorRtaNZMsHYkJwN0IZlTd0ZEZ9XRG1Bz2212KY5V7Ew4PTdtcCQC7EcyoKtO09PrwjLb3ttldiqOt74woGvHr4OCk3aUAsBnBjKoajieVyRY00EcwX4nHMHTt5nYdGJxinBlwOYIZVXXkVKlrdnsf48tLuW5Lh2aSOZ2eSNtdCgAbEcyoqiPDM+psCaqrNWx3KY537eZ2SdLBk3RnA25GMKMqCqaUnMvr8NCUtm5oVSpbuOCDg8YuFWsLq6s1pIODU3aXAsBGNTv2Ee6SzRf0058PK5HOy+c19PzB8Que39Ufs6kyZ7tuS7uePxRX0TTl9fB7M+BGfOejasanSmOl69rpxl6uazd3KJMtaHAsaXcpAGxCMKNqxiczCgW8amniBLLlWhhnZtkU4FoEM6rmzFRG3e1hGYZhdyl1o6UpoN5Ysw6cZJwZcCuCGVUxlZhTMpPXuvaI3aXUBcNjLEyM297XqteHpzWVyiqVLahg2l0dgFpi8heq4tjIrCSpmwK2x1MAABbvSURBVPHlZcnmi3r5SFySZEgqFC395LlB9XQ26eZr18kX5FsVcAtazKiKYyMz8ns9am8J2l1K3VnXEZFhSKfPstEI4EYEM6ri6PCMYu1heRhfXjG/z6Pu9rBOn03ZXQoAGxDMqLjZVE5jk2mt66Abe7U2xpo1lcgqNZe3uxQANUYwo+IODZVmFK/vYOLXam3sapIknY7TagbchmBGxR0amlYo4FVnS8juUupWW3NAkZBPI3RnA65DMKPiDg1OadvGVnk8jC+vlmEY2tjVpNGzaRWKrJcC3IRgRkVNJbIam0yrv5djHtdqY6xJ+aKpE6dn7S4FQA0RzKiow6dK48vbe9tsrqT+9XQ2yWNIBzgGEnAVghkVdWhwWuGgT73dzXaXUvdKy6Yieu0EwQy4CcGMijo0NKWBvjbGlytkY6xJoxNpTc7O2V0KgBohmFExk7NzOjOV0TWb6MaulI2x0rKp/ccnbK4EQK0QzKiY8vrla+aPLsTatTYF1NES1P6jBDPgFgQzKubQ4LSaQowvV5JhGNp5VZdePTGpTLZgdzkAaoBgRsUcGprSwKZ29seusF1Xd6lQNPUK3dmAKxDMqIj4dEZnZ+YYX66CbRta1NIU0AuH43aXAqAGCGZURHlJz46tHTZX0ng8HkNv6o/plWMTyuWLdpcDoMoIZlTEqycm1dkS5OCKKrmxP6ZsvqhXWdMMNDyCGWtWKJo6ODipHVs7ZTC+XBUDm9rUFPLp54fP2F0KgCojmLFmx0/PKpMt6nq6savG5/Xojdu79NLRCQ61ABocwYw1e/XEpAxDum4L65er6caBbmWyBR04OWV3KQCqiGDGmr12YlLbNrQoEvLbXUpD27GlQ6GAl+5soMERzFi1gimdmc7o5Ois+vvalcoWFj5My+7qGo/f59Ebr+7SL47ElS/QnQ00KoIZq5bNF/T4sydVymBLzx8cX/gomARHNdx+/Xql5gp66ehZu0sBUCUEM9bk9NmUAn6POltDdpfiCtdt6VB7NKhn9o/aXQqAKiGYsWqWZen02bR6OpvYhrNGPB5Dt1+/Xq+emNBUImt3OQCqgGDGqo1OpJXJFrShi01FaunON/TIsqT/fJVWM9CICGas2ivHSocqbOxqsrmSxmZ4jAsm1jU3BbRtQ4v+5/5RJefyYh4Y0Fh8dheA+vXi63HF2kIsk6qybL6ol49ceIDFuo6Ijr86pieeHdQv375FviDfykCjoMWMVRmbTGskntLm9VG7S3GlLeuj8nkNHR2ZsbsUABVGMGNVnj9U2uSCYLaH3+fR5nVRDY4mNJcr2F0OgAoimLEqzx88o609LWqiG9s2A5valC+a+s9Xx+wuBUAFEcxYsdGJlIbjSd3Q32V3Ka7W1RbWuvaw/u0XIxxsATQQghkr9sJ8N/Ybt8dsrgQ7tnZoKpHV8wfZPxtoFAQzVuz5Q3FdvbFV7dGg3aW43sZYk9Z3RPTjfUOyLDYoBxoBwYwVKXdj33RNt92lQJJhGHr7Tb0ajif12slJu8sBUAEEM1Zk34FxSdJNA3RjO8WNA91qbQ7oJ/uG7C4FQAUQzFi2fKGof3txRG/Y1qmOFg6tcAq/z6N33tSnAyendHSYdc1AvSOYsWzPvjau2XRe77qlz+5ScJH/csNGdbQEtfcnh5ihDdQ5ghnLYlqW/vlnQ9q0rlnXbG63uxxcJBz06Z53DmjkbEpPPDdodzkA1oBgxrK8cmxCoxNpveuWTTI44tGRdl3dpVuu7daP/vOkTp9N2V0OgFUimLEs//yzIbVHg8zGdrj/7a5+Bf1e7f3JIZksnwLqEsGMJZ0cm9WhoWm946Y++bzcMk7W0hTQB96+Xa8Pz+j7/+M4a5uBOsRZcVjS488OKhz06m1v3GB3KViG269fr9eHp/X4s4PK5or6wF3b5WH4AagbBDOu6NXjE/r54bj23LlVYc78rQuGYejed12jUMCnJ58/pUyuoPt+6Rp5PfR2APWAn7RYVC5f1LefPKz1HRH90q2b7S4HizA8hlLZS49+fM8dWxQK+PTD/zihydmsfvvd16irNWxDhQBWgmDGov7pP04qPj2n3/+1ncoVTeUuWh9rMnzpCNl8US8fiV/2uXfc0qeOlqD+4anX9dDf/Ez/63+9Wm974wa6tgEHI5hxWSPxpJ782ZCu2tCi6WRWzx8cv+Q1u/rZltPpDI+hG6/p1paeFv33fzmib//zYe07MK7ffMd2dbWGFfT75KOHG3AUghmXKJqm9v7zYQUDXt14DeFbz85vTb/5um51tAT180Nx/V97X9Cb+mP64P8yoGjIb3OVAM5HMOMS3/sfx3V0eEb3/tI1LLdpIIZhqL+vTRu6mvTsq2P62cEzmkxkdf8vX6vu9ojd5QGYRycWLvCLI3H9+Lkh/dcbNrKZSINqDvt11029uu36dRo+k9Snv/Uz/csLp9iQBHAIghkLxifT+pvHD2hrT1QfePt2u8tBFRmGoe29bfo/f+tGDfS16x+eel3/93/7hQbHEnaXBrgewQxJUiZb0P/z/Vfk9Xj0kT1vkJ8ZQa7Q0RrW//Er1+mD7+zXyNmU/uzvntcj33tFJ8YSKnBIFWALxphdrmBKs+msvvr9V3R6Iq3f2bNDoZBPqWyB5VAuUJ4c5vUY+pU7tui1E5Paf+ysXnw9rjds69RbdvZo51Vd/KIG1BDB7HLJTE5//g8vamwirbfs6lEynV9YGsVyKHcJ+L26oT+maza367UTkzo5mtD+YxOKBH26YXuXdl7dpR1bOhQJ8WMDqCa+w1ysUDT1t48f1OhEWne8Yb229LTYXRIcIBz06aZruvXA+7o1NDarZ18d10tHz+o/Xh2T12NoYFObbr1uvW4ciLFNK1AFfFe51NnpjL76T6/pxOisbrmuW1dtbLW7JDiMz+fR1g2t2rqhVb9hbtfg6KxePTGpF4/E9a0nDurbTx7Wrqu7dNt16/SGqzo5eQyoEILZhX5xJK5vPX5Qliz97++5Vnlm+eAyLrfVZ09nROtv3aSzM3NKzRX0i8NxvXDojCJBn3Zt79L23lZt6WnRxq5m+b2XbvtpWZYsSUVTOjOZVvoye3yzGxncjmB2kbHJtH74zAk9d2Bcm9dH9bt7rldT2H/Z7TaBxRiGoVhbWHf1x7Spu1mnJ1I6cXpWzx8c17OvjkmSIiGfomG/fF6PvF5Dubyp9FxeqbmCivOzCg1Jfr9HXa1hxdpCirWFtb4jojfvWC8fXeRwMe5+Fzh9NqUfPzeo/3xtTH6fR79822b9yh1b5fd5LnsqEbBcHo+h3lizemPNMi1LM8ms4tNz8no9mssWVCxaKhRN+f1eRYI+RUI++X0eFU1LZ2fmNJPM6ux0Ri8fTUmSwkGvxqcy2n3DRq3rYDcyuBPB3KAmZub0wuEzeva1cQ2NJ+T3evRfbtiod9zcp2gksHBaFEuiUCkew1B7NKT2aEi7+mOLnngllWb8Hz+dUCI5J0nKFYoam0jr6PCMnnrhlP7l+VPq72vTW3b26KZruhX0e5dVQ8GUsvlzv2zOpnI6cmpak7NzSmbyymSLCvk92tDVpI1dTepbF1VzmL3C4SwEcwPI5EwdG5nWidFZnRyd1YnRWU0nc5Kkvu5m3XRNTFt7WhQO+nRocOqCz2VJFJwg4PNq07qoNq2Lqr+vTS8eiet/7h/V3zx+UP/9qSPaeVWXrtvSrh1bOtTRElr0fWZSc/rxs4ManUhrdCK18H0gST6voWgkoGyuuDC2bRjSVRtbteuqTu26uksbu5pkcCQmbEYw16HJ2TkdOz2rYyMzOjYyo8HxhArFUtO3KeRTrC2s7b2lwwre+qaNV2y5AE7T2hzUL9+2Re++dbOOnJrWM6+M6pXjk9p3oDQXoj0aVKytNC7dHPYrky0qky1oMjGnE6MJmaYlr8dQd3tY2za2qqcjotbmgHxej27ZsV5m0dRsKqfRibSOjczo1ROTeuzfj+uxfz+uaMSvaza1q7+vTT2dEXW1htTREmLGOWqKYHY407Q0OJ7Qfxw4o5ePnNGxkRlNJbKSJJ/Xoy09Ub3tjRtVKJqKtYXZ/AF1z/AYC3MfetdF9YF1Uf2GZWl0Iq1Dg1Mam0xrYjqjAyenlMrkFQ76FA76FI2UDueQJcXaQvJeJkwvnmne3R7W7vaNSs3ldfpsSoWipddPTev5Q2fO1WNIbc1BdbWG1NUaLv23rfTnde1htUeDtLJRUfwUdxjTsjR8JqlDg1M6NDStw6emlZn/IdUeDWprT4t2v6lFWzZE1Rtrls/rkWlJPz/EzGo0hsst0yqLRvzafWO/mhaZtZ3KFla1yqAp5Nf23jbt6o/ppcNnlJorKJnOK5k592Fa0qGhKU0nsjp/akY46FVPZ5N6Y83qbAmqLRpUezRYGm9vDioc9BLcWJFlB/PXv/51ffvb31YikdAdd9yhz33uc+rs7Kxmba5gWZZOT6R14OSUDpyc1NHhaaXmSkEcawvphu1durq3TYbXI6tYXPi8+FRG8amMJMaJ4S7nt6gvVonJjIZhqDnsv2RSWHlCW9G0lJ4rhfVsKqepRE5TiaxeOHxG6blL6wr4PWpvDqk9Gljohi9PPlvXEaGbHJdYVjA/9thj+trXvqYvfvGL6u3t1cMPP6w/+qM/0t69e6tdn2NYlqWiWVr6UShayhdM5QpF5QvmBR8yJK9hyOMx5PWc+69pWZrLFpXJFZRIl7rNRuJJnTqT1Gw6L6k0Pry+M6L1HaWPpvkfDLv6u+ZnsBavVCLgCldqUdfil1SvpzSJLBoJqKez6YKv/fOD48pkC0rPzX/M/zkU8CqRzuvIqWk999r4QovbMKSOaFCdrWF1tgTVNP8LQSTok9djlFraRmnGu6HSLw2GUVqm5pn/OeMpP+8x5DvvZ47X41n4cyJnamqqtCTN5/UoHPQpFPAqGPDKQ2vecZYVzH//93+v3/7t39Y73vEOSdLDDz+su+66S0eOHFF/f/+yvpDHU5l//Gy+qBcOnVE2V5QpS6ZplX5LtkrjsXnTnF87WVS+UArSfNFUsWCqYJYCtWhasqzS51mWNf8x/x4qdSdb8+9XKJoqzr9nJfl9HnW3RXTHzh5t7WnRxlizhsYTl+3yKn8jFQuXX9bh83oUCa38Oad+rr11GY67Ho36uYvd0/V837U0BdXSFLzkuV39sYXmfK5Y1NnpOcWnMpqYmdNUMquZZE4Ts1kNx1PK5mv7C3jAXwrokN+rUKD0EfT7ZJR+E5AhyTItFUxzoXFS+m/pZ6fX45HHa8hraL4x4in9YmAYpcc9xsIvEl5v6c8+o/RLg8cjeb2l1xqGMf9z+dzPZtOSLFPzj5U+ikVLhUJR+fkGUqFQVK5oyTKtcw0iryFfuQ6vRz6PSv/1ekqP+wz55r+uVPr/7I01aXtvW0Wu6VrzzrAs64qJk8vltGvXLu3du1e33HLLwuO7d+/W7/7u7+rXf/3X11QAAAA4Z8nBjampKZmmecl4ckdHhyYnJ6tWGAAAbsSsAwAAHGTJYG5vb5fH49HExMQFj09OTqqjo6NqhQEA4EZLBnMgENA111yjffv2LTx26tQpjYyMaNeuXVUtDgAAt1nWrOwPfvCDevjhh3XttdcuLJd685vfvOwZ2QAAYHmWnJVddv4GI7fffrs+97nPqaurq9r1AQDgKssOZgAAUH3MygYAwEEIZgAAHIRgBgDAQQhmAAAchGB2iK9//eu68847tWvXLn3kIx+5ZEOXsuHhYQ0MDFzwcdNNN9W42vr05JNP6t5779WNN96ogYGBJV9/4sQJ3XPPPdq5c6d2796t733vezWosjGs5FpzT6/NV7/6Vb3vfe/TG9/4Rr31rW/V5z//eaVSqSt+Dvf26qz0Wq/23l72ecyontUcq/nd735XPT09kiSPh9+vliOTyejWW2/V7bffrr/4i7+44mvz+bw+/OEP67rrrtOjjz6ql19+WZ/+9KfV29t7wWEuuLyVXOsy7unVefHFF3X//fdrx44dmpiY0EMPPaRUKqUvfOELl3099/bqrfRal6343rZguz179lhf/vKXF/4+NDRk9ff3W4cPH77ktadOnbL6+/utU6dO1bLEhvLcc89Z/f39V3zNU089Ze3cudNKpVILj/3Jn/yJ9dGPfrTa5TWU5Vxr7unKeuKJJ6ybb7550ee5tytnqWu92nubX0ttlsvldOjQId16660Lj/X19Wnjxo16+eWXF/28D33oQ7rzzjv1wAMP6MiRI7Uo1VX279+vnTt3KhKJLDx22223XfHfBGvDPV0ZU1NTikajiz7PvV05S13rspXe23Rl22ylx2pGIhF96lOf0g033KBcLqe9e/fqQx/6kJ544gl2YqugycnJy/6bLDb2j9Xjnq6cRCKhb33rW3r/+9+/6Gu4tytjOdd6tfc2wVxnOjo6dM899yz8fdeuXXr3u9+tH/zgB7r//vttrKyxWGyIVzPc05WRy+X00Y9+VH19fXrggQcWfR339tot91qv9t6mK9tmaz1W0+v1amBgQCMjI9Uq0ZU6Ozsv+29ycUsDlcc9vXKFQkEf+9jHlEql9Mgjj8jnW7zNxb29Niu51hdb7r1NMNtsrcdqWpalY8eOacOGDdUs03V27typ/fv3K5PJLDz23HPPcdRpDXBPr4xpmvr4xz+uoaEhffOb31RTU9MVX8+9vXorvdYXW+69TTA7wAc/+EH97d/+rZ566ikdOnRIDz744MKxmvv379e73vUujY+PS5J+/OMf60c/+pFOnDihw4cP61Of+pTGxsb03ve+1+b/C+ebnp7WwYMHNTQ0JEk6ePCgDh48qFwud8l1fstb3qLu7m49+OCDev311/Xoo4/q8ccf14c+9CE7/xfqxkquNff02jz00EPat2+fvvjFLyqfzysejysej6tYLEoS93YFrfRar/beZozZAX7t135NExMT+tM//dMLjtWUSutBT5w4oXw+L0kyDEN//dd/rZGREYVCIe3YsUN79+7V+vXr7fxfqAs//elP9clPfnLh73v27JEkPf3005dc50AgoK9//ev6zGc+o7vvvluxWEyf/exnWee5TCu51tzTa/Poo49KOneNy55++mn19vZyb1fQSq/1au9tjn0EAMBB6MoGAMBBCGYAAByEYAYAwEEIZgAAHIRgBgDAQQhmAAAchGAGAMBBCGagDgwMDFzxY/fu3Zd8zve//30NDAzovvvuu+Dxe+65Rw8++OAlrx8bG9PAwMAF28MCqD12/gLqwDPPPLPw5/379+sjH/mIvvvd76qnp0dSaXP88x09elR//ud/rptvvrmmdQJYO4IZqAOxWGzhz62trZJKR8qd/3hZJpPRH/7hH+oTn/iEnnnmGY2NjdWsTgBrR1c20GA++9nPaufOnXrPe95jdykAVoEWM9BAfvCDH+ill17SY489ZncpAFaJYAYaxPHjx/WFL3xBe/fuVSQSsbscAKtEMAMN4qWXXtL09LTuvvvuhcdM05QkXXfddfr2t7+tG2+8UYFAQIlE4pLPn52dlSQFg8HaFAzgsghmoEHcdddduv766y947Etf+pImJib0uc99Tn19fZKkrVu36l//9V9VLBYvmM29f/9+eTwebd68uaZ1A7gQwQw0iJaWFrW0tFzyWDqdVn9//8Jjv/mbv6nvfve7+uQnP6nf+q3fUktLi1555RX95V/+pfbs2aP29vZalw7gPAQz4DJXXXWV/vEf/1Ff+tKX9Du/8ztKJpPq6+vTfffdp3vvvdfu8gDXMyzLsuwuAgAAlLCOGQAAByGYAQBwEIIZAAAHIZgBAHAQghkAAAchmAEAcBCCGQAAByGYAQBwkP8fu5kB2Uxt8EMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['T4U'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:19.838009Z",
+ "iopub.status.busy": "2021-12-15T11:04:19.833343Z",
+ "iopub.status.idle": "2021-12-15T11:04:20.233640Z",
+ "shell.execute_reply": "2021-12-15T11:04:20.233053Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:22.851197Z"
+ },
+ "papermill": {
+ "duration": 0.501029,
+ "end_time": "2021-12-15T11:04:20.233761",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:19.732732",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAHqCAYAAAADAefsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXBb5YE/+u85erVs2ZZkOS+2SQiJ8lbsACVvJO3WJCXwmwI3lzKTIWx/mWlxSYE7DdO5Sw0Jk5S0ZOdXKO3tJi17WS5Zbso1gd1u2l0atm22dBMMBYuCnTecxLETv0iyrHcd6Zz7hywlju1YTmQf6ej7mckkPufx0SMfO18/L+d5BEVRFBAREZFmiWpXgIiIiKYWw56IiEjjGPZEREQax7AnIiLSOIY9ERGRxjHsiYiINE6vdgWmks8XgixP/5OFDkcZPJ7gtL8uXcJ7oD7eA/XxHqhvOu+BKAqw2UrHPKfpsJdlRZWwT782qYv3QH28B+rjPVBfPtwDduMTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI4/RqV4BoOiRkICYlxj1vMuih56++RKRRDHsqCjEpgdb23nHP3754BvQm/jgQkTaxLUNERKRxDHsiIiKNY9gTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI4xj2REREGsewJyIi0jiGPRERkcYx7ImIiDSOYU9ERKRxDHsiIiKNY9gTERFpHMOeiIhI47IO+3379mHNmjVoaGjA1q1b4fF4xi3b2dmJhx9+GPX19WhsbMTBgwcz5yRJwvPPP4+7774bDQ0NaGxsxEsvvYREIpEpc/DgQSxcuHDEn61bt17jWyQiIipu+mwKvfnmm9i7dy/27NmD2tpa7N69G9u2bcOrr746qqwkSWhqasKSJUvQ0tKCtrY2bN++HbW1tVi+fDmi0ShOnjyJbdu2weVy4cyZM/j+978PURTx2GOPZa4zc+ZMtLS0ZD42mUw5eLtERETFJ6uw379/P7Zs2YL169cDAHbv3o1169bhxIkTcLlcI8oeOXIEvb29ePvtt2GxWOByudDa2or9+/dj+fLlsFqtePnllzPl58yZgy1btuDQoUMjwl6n08HpdObiPRIRERW1Cbvx4/E4Ojo6sHLlysyxuro61NTUoK2tbVR5t9uN+vp6WCyWzLFVq1aNWTbN5/PBarWOONbX14e1a9di3bp1eOaZZ+Dz+bJ6Q0RERDTShC17n88HWZbhcDhGHLfb7fB6vaPKe73eMcuON8bf09ODN954A08//XTm2Lx58/D8889j/vz5uHjxIn784x9j69ateP311yEIQlZvDAAcjrKsy+aa02mduBBNqcvvgeINw1pmHresxWKC024Z9zxdG/4cqI/3QH35cA+y6safDEVRsi7r9/vR1NSEO++8E/fdd1/m+LJly7Bs2TIAwMKFC7FgwQI0Njbik08+QX19fdbX93iCkOXs65MrTqcV/f2BaX9duuTKexCOJRAIRsctHw7H0J9MTkfVigZ/DtTHe6C+6bwHoiiM28idsBvfZrNBFMVRLXOv1wu73T6qvMPhGLPsla39UCiERx55BLW1tfjBD35w1TrMnj0blZWV6O7unqi6REREdIUJw95oNGLRokU4duxY5lhXVxe6u7vR0NAwqnx9fT3cbjcikUjm2NGjR0eUjUaj+Pa3vw2z2Yyf/OQn0Ouv3sHQ19eHwcFB1NTUZPWmiIiI6JKsnrN/6KGH8Morr+Dw4cPo6OhAc3MzVqxYAZfLBbfbjQ0bNqC3txcAsHbtWlRXV6O5uRknT55ES0sLDh06hM2bNwNIPZr3+OOPw+v1YufOnfD7/ejv70d/f3/m9V5++WW899576OrqwocffognnngCS5cuxdKlS6fgS0BERKRtWY3ZP/DAA/B4PHj22WcRCASwevVq7Nq1CwAQiUTQ2dkJSZIApHoC9u3bhx07dmDjxo1wOp3YuXMnli9fDgDo7e3FkSNHAABf/epXR7zO8ePHAQCBQADNzc0YGBiA3W7H6tWr8eSTT0Kn0+XmXRMRERURQZnMjLoCwwl6xevKexCKJdDa3jtu+dsXz0CpKefzVYsafw7Ux3ugvoKZoEdERESFjWFPRESkcQx7IiIijWPYExERaRzDnoiISOMY9lTU3vvkAj7vGVK7GkREU4rPGlHRCkclnO4eAjT78CkRUQpb9lS0LnjCAAApKatcEyKiqcWwp6KVDvsEw56INI5hT0VJURRc8IQAAFKC/fhEpG0MeypKg8E4IrEkBLBlT0Tax7CnopRu1VfbSiAlGPZEpG0MeypKFwbCKC81oqLMyJY9EWkew56KTlJW0OsLY5bDAr1OZNgTkeYx7Kno9A9GkEgql4W9ospWyERE04VhT0XngicMQQBm2i0w6FM/AvFEUuVaERFNHYY9FZ0LAyFUVZhhNOhg0KV+BGJxhj0RaRfDnoqKlJDh8Ucxy1EKANAPt+xjEsOeiLSLYU9FJRJLQAFQXmoAAOh1AgC27IlI2xj2VFTSz9Qb9Lrhv9myJyLtY9hTUcmE/fBYfWbMXuLjd0SkXQx7KirpWffpFn1mzJ7d+ESkYQx7Kirplr3RMBz2mZZ9QrU6ERFNNYY9FZVLY/ZXdOPH2Y1PRNrFsKeicmXY89E7IioGDHsqKvGEDFEQoBNT3/o6UYAoMOyJSNsY9lRUpIScGa9P0+tFhj0RaRrDnoqKlEhmuvDTDDqRs/GJSNMY9lRUpIQ8Kuz1eoY9EWkbw56KipSQMzPw0ww6duMTkbYx7KmoxBMyDAbdiGN6hj0RaRzDnoqKlJBhHKsbn2FPRBrGsKeiMtaYvUEncMyeiDSNYU9FQ1GU1Gz8K8fs2bInIo1j2FPRkGUFsgIYrnzOno/eEZHGMeypaMSvWCo3Ta8TEU/IkGVFjWoREU05hj0VjcyOd1eO2XN9fCLSOIY9FY1Lm+CMfvQOYNgTkXYx7KloXLnjXVqmZc9xeyLSKIY9FY14IhXmo8fsBQBAlGFPRBrFsKeiMdGYfTSemPY6ERFNB4Y9FY3xuvE5Zk9EWsewp6Ix7pi9Lt2yZ9gTkTYx7KloxBMyRFGAThy9Nj7ACXpEpF0MeyoaUiI5arweuKxlz258ItIohj0VjbE2wQEutezZjU9EWsWwp6IxXtjrRAE6kTvfEZF2MeypaMTHCXsAMBl0DHsi0iyGPRWNVMteN+Y5k1GHqMTn7IlImxj2VDSkhDzmBD2ALXsi0jaGPRWN8cbsgXTLnmFPRNrEsKeioCgK4onkVcfsORufiLSKYU9FQUrKUJTRq+elsRufiLSMYU9FIRobe8e7NJNRZNgTkWYx7KkopLvojePNxjdwzJ6ItIthT0UhGks9Vjd+y17Plj0RaRbDnopCJD5B2BtExKQkZEWZzmoREU0Lhj0VhXQ3/tUm6AHc+Y6ItIlhT0Xh0pj9BGHPcXsi0iCGPRWFicfs2bInIu1i2FNRmKgb3zjcsufCOkSkRQx7KgrReAKiKEAnjv0tbzayG5+ItCvrsN+3bx/WrFmDhoYGbN26FR6PZ9yynZ2dePjhh1FfX4/GxkYcPHgwc06SJDz//PO4++670dDQgMbGRrz00ktIJEbuOPaHP/wBd999N26++WZs3LgRbrf7Gt4eUUo0nhx3vB64NGYfjXPnOyLSnqzC/s0338TevXuxY8cOHDhwAIFAANu2bRuzrCRJaGpqgsPhQEtLCx599FFs374d77//PgAgGo3i5MmT2LZtG/71X/8VO3bswK9+9Svs3bs3c43Tp0/jsccew/3334+33noLt956K771rW/B7/fn4C1TMYrEEuN24QOXhz1b9kSkPVmF/f79+7FlyxasX78eixcvxu7du3H06FGcOHFiVNkjR46gt7cXu3fvhsvlwte//nXcc8892L9/PwDAarXi5Zdfxvr16zFnzhx8+ctfxpYtW/Duu+9mrvHGG29g2bJlaGpqwvz589Hc3AyLxYJf//rXOXrbVGyi8fE3wQE4QY+ItG3CsI/H4+jo6MDKlSszx+rq6lBTU4O2trZR5d1uN+rr62GxWDLHVq1aNWbZNJ/PB6vVOuIal7+eIAhYuXLlVa9BdDXReJYte47ZE5EG6Scq4PP5IMsyHA7HiON2ux1er3dUea/XO2bZ8cb4e3p68MYbb+Dpp58ecQ273T6inM1mw/Hjxyeq7ggOR9mkyueS02mduBBNqcvvQVySYTEbYC0zj1m2siL1y6neoOe9yyF+LdXHe6C+fLgHE4b9ZCmTWG7U7/ejqakJd955J+67775rusbVeDxByPL0L3/qdFrR3x+Y9telS668B6GohMoyEwLB6JjlpbgEnSjA4wvz3uUIfw7Ux3ugvum8B6IojNvInbAb32azQRTFUS3zsVrfAOBwOMYse2VrPxQK4ZFHHkFtbS1+8IMfjLrGlb0GPp9vzNcjysZEY/ZA6vE7jtkTkRZNGPZGoxGLFi3CsWPHMse6urrQ3d2NhoaGUeXr6+vhdrsRiUQyx44ePTqibDQaxbe//W2YzWb85Cc/gV6vH3WNy18PAI4dOzbm6xFNRFGUrMLeZNQhKvHROyLSnqxm4z/00EN45ZVXcPjwYXR0dKC5uRkrVqyAy+WC2+3Ghg0b0NvbCwBYu3Ytqqur0dzcjJMnT6KlpQWHDh3C5s2bAaQezXv88cfh9Xqxc+dO+P1+9Pf3o7+/P/N6Dz74ID766CP84he/wOnTp/Hcc88hFArha1/72hR8CUjrpIQMWVau+pw9kJqkx5Y9EWlRVmP2DzzwADweD5599lkEAgGsXr0au3btAgBEIhF0dnZCkiQAqZ6Affv2YceOHdi4cSOcTid27tyJ5cuXAwB6e3tx5MgRAMBXv/rVEa+TnoB300034ac//Sn27NmDl156CS6XC7/85S9RUVGRm3dNRSUywbr4aWajjrPxiUiTBCVXs+HyECfoFa/L78FFbxjf/8VRrKmfhXmzy8csf/viGfi/3nQjKSt4avNt01lVzeLPgfp4D9RXMBP0iApd9i17PVfQIyJNYtiT5qW3t51ozN5oEBFPyNNRJSKiacWwJ80LRbNr2RsNOsQ5Zk9EGsSwJ80LhOMAgBLT1eejmvQMeyLSJoY9ad5QOPWkSHr9+/EYDSJiErvxiUh7GPakeUPhOCxmPURRuGo5k0GHRFJW5QkOIqKpxLAnzQuEJVgthgnLGYdb/jF25RORxjDsSfMCoTisJcYJyxkNqR8HzsgnIq1h2JPmDYXjKCuZuGVvYsueiDSKYU+aFwhLKJtENz5n5BOR1jDsSdOSsoxgJMsx++Hn8OOckU9EGsOwJ00LRlIL6pRZJh6zZzc+EWkVw540LRBKLahjzWLMnt34RKRVDHvStKHh1fOyG7PnbHwi0iaGPWlaOuyzefQu043Pne+ISGMY9qRpgeGlciezqE48wbAnIm1h2JOmBcJxiIKAEvPVN8EBOBufiLSLYU+aNhRKPWMvCldfFx/gbHwi0i6GPWlaIBxHeRZd+AAgigL0OpGz8YlIcxj2pGlD4TisWTxjn2YyiOzGJyLNYdiTpgXCEspLsw97o0HHbnwi0hyGPWlaIBzPakGdNKNBx9n4RKQ5DHvSLCmRRCSWhHUSLXuTnt34RKQ9DHvSrPQz9tlO0AMAo5Hd+ESkPQx70qz06nnlk5mgp+dsfCLSHoY9adal1fMmO0GP3fhEpC0Me9KsofSOd6XZd+ObDDq27IlIcxj2pFmXxuwn07IXEeNsfCLSGIY9adZQOA69ToTZqMv6c4x6HWfjE5HmMOxJswKhOMpLDRCyWBc/zWRkNz4RaQ/DnjQrEJGy2sf+cka9iKSsIJFk656ItINhT5o1FIpPanIecNme9uzKJyINYdiTZqV2vJtcy57b3BKRFjHsSZMURcFQWJp02BsNqR8Jro9PRFrCsCdNisaTkBIyrJNYKhe41LJnNz4RaQnDnjTJH4wBmNzqecClMXt24xORljDsSZMGh8O+fLIT9PTD3fgMeyLSEIY9aZI/cG0te5OR3fhEpD0Me9KkweDwuviTHLM36tmNT0Taw7AnTRoMRAFcy5g9u/GJSHsY9qRJp84PorqyJDO7PluZ2fgJduMTkXYw7ElzFEVB+xkv5tdWTPpzL62gx5Y9EWkHw540p9cXgT8Yx4JrCHvD8Gx8jtkTkZYw7ElzTp4fBADMr62c9OeKggCjQeRsfCLSFIY9ac7J836UlRgwy2G5ps836nWIcblcItIQhj1pzqnzfiy+0Q5xEvvYX85kEBGPM+yJSDsY9qQpgXAcF71hLJ5rv+ZrGA06xDgbn4g0RK92BYhyISEDMSmBT8/4AACzHKUIxRKZ87KS/bWMBh1n4xORpjDsSRNiUgKt7b348HgfREHAYDCGC/2BzPkGlzPra5n0IsOeiDSF3fikKX2+CBwVJuh11/6tbTTqEONsfCLSEIY9aUYyKcPjj8FZWXJd1zHpdYhzNj4RaQjDnjRjYCgKWVFQbbu+sDcaRMQ4G5+INIRhT5rR74sAwHWHvcmg49r4RKQpDHvSjD5fBOUWA8zG65t3ytn4RKQ1DHvShKSsoNcXwQz7ta2adzmjQURMSkJRJvG8HhFRHmPYkyac7wtCSsiYeY1L5F7OZNBBUYBEkmFPRNrAsCdNONGV2vxmZi5a9vr0nvbsyicibWDYkyac7BpERZkRJabrXyfKaBje5pYz8olIIxj2VPASSRmne/w5adUDqW58AJyRT0SawbCngnfmQgBxSc5Z2BvTYc8Z+USkEQx7KnjtZ70AgBn263u+Pi3Tjc+wJyKNYNhTwes4N4jZVaXX/Xx9WqYbn+vjE5FGZB32+/btw5o1a9DQ0ICtW7fC4/GMW7azsxMPP/ww6uvr0djYiIMHD444f+DAAWzatAkNDQ1obGwc9fkHDx7EwoULR/zZunXrJN4WFQspIeNUtx+uusqcXTMzG58teyLSiKyaQm+++Sb27t2LPXv2oLa2Frt378a2bdvw6quvjiorSRKampqwZMkStLS0oK2tDdu3b0dtbS2WL18OAIjFYrjzzjvR0NCAd955Z8zXnDlzJlpaWjIfm0yma3l/pHGf9/ghJWS46ioRjScm/oQssBufiLQmq7Dfv38/tmzZgvXr1wMAdu/ejXXr1uHEiRNwuVwjyh45cgS9vb14++23YbFY4HK50Nraiv3792fC/hvf+AaAVAt+vLDX6XRwOrPfg5yKU/tZHwQBuKmmAp92jt/bNBmcjU9EWjNhN348HkdHRwdWrlyZOVZXV4eamhq0tbWNKu92u1FfXw+L5dLM6FWrVo1Z9mr6+vqwdu1arFu3Ds888wx8Pt+kPp+KQ8dZH26YYYXFnJvxeuDSbHy27IlIKyb8H9Ln80GWZTgcjhHH7XY7vF7vqPJer3fMslcb47/SvHnz8Pzzz2P+/Pm4ePEifvzjH2Pr1q14/fXXIQhC1tdxOMqyLptrTqdVtdcuFoqioKs/hDu/WAeLxQRrmXnE+cs/Nhj0o85fzmIxwTn86F7FcMgbjHrex+vEr5/6eA/Ulw/3IHfNoWG52Dxk2bJlWLZsGQBg4cKFWLBgARobG/HJJ5+gvr4+6+t4PEHI8vSvb+50WtHfH5j21y02Q+E4IrEErGY9wuEYAsFo5py1zDziY0lKjPj4SuFwDP3JVMgrigJBALyDEd7H68CfA/XxHqhvOu+BKArjNnIn7Ma32WwQRXFUy9zr9cJut48q73A4xix7ZWt/MmbPno3Kykp0d3df8zVIe9L71zuvc//6KwmCwG1uiUhTJgx7o9GIRYsW4dixY5ljXV1d6O7uRkNDw6jy9fX1cLvdiEQimWNHjx4ds2y2+vr6MDg4iJqammu+BmlP32Dqe6y6MrdhDwAmvciwJyLNyOo5+4ceegivvPIKDh8+jI6ODjQ3N2PFihVwuVxwu93YsGEDent7AQBr165FdXU1mpubcfLkSbS0tODQoUPYvHlz5nr9/f1ob29HT08P4vE42tvb0d7enjn/8ssv47333kNXVxc+/PBDPPHEE1i6dCmWLl2a47dPhazfF4EAwFk5/lj8tTIadIhxUR0i0oisxuwfeOABeDwePPvsswgEAli9ejV27doFAIhEIujs7IQkSQBSPQH79u3Djh07sHHjRjidTuzcuTPz2B2QWlTnZz/7Webj+++/HwBw/PhxAEAgEEBzczMGBgZgt9uxevVqPPnkk9DpdLl516QJfYMRVFpNMOh1iCdz84x9msmg4xa3RKQZgpKLGXV5ihP0tG33/g+hEwT8nw/dilAsgdb23sy5KyfoNbicaDvRP+61bl88A6WXbY+769VWlJYYsO3BZVNT+SLAnwP18R6or2Am6BHlq35fJOeT89JMBh3Xxicizcj5o3dEUyUhAzEp1V0fk5Lwh+KotJoQiiWQ6w4co0GHoVA8txclIlIJw54KRky61FXvC8QAAP5gDK3tvWhw5XZp5dQEPY7ZE5E2sBufClIgnGp1Wy3GKbl+6tE7duMTkTYw7KkgBcKppz+sFsOUXN/I2fhEpCEMeypIgbAEo0HM7FCXayZ24xORhjDsqSAFwnFYS6amVQ8AJmNqNn5SZlc+ERU+hj0VpGBEQtkUjdcDQOnwlrmhaG4X6yEiUgPDngqOLCsIRqQpG68HgLLhXoNQRJqy1yAimi4Meyo4oagERZm6yXnA5WHPlj0RFT6GPRWczEz8kinsxh8O+yBb9kSkAQx7KjhT/dgdcCnsQ1GGPREVPoY9FZxAOA5RFGAxT90CkGVmtuyJSDsY9lRwghEJ1hIDBEGYstcoMekgCgLDnog0gWFPBScQllA2hV34ACAIAkpL9Hz0jog0gWFPBUVRlNSCOlMc9kBqRj5b9kSkBQx7KigxKYlEUpnSmfhppWYDn7MnIk1g2FNBCQ93q0/l5Ly0shKGPRFpA8OeCkokltqcpsQ09WFfWqJHkI/eEZEGMOypoIRjwy376Qh7M8fsiUgbGPZUUCLDYV9impqtbS9XVmJAXJIhcV97IipwDHsqKJFYAkaDCJ1u6r91yzJL5vLxOyIqbAx7KiiRWGJauvCBy5bMZVc+ERU4hj0VlHA0MS2T8wCgLLOnPcOeiAobw54KSiQ2fWHPne+ISCsY9lQwFEWZ1rAvY9gTkUYw7KlghKIJyMr0PHYHXL7NLSfoEVFhY9hTwRgKxQEAJdOweh4AmAw6GPQiW/ZEVPAY9lQw/KEYgOl5xj6t1Kxn2BNRwWPYU8HwB1Mt++nqxge4Pj4RaQPDngpGphufYU9ENCkMeyoY/lAcRr0I/TSsnpdWajYgyAl6RFTgGPZUMIaC8Wlt1QOpGfls2RNRoWPYU8Hwh+LTNhM/rawktfOdoijT+rpERLnEsKeC4Q/FpnVyHpDa0z4pK4jGufMdERUuhj0VBEVRMBSa/m78MnN6YR125RNR4WLYU0EIRRNIJJVpfcYeuLRkbojb3BJRAWPYU0HwB9ML6kz/BD2A6+MTUWFj2FNBGFRhQR3g8vXxGfZEVLim939Ooms0OMUte0EUEIqN7qoXRQEAW/ZEVNgY9lQQpjrsY1ISbSf6Rx1PyqlH7hj2RFTI2I1PBcEfjMNsTO1CN510ogCzUcewJ6KCxrCngjAYjKGizKjKa1vMes7GJ6KCxrCngjAYiqO8VJ2wLzUbOEGPiAoaw54Kgj8YQ4VqYc897YmosDHsKe8pioLBYBwVpSZVXt/CzXCIqMAx7CnvRWIJSAlZxW58tuyJqLAx7Cnv+YYX1FFrgl6p2YBwNAFZ5s53RFSYGPaU99JL5ao5QU8BEB5j0R0iokLAsKe8l15QR7Uxe3NqIR+O2xNRoWLYU97zp7vxVWrZp4cPfIGYKq9PRHS9GPaU9waHV88zGad3e9s0Z2UJAKDXF1bl9YmIrhfDnvJeavU8dbrwAaCyzAS9TkCfL6JaHYiIrgfDnvKePxhDpUpd+EBq5ztnZQnDnogKFsOe8t5gMI5Kq3otewCorixBL8OeiAoUw57ymqIoGAypt1Ru2gy7BX2DYSgKn7UnosLDsKe8FoklEZdkVKo4Zg8A1bYSxCUZg8NPBhARFRKGPeU1fyj1uFulSqvnpVXbUjPy+zgjn4gKEMOe8tpgIB32arfsLQDASXpEVJAY9pTXBkPqrouf5ig3QScKnKRHRAWJYU95Lb16ntote50ooqqyhN34RFSQGPaU1waDMZgMOphVWj3vcjNsfNaeiApT1mG/b98+rFmzBg0NDdi6dSs8Hs+4ZTs7O/Hwww+jvr4ejY2NOHjw4IjzBw4cwKZNm9DQ0IDGxsYxr/GHP/wBd999N26++WZs3LgRbrc726qShqRWzzNCEAS1q5J61n4wwsfviKjgZBX2b775Jvbu3YsdO3bgwIEDCAQC2LZt25hlJUlCU1MTHA4HWlpa8Oijj2L79u14//33M2VisRjuvPNObNq0acxrnD59Go899hjuv/9+vPXWW7j11lvxrW99C36//xreIhWywWBc9S78tBl2C2LxJIZCfPyOiApLVmG/f/9+bNmyBevXr8fixYuxe/duHD16FCdOnBhV9siRI+jt7cXu3bvhcrnw9a9/Hffccw/279+fKfONb3wD3/zmN+FyucZ8vTfeeAPLli1DU1MT5s+fj+bmZlgsFvz617++xrdJhcofjKn+2F1a+vE7TtIjokIzYdjH43F0dHRg5cqVmWN1dXWoqalBW1vbqPJutxv19fWwWLEpskQAACAASURBVCyZY6tWrRqz7HjcbveI1xMEAStXrpzUNUgb8qFlL4gCQrEErMOr+HX1BxGKJTJ/ErKq1SMimpB+ogI+nw+yLMPhcIw4brfb4fV6R5X3er1jlr3aGP9Y17Db7SOO2Ww2HD9+POtrAIDDUTap8rnkdFpVe22tCEclxKQkamZY4XRaoXjDsJaZxyxrMOhHnbv847HOT/T5aTIEHO8aRFJWIAhAx7lBVJaXZM7furAaTrtlzM8tdvw5UB/vgfry4R5MGPaTlYvJS7maAOXxBCHL0z+Zyum0or8/MO2vqzUXvanH3PQC0N8fQDiWQCAYHbOsJI08Zy0zj/j4yvMTff5458pKDBgYjIwoGw7H0J9MZv/GigR/DtTHe6C+6bwHoiiM28idsBvfZrNBFMVRLfOxWt8A4HA4xix7ZWv/ahwOx6heA5/PN+brkXZlVs9TeROcy1ktRgTCnKBHRIVlwrA3Go1YtGgRjh07ljnW1dWF7u5uNDQ0jCpfX18Pt9uNSOTSJKajR4+OWXY89fX1I14PAI4dOzapa1DhGxxeF78iT2bjA4DVYkAgLPHxOyIqKFnNxn/ooYfwyiuv4PDhw+jo6EBzczNWrFgBl8sFt9uNDRs2oLe3FwCwdu1aVFdXo7m5GSdPnkRLSwsOHTqEzZs3Z67X39+P9vZ29PT0IB6Po729He3t7ZnzDz74ID766CP84he/wOnTp/Hcc88hFArha1/7Wo7fPuWzwUB+rJ53uXKLEVJCRkxitz0RFY6sxuwfeOABeDwePPvsswgEAli9ejV27doFAIhEIujs7IQkSQBSPQH79u3Djh07sHHjRjidTuzcuRPLly/PXO/AgQP42c9+lvn4/vvvB4DMBLybbroJP/3pT7Fnzx689NJLcLlc+OUvf4mKiorcvGsqCP5QDEa9iBKT+qvnpVlLDQCAoZAEszHnU16IiKZE1v9bNTU1oampadTxFStWjJolP2/ePLz22mvjXuvxxx/H448/ftXX+8pXvoKvfOUr2VaPNCj92F0+rJ6XVm5JzR8YCsUzz90TEeU7ro1Pecs/vFRuPikrMUAUBQwGY2pXhYgoawx7ylu+PFhQ50qiKKCi1IjBIGfkE1HhYNhT3srHlj0A2KymzGOBRESFgGFPeSkaTyAaT+Zdyx4AKsuMCMcSnJFPRAWDYU95yR9MP3aXny17AGzdE1HBYNhTXkpPgMunBXXS0r0NnKRHRIWCYU95aTCYfwvqpFnMehj0InwBTtIjosLAsKe85B9uNedjN74gCKgsM7FlT0QFg2FPeWnAH4XJqIPFlJ+r1NmsRgwGYlwjn4gKAsOe8tKAPwpnRUlerZ53ucoyE+IJGeFYQu2qEBFNiGFPeal/MAJnpVntaozr0ox8jtsTUf5j2FPeURQF/f4Iqiryd+359MRBH8ftiagA5OeAKBWlhAzEpAQC4TjikoyKMiNCl3WTy3k0PG4y6lBi0vNZeyIqCAx7yhsxKYHW9l70D0YAAN6hKFrbezPnG1xOtao2JpvVyBn5RFQQ2I1PeScYlgAAZRaDyjW5utTjd3Ek86nLgYhoDAx7yjvByHDYl+R32NusJsiygoHhnggionzFsKe8E4hIMBt10Ovy+9szPUmvZyCkck2IiK4uv/83paIUDEuw5nkXPoDM9rsMeyLKdwx7yjvBiJT3XfgAoNeJKLcYGPZElPcY9pRXZFlBKFoYYQ8AtnIzuvsZ9kSU3xj2lFdCUQmKApRZ8m8DnLHYrSZ4hqKIcNlcIspjDHvKK+mZ+NZCadkPL5vb1RdUuSZERONj2FNeyTxjXyhhX86wJ6L8x7CnvBKMSBAEwGIujMUdLSY9LGY9w56I8hrDnvJKICyh1GyAKObn1rZXEgQBNc5Shj0R5TWGPeWVYETK+2Vyr1RTVYbu/iBkLptLRHmKYU95JRiRCmZyXlqNsxTxhIxeX1jtqhARjYlhT3kjFk8iGk8WzOS8tFpnGQBO0iOi/MWwp7zhGYoCyP/d7q40w26BThQY9kSUtxj2lDc8/lTYF1o3vkEvYpbDwrAnorzFsKe8kQ77QmvZA0BddRnDnojyFsOe8saAPwK9ToDJoFO7KpNWV22FLxDLrABIRJRPGPaUN/r9UVgtRghCYTxjf7m66uFJer0BlWtCRDQaw57yxkVPCBWlhbEBzpXSYX+OXflElIcY9pQXovEEvEMxVA5vLFNoykuNqCgzctyeiPISw57ywgVPakGayrLCbNkDqdb9uV6GPRHlH4Y95YXu/hAAoLKs8Fr2giggFEtgdlUpejwhDIbiCMUSCMUSSMhq146ICCiMrcVI83oGQtDrhIJ87C4mJdF2oh+xeBKyrODwB+dQVVECALh98QzoTfwxIyJ1sWVPeaF7IIQZdgvEApyJn+YoNwMAvP6YyjUhIhqJYU95oWcgiFkOi9rVuC6lJXoYDWJm2V8ionzBsCfVRWIJeIZimOkoVbsq10UQBNjLzfAOsWVPRPmFYU+q6/GkJucVesseABzlJvgCMe5tT0R5hWFPquvpT4d9YbfsAcBeboasKBgMsnVPRPmDYU+q6x4IwaAXMxPcCllmkh678okojzDsSXU9AyHMclggioU7Ez/NajFArxM4SY+I8grDnlTXPRBCTVXhd+EDl0/SY9gTUf5g2JOqwtEEfIEYZmsk7IFUV753KAZZ4SQ9IsoPDHtSVXomfk1Vmco1yR17uQlJWcFQKK52VYiIADDsSWU9A6mwn+3UVsseALvyiShvMOxJVd39IRgNIqoqCn8mflp5qRE6UYCHy+YSUZ5g2JOqejwhzHKUFvSa+FcSRQE2q4kteyLKGwx7Uo2iKDjfF0SthibnpTkqOEmPiPIHw55UMxiMwx+KY85Mq9pVybmqCjOkpIxeb1jtqhARMexJPZ0XhgAAN84qV7kmuZeeg3DmQkDlmhARMexJRWcuDkEnCqir1s5jd2nlpUYY9SLOXhxSuypERAx7Uk/nhQBqqkphNOjUrkrOCYIAR4UZnWzZE1EeYNiTKhRFwZkLQ5g7S3vj9WnOyhJc8IQQjSfUrgoRFTmGPami3x9FKJrA3JnaG69Pq6o0Q1E4bk9E6mPYkyrOaHhyXlpVRQkA4PMLHLcnInUx7EkVZy4EoNcJqNHQMrlXMht1cFaacbrbr3ZViKjIMexJFWcuDqGu2gq9TtvfgnNnluPzniEoXFyHiFSk7f9pKS/JioIzFwOanpyXNmeWFf5QHN4hrpNPROrJOuz37duHNWvWoKGhAVu3boXH4xm3bGdnJx5++GHU19ejsbERBw8eHHE+kUjghz/8IVasWIFbb70VTz31FMLhSyuNHTx4EAsXLhzxZ+vWrdfw9igf9XrDiMaTuFHDk/PS0u+R4/ZEpKaswv7NN9/E3r17sWPHDhw4cACBQADbtm0bs6wkSWhqaoLD4UBLSwseffRRbN++He+//36mzM9//nMcOnQIL774Iv7pn/4Jbrcbu3btGnGdmTNn4k9/+lPmz49+9KPreJuUDxIyEIol0HFuEAAww2FBKJbI/JE12NM921kKvU7kuD0RqUqfTaH9+/djy5YtWL9+PQBg9+7dWLduHU6cOAGXyzWi7JEjR9Db24u3334bFosFLpcLra2t2L9/P5YvXw5ZlvH666/je9/7HlatWgUAePrpp/HNb34TTz31FMrLUy0hnU4Hp9OZy/dKKotJCbS296K1oxd6nYCu3gC6+4OZ8w0u7d1vvU7E3JlWtuyJSFUThn08HkdHRweeeuqpzLG6ujrU1NSgra1tVNi73W7U19fDYrFkjq1atQovvvgiAKCrqws+nw8rV67MnF++fDkURcGnn36a+QWgr68Pa9euhclkwqpVq7Bt2zbYbLZJvTmHQ71lWJ1O7Y9HT5biDcNaZsZgMA5npQUV5SUjzhsMeljLxt/X/mrnxzp3+ce5vna25y0WE5beVIXf/rkTNnup5ickXok/B+rjPVBfPtyDCcPe5/NBlmU4HI4Rx+12O7xe76jyXq93zLLpMf7035eX0el0qKioyJybN28enn/+ecyfPx8XL17Ej3/8Y2zduhWvv/46hEnse+7xBCGr0DfsdFrR38+FVK4UjiXgH4qg3xeBq64SgeDI/d4lKTHqWLbnrzxnLTOP+DiX157M+XA4hhp7CeIJGa3uHsyvrRj3OlrDnwP18R6obzrvgSgK4zZys+rGn4yJHjHK5hGkZcuWYdmyZQCAhQsXYsGCBWhsbMQnn3yC+vr6nNST1OENRJGUFVRVjt9S1polc20QBQFtpweKKuyJKH9M2Kdos9kgiuKo2fderxd2u31UeYfDMWbZdEu+qqoKAEaUSSaT8Pv9o3oE0mbPno3Kykp0d3dPVF3Kc73eCABghs0yQUntsJgNcNVV4ONTA2pXhYiK1IRhbzQasWjRIhw7dixzrKurC93d3WhoaBhVvr6+Hm63G5FIJHPs6NGjmbJ1dXWw2Wwjrtfa2gpBELBkyZIx69DX14fBwUHU1NRk/84oL/V6w7BaDLCYc96plNca5lehuz+EgcHIxIWJiHIsq9lCDz30EF555RUcPnwYHR0daG5uxooVK+ByueB2u7Fhwwb09vYCANauXYvq6mo0Nzfj5MmTaGlpwaFDh7B58+bUC4oiNm3ahBdeeAFHjx6F2+3Gc889h3vvvRcVFakuzpdffhnvvfceurq68OGHH+KJJ57A0qVLsXTp0in6MtB0kGUFfb4IZtiLp1Wftmx+qkeLrXsiUkNWzasHHngAHo8Hzz77LAKBAFavXp15Lj4SiaCzsxOSJAFI9QTs27cPO3bswMaNG+F0OrFz504sX748c73vfOc7CIVCeOKJJyBJEu666y4888wzmfOBQADNzc0YGBiA3W7H6tWr8eSTT0Kn096+58WkxxNCPCFjhq1k4sIaM8NuwUy7BW2nBrDui3VqV4eIikzWfalNTU1oamoadXzFihU4fvz4iGPz5s3Da6+9Nv6L6vX4/ve/j+9///tjnv/ud7+L7373u9lWjQrEqfOphWWKsWUPpFr3v/ugC5FYAiWm4hrGICJ1FddDv6Sq0+f9KDXrUVZiULsqqmiY70BSVvBp5+hHVomIphLDnqaFoig41e0v2lY9AMyvrUCpWc9xeyKadgx7mhYXPGEEIxJm2ItvvD5NJ4q4+SYH3Kc9qiz2RETFi2FP0+J41/DmN0X0fD0ACKIwYrOfRXNsCEYk/PWMF6FYAglZ7RoSUTHgLCGaFie6BlFeaoTVUlzj9TEpibYT/ZmP44kkDHoRB/94Gn9zSw1uXzwDek7WI6IpxpY9TTlFUXD8nA/zaysmtbeBFhn1OiyZa8O53iA8/vHX2yciyiWGPU25/sEIBoNxzK/huvAAsHiODUaDiDZO1COiacKwpynXftYHAFhQW6lyTfKD0aDD0rl2nO8P4exF7khGRFOPYU9Trv2sD5VlxqKeiX+lRXNsMBl0+M1/n1G7KkRUBBj2NKVkRcFnZ3xYMtde9OP1lzPoRSy90YbPzvhwqtuvdnWISOMY9jSlzvcFEYxIWDzHpnZV8s7CG2wotxjxT7/tQCyeVLs6RKRhDHuaUp+dSY3XL5lrV7km+cegF/G3dy/EhYEQXnvnOBSFC+0Q0dRg2NOU+uysF7McFtisJrWrkpcW3mDD1+6Yiz//9SL+5L6gdnWISKMY9jRlpISME12DWDKHrfqrufeOG7F4jg37f3cCXX1BtatDRBrEsKcp83mPH3FJxpK5HK+/GlEU8Mi9S2Ex6fHzt/+KSCyhdpWISGMY9jRlPjvjgyCkuqppbOm18/V6Ed+4ZxH6fGH842/aEYxKXDufiHKGi3LTlPnsrBc3ziqHxcxvs/FcuXb+svlV+Mvxfhh0IhbeUMm184koJ9iyp5xKyEAolsDAUBSdPUNYUFuR2fGNu7pO7Avz7JhdVYrW9j6unU9EOcOwp5yKSQm0tvfit0fPQlYARQFa23vR2t6LhMw+6YkIgoA19TNhNulwpK0HiSS/ZkR0/Rj2NCV6BkLQ6wQ4bWa1q1JwzEY9Vi6ZgUBYwtFPL6pdHSLSAIY9TYmegRBm2C3QifwWuxY1zlJUVZjxH8fOQUpwdT0iuj78n5hyLhCOIxCWMLuqVO2qFCxBELBsQRUGg3H88eMetatDRAWOYU851z0QAgDUMOyvyyyHBfNrKnDov88iLrF1T0TXjmFPOdczEEZZiQFWi0HtqhQ0QRDwP1bPgT8Ux+8/6la7OkRUwBj2lFOJpIyLnhBmV1m4pW0OzK+txJK5Nvzm6FnujEdE14xhTznV2TOERFLheH0O3XvHjQiEJfyZM/OJ6Box7Cmn0kvkznIw7HNlQW0F5syw4vAHXdwGl4iuCcOecqrjrBfVlSUw6PmtlQuCKCAcT2Ltstm44AnjLycHMisSct18IsoWF92mnPEHYzjfH8Itriq1q6IZ6bXzFUWG2ajDv/zX5wiEawGA6+YTUdbY/KKc+WunFwA4Xj8FdKIIV10lzveHEAjH1a4OERUYhj3ljPu0B1aLAXarSe2qaJKrrhKCAHScHVS7KkRUYBj2lBMxKYm20wNomF/FR+6miMWsx9yZVpzq9kPigD0RTQLDnnLik9MexCUZt7icaldF0xbPsUFKyOg461O7KkRUQBj2lBPvd/Sh3GLA/JoKtauiaVWVJairLsMnn3swFOLYPRFlh2FP1y0aT8B9agC3LaqGKLILf6rdttAJWVbwb38+o3ZViKhAMOzpurlPexBPyFi+qFrtqhSF8lIjFt5gw9G/XsS53oDa1SGiAsCwp+vW2t6HijIjFtRWql2VolE/3wGLWY8D757kqnpENCGGPV2XSCwB9+cefHEhu/Cnk8mgwz2r5qLj3CBaO/rUrg4R5TmGPV2XttMDkBIybmcX/rS7o34Wbpxlxcv/9hncpz1qV4eI8hjDnq5La3sfbFYT5tdyFv5004kCvvvgMtRUleFnB90MfCIaF8OerlmfL4yPTw1g5ZIZELmQzrQTRAGCKODRjV/ALEcpfnbQjff+epEb5RDRKNxFg67Zvx87B50oYN0X69SuSlFKb5IDAKu/MBOHP+jCP/7bZ6irLsPti6rxldtquVEOEQFgy56u0WAwhj99cgF33DwLNq6FrzqTUYcNK2/ALa4qXPCE8C9/6sS/Hz2LWDypdtWIKA/w1366Ju+0diEpK7h7xQ1qV4WG6UQRN89z4MZZ5fiwow+H/vss/vTJBdy35kasrZ8Fncjf7YmKFX/6adJCUQm//6gbty+qRrXNonZ16AplJQZ8+ZYafPfBBjgrSvD//Ptx7Pi/W9E3GFG7akSkEoY9Tdp/fngesXgS96yco3ZV6Crm1VTgqc234rGNN8MfjOH5f/4Ler1htatFRCpg2NOk+IJx/O6D81hyox2OypLMzO/0H5mLueUNQRQQjiexcI4Njz1QDykh44f7/4LTPUOcrU9UZDhmT1mTFQUv/9unCMcSmDfLitb23lFlGrjFbd64fLY+ADTeVoPftXbhfx34CBtW3IA7v1jH2fpERYIte8ravx87h/YzPty+yAl7uVnt6tAkVZaZcNfyG6AowB8+6kZM4kx9omLBsKesnDw/iIN//By3LKiCq44b3hSq8lIj1jbMwmAwjgOHT3ATHaIiwbCnCQ34I9j7L5/CUWHCpvUuCFwtr6DNrirFsgVV+KCjH//5l261q0NE04ADdnRV7tMD+OWvP4OsKPjepltQwjFeTbh5nh2JhIwD755ErbMUC2+wqV0lIppCbNnTmGRZwcEjp/Hi/+eGvdyMHf/zdsydWa52tShHBEHAwxsWwllZghfeaMPHJwfUrhIRTSGGPY1yrjeA5177AP/257NYUz8LzQ/fxsVzNMhiNuDvNt+KGmcpfnrQjSNtPWpXiYimCPtkKSMWT+Kt/+rE4Q/OobTEgP95zyLctrAakqxAiiUAgM/Ra0y5xYjvbboF//D2p/in33bgszNeLJ1rx7yaSlSUGcadn2Ey6KFnU4GoYDDsCQDgPu3B/neOY8AfxYLaCty60AlZVkY9S8/n6LXHbNTj8f/9Zrzx+1M4+mkv3m/vAwCIAgCkwl4nCqgoM6LSakJlmRErlszE/JoKlFvG/4WAiPIHw14FiqIgHJcxFIohGk+grMQIi3nkrZiulpM/GMP/++5JvN/eh1kOC/6PrzfAF4hO/QuT6gRRQGi4xwYA7ls7D/euuRG93ghOdfvx1889SMe4lJThD8Zxvi+IU+eT+KAjtVhPWYkBZqMucw2DXoTFrIfFZEDdTCtcNeVYPMcGg14HIlIPw34axeJJ/P6jbvzH++fgD8UzxwUBmGGzoK66DDfMKENpiQG3L54xpaubxeJJ/EfrOfz22DkkkzLuX3sj7l4xB/GkjNZ2hn0xuHKFvcstXzoDJsPYv21GYgnMsFswMBhFz0AIUmbdXQVSQkY4lsBQKI53W7vwmz8nYdSLWDLXjjUNs+Cqq4TZaOAQANE0Y9hPg0RSxuEPzuO3x84iEJaweI4NX76lBr3eEAx6EYPBOLr6gmjt6MMHx/swb3Y55swsx40zrTmvy1A4jqOf9eE3fz6DoXAcDfOrcO+aG1FtK0E8KXNMniZUYtJj0Vw7lKt8s8gK8NlZH06d8+F8fxAd53z4+NQAKsuMuGvFDfiiqxr2ctOIIQBFURCMSOj1RdHrCyGRVGAvN8FRboa11AhREDhXgOgaMeynUEIGTvcMYv9/HEd3fwiLbqjE3SvnYF5NBWQF+LDj0nj4rS4nhkJxHD83iBNdg/jBq61YsWQGNiy/ATfMmHzoK4qCobAEXyAK71AMvd4w2k4N4GS3H4oCOCtLsOHmG1BtK8HZi0M4e3EIAMfkKTtX6xUAUt9Hep2IGmcpapyl+OJCJzovBNB+1odfvXsKv3r3FCrLjJg3uwKJpAyPP4oBf3TcJXyNehFzZ1nxP1bPxRfm2jlPgGiSGPZTJJGU8S9/6sRvjp6FyaDD39wyGzfMsMIzFIVnKDpmqJaXGnH74mp8YZ4d3qEY/uS+gKOf9mLxHBvW316H+TUVKDXrM//RSQkZA/4I+gcj6B+Mos+X+nffYOpv6YptzWZXlWLDihvwhXlVuOgJ8j9MmjY6nYj5tRW4qaYcs6vKcL4viNPdfnReGILJqEO1rQRL5tpRVWFGWakBFwZCEAUBwaiEYFhC/2AEn/cM4YVftWGGrQTrvliHNfWzYDJwLgBRNhj2U+CzTg9e+tVH6O4P4cZZVty+eMaISUwTKTHpcf+XanD/2htx5OMeHP7wPF5qcQMAzEYdHBVmhKMJDAZiuLwj1agXUVVZAke5GZVlRpSVGGAx61FqNqC0RA+zMXW7Z1ZZ0OsN5fItE2VFEATUzbSitroMK78wc8wyspKaUwIAlVYTAGDRHBukhAxRFHD0rxfxz787gX99rxPrbqvF2obZqCwzTdt7ICpEWYf9vn378NprryEQCOCOO+7Arl274HA4xizb2dmJ7du3o62tDVVVVXjsscewcePGzPlEIoG///u/x9tvvw1JknDXXXfhmWeegcVyaeGWP/zhD3j++edx/vx5LFiwAM8++yzq6+uv461OPX8ojreOfI4jbT2wl5vwyL1LEY0nJv7EMQiiAEUGvnRLDe6on4WOc4Po9YXh9UfhDcQwu0qHuJSE1WJAWYkRVktqVrQgCGhwOa/axUqkpmyGAMZi0Iu4ffEMNN5SgxNdg/jtsXN467868fZ/dWJBXSVuX1SNhXWVcFSYs1rWWZYVhGMJBMJxBCMSghEJAgSYjDqYDDqUWwywl5shiuwBo8KXVdi/+eab2Lt3L/bs2YPa2lrs3r0b27Ztw6uvvjqqrCRJaGpqwpIlS9DS0oK2tjZs374dtbW1WL58OQDg5z//OQ4dOoQXX3wRpaWleOqpp7Br1y788Ic/BACcPn0ajz32GB5//HHceeedOHDgAL71rW/hnXfeQUVFRQ7f/vWTFQWfnfHiyMc9+OjkABQF+N/+Zj7W3zobSQVj7vmejbH+Q7SWGGAtMWDOTCsDnYqSIAoIx5OonWHFt+5dioveMP5yvB8fnejHP//uRKZcqVmP8lIjDDoRer0IURCQlGVICQVSUkYoIiEUkTDRfFS9TkBVRQmcthLMspdilqMEM2wWzLBbUFlmvKahsERSRiAsYSgURyAchz8UT30cjqeG3oYrZTSIKC81XvpjSf1tLTHwF5A8IisKgmEJgYgEUQBMBh2MBh1KTDroxPyZTZpV2O/fvx9btmzB+vXrAQC7d+/GunXrcOLECbhcrhFljxw5gt7eXrz99tuwWCxwuVxobW3F/v37sXz5csiyjNdffx3f+973sGrVKgDA008/jW9+85t46qmnUF5ejjfeeAPLli1DU1MTAKC5uRnvvvsufv3rX2Pz5s1Zv7lc/UAoioKPTg3A648ikUz9ZzEYiGHAnxp/j0tJWMwG3P+leVixZAYW3+SExxNEJJ46Pha9Thz33PWeV+tz8+naJSY9kgnDuOenq95a+Xpey/kr70Eurp2UFbR3ekccmzPTijkzrRgKx2AvN8M3FIMvEEM4lkAiKSOZVCArCvSiAL1eB50goMSsg8WUGuZKrQugh9mkx+nzfkhJGcmkjGg8iWAkjkA4gVBUwiedA/j41KVfD4wGHezlJuhFEbKipJ5kUVKvJcupvxUZkJHqRZASMqRkEsnk2L9i6HQCDDod0msZxRPjlzXoRRj0Opj0IgyG1L+Nw/826XQwGEQY9SLKrWYkEknoRCH1+gkZcSkJKalASiRTHydkSFKqbqIoQC+mfkEy6ATodGLmFya9KMCgF6HXDf/Rp8oCw7+fDG+XnHpIQxk+ljqX3kpZUZA5niqb+rrEpCRikgwpkURMSiIelyErCgQBEAUBgiCkFnkSBYipvzK/aCVlBYmkDCmpQCcKqa/D8B+jna8XewAACNJJREFUXge9LlVvURShEwXodELqb0GAqBvOCAWXfvG7bNvn9D+TipL6GiVkhOOpR0tDUQnBcALhaHzMp5gEAbBajLBVmFFi0KHEpIfFqIfJqIMoDi9UVWrCrS5nzrLqatcRlAk2tI7H42hoaMCrr76aaZkDQGNjIx599FF8/etfH1H+hRdewF/+8he89tprmWNvvfUWXnzxRfzxj3/E2bNn8dWvfhX/+Z//iZqaGgBAMpnEzTffjH/8x3/EqlWrsGnTJtxxxx147LHHMtd46qmnMt3/RERElL0J+xh8Ph9kWR41Pm+32+H1ekeV93q9Y5b1eDwAkPn78jI6nQ4VFRWZc16vF3a7fcQ1bDbbmK9HREREV5fzAYUJOgomPJ9tGSIiIsrOhGFvs9kgimKm1Z02VusbSLXYxyqbbslXVVUBwIgyyWQSfr8/U8bhcIxqxft8vjFfj4iIiK5uwrA3Go1YtGgRjh07ljnW1dWF7u5uNDQ0jCpfX18Pt9uNSCSSOXb06NFM2bq6OthsthHXa21thSAIWLJkSeYal58HgGPHjo35ekRERHR1WXXjP/TQQ3jllVdw+PBhdHR0oLm5GStWrIDL5YLb7caGDRvQ25t6xGzt2rWorq5Gc3MzTp48iZaWFhw6dCgzi14URWzatAkvvPACjh49Crfbjeeeew733ntv5rG6Bx98EB999BF+8Ytf4PTp03juuecQCoXwta99bYq+DERERNo14Wz8tMsX1Vm9ejV27dqFqqoqHDt2DH/7t3+Ld999F7W1tQCAzz//HDt27MDHH38Mp9M55qI6e/bsGbGozvbt20csqvP73/8ee/bsQVdXF1wuV0EsqkNERJSPsg57IiIiKkz5s7wPERERTQmGPRERkcYx7ImIiDSOYU9ERKRxDPsc2rdvH9asWYOGhgZs3bp11OJCdH3eeecdfOMb38Btt92GhQsXjjrf1taGjRs34uabb8Y999yDP/7xjyPOh0Ih/N3f/R1uvfVWrFixAj/60Y+QTCanq/oF7x/+4R9w3333YdmyZfjSl76EH/zgBwiFQiPK8B5Mj5deegl33XUX6uvrsXr1ajz55JPo77+0Cybvw/T5zne+g4ULF45YGyYfv/4M+xxJbwO8Y8cOHDhwAIFAANu2bVO7WpoSiUSwcuVKPPLII6PO+f7/9u4ntIktiuP46T8QjLgobpSiVBjQSmlKY1siUrsQF4IGXYhYcKEo/kFcqMWCYAmii0pFwYogFTdi0ZRSuvAPuCi0qFCiOCoUlBr/a6NUF8Yk5606L3laNY9kJl6/H8hi7p2Qm3sWv0wy5MTjsn37dqmvr5dIJCLr1q2TPXv2yLNnz5xzOjs75cGDB9Lb2yvd3d0yODgoZ8+edfEd/NnGxsZk27Ztcu3aNenq6pLh4WEJh8POPDVwT3V1tRw9elSGhoakp6dHXr16Je3t7SJCHdzU39+f9QdyIkW8/4q8WL9+vZ46dco5npiYUMuy9MmTJx6uykyjo6NqWVbW2MWLF3XVqlWaTqedsc2bN+vx48dVVfXjx4+6ZMkSHRkZceb7+vq0ublZU6mUOws3zNDQkAYCAeeYGnjn1q1bWldXp6rUwS2vX7/WlpYWffHihVqWpaOjo6pavPvPlX0eJBIJefz4sTQ1NTljVVVVsmDBAolGox6u7O9x//59aWxsdHpci4g0Nzc7+//w4UMpKSmRQCCQNf/hwweJxWKur9cE8Xhc5syZ4xxTA29MTU3J4OCg1NfXiwh1cEtHR4fs2LFD5s+fnzVerPtP2OdBrm2AkX8ztUXObK08d+5cKSsrc+anz+feitxNTU3JhQsXZMOGDc4YNXDXwMCA+P1+aWhokFgsJl1dXSJCHdxw+fJlSSaTsmnTpu/minX/CXsYQf9Ha+XMT974fYlEQvbu3StVVVVZ909QA3e1trZKJBKR3t5eKS8vlyNHjogIdSi0ly9fypkzZ7LuV8lUrPtfXvBX+AtktgFevHixMz5TG2Dk30xtkTNbK3/69ElSqZTziXr6U/R/v5HBzJLJpOzfv1++fPnihMw0auAun88nPp9PFi1aJNXV1bJy5UoZHx+nDgVm27a8f/9eVq9enTW+detWCYVCRbv/XNnnQa5tgJF/P2qLnNlaeenSpaKqcu/evaz5yspKp4ETfi6dTsuhQ4dkYmJCzp8/L7Nnz86apwbemb5aLC0tpQ4F1tTUJAMDA9Lf3+88RETC4bDs27evePe/YLf+/WX6+vrU7/frjRs39NGjR9rW1qZtbW1eL8so8XhcbdvWK1euqGVZatu22ratX79+1cnJSQ0EAhoOh3V8fFzPnTuny5Yt06dPnzrPP3DggK5du1aj0aiOjIzoihUr9PTp0969oT/M4cOHNRgMqm3b+vbtW+eRTCZVVamBSxKJhJ48eVKj0ajGYjG9e/eubtmyRUOhkKZSKerggcy78Yt1/wn7POrp6dFgMKi1tbW6c+dOfffunddLMsrVq1fVsqzvHs+fP1dV1bGxMQ2FQlpTU6Nr1qzR27dvZz3/8+fPevDgQa2rq9NAIKDHjh1zggq/9qO9z9x/VWrghm/fvunu3bs1GAxqTU2NtrS0aEdHh75588Y5hzq4KzPsVYtz/2lxCwCA4fjNHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMx3/jA/ht7e3tEolEcn7e8uXL5dKlS9La2iobN26UXbt2FWB1AGZC2APISUNDg3R3dzvH6XRaSkv//ZLw+vXr0tnZKcPDw85YRUWFq2sEkI2wB5CTiooKmTdv3ozzPp9PROSn5wBwF7/ZAwBgOK7sAeTkzp074vf7nePKykq5efOmhysC8CuEPYCc1NbWyokTJ5zjsrIyD1cD4HcQ9gByMmvWLFm4cKHXywCQA36zBwDAcIQ9AACGI+wBADBciaqq14sAAACFw5U9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHD/AEJl5D0FEp7PAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['FTI'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:20.430739Z",
+ "iopub.status.busy": "2021-12-15T11:04:20.430038Z",
+ "iopub.status.idle": "2021-12-15T11:04:20.902808Z",
+ "shell.execute_reply": "2021-12-15T11:04:20.902142Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:23.174497Z"
+ },
+ "papermill": {
+ "duration": 0.57137,
+ "end_time": "2021-12-15T11:04:20.902953",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:20.331583",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:288: UserWarning: Data must have variance to compute a kernel density estimate.\n",
+ " warnings.warn(msg, UserWarning)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAHqCAYAAAA+k4aKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dfVTW9f3H8dcFhoaQ5/Lqyk1lkpJKCnizAsp5ylktjLzJYqfmqWXKpubtnBpT523lTR2VptIqN9zUY6EnrNOs3NF1CpqdnQtTs6RcaW0xLmqgKCrX749+XnXNG8DrAt5wPR/neI58v1++vvn0jSfXxRcuh8/n8wkAAJgR0dwDAACAQMQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCmTXMPcE5FxXHV1obPT3W5XDEqL69q7jFaNNYwNFjH4LGGwQu3NYyIcMjpbH/R/WbiXFvrC6s4Swq7j7cxsIahwToGjzUMHmv4LZ7WBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGFNnnGfPnq1evXoF/NmwYUPAMR6PR6NGjVJSUpIyMjK0e/fuxpoXAIBWr16v53znnXcqJyfH/3ZMTIz/7xUVFRo3bpzuvvtuLVu2TG+++aYmTZqkwsJCxcfHh3xgAABau3rFuV27dnK73RfcV1hYqJiYGOXk5MjhcCghIUF79uzRli1bNGvWrJAOCwBAOKjX95x37dqltLQ0ZWZmav369Tpz5ox/X0lJiVJTU+VwOPzb0tPT5fF4Qj8tAABhoM5HzoMHD1ZGRoY6deqk/fv3a9myZTp+/LimT58uSfJ6vUpMTAx4H6fTqfLy8gYN4nLF1H1QK+N2xzb3CC0eaxi8yhM18kVGXnT/le3aKDY6qgknapm4FoPHGn6rzjhnZGT4/96rVy9FRERowYIFmjZtmhwOh3w+X0gGKS+vUm1taM7VErjdsSorq2zuMVo01jA0fJGR2v3epxfdf0NiJ508fqoJJ2p5uBaDF25rGBHhuOSD0gb/KFWfPn104sQJVVRUSJJcLpe8Xm/AMRUVFXK5XA09NQAA0GXE+aOPPtKVV14pp9MpSUpOTlZxcXHAMUVFRUpJSQnNhAAAhJk64/z444/L4/Ho6NGj2rlzpx5//HFlZWX5bwDLzMxUVVWVlixZotLSUuXl5cnj8SgrK6vRhwcAoDWq83vOhw8fVnZ2tqqqqtS5c2dlZWVp/Pjx/v1Op1N5eXlauHChNm3apLi4OOXm5vIzzgAAXKY64/zcc8/VeZJ+/fqpoKAgJAMBABDu+N3aAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjGlwnCdOnKhevXqpuLjYv83j8WjUqFFKSkpSRkaGdu/eHdIhAQAIJw2K8/bt21VdXR2wraKiQuPGjdOAAQO0bds2DR8+XJMmTdKRI0dCOScAAGGj3nH+97//rVWrVmnx4sUB2wsLCxUTE6OcnBwlJCQoOztbycnJ2rJlS8iHBQAgHNQ7zjk5OcrOzlbnzp0DtpeUlCg1NVUOh8O/LT09XR6PJ3RTAgAQRtrU56DNmzfrzJkz+ulPf3rePq/Xq8TExIBtTqdT5eXlDRrE5Ypp0PGtgdsd29wjtHisYfC+9J5QbEy7i+6Pjm4rd8foJpyoZeJaDB5r+K064/z5558rNzdXmzdvvuB+n88XkkHKy6tUWxuac7UEbnesysoqm3uMFo01DJHISFVWnbzo7hMnTqns7NkmHKjl4VoMXritYUSE45IPSuuM84EDB/Sf//xHt99+e8D2hx56SCNHjpTL5ZLX6w3YV1FRIZfLdZkjAwAQ3uqMc1paml5++eWAbZmZmVq8eLEGDRqkv/zlL9qwYUPA/qKiIqWkpIR0UAAAwkWdN4TFxMSoZ8+eAX8kqWvXrurUqZMyMzNVVVWlJUuWqLS0VHl5efJ4PMrKymr04QEAaI2C/g1hTqdTeXl5eu+99zR8+HBt27ZNubm5io+PD8F4AACEn3rdrf2/Dh06FPB2v379VFBQEJKBAAAId/xubQAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMbUK86rV6/WHXfcoeTkZN10002aMWOGysrK/Ps9Ho9GjRqlpKQkZWRkaPfu3Y02MAAArV294ty9e3ctWLBAr776qtatW6cvvvhCs2fPliRVVFRo3LhxGjBggLZt26bhw4dr0qRJOnLkSGPODQBAq9WmPgfddddd/r937dpVjzzyiGbMmCFJKiwsVExMjHJycuRwOJSQkKA9e/Zoy5YtmjVrVuNMDQBAK9bg7zlXVlZqx44dGjBggCSppKREqampcjgc/mPS09Pl8XhCNyUAAGGkXo+cJenll1/W/PnzdeLECaWkpCgvL0+S5PV6lZiYGHCs0+lUeXl5gwZxuWIadHxr4HbHNvcILR5rGLwvvScUG9Puovujo9vK3TG6CSdqmbgWg8cafqvecR4yZIiSk5P1xRdfaM2aNZo3b55Wr14tn88XkkHKy6tUWxuac7UEbnesysoqm3uMFo01DJHISFVWnbzo7hMnTqns7NkmHKjl4VoMXritYUSE45IPSusd55iYGMXExCg+Pl7du3fX4MGDdfjwYblcLnm93oBjKyoq5HK5Ln9qAADC2GX9nPO5R8sRERFKTk5WcXFxwP6ioiKlpKQEPx0AAGGozjifPn1aTz/9tEpKSnTs2DHt3btXM2fOVJ8+fRQfH6/MzExVVVVpyZIlKi0tVV5enjwej7KysppifgAAWp06n9Z2OBwqLS3VSy+9pK+++kput1s333yzJk+erIiICDmdTuXl5WnhwoXatGmT4uLilJubq/j4+CYYHwCA1qfOOLdp00a5ubmXPKZfv34qKCgI2VAAAIQzfrc2AADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY+qM89q1azV8+HD169dPgwcP1uLFi3X8+PGAYzwej0aNGqWkpCRlZGRo9+7djTYwAACtXZ1x/sc//qFHHnlEBQUFWrlypd566y0tXrzYv7+iokLjxo3TgAEDtG3bNg0fPlyTJk3SkSNHGnNuAABarTZ1HZCXl+f/e/fu3TVlyhTNnz/fv62wsFAxMTHKycmRw+FQQkKC9uzZoy1btmjWrFmNMzUAAK1Yg7/nXFFRodjYWP/bJSUlSk1NlcPh8G9LT0+Xx+MJzYQAAISZOh85f1dlZaWef/553XPPPf5tXq9XiYmJAcc5nU6Vl5c3aBCXK6ZBx7cGbnds3QfhkljD4H3pPaHYmHYX3R8d3VbujtFNOFHLxLUYPNbwW/WOc01NjR599FHFxcVp/Pjx/u0+ny8kg5SXV6m2NjTnagnc7liVlVU29xgtGmsYIpGRqqw6edHdJ06cUtnZs004UMvDtRi8cFvDiAjHJR+U1ivOZ86c0bRp03T8+HFt2LBBbdp8+24ul0terzfg+IqKCrlcrsscGQCA8Fbn95xra2s1a9Ysffrpp3r22WfVvn37gP3JyckqLi4O2FZUVKSUlJTQTgoAQJioM85z585VcXGxli1bptOnT6usrExlZWU6+/9Pc2VmZqqqqkpLlixRaWmp8vLy5PF4lJWV1ejDAwDQGtX5tPaLL74oSRoxYkTA9jfffFNdu3aV0+lUXl6eFi5cqE2bNikuLk65ubmKj49vlIEBAGjt6ozzoUOH6jxJv379VFBQEJKBAAAId/xubQAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMbUK847d+7Ugw8+qIEDB6pXr17n7fd4PBo1apSSkpKUkZGh3bt3h3xQAADCRb3iXF1drbS0NI0fP/68fRUVFRo3bpwGDBigbdu2afjw4Zo0aZKOHDkS6lkBAAgLbepz0PDhwyVJxcXF5+0rLCxUTEyMcnJy5HA4lJCQoD179mjLli2aNWtWaKcFACAM1CvOl1JSUqLU1FQ5HA7/tvT0dL399tsNOo/LFRPsKC2O2x3b3CO0eKxh8L70nlBsTLuL7o+Obit3x+gmnKhl4loMHmv4raDj7PV6lZiYGLDN6XSqvLy8QecpL69Sba0v2HFaDLc7VmVllc09RovGGoZIZKQqq05edPeJE6dUdvZsEw7U8nAtBi/c1jAiwnHJB6VB363t84VPUAEAaApBx9nlcsnr9QZsq6iokMvlCvbUAACEpaDjnJycfN6NYkVFRUpJSQn21AAAhKV6xfmrr77SwYMH9emnn0qSDh48qIMHD6qmpkaZmZmqqqrSkiVLVFpaqry8PHk8HmVlZTXq4AAAtFb1uiFs165dmjNnjv/tESNGSJLefPNNde3aVXl5eVq4cKE2bdqkuLg45ebmKj4+vlEGBgCgtXP4jNzRxd3aaCjWMDR8kZHa/d6nF91/Q2IntW8b9A92tGpci8ELtzVs9Lu1AQBAaBFnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGNCFuf169dr0KBBSklJ0YQJE1ReXh6qUwMAEFZCEueXXnpJ69at0/z587V582ZVVlZq+vTpoTg1AABhp00oTrJx40b9/Oc/12233SZJWrp0qYYOHaoPP/xQPXv2rNc5IiIcoRilRQnHjznUWMPg+SIcim53xUX3t4mMYJ3rgTUKXjitYV0fa9Bxrqmp0QcffKA5c+b4t8XFxalLly7yeDz1jrPT2T7YUVoclyumuUdo8VjD0Bj2ox7NPUKLx7UYPNbwW0E/rV1RUaHa2lq5XK6A7R07dpTX6w329AAAhB3u1gYAwJig4+x0OhUREXHe3dler1cdO3YM9vQAAISdoOMcFRWl3r17q7i42L/ts88+07Fjx5SSkhLs6QEACDshuVv7gQce0NKlS5WYmKiuXbtq6dKlSk1NrffNYAAA4FsOn8/nC8WJ1q9fr/z8fFVWVuqmm27SokWLdPXVV4fi1AAAhJWQxRkAAIQGd2sDAGAMcQYAwBjiDACAMcQZAABjiHMTutyX1Xz//ffVp08fjRkzppEntK8ha3jw4EFNnjxZgwYNUv/+/XXffffp7bffbsJpbWjImn3yyScaM2aMkpOTNWTIEBUUFDThpHbVdw255i7ucj7/hfPnPuLcRC73ZTVramo0Z84c3XDDDU0wpW0NXcMDBw6oS5cuWrVqlbZv365BgwbpF7/4hUpLS5tw6ubVkDU7ffq0srOz5XK59OKLL+qXv/yl5s2bp3fffbeJp7alIWvINXdhl/P5L+w/9/nQJEaMGOFbtWqV/+1PP/3U17NnT9+hQ4cu+X5PPPGEb9GiRb7Vq1f7fvaznzX2mKZd7hp+V0ZGhu8Pf/hDY4xnUkPW7I033vAlJyf7jh8/7t82c+ZM36OPPtoks1oV7HUXbtfchVzOGob75z4eOTeBcy+rmZaW5t/23ZfVvJj33ntPu3bt0owZM5piTNMudw2/y+fz6auvvtJVV13VWGOa0tA1KykpUXJysqKjo/3b0tPT672+rVGw1124XXMXcjlryOc+ntZuEpfzsprV1dV67LHHtGjRIl155ZVNMaZpoXhp0o0bN+rs2bO69dZbG2NEcxq6Zl6v94LH1vfeiNYo2Osu3K65C2noGvK57xsh+d3a4Wz27Nnatm3bRfePHDlS06ZNa/B5V65cqUGDBunGG28MZrwWobHW8Lv27NmjlStXKjc3Vx06dAjqXK2Vj18WGFJcc5cnnD73XQpxDlJOTs4ln3pp166d2rZt639ZzR49evj3XeplNf/+97/ro48+0qZNmyRJtbW18vl8uv766/X666+rS5cuof1AmlFjreE5e/fu1ZQpU7RkyRINGjQoZHNb992Xc63PmrlcLv3zn/8M2HahR9PhpKFreE64XnMX0tA1DKfPfZdCnIMUGxur2NjYOo8797Ka574arOtlNdesWaOTJ0/63/7zn/+sffv26fHHH9c111wTmuGNaKw1lL75Pmp2drZmz56tYcOGhWzmluC7L+danzVLTk7Whg0bVF1d7X86saioKKxf+rWhayiF9zV3IQ1dw3D63HdJzXo7WhjZunWrr3///r7XX3/dd/DgQd+YMWN8Y8aM8e/3eDy+O+64w/evf/3rgu8frncsfldD1/CDDz7w3XDDDb4nn3zS9+WXX/r//Pe//22uD6HJXWrN/ne9Tp065Rs6dKhv2rRpvg8//NC3detWX58+fXzFxcXN+SE0u4asIdfchTVkDf9XuH7u45FzExk9erTKy8v129/+NuBlNc+prq7WJ598otOnTzfjlLY1dA137typr7/+Ws8995yee+45/3EjR47UE0880eTzN4dLrdn/rldUVJTWr1+v+fPna9SoUXK73Vq4cGHYf++vIWvINXdhDVlDfIOXjAQAwBh+lAoAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEG0CqMGTNGOTk5zT0GEBL8EhKgAXr16nXJ/V26dNGuXbs0ZswYvfvuu/7tHTp0UGJioqZOnar+/fsHvM+ePXuUn5+vffv2qaqqStdcc4169uyp0aNHa8iQIYqI4GtoINwQZ6AB3nrrLf/fS0pKNGHCBG3dulXf//73JUmRkZH+/XfddZdmz54tSSovL9fvfvc7jRs3Trt371b79u0lSbm5uXrmmWd03333aezYserSpYvKy8t16NAh5ebmqm/fvvre977XhB9h8/H5fDpz5oyuuOKK5h4FaHZ8SQ40gNvt9v859zKAHTt29G/77qvstGvXzr+9d+/emjhxoiorK/2v/LRv3z6tWbNGM2bM0IIFC5SWlqa4uDj169dPWVlZ2r59uzp16nTRWWbPnq2HHnpI+fn5Gjx4sPr376+cnBydPn1amzZt0q233qobbrhBc+fOVU1NTcD75ufn6yc/+YmSkpJ0++23a+3atTpz5ox/f2Fhoe69914NHDhQqampGj9+vD755JOAc6xbt04//vGP1bdvX6WlpWns2LH+FyxYs2aNbrvttoDj9+7dq169euno0aOSpIKCAl1//fUqKirSiBEjlJSUpLfeektnzpzRmjVrNGTIECUlJWnYsGHavHlzwLmOHTumsWPHKjk5Wbfccovy8/Pr9d8PaCl45Aw0gerqam3btk1Op1PdunWTJL388suKjo7Wgw8+eNH3czgclzzvvn371KlTJ73wwgs6cuSIpk6dqi+//FJOp1PPPvusPvvsM02ZMkWJiYm6//77JX0TzoKCAj322GPq3bu3Pv74Y82fP1+nTp3S1KlTJUk1NTWaMGGCevTooaqqKq1evVrZ2dnasWOHoqKitHPnTuXl5WnFihXq3bu3vv76axUXFzd4XWpra7V8+XLNmjVLXbt2Vfv27fWb3/xG+/fv18KFC9WtWzft27dP8+bNU2RkpO699175fD5NmjRJERERys/PV1RUlJYtW6b9+/frBz/4QYNnACwizkAj2b59u1599VVJ0okTJ+R0OrV69Wr/U9pHjhxRXFxcwNO4f/3rXzV9+nT/2wsWLNDdd9990X8jKipKixYtUlRUlHr06KH09HR5PB797W9/U1RUlBISEnTzzTerqKhI999/v6qrq/X73/9ea9as0eDBgyVJcXFxmjp1qhYvXuyP8z333BPw7zzxxBNKTU3Vvn37NHDgQH3++edyu9360Y9+pCuuuEKdO3dWYmJig9fI5/Npzpw5+uEPfyjpm5cS3L59u1555RX/a//GxcXp448/1saNG3XvvffqnXfe0YEDB/Taa6/p2muvlSStXLlSt9xyS4P/fcAq4gw0kqFDh/pDW1lZqVdeeUUTJkxQfn6+EhMTdaHXnElNTdX27dslSXfeeWfAU80X0qNHD0VFRfnfvvrqq3XttdcGbHO73SotLZUkffTRRzp58qQmT54c8Kj87NmzOnXqlLxerzp27KiDBw8qNzdXBw8eVEVFhf+4zz//XAMHDtSdd96pP/7xj7r11ls1aNAgpaWlaejQoYqJiWnwOiUlJfn//v7778vn82n06NEBx5w5c8b//fzDhw/L6XT6wyx9862F774NtHTEGWgkMTEx/qewJalv377atWuXXnjhBS1btkzXXnut9u7dq5qaGn9Mo6OjA96nLm3aBP4v7HA4LnhDVW1trST5vyBYtWqV4uPjzzuuQ4cOqq6u1sMPP6yBAwdq6dKlcrvdkqRhw4b5X9avU6dOeu2111RUVKSioiKtXbtWK1as8N8c53A4zvvi40JfaERGRqpt27b+t8+9z6ZNm3TllVee97GdO6aup/uBlo4bwoAm1KZNG/9NU5mZmaqurtaGDRua7N9PSEhQ27Zt9dlnn6lbt27n/YmMjFRpaam8Xq+mTZumtLQ09ejRQ19//fV5sY2KitLgwYP161//WoWFhTp58qTeeOMNSZLL5VJ5ebnOnj3rP/7AgQN1ztenTx9J0hdffHHebOe+n3zdddfJ6/XqyJEj/vf737eBlo5HzkAjOXnypMrKyiR9+7T24cOHlZ2dLUlKTk7WxIkT9fTTT+vo0aPKyMhQ165dVVVVpT179qi2tjbkP+Pcvn17ZWdn66mnnpIk3XTTTTp79qw+/PBDHThwQDNnzlTnzp0VFRWl/Px8Pfzwwzp27JhWrFgR8Gh169at8vl8Sk5OVmxsrN555x0dP35cCQkJkr55ev7kyZNatWqVRo8erf379+tPf/pTnfN169ZN99xzj+bOnatf/epX6t+/v6qrq/X+++/L6/Vq/PjxSk9PV+/evTVz5kzNnTtXV1xxhVasWBHwY2xAS0ecgUayY8cO7dixQ9I3UezWrZuWLl0acIPX5MmTlZKSovz8fE2ZMkWVlXlXm4IAAAD0SURBVJW66qqr1LdvXy1fvlzDhg0L+VwTJ07UNddco40bN+rJJ59Uu3btFB8fr5EjR0r65vu3y5cv11NPPaWXXnpJPXr00GOPPaaHHnrIf44OHTro+eef1/Lly1VTU6O4uDgtXLhQ6enpkqTu3btr0aJFWrt2rTZs2KAbb7xR06dPD7jZ7WIWLVqk559/XuvWrdPRo0fVvn17XXfddXrggQckffP09jPPPKN58+bpgQcekNPp1NixY8/7cTGgJXP4LnRXCgAAaDZ8zxkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDH/B9lk2uVa5Nv6AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['TBG measured'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:21.106457Z",
+ "iopub.status.busy": "2021-12-15T11:04:21.101711Z",
+ "iopub.status.idle": "2021-12-15T11:04:22.111372Z",
+ "shell.execute_reply": "2021-12-15T11:04:22.110661Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:23.507849Z"
+ },
+ "papermill": {
+ "duration": 1.113424,
+ "end_time": "2021-12-15T11:04:22.111491",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:20.998067",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 52,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAIvCAYAAACBRloiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df3RU9Z3/8dedmZhEAyEJbKryK4IjkCVYXDYgrLFW29VCLW33tEvXQ7erpSptbXus9FC1Arq0e9qlSsXSczzs2lr9tv5Yw+qWFrvZ1d2why4GjMRRGsEfGOMkBgJJzMzc7x/sjDOTufMrd37czPNxTs82904mn3zsOq987vvz/himaZoCAABwKFehBwAAADAehBkAAOBohBkAAOBohBkAAOBohBkAAOBohBkAAOBonkIPIN96e0/a8j41NWerv/+0Le9VyphHezCP9mEu7VHq8zht2qRCD6GksDKTJY/HXeghTAjMoz2YR/swl/ZgHpFPhBkAAOBoJfeYqaSFpNHRoOXtsjI38RYA4DiEmRIyOhrUK4d7LO9fOL9eZeUsDQMAnIW/wwEAgKMRZgAAgKMRZgAAgKMRZgAAgKNRAIwIl8vQ6Eji3U7sdAIAFCvCDCICoyEd8b2T8B47nQAAxYq/tQEAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKPRAXiiCUmjo4mPJJCZ36EAAJAPhJkJZnQ0qFcO9yS8N8f7J3keDQAAucdjJgAA4GiEGQAA4GiEGQAA4GjUzBSjJEW8ZWVuIigAAFEIM0UoWRHvhfPrVVbuzvOIAAAoXvyNDwAAHI2VGYdxuQyNjlj0kZHoJQMAKDmEGYcJjIZ0xPeO5X16yQAASg2PmQAAgKMRZgAAgKMRZgAAgKNRM1MIyQ6DlCjiBQAgA4SZAkjWR0aiiBcAgEzwmAkAADgaKzNIS6r+NhyzAAAoFMIM0pKqvw3HLAAACoW/pQEAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKMRZgAAgKN5Cj2ACSskjY4GE98z8zsUAAAmMsJMjoyOBvXK4Z6E9+Z4/yTPowEAYOLiMRMAAHA0wgwAAHA0HjPBFi6XodGRxDVCZWVuYjMAIGcIM7BFYDSkI753Et67cH69ysrdeR4RAKBU8PcyAABwNMIMAABwNMIMAABwNMIMAABwNMIMAABwNMIMAABwNMIMAABwNMIMAABwNJrmjQcnYwMAUHAlF2ZcLsO29wqFTB3r9ie8N6thqsorEk+v2+2yvJfqvhO/t6zMpVAgcbo78d6QXDJYI7SBnf/bLnXMpT2YR+SLYZomawgAAMCx+HsYAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4GmEGAAA4mqfQAygEv39QodD4DguvqTlb/f2nbRpR6WIe7cE82oe5tEepz+O0aZOy/l47PqMmomRzyspMljwed6GHMCEwj/ZgHu3DXNqDeUQ+EWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjEWYAAICjeQo9AGSu7Tc+HX7huExTMgxp/sXnquXj3kIPCwCAgiDMOEzbb3x66cDxyNemqcjXBBoAQCniMZPDHH7heEbXAQCY6AgzDmOamV0HADhMqNADcB7CjMMYRmbXAQDOEgiQZjJFmHGY+Refm9F1AAAmOgqAHSZc5MtuJgAAziDMOFDLx72EFwAA/g+PmQAAgKMRZgAAgKMRZgAAgKMRZgAAKCIeDx/NmWLGAAAoJnwyZ4wpAwAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjkaYAQAAjlawMHPzzTfroosu0r59+yLXOjo69OlPf1oLFy7UNddco7a2tpjvOXXqlDZs2KDFixerublZW7duVTAYzPfQAQBAESlImHnyySc1NDQUc62/v1833HCDFi9erCeeeELXXnut1q9fr9deey3ymk2bNunQoUPatWuXtm3bpt27d2vHjh15Hj0AACgmeQ8zPT09+vGPf6wtW7bEXG9tbVVVVZU2btyouXPnat26dWpqatKjjz4qSRoYGFBra6tuv/12NTU1admyZbrlllv08MMPKxQK5fvXAAAARSLvYWbjxo1at26dzjvvvJjrBw8eVHNzswzDiFxbtmyZOjo6JEmdnZ0yDENLliyJue/3+/XGG2/kZ/AAAKDoePL5wx555BEFAgF9/vOfH3Ovr69P8+fPj7lWU1Mjv98vSfL7/aqurpbb7Y7cr62tjdybOXNm2uOoq6vKZvhjTJs2yZb3KXXMoz2YR/swl/ZgHrNj12dUKclbmHnrrbe0fft2PfLIIwnvm6aZ9PsT3Y9excmE3z+oUCj5z0tl2rRJ6u09Oa73APNoF+bRPsylPUp9HscT5Oz4jJqIks1p3sLMSy+9pHfffVcf+9jHYq5/8Ytf1OrVq1VXV6e+vr6Ye/39/aqrq5MkTZ06VQMDAwoGg5HVmfCqTfg1AACg9OQtzCxdulRPPfVUzLVVq1Zpy5YtWrFihX7zm99o165dMffb29u1aNEiSdKCBQtkmqb279+v5ubmyP26ujpNnz49L78DAAAoPnkrAK6qqpLX6435jyRNnz5d9fX1WrVqlQYHB3X33XfryJEj2rlzpzo6OvS5z31OkjRlyhStXLlSW7Zs0cGDB9Xe3q5t27ZpzZo1crno/QcAQKkqmhRQU1OjnTt36g9/+IOuvfZaPfHEE9q+fbtmz54dec2dd96pBQsWaO3atfra176ma665RjfeeGPhBg0AAArOMFNV3k5AFAAXD+bRHsyjfZhLe5T6PFIAbL9kc1o0KzMAAADZIMwAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAABHI8wAAFBMQoUegPMQZgAAKCKBAGkmU4QZAADgaJ5CDwD55evs0b62bg2eGFHV5HI1tzTI21hf6GEBAJA1wkwJ8XX2qO0ZX2QJc/DEiNqe8UkSgQYA4Fg8Zioh+9q6xzyLDQRC2tfWXaARAQAwfoSZEjJ4YiSj6wAAOAFhpoRUTS7P6DoAIP88Hj6aM8WMlZDmloYx/0/i8bjU3NJQoBEBAMbgkzljFACXkHCRL7uZAAATCWGmxHgb6wkvAIAJhcUsAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaIQZAADgaHkNM/fee68+/vGPq6mpSZdeeqm+9a1vqbe3N3K/o6NDn/70p7Vw4UJdc801amtri/n+U6dOacOGDVq8eLGam5u1detWBYPBfP4KjuTr7NFD97drx9Y2PXR/u3ydPYUeEgAAtslrmLngggt011136emnn9YDDzyg48ePa8OGDZKk/v5+3XDDDVq8eLGeeOIJXXvttVq/fr1ee+21yPdv2rRJhw4d0q5du7Rt2zbt3r1bO3bsyOev4Di+zh61PePT4IkRSdLgiRG1PeMj0AAAJoy8hpmVK1dq6dKlmj59upqamnT99dfrf//3fyVJra2tqqqq0saNGzV37lytW7dOTU1NevTRRyVJAwMDam1t1e23366mpiYtW7ZMt9xyix5++GGFQqF8/hqOsq+tW4FA7PwEAiHta+su0IgAALBXwWpmTp48qd27d2vx4sWSpIMHD6q5uVmGYURes2zZMnV0dEiSOjs7ZRiGlixZEnPf7/frjTfeyO/gHSS8IpPudQBAgfH3ecY8+f6BTz31lO68806dPn1aixYt0s6dOyVJfX19mj9/fsxra2pq5Pf7JUl+v1/V1dVyu92R+7W1tZF7M2fOTHsMdXVV4/01JEnTpk2y5X1yqbqmUgP9QwmvF8v4i2UcTsc82oe5tAfzmJ2yMrcmT6ks9DAcJe9h5oorrlBTU5OOHz+u++67T3fccYfuvfdemaaZ9PsS3Y9excmE3z+oUCj5z0tl2rRJ6u09Oa73yIc/WzFLbc/4Yh41eTwu/dmKWUUxfqfMY7FjHu3DXNqj1OdxPEFuaGhUI6MBG0czMSSb07yHmaqqKlVVVWn27Nm64IILdNlll+nVV19VXV2d+vr6Yl7b39+vuro6SdLUqVM1MDCgYDAYWZ0Jr9qEX4OxvI31ks7UzgyeGFHV5HI1tzRErgMA4HR5DzPRwqstLpdLTU1N2rVrV8z99vZ2LVq0SJK0YMECmaap/fv3q7m5OXK/rq5O06dPz+u4ncbbWE94AQBMWHkrAB4dHdU//uM/6uDBg3rzzTe1f/9+3XrrrWpsbNTs2bO1atUqDQ4O6u6779aRI0e0c+dOdXR06HOf+5wkacqUKVq5cqW2bNmigwcPqr29Xdu2bdOaNWvkctH7DwCAUpW3lRnDMHTkyBE99thjeu+99zRt2jQtX75cX/va1+RyuVRTU6OdO3dq06ZN+uUvf6kZM2Zo+/btmj17duQ97rzzTm3atElr165VWVmZVq9erRtvvDFfvwIAAChChpmq8nYCKqUC4GLHPNqDebQPc2mPUp/H8RQA+3sHFVLJfTSnVFQFwEiPr7OHol0AKEGBQEguT3a7dUsVYaYIhY8gCG+nDh9BIIlAAwBAHCpnixBHEAAAkD7CTBHiCAIAANJHmClCVZPLM7oOAEApI8wUoeaWBnk8sf9oPB6XmlsaCjQiAACKFwXARYgjCAAASB9hpkhxBAEAlCaPx0WfmQzxmAkAgGLCJ3PGmDIAAOBohBkAAOBohBkAAOBohBkAAOBohBkAAOBobM0ucpyeDQBAcoSZIpEotEji9GwAKDWh1C9BLMJMEfB19iQMLZ4yl+Xp2YQZAJiYAoGQXB6j0MNwFMJMEdjX1p0wtMRfC+P0bAAAPkABcBHINJxwejYAAB8gzBQBq3BSXuHm9GwAAFIgzBSB5paGhKFlxVUXquVqbyTsVE0uV8vVXuplAACIQs1MEQiHE6st2IQXAACsEWaKhLexntACAJDH41JIZqGH4SiEmRJDEz4AKG5szc4cYaaEWPWzkXiUBQBwLsLMBJVoBcaqnw1N+AAATkaYmYCsVmBowgcAmIjYmj0BWa3AGBaPYGnCBwBwMlZmHCr6MVJFpUemaWpkOKiqyeWWKy2meaZKPjro0IQPAOB0hBkHin+MNDwUiNxL9siovMItwzAi31de4daKqy6kXgYA4GiEmTywezt0osdIqRiGNDoaUij4Qe+CYIA+BgBQbOgzkzlqZnIsvIoSXjEJF+P6Onuyfs90C3ajj0Eor/DEBBnpg51MAIDikekfq2BlJudysR26otIT82gpkarJ5brupqWRr3dsbUv4OnYyAQCcjpWZHLMKC9mGCF9nj0aGkweZREW9yXYsPXR/+7hWigAAKCTCTI5ZhYhst0Pva+uWmeRRqtXJ2olO5g6z49EXAACFwmOmHJs5p1YvHTgec20826GTrejcuKEl5uv4wmPvwnodO9KX8D3oBAwAcCrCTA75OnvkOzR2tcO7MPsTsssr3BoZDo65Hr3S4+vs0fO/e3XMlm3foR61XO3V3tauhO9N/QwAwIl4zJRDVluojx3py+r9fJ09Gh0d+36GochKT3j3VKIC4fDqi92PvgAA9rEqCYA1VmbGIVX/GLuLf/e1dY/ZXi1J5RWeyM9N1YNm8MSIPrpq3pizmugEDADFIRAIyeWxOH8GCRFmsnToD28kPMxRUiRYWB0tkO0KiFUISrcDcPhnRwcfuxr5AQBQKISZLD37zMsp+8c0tzSkvQKSaJVHig0cVv1losNRsrOZon+2tzH7uh0AAIoJYSZLA/1DCa9HB4l0V0Diz1oaPDGi3z/9ssyQGdmGPXhiRIYhudxGzKOm+HCUKEBJnMMEAJi4CDNZqq6pTBho4h8hpbMCkqjOJVFtjGlKZ5W5VHaOxzIc8QgJAFBqCDNZuuLqi9T6/w7aUkSbSUHwyHBQX7plRdLX2PUIye4DMgEAyAXCTJYWXjJdJ04O2/Jhn6zOJdFr8yHRo6/4AudE30P4AQDkG2FmHOxaAUlU5+JyGzE1M1J+t09nekBmNuEHADCWx+NSSEnOrcEYhJkiYFXnkuiaVZCwe0Uk0x45uTgdHABKEX1mMkeYKRJWqzypgkCuVkQy7ZFjd4NAAADSRZhxuExWRDJZwcmkR45kf4NAAADSxQEQDpfuikh4BSd8PbyC4+scexCmdGZVp+VqbySMVE0uV8vV3qThJ/48EY5IAADkAyszDme1IlJe4Y75OpualkwKnOlvAwAoFMJMAdlRuNvc0qBnd3fF7HqSpNHRkHydPZH3y6amJdPxcUQCAKAQCDMFkm7hbqpA4W2s1/O/e3XMmU2hoBmz6lJe4dbIcHDMOKxqWthqDQBwCmpmCiTZY5+wdOtcEh0+GX59+H1GR0Nj7huGLGta0hkfAMB+8fWHSI0ZK5B0HvukGyisVlfC1/e1dSc866m8wmO5ysJWawAojPh/7yM1wkyBpAogUvqBItVOIqv3sVrRSXd8AAAUg6zCzDXXXKNjx47ZPZaSks5W5nQDRapt1NkEk0TjMwwpMBrUjq1teuj+dstt3QAA5FPSAuDW1taE11977TXt2bNH9fVnPixXrVpl/8gmuHS2MmfSuC7ZTqJMG+AlGl95hVujo6HIas7giRHtbe3S3tYutmEDAArKMM34Tb0fmDdvngzDUJKXyDAMHT58OCeDyxW/f1Ch0PgO8Zo2bZJ6e0/aNCJrdp27NN73eej+9qT1Mh6PK2lTPSv5mseJjnm0D3Npj1Kfx2nTJmX9vT3HT3A2UwLJ5jTpykxzc7POPvtsbd26VdXV1ZHrjY2N+pd/+RfNnTvXvlGi4JIFnlSFvxwqCQAolKQ1M7t27dKCBQu0evVq7d+/P19jwv/J9AiC8bxPqtekU/jLTicAGD+2Zmcu6YwZhqGvfvWruueee/Stb31L27dvVyjElrFs+Tp79ND97WkX0NrV6yWd90n1mkQFwfHY6QQA48fW7MylFf+WLl2qxx57TH/4wx903XXX5XpME1I2qyx29XpJ531SvSZ+x1Q8DpUEABRK2scZTJ06VQ8++KB27Nghl8ulysrKXI5rwsnmoEerQyQzWQFJFpai3yednxW9Y8quwmQAAMYraZjZvn27/u7v/i4SXAzD0E033aSbbropL4ObSLJZZclmS3W8ZI+kwu/j6+zR6PtjG+gl+1kcKgkAKBZJHzP95Cc/0enTp/M1lgktm8Z1qZrhpeLr7EkalryN9ZHHX/GHUFZUerLaag0AQL4lXZlJ1l8Gmcl2lSXbFZBwSLESfW5TomIzT5mbIAMAcISUNTOGQeMeO6TT8TeRdGtT4l8XGA0mrYgPjAaTrtxYXU80nmx+LwAA7JIyzNx8880qKytL+pp//ud/tm1AE1miVZZU4SBaeAdU+L2i3yN61Sed3U7DQwH9/umXLe8nevyV6Of8/umXZYZMhRfxrMYIAEiPyyUpJI6CzkDKMHP++eeroqIiH2MpOYnCwbO7u5Ts6V6iHVBWj4pSCQWtf1Cix1+Jfk6i96AbMABk74ivVzMb6lRW7i70UBwjZZj5zne+o7q6unyMpeQkCgfplCkNnhiJnJVktaV6vBIFkUx+Dt2AAQD5wiJWAY3nAz+6+Z6V8gp35HFRpqVPifrTZNLfhm7AAIB8SbtpHuyXq1WVsBVXXRjT5C5+N1UyiR4TJdqR5XIbMTUzEt2AAQD5lXRl5rzzzlMgMLaZGuyRznlH0TJdXYkOI4l61iSTKGQleo+PXHORrlg5L+teOAAAjFfSlZnjx4/L42HxJpfcHkPp5sVM2/48dH97zDbp+N1U4bqbRKzCjlXfG8ILAKBQki4L0DQvd3ydPXp2d9eYzrt2SnWYZXNLQ8LVHpfb4DERABTIrIapKvOwkykTKZdd3n77bY2MJK/rOO+882wbUKl47revZLzSko1k26TD15777SuRUFVR6dHyK+eOe6WFgygBIDtHu989szXbTaBJV8ow89nPftbynmmaMgxDhw8ftnVQpSCXKzLxUp3PZHfISNQ/h0Z6AIBcSRlmfvKTn6i6unrcP2jHjh36t3/7Nx09elSTJ0/Wxz72MX3jG9/QOeecE3lNR0eH7rrrLr3yyiuaMWOGbrvtNrW0tETunzp1Sps3b9aePXtUVlam1atX69Zbb5Wb9JpSfP1MLiXqn0MjPQBArqQMM4sWLbKlad6BAwd0/fXXq7GxUX6/X7fffrtOnTqlv//7v5ck9ff364YbbtAnP/lJ/eAHP9DevXu1fv16tba2avbs2ZKkTZs26cUXX9SuXbt06tQp3XrrraqqqtL69evHPb58q6j0aHgo851ihpG8ENjjcSXcfp3P1ZFMz3sCAGA8khYA23nI5M6dO7Vq1SpdcMEFWrJkib7+9a9r7969kfutra2qqqrSxo0bNXfuXK1bt05NTU169NFHJUkDAwNqbW3V7bffrqamJi1btky33HKLHn74YYVCmbfyL7TlV86Vy535/BouQ56yxP/YKio9arnaq/KKxCtV4dWRaL7OHj10f7t2bG3TQ/e3WxYLZ8JqJxSN9AAAuZB0ZSaXu5n6+/s1adKkyNcHDx5Uc3NzTIBatmyZ/uu//kuS1NnZKcMwtGTJkpj7fr9fb7zxhmbOnJmzseZC/CnaiXjKDAVGY/8ZhIKm5ZlKpmnK21ivfW3dljU50T8rWW2LFFsYLJ3pKBzdiM9KouZ6NNIDAORK0jDT1dWVkx968uRJPfjgg/rMZz4TudbX16f58+fHvK6mpkZ+v1+S5Pf7VV1dHVMfU1tbG7mXSZipq6saz/Ajpk2blPpFyb7/8klafvlc/XjLXg30D425Hx9kUhkZDmratElJH+cYLkM7trapuqZS748EEta2/NfeIxoZDigUiv35I8NB/f5fX9bkSRVaeMn0pL/X5EkVevaZlzXQP6TqmkpdcfVFlt8z3nnEGcyjfZhLezCP2TnnnHKdffZZmlJ7dqGH4hh574j3/vvv66tf/apmzJihL3/5y5HrqVaBEt3P9jGY3z845oM6U9OmTVJv78lxvUdYoiCTref//dWkxySY//d7J/uZQ6dHLe+FQqZ+u/uwPjQzeVH4h2ZWa826P4+5lmi+7JzHUsY82oe5tEepz+N4gtzUP5mk4eFR9fac5ATFKMnmNK9hJhAI6Bvf+IZOnTqlXbt2xXQXrqurU19fX8zr+/v7I8XHU6dO1cDAgILBYGR1Jrxq45RTva16r9h5RtO+tu6Ej3nsRCEvAOTO0e53NTIc0IXz61VWzm7ddOQt84VCId122206duyYfvazn8VsyZakpqYm7du3L+Zae3u7Fi1aJElasGCBTNPU/v37Y+7X1dVp+nTrRx7FIlyfEn3adbg7b6ZnNCUzeGIkcoZSRWXmWTWdxS4KeQEAxSRvYeb222/Xvn379IMf/ECjo6Pq7e1Vb2+vgsEzBaarVq3S4OCg7r77bh05ckQ7d+5UR0eHPve5z0mSpkyZopUrV2rLli06ePCg2tvbtW3bNq1Zs0YuV/Gvw1n1Xnl2d5f2tnZJhj3F1tFBIzCaxsqMocjup6rJ5SqvSBGADFHICwAoKnl7zPTrX/9akvSpT30q5vrevXs1ffp01dTUaOfOndq0aZN++ctfasaMGdq+fXukx4wk3Xnnndq0aZPWrl0baZp344035utXSFuix0mWNSz/l2EyLfZNJHrHUKLwlHgAUjBg6qOr5snbWK8dW9vGPQ4AAPIpb2Hm5ZdfTvmaiy++WI8//rjl/XPOOUff//739f3vf9/OodnKartzeYXb3iMMDEnmB0304s8/yqSuJbo7b8r6HVN08gUAFJW872aa6KweJ3nKPJbdebNRXu7Wl25ZEfk6vBq0t7VLVZPLM+4wHA4w6RQPUwAMACgmhBmbWX3QDw8F9NFV8/T8715NO2QkCz8jw0Ht2NqmqsnlmjmnVodfOB55ZBUeg8ttWDbYS+TBbc/JMIyUgYsCYABAMSn+ylmHSdbK39tYL09Z+tvsvAvr5SlLvr1o8MSIXjpwPOF5TYaR3u6ksJHhYMqg5XIbFAADQA7NapiqOd4/kctlSM47racgCDM2S7TNOrowN5NHNMeO9I2rMDgYMJMeSpmNeU0fol4GAHLoaPe7OuJ7Ry93vq3RURtrLScwwozNwj1ewis0VZPL1XK1NxIAMnlEU4y1KYdfOG7LYZQAANiFmpkc8DbWR8JLdGFuRaUno5SdaRFvPpimIodRskIDACgGrMzkUHzX3+GhgIKB9J/7jAwXV5AJC2/lBgCgGBBmcijtxnUW7K53SUuaBcPF+AgMAFCaCDM55MgPfFP66Kp5KWt72J4NACgW1MzkkJ2nYedLRaUnZdO86N1ZAAB7zWqYqmDwzL+Dyzycmp0OVmZyyM7TsPMlEAgmDTKGoZjdWQAAe4W3Zh/xvaPRAFuz0+GsT1oHCWcVSi0AACAASURBVO9iCgRCkcZ1FZWeyAnVxSpVXxvTZBcTAKC4EGZyIH4Xk2meeTSz/Mq5MecpOZFhiD4zAICiQpjJAavDJsPbmXNVPFtR6VFFZW7LoMJ9Zgg0AIBiQZjJAaui3+iTqTM5Mykd4ZWfv/36ct24ocXeN49DnxkAQDFhN1MOWO1iCq/IeBvrMzo924qnzFBg1IycnB3uNFw1uTzn3YOdtksLADBxsTKTA8kOm/R19ujBbc/ZEjRCIam8wh05OTscMAZPjGg4x92Di72QGQBQOliZyYHwbp99bd0aPDGiqsnlkb4sz+7usq2zbyhoaiRosW0vx92Dg8FCtCcGgIkvus+My2VodCSosjI3yw9JEGZyJPqwybCH7m8vzBEFORAYzf6YBgCAtaPd7445m+/C+fUqK2dF3Ao5L4+oMwEAwH6szORIuGle9GMmJx5vYIWaGQBAsWBlJgfim+YNnhhR2zM+Ta6pKPDI7GEY0oqrLiz0MAAAkMTKTE5YNc176+iArT9nwYfP1UsHjtv6nqmEV5kSHWmQaDWKow8AALnGykwO5ONRUkWlR+dOr875z4mXLMgkWo2iUzAAINdYmcmBfNTGLL9ybkG68D7/u1cljd12/txvX7E8woHVGQBIX/TW7LDwFm1JbNNOgDCTA80tDWp7xjfmw91uhSgmHh4KxPTKGTwxkrR3zkQpeAaAfEm0NTsa27THIszkQHzTvFxo+7eXc/K+6YgPLsl659h9BhUAAPEIMzkSbpoXriWxe5UmMOqM7nsTpUkgAKB4EWZyLLxKs7e1q8AjKYyqyeXscgIA5BQlRHngbawvyccthiHNnFPLLicAQE6xMmODdFYeJvLjFsOQ5l98rv7Y1Rs5Dby8wq0VV11o2XOHXU4AALsQZsYpviYmvPIgKebDuqLSE/mgn0gqKj26YN40HTvSp+GhwJgwZ/V4jV1OAAC7EGay4Ovs0cPP/Y8G+odkGGNXXQKBkJ7/3asf7GYyJE3QlZnhoUBMF+L4MGfVc6dqcnnexggATpKoz0y0Mg/bsuMRZjIUvxJj9fhoeCgghVdiJmiQsRL9GClRzx2Px6XmloYCjhAAildafWbcBJpohJkMJaoBwVjh1Zj4njvsZgIA2I0wkyFqPdIT/Rgp3HMHAIBcYGt2hqxqPcJbr6sml6u8orSX/3iMBADIJ1ZmMmRVA9JytTey+pCrrr9O4V3ISgwAIH9YmcmQt7FeLVd7VV1TKenMSkx0kIl+Tanu2PljV2+hhwAAKCGszORIfJ3Ijq1tBRxNfg0PBfTQ/e0U+gJAFlJtzXa5DI2OBC3vl5W5S26pgjCToXSb5MV/T6lJZ14AAGOl2pqdyoXz61VWXlq1myWW3cYvWXv+RMLhpxQlmxcAAOxCmMmQ1dZsq+ul3peGrewAgFwjzGTIqqjX6nqpf5hXVPIkEwCQW4SZDDW3NMjjiZ22ZH1VSr3nzPBwoCRrhgAA+UOYyVA6W7OjGeFueqXKFHUzAICc4hlAFryN9Vp++Vz19p6UdKbI96H72xOePTQ8lH1F+kRR6o/aAAC5RZgZp1RbtSsqPSUfaEq1eSAAZCNVn5lU4vvQlELfGcLMOCXbqu1trNfoqHVjo1Lgchuc0wQAGRhvn5l4pdB3ZoJntdxLtlXb19mjYMDM84iKy7ymD9E0DwCQU4SZcbKq7zUMCl8l6diRvkIPAQAwwRFmxsm0WHgxTQpfJeYAAJB7hJlxStZEj8JXAAByjzAzTsma6DW3NMjlLvE+MwAA5BhhZpzCTfTCqzDxTfTKyphiAAByia3ZNvA21o/ZsRPff6aU7djaNqaZIAAgsfH2mYkX33cmbCL1nyHM5Eipn5YdL76ZIAAgMbv7zFiZSP1nJkgmKz7s4hkr3EwQAAA7EWZyhJ1MiRHyAAB2I8zkSKJdTiDkAQDsx6dtjngb6+VdSG1ItPCWdQAA7ESYyRFfZ4+6Dr5d6GEUDcOQvAvH7voCAGC82M2UBV9njx5+7n800D9kueV4X1u3QsHSPmQymmlKLx04riOH39GKqy4k1ACABbu3Zlux2rId5qSt24SZDMX3j7Hackyha2Ijw0G2aAMoOr7OHu1r69bgiZGC98XK19bsVJy0ddshmat4JOofk2jLMYWu1tiiDaCYhP9IDf8RGv4j1dfZU+CRIV2EmQxZrbjEX+dcpuRYuQJQLNL9IxXFizCToWSnZEfzNtZrXtOH8jEkR2LlCkCxSPePVBQvwkyGEq24uNzGmC3Hbb/x6aUDx/M5NMdgizaAYpLuH6koXoSZLJghM+nXBBlr8aeKA0ChJWpyyh9dzkKYydC+tm6ZcTuuTVMxz1YPv0CQSST8LweCDIBi4m2sV8vV3shKDH90OQ9bszOUzrPV+LCDM8IFdfwLAkCx8TYWT1PPfPWZSSVVH5p8SLfXDWEmQ1WTyxMGmvIKtx66v52CsRSYHwBIrlj6zBSDdHvdEGYy5ClLHBFHhoMaGS5sgnWC8gpnNGACADgHNTMZes8/VOghOJph0HsHAGAvwgzyaniIpVMAgL0IM8gr+jYAAOxGmMnQebOqCz0Ex6JvAwAgF/JaALxnzx794he/0IsvvqjBwUG9/PLLMfc7Ojp011136ZVXXtGMGTN02223qaWlJXL/1KlT2rx5s/bs2aOysjKtXr1at956q9zu/BWVXvvXF+tffvmC3jo6ELl23qxqzW86N3LiqqfMUGCU/dnx6NsAAKkVy9bsbLhchmRjaWRZWXqf73kNM0NDQ1q6dKkuvfRS/ehHP4q519/frxtuuEGf/OQn9YMf/EB79+7V+vXr1draqtmzZ0uSNm3apBdffFG7du3SqVOndOutt6qqqkrr16/P56+ha//6Yk2bNkm9vSdjrkd/ULNNO5ZhiCADAGlw8tbsdLdS2y2vYebaa6+VJO3bt2/MvdbWVlVVVWnjxo0yDENz587Vf/zHf+jRRx/VbbfdpoGBAbW2turBBx9UU1OTJOmWW27Rj370I910001yuYrriRlBJta5M3k8BwDIjaJJAAcPHlRzc3PM1t1ly5apo6NDktTZ2SnDMLRkyZKY+36/X2+88Ubex5sK/VRinegfLvQQAAATVNGEmb6+PtXW1sZcq6mpkd/vlyT5/X5VV1fH1MeEXx9+TTGhn0osVqoAALlSNB2AzRQHGiW6n21gqKuryur74k2bNsnyHv1Uxnr72IAWXjJ9zPVk84j0MY/2YS7twTxm55xzylXmKZqP54ycffZZmlJ7dt5/btHMVl1dnfr6+mKu9ff3q66uTpI0depUDQwMKBgMRlZnwisy4deky+8fVCg0vt1GiQqAo1md4VTKfrv7sD4UVzuTah6RHubRPsylPUp9HscT5E6dGnFsAfDp0+9rNJibo32SzWnRPGZqamoaUxjc3t6uRYsWSZIWLFgg0zS1f//+mPt1dXWaPn3sX/uFNnNObeoXlRjCHQAgF/K6MvPee+/p+PHjOnbsmCTp8OHDkqQ5c+Zo1apV2r59u+6++259/vOf1969e9XR0aEtW7ZIkqZMmaKVK1dqy5Ytuvvuu3X69Glt27ZNa9asKfhOJl9nT6THTNXkcs2cU6vDLxwv6JiKEd1/ASA1p/eZGR35YGWmrMydl2UTw0xVrGKjxx9/XN/5znfGXN+7d6+mT5+uF154QZs2bZLP59OMGTO0YcOGMU3zNm3aFNM079vf/nbGTfPsfMzk6+xR2zM+BQLO/B9ePlVUerT8yrkx/WZKfSnaLsyjfZhLe5T6PI7nMVP7fx5x7GOmeHb2nUk2p3kNM8XCzjBDc7zMeDyumE7Apf4vPLswj/ZhLu1R6vNImDkjX2GmaGpmnIogk5lAIKR9bd2FHgYAYAIhzIwTdSCZIwACAOxEmBmn5pYGeTxMYyYIgAAAO/EpPE7exnp5F3KAYro8HpeaWxoKPQwAwARCmLHBsSN9qV8EGYZiin8BALBD0XQAdjJqQNJzxcp5BBkASKFY+sy4XIY0zmMGy8ryc+gyYSYLvs4ePfzc/2igf0hVk8tVUenhLKY0EGQAILWj3e8WxdZsO7dV5xphJkPxTfIGT4zIMCSX21AoWHIte9JG0S8AIFeomcnQvrbuMd1+TVMqK3NFPrCzPMx7wqLoFwCQS6zMZMiqPmZkOKgv3bJCkrRja1s+h1TUqiaXq7mlgUdMAICcYWUmQ1aPS6Kv80jlAzPn1BJkAAA5xcpMhppbGsYcLOnxuDRzTm3knKbyCmcUTOXDSweO649dvRoeCrBKAwDICcJMhsIfxPufOxrZzTRzTq18h3oiAWdkOJjsLUpOeKfX4IkRtT3jk8TOJgCwkq+t2am2XudrW7UdCDNZ8DbWa/nlcyMnwj50f/uYomAkFj5okjADAInla2u2k7Zep0LNzDj5Ontompch5gsAYCfCzDiEe84gMxRIAwDsRJgZh0Q9Z8I8HpcWfPhces7EoecMAMBu1MyMQ7LHJdEHKr504Hi+hlT0OGgSAGA3VmbGIVnPmfAH9h+7evM5pKIWPS8AANiFlZkshA+aTLQyE/8YhQMoP8DjJQBALhBmMhR/0GS06KZwvs4e7WvrLsAIixerMgCQWrZ9ZlL1jYnnpD4yqRBmMmRV9Fs1uVzX3bRUUvLAU6rYwQQA6cm2z8xE6huTKcJMhqyKfgdPjGjH1jZVTS5XYDRIkInCDiYAQC4RZjJUNbk86S4mGsLF4jwmAECusZspQ80tDfJ4mLZ0XXfTUoIMACCnWJnJUPxBk7BGnQwAIB8IM1mIPmjyofvbEz5aKq9w6/2RoEyzAAMsAtTJAADyhTAzTs0tDWN2Lnk8Lq246kJJ0rO7uyZ8oPGUuRQYDckwJNOkTgYAxiPR1ux0tl1PpK3WmSLMjFP4A3tfW7cGT4wk/CB/7revaGQ4WKgh5lxgNESAAQCbJNqaXcrbrtNBmLGBt7He8kM8/l64md7giZEzKXuCrNoMnhiJnCBOoAEA5BNhJs+iw42vs0e/f/plhYIfJBqX24j52kkCgZCe++0rhBkAQF4RZmwQvdqSzuOW6NeXV7hlnGVoeCigqsnlmjmnVodfOO7YOpuR4aB8nT0EGgBA3tAwZZzCRxeEdzSFH7f4OnvSev3IcFCB0ZA+umqemlsa5DvUU7AgUzW5XAs+fO6434czqQAA+cTKzDglOqspEAhpX1u3da1MnPDrw//d6eiCDADIJ1ZmxinZWU1h8asxVq8vdAgYPDGilw4ct+W9rFamAACwGysz42R1VlN091urk7bjXx8YDWp4KPOTUotR/MoUACA90X1mwv1lSrmHTDpYmRmnRGc1xXe/TbXi4vG4NHNObdpHvldUFn8GLfQqEwA41dHud3XE946O+N45E2TK3Xxap8D0jJO3sV4tV3sjKzFVk8vVcrU3ZlUi2RlF4dcfO9KXduFvqtWbikpPWoHHSNFNcjw4lwkAkC/F/ye+AyRrmiedWb1J1E/mI9dcFPm+va1dto0n3UdVudo1xblMAIB8YmUmT8xQbHIIBU0df2Mg8vVEWckwDI1ZmQIAIJcIM3mwr6074SrISweOR3b9zJxTm+dR2c/jcemKlfMIMgCAvCLM5EGyYthwf5ljR/ryNZycYEUGAFAo1MzkQUWlx7KOJbpzsFN5PC6CDADYZFbDVJmmyZbsDLAykwdmkkrbcK1MPrZbx28hj+f2ZLe9iSADAPY52v0uW7IzxDTlwchw0PJeeNePVeBxe4yMzkvylCUOJOUVbrVc7U36vcGAdeiy2sZdNbmcIAMAKCgeM+WBVZfgikpPJAhYBZ5gwNS506v1x67eyKMqt8eQaSpmq3dYYDRxIHl/xDpQpeLxuPQn50/SW0cHxtwbPDGih+5vj4SyTE4PBwDADqzM5IFVl+DlV86NfG21Nbu8wq22Z3wxNTeGDM1r+pCUwVMh05TanvGl/Tgr5nWGqePHxgaZsMETI3p2d5d+//TLaZ8eDgCAXQgzeeBtrJd3YX3kUY1hSN6FsY32mlsaxjzKMQzJMIyEp3IfO9InZdj0LhAIyTTNlLUzkhQYDUX9dzNlg71EK0XRp4EDAJArhJk88HX2yHeoJxIITFPyHeoZs2phuGLTjGlad/PNdvfTyHAw5vgFK6kOxkyXk3dpAQCcgZqZLPg6e/Twc/+jgf6htGpDEp2aHV61CH/fvrbuhDUwVgxDOqvcnbS4OJFwwa63sV4P3d+e87AxUTobAwCKFyszGfJ19qjtGZ8G+ockpVcbYhUYoq9nGipMU1px1YUZHRYZf2aSVS1PeYU9fQ04owkAMjerYarKPPSXyQRhJkPJVlmsWK1ORF/PdAUjHGKuWDkvrfBRUemJ9IPxdfboofvbtbe1S56yD8JL+ATvFVddOLauJosWNPSfAYDMHe1+V6OB7HegliLCTIbSWWWJZ7UCEr9Kkonw7iRJ+tItK/TRVfNS7lQKB5m2Z3yR8Q4PBTQ6GlJ5hVuDJ0YioSy+YNmqaJj+MwCAQiPMZCidVZZEPGUfTHW4gV30h723sT5hczyPx6UFHz43YWiIXhHyNtYn7TQcLiROtLIUCpqR2pvwNuuug2/HFCxH726KZppjgw6PlwAA+UQBcIaaWxrU9owvJhAk+/AOr4REvz7cadfX2TOmydy506sTNp576cDxhO8fblo3c05tWsXA6dTmmKZkplmMHB4jzfIAAIVCmMlQ+EN6/3NH09rNZFVj89xvX1EwYEbuhQuJW6726rqblo55H6suwuHvtQo7YdF1MXbtYAqHuPDuKAAACoEwkwVvY72WXz5Xvb0nU77WKjgkWkWJ364dLdGKUNqMMzufxvs+5RVulZ3lYQUGAFBUCDM5lulKiNVro/vRZLqysuDicyPfH/8+FZUejQwHUnb4lc4EIsILAKDYEGZyLNOVkGSFxNk2u/Md6tG506tjAk10KImu3UmGIAMAudcwZ5pc7iz6YZQwwkyOhQPA87971fJogrB0dwFZFSF7F9br8AvHx6yyxD++SlR4HK7TsQpKdPIFgDwxxF7jDDFdeeBtrJenzKKx3f+F73DDunRXP9yeD1J7uCFey8e9lo+LwgElvs9MfAfjdHriAABQTAgzeWL5CMc8E0bCDeuSHYsgfRBGoguIo3vAWDXOC19P1cHY21gfcxBlpiELAIB84zFTjoUf6SQTfvwUXiWRrOtTUh1aadU4b3goIF9nT1odjNlqDQBwEsJMDiVqmJdKsu3ZUurjFJI1zmt7xqeKSk/C2p3wSkyiehqCDQCgmPGYKYcSraKkI9muolTHKSQr1A0EQjJN07ImJlU9DQAAxYgwk0PZdtpNFkhSFejOnFOb9L1HhoOWNTHZnAgOALCXyyUpi/6opYzHTDlk1TDPMM6cf+T2GJFzmqIlCyTxTe/iHwUdO9KXdEyGkbjPTLLeNXYdfwAASO2Ir1czG+pUVm6xCxZjEGZyyKofTHglxCpApAokyQp0UwUP0zwTXsLf3/YbX9rnOgEAUIwIMzmUahVlPCshVoW66Ryf8OzurrSa+IUF0zxBGwCAQiDM5FiyVRSr4JGsZsbX2aPnfvtKzK6l6C3dM+fUplxpMU2lHWSk2D42AAAUG8JMAVk9horvtpvO2UmBQEjP7u5SeQX/SAEApYVPvgJK9Rgq0SpMMpmuuKSLmhkAQDEjzBSY1WOobBru5cqKqy4s9BAAALBEmClS2Tbcs9uCD59LB2AAyKNZDVPH9BNDcsxWkbK7t4thWB9CaaWi0qNzp1fbOg4AQHJHu9/VaCC98gKcQZgpUsl2NCVjGJLLbcRc83hcumLlPC2/cu6Ye8m+d3gowHEGAICiR5gpUqmOJUikanK5rlg5Tx+55qKYVRi350xA8TbWq6ws8T9yw5DKKzwKxfWU4TgDAECxo2amiKSzBduKYSiyE8rX2RPTG2ZkOBjpQ2O1MyrZTiiOMwAAFDNHrsz89Kc/1YoVK7Ro0SLddNNN8vv9hR7SuMWfWJ0p01TkkVCyAyOTnbqd6kRuAACKkePCzGOPPaYHHnhAd955px555BGdPHlS3/zmNws9rHGzY/dSOLAkOyYh2anbqU7kBgCgGDnuMdPPf/5z/e3f/q2uuuoqSdI999yjK6+8Uj6fT16vt8Cjy55dj3LCzfesjklI1agv1T0AQG41zJ0ml8t6swbGclSYef/999XV1aXvfOc7kWszZszQ+eefr46ODkeHmXQOiAxzuY0xhbrR75PqmIRk50UluwcAyD3PWS6FQhzwmwlHhZn+/n6FQiHV1dXFXK+trVVfX1/a71NXV2XLeKZNm2TL+0jSVSvna/evDml0dGyBbuXZZZKkodOjqq6p1BVXXyRJY15fVubWVSvna+El0zV5UoWefeZlDfQPRb5n4SXTbRuvneycx1LGPNqHubQH85gduz6jSomjwoxd/P7BcafeadMmqbf3pE0jkj40s1qX/eWFGT3iSfT6D82sVm/vSX1oZrXWrPvzmNfbOV672D2PpYp5tA9zaY9Sn8fxBDk7PqMmomRz6qgwU1NTI5fLJb/frzlz5kSu9/X1qbY2874sxSbTRzw8EgIAwGG7mc466yzNmzdP+/bti1x7/fXX9eabb2rRokUFHBkAACgUR63MSNIXvvAF3XPPPZo/f76mT5+ue+65R83NzY4u/gUAANlzXJj57Gc/K7/fr+9973s6efKkLr30Um3evLnQwwIAAAXiuDAjSevWrdO6desKPQwAAFAEHFUzAwAAEI8wAwAAHI0wAwAAHI0wAwAAHI0wAwAAHI0wAwAAHI0wAwAAHI0wAwAAHI0wAwAAHM2RHYDHy+Uyiup9Sh3zaA/m0T7MpT2YR+SLYZqmWehBAAAAZIvHTAAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMwAAwNEIMxn66U9/qhUrVmjRokW66aab5Pf7Cz2korNnzx6tXbtWl1xyiS666KIx9zs6OvTpT39aCxcu1DXXXKO2traY+6dOndKGDRu0ePFiNTc3a+vWrQoGg/kaftHYsWOHrr32Wl188cW67LLLtGXLFp06dSrmNcxleu699159/OMfV1NTky699FJ961vfUm9vb+Q+85i5m2++WRdddJH27dsXucY8olAIMxl47LHH9MADD+jOO+/UI488opMnT+qb3/xmoYdVdIaGhrR06VJ9+ctfHnOvv79fN9xwgxYvXqwnnnhC1157rdavX6/XXnst8ppNmzbp0KFD2rVrl7Zt26bdu3drx44defwNisOBAwd0/fXX6/HHH9cPf/hDPffcc9qyZUvkPnOZvgsuuEB33XWXnn76aT3wwAM6fvy4NmzYIIl5zMaTTz6poaGhmGvMIwrKRNo+9alPmT/+8Y8jXx87dsz0er3myy+/XMBRFa/29nbT6/XGXPunf/on8yMf+YgZCoUi19asWWNu3brVNE3TfO+998z58+eb//3f/x25/6tf/cpctmyZGQwG8zPwIvX000+bS5YsiXzNXGZv79695sUXX2yaJvOYqbffftu8/PLLzTfffNP0er1me3u7aZrMIwqLlZk0vf/+++rq6tLSpUsj12bMmKHzzz9fHR0dBRyZsxw8eFDNzc0yDCNybdmyZZE57OzslGEYWrJkScx9v9+vN954I+/jLSb9/f2aNGlS5GvmMjsnT57U7t27tXjxYknMY6Y2btyodevW6bzzzou5zjyikAgzaerv71coFFJdXV3M9draWvX19RVoVM7T19en2tramGs1NTWR2iO/36/q6mq53e7I/fDrS7k+6eTJk3rwwQf1mc98JnKNuczMU089pQ9/+MP6sz/7M73xxhv64Q9/KIl5zMQjjzyiQCCgz3/+82PuMY8oJMIM8so0zYzvR/+lV4ref/99ffWrX9WMGTNi6pCYy8xcccUVeuKJJ7Rr1y55PB7dcccdkpjHdL311lvavn17TN1WNOYRheQp9ACcoqamRi6XS36/X3PmzIlcT/TXCKzV1dWNWcnq7++PrHhNnTpVAwMDCgaDkb/gwn+1xa+KlYJAIKBvfOMbOnXqVORDOIy5zExVVZWqqqo0e/ZsXXDBBbrsssv06quvMo9peumll/Tuu+/qYx/7WMz1L37xi1q9ejXziIJiZSZNZ511lubNmxezDfH111/Xm2++qUWLFhVwZM7S1NQUM4eS1N7eHpnDBQsWyDRN7d+/P+Z+XV2dpk+fntexFlooFNJtt92mY8eO6Wc/+5nOOeecmPvMZfbCqwQul4t5TNPSpUv11FNP6cknn4z8R5K2bNmir3/968wjCsr9ve9973uFHoRTeDwe3XfffZozZ47ef/993XXXXZo+fbquv/76Qg+tqLz33nvq7u7WK6+8omeffVZXXnml3n33XVVXV6uhoUEPPvig3nnnHZ1//vn69a9/raeeekp33323pkyZooqKCh09elSPP/64/vRP/1Td3d3avHmz/vqv/1rNzc2F/tXy6rvf/a6ef/553XfffaqoqNDp06d1+vRpVVRUyOVyaebMmcxlGkZHR3XvvffqnHPOUSAQkM/n0+bNmzVlyhR9+ctf1qxZs5jHNJx11lmqq6uL+c/27du1du1aXXTRRfzvEYVVkD1UDvbAAw+Yy5cvN5uamsyvfOUrZm9vb6GHVHQee+wx0+v1jvnP66+/bpqmaR44cMBcvXq12djYaP7lX/6l+e///u8x3z84OGh++9vfNi+++GJzyZIl5j333GMGAoFC/CoFlWgOo+fRNJnLdIyOjpo333yzuXz5crOxsdG8/PLLzY0bN5o9PT2R1zCP2Ynemm2azCMKxzDNFFVbAAAARYyaGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGaAEPf/887ruuuv053/+57rk8we0+QAAAyZJREFUkkv0N3/zNzp48GDk/uuvv64vfelLWrhwoS6//HL94he/0HXXXaeNGzdGXhMIBHTffffpiiuu0MKFC/WJT3xCjzzySCF+HQAlzlPoAQDIv9OnT2vNmjWaN2+eAoGAdu3apeuvv16/+c1vNGXKFK1fv15nnXWWfvGLX6isrEw/+tGP9NJLL2nmzJmR9/jud7+rzs5Obdq0SbNmzdKhQ4d0xx13yO1266/+6q8K+NsBKDWEGaAEXXXVVTFfb968WXv27NF//ud/qq6uTl1dXdqzZ49mzZolSfqHf/gHtbS0RF7/+uuv68knn9S//uu/as6cOZKkGTNm6I9//KN+/vOfE2YA5BVhBihBr7/+uu6991698MIL8vv9Mk1TQ0NDeuutt9Tf36+amppIkJGkKVOmqKGhIfL1iy++KNM09dnPfjbmfQOBgNxud95+DwCQCDNASfrKV76impoa3XHHHTr33HNVVlamNWvWaHR0VJWVlTIMI+n3m6YpSfrlL3+pysrKmHupvhcA7EaYAUpMf3+/Xn31Ve3cuVN/8Rd/IUl6++235ff7JUlz585VX1+fjh49GlmdGRgY0GuvvabGxkZJivzf48eP6yMf+UgBfgsA+AC7mYASU11drdraWv3qV79Sd3e3Dhw4oG9+85uqqKiQJF166aWaN2+ebrvtNh08eFBdXV369re/LbfbHVl1mTVrlj7zmc/o9ttv15NPPqmjR4+qq6tLv/71r7Vz585C/noAShBhBigxLpdLP/7xj3Xs2DF98pOf1IYNG7R27VpNmzZN0pnHRNu3b1dlZaW+8IUvaN26dbrsssvU0NCg8vLyyPts3rxZa9eu1QMPPKBPfOITWrt2rZ588knNmDGjUL8agBJlmOGH3wBgYXBwUC0tLbrlllt03XXXFXo4ABCDmhkAY+zdu1cej0cXXHCB+vr6tH37dhmGoauvvrrQQwOAMQgzAMYYHh7WT37yE7355puqrKxUY2OjHn74YU2dOrXQQwOAMXjMBAAAHI0CYAAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4GiEGQAA4Gj/H0carviDWcM1AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.jointplot(x='age', y='TT4', data=df, kind='scatter', height=8, color='m')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:22.321819Z",
+ "iopub.status.busy": "2021-12-15T11:04:22.315681Z",
+ "iopub.status.idle": "2021-12-15T11:04:23.596770Z",
+ "shell.execute_reply": "2021-12-15T11:04:23.596139Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:24.383000Z"
+ },
+ "papermill": {
+ "duration": 1.384343,
+ "end_time": "2021-12-15T11:04:23.596901",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:22.212558",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 53,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAIvCAYAAACBRloiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Bc1Z0v+u/ae/e7Wy2pJfklC9syGNtgYwdGmHCchBSZHAaGgcmppKgzN3NrkkklIZmkUqlkimKoMDCTTE1NkYxzmCK3cqk5uSTcCWGICSEwJOCbIXZi4pGxsY0tY8vyQ5ZbUqvVz/1Y94+tbqllvbol9e7d/f1UGZl+Lm3Z1ldr/dZvCSmlBBEREZFLKU4PgIiIiGgxGGaIiIjI1RhmiIiIyNUYZoiIiMjVGGaIiIjI1RhmiIiIyNU0pwdQbUNDyaq9V0tLECMj6aq9X73gdascr11leN0qw+s2u/b2iNNDaCicmVlGmqY6PQRX4nWrHK9dZXjdKsPrRrWCYYaIiIhcreGWmWgOFqDrJqSUGB5KobU9BCEEAMDjURl9iYioJjHMUJGumzh5bBCnT1zBufdG0LYijOtvXAFVU3Dt5hXw+DilTEREtYc/a1OJwQtjOPfeCJqa/bgyOI5DB84hm9adHhYREdGsGGao6PLFJE4cuYxoSwDb/6ATN75vNXIZA7//zTkMXareLjAiIqJyMMwQACCb0fEfe4/B51OxdccqKIpAa3sIO3athaoJvPTcEVw6P+b0MImIiK7CMEMAgBNvX0I6lceWm1bB452sjQmGvNj+B50IBD148dnDuHBu1MFREhERXY1hhiClxPG3B9G+MoJI1H/V/f6AB/d8fBuCYS9+9uzbuHQuAT1nFn/BcmDQREREExhmCFcGxzE8lMJ1WzpmfYzP58GW7SuhqAI/f/4ojh2+gJPHBnHy2CB03aziaImIiEoxzBCOH74EVRXYsKl9zsd5fRq23LQKuYyO44cHIaWs0giJiIhmxzDT4EzDwsl3LmP9dW3w+edvOxRtCWDDpnbEh1I4d3qkCiMkIiKaG8NMgztzKo5c1sCmG1cu+DlrromifWUY7520n0tEROQkhpkGd+LtSwiFvehc17Lg5wgh0LWhFQAwciW1XEMjIiJaEIaZBpYaz6H/9DCuu2EFFEWU9dxQxAuvT0V8KL1MoyMiIloYhpkG9s6hi5ASuH7bwpeYCoSwm+qNxNOwTO7NJiIi5zDMNCjTtPDOf11EV3crmluDFb1GrD0E07AweJFHHRARkXMYZhpU3/EhpFN53Pi+NRW/RnMsACGAc+8NL+HIiIiIysMw06COvHUe0ZYA1q5feOHvdJqmItoSwLn3uEWbiIicwzDTaCzgwtlRDF5IYvP2VTDy1uSxBBX0wCvUzSQT2aUfKxER0QIwzDQYXTex/43TUFUBVUPxSIKTxwZhWeWnmdb2EACg/zSXmoiIyBkMMw0mMZLB5YvjWLGmCZqmzv+EeQRDHkSafOjvY5ghIiJnzN+/nmqaYVj4z9dOYejiOAzDhGlY2LilA7fcvu6q3jF63sR/7D0GVRPo2lB5rcxUQgh0rm/FyXcGYZoWVJX5mIiIqovfeVwsnzPws//3bbxz6CJ8fg0tsSCirQH8/s1+vPzcEeRzk0cNSCnx+svvYnQ4jS3bV8Hn9yzZOFauaYKhWxgeYjdgIiKqPs7MuJEFJMeyePn5o4hfHscHP3odNm7uKN594sgl/Po/TuEn//sQtt3SiWDQgyuD4zj1zmXc/P5rEIp4l3Q4HSsjAIDLF5Non/g9ERFRtTDMuFA6lcfz/88hZFI6tu5YBQmJk8cGi/dvumElmmNBvPrCMbzx83eLt1+zMYbtt3Ti1PHLSzqecJMP/oAHly8msXXHkr40ERHRvBhmXEZKiX2vvItUMo8b37e6uJtous51Lfg/HrwV6fE80qk89LyJVZ1RWGYF+6/nIYRAx+oILrMTMBEROYBhxmUO7T+H907GsWFT26xBRlGE3TcGgN/vgX+iPsYyZUW9ZBaiY1UE504PQ8+b8HgXv0uKiIhooRhmXKT/9DAOvPEeNmxqQ+e65lkfZ+gW+t6deSmp+7qOGW9frI5VEUgJDF1KYnXX7GMjIiJaatzN5BKmaeGNl99Fa3sI/+3OayGEmP9JVdSxarIImIiIqJoYZlyi7/gQxsdy6PnAeng8tbeMEwh6EYn6GWaIiKjqGGZcQEqJ3t8OoDkWxDXdrU4PZ1YrVkdw+cKY08MgIqIGwzBTqywUD4Ds7xvGlcFx3LBjNYy8tWxFvIvVsSqC5FgO6VTe6aEQEVEDYZipUbpuFg+A3P/GaXi8KoSQFR8IWQ0dq5oAAENcaiIioipimKlxqfEchofSWNMVhVLj5x61rQhDCGCQYYaIiKqIW7Nr3Pkzo1AUUdPbnaf2tWmJBTF4fqz4/x6PyshMRETLimGmhlmWxOVL42hfGa7pRnRT+9p4/RounU/g3XcuQQiBazevgMdXu2MnIiL348/MNWw0noZpWGhfGXZ6KAsWbfbD0C0WARMRUdUwzNSwocFxqKqClrag00NZsGhLAACQGMk6PBIiImoUDDM1yjItXBkcR6wjBEVxz5fJH/TA41WRGMk4PRQiImoQ7vku2WAuDozB0N21xATYJ2hHWwJIDDPMEBFRdTDM1Kj3Tl6BogpXLTEVRFsCyGUNZDO600MhIqIGwDBTgyxL4kxfHLH2ENQa7y0zk2iLHwAwxroZIiKqAvd9p2wAlwYSyKZ11y0xFYQjPqiqwroZIiKqCoaZGtR3fAiqpqC1LeT0UCoiFIGmZj/DDBERVQXDTI2RUuLsqTjWdDVD1dz75Ym2BpAazyOXNZweChER1Tn3fresUyNX0kiO5dC1vtXpoSxKtNmumxm8MObwSIiIqN4xzNSYs31xAMDa9S0Oj2RxIs1+CAFcOs8wQ0REy4thpsac7RtGrCOEUMTn9FAWRVUVRKJ+XDqfcHooRERU5xhmakguq+PSQALXdMecHsqSiLYGMHQpiVyW/WaIiGj5MMzUkHPvjUBK4Jpud9fLFLR1hCClPdtERES0XBhmasjZU8PwBzR0rG5yeihLIhL1IxD04MzJuNNDISKiOsYwUyMsS6L/9DDWbmiFoginh7MkhBDo2tCK/tPDMA3L6eEQEVGdYpipEZcvJpHN6HVTL1NwTXcMet7E+f5Rp4dCRER1imGmRvT3xSGE+7dkT7e6KwrNo3CpiYiIlg3DjJMsQM+ZyGcNnDo2hJWdUaiKAj1nAtLpwS0NTVOxdn0rzpy6Ainr5JMiIqKawjDjIF03cfLYIA4d6EdiJINIkw8njw3i5LFBWFb9fONfd20MqWQeQ5fGnR4KERHVIYaZGnD5YhJCAG0uPSV7Ptd0xyAEcObkFaeHQkREdYhhxmFSSly+mERrewgej+r0cJZFIOjByjVR9J3gUhMRES09hhmHjQ5nkM+Z6FgVcXooy0JRBPScieu2dmA0nsZ7J65Az5l2XRB3axMR0RLQnB5Ao7t8MQlVFYh1hJweyrIwdAt9716GJSW8Pg0H9r2H7MTxBtduXgGPrz5no4iIqHo4M+Mg07Bw5dI42laEoar1/aVQFIHOdc0YHc4gmcg6PRwiIqoj9f0dtMYNnB2BYVh1u8Q03arOJqiqgnPvjTg9FCIiqiMMMw4xTQtv/aYfXp+K5ljQ6eFUheZRsWptE4YGx5FN8yRtIiJaGgwzDjn467MYHkrh2q0ddXMW00KsuaYZAsC5M5ydISKipcEw44BL5xM4tL8f121dgbaO+uwtMxt/wIOVa5pwoT+Bs3084oCIiBaPYabK9LyJX754AuEmP279wHqnh+OI7s3tCDf58PrP30V8KOX0cIiIyOUYZqrENC0cP3wJ//b0W0iMZHDHH22C19eYO+NVVcENO1dD8yj4+Y+PIMP6GSIiWoTG/G5aJWOjGfQdH8Kl8wm8d+IKkmM5tK0I479/7Aas7mq2G8c1KJ9fw51/vAU/+7fDeP4Hh9Czez02bGqDEI1TP0REREuDYWaRpJQwdAvJsSySiSxG4xkMXhjDpfNjSCVzAOyZiBWrI7jtjm50rmuBEKKuTsauVMeqCO76Hzfi16+ewiv//g7aV4axefsqrO9uA1S7vkYIMOAQEdGcGi7MLMXOoWzGwMvPHUE6nYdlXp1IQmEvNl7fhq4NbfD5VSRGMhAKICFx7sxw8XHXrG+Dzz/zl0BVlYruW8xzq32fx6NgdWczPvbJ9+HsqSs4cugCen87gN7fDpQ8TlGEHWoUAcXhYOPk0VJyAelXQCzocRUOwLmnL/LCz/fsea+bk193h88zm/PtBVz1Q1nhnw8hBDDxg5L9W/uj16viI/dtRTDsdXagVDYhnf6bQkRERLQILAAmIiIiV2OYISIiIldjmCEiIiJXY5ghIiIiV2OYISIiIldjmCEiIiJXY5ghIiIiV2OYISIiIldjmCEiIiJXY5ghIiIiV2OYISIiIldjmCEiIiJXY5ghIiIiV9OcHoAT4vFxWNbyHxbe0hLEyEh62d+n3vC6VY7XrjK8bpXhdZtde3uk4udW63uU28x1TTkzs4w0TXV6CK7E61Y5XrvK8LpVhteNagXDDBEREbkawwwRERG5GsMMERERuRrDDBEREbkawwwRERG5GsMMERERuRrDDBEREbkawwwRERG5GsMMERERuRrDDBEREbkawwwRERG5GsMMERERuRrDDBEREbkawwwRERG5GsMMERERuRrDDBEREbkawwwREVENkVI6PQTXYZghIiKqIYmRrNNDcB2GGSIiolrCmZmyMcwQERHVEMtimCkXwwwRERG5GsMMERFRDeHMTPkYZoiIiGqIBMNMuRhmiIiIagjrf8vHMENERFRDJJeZysYwQ0REVEuYZcrGMENERFRD2AG4fJrTA6Cld/DXZ9D7u/PQ8wY8Xg3bb1mDm29f5/SwiIiIlgXDTJ05+OszOPjmWQgAiiJg6AYOvnkWABhoiIhcgDMz5eMyU53p/d35iSCjQAhhf5y4nYiIqB4xzNQZPW9ACFFymxACet5waERERFQOTsyUj2Gmzni82lVTlFJKeLxcUSQicgPDYJopF8NMndl+yxpIAJZlQUppf5y4nYiIqB7xx/U6Uyjy5W4mIiJ3mlYpQAvAMFOHbr59HcMLEZFLTa97pPlxmYmIiKiGMMuUj2GGiIiohigMM2VjmCEiIqohqqY6PQTXYZghIiKqIULl1Ey5GGaIiIhqCKNM+RhmiIiIaojCopmyMcwQERHVEG7NLh/DDBERUQ1hlikfwwwREVEtYZopG8MMERFRLWGWKRvDDBEREbkawwwRERG5GsMMERERuRrDDBEREbkawwwREVEtkU4PwH0cCzOf//znsWnTJhw4cKB4W29vL+6//37ceOONuOuuu/DGG2+UPCeVSuHrX/86du7ciZ6eHnzzm9+EaZrVHjoRERHVEEfCzL//+78jk8mU3DYyMoJPf/rT2LlzJ55//nnce++9ePDBB3HmzJniYx599FG8/fbbePrpp/HEE0/gxRdfxJNPPlnl0RMREVEtqXqYGRwcxLe//W089thjJbfv3bsX4XAYDz30EDZu3IjPfOYz2LZtG5599lkAQCKRwN69e/Hwww9j27Zt2LVrF770pS/hmWeegWVZ1f40iIiIqEZUPcw89NBD+MxnPoPVq1eX3H748GH09PSUnEmxa9cu9Pb2AgCOHj0KIQRuueWWkvvj8TgGBgaqM3giIiKqOVUNMz/60Y9gGAY+8YlPXHXf8PAwWltbS25raWlBPB4HAMTjcUSjUaiqWry/8PjCY4iIiKjxaNV6owsXLmDPnj340Y9+NOP9Us5dvj3T/ZWeLBqLhSt6XiXa2yNVe696wutWOV67yvC6VYbXbelFo3608bqWpWph5p133sGVK1fwkY98pOT2P//zP8d9992HWCyG4eHhkvtGRkYQi8UAAG1tbUgkEjBNszg7U5iRKTxmoeLxcVjW8u99a2+PYGgouezvU2943SrHa1cZXrfK8LrNbjEhL5HIQvJ8pqvMdU2rFmZuvfVW/PSnPy257Z577sFjjz2G22+/Hb/4xS/w9NNPl9y/f/9+bN++HQCwZcsWSClx8OBB9PT0FO+PxWLo7OysyudAREREtadqNTPhcBjXXXddyS8A6OzsxIoVK3DPPfdgfHwcjz/+OPr6+vDUU0+ht7cXH//4xwEAzc3NuPvuu/HYY4/h8OHD2L9/P5544gk88MADUBT2/iMiImpUNZMCWlpa8NRTT+Gtt97Cvffei+effx579uzBunXrio955JFHsGXLFnzyk5/EF7/4Rdx111347Gc/69ygiYiIyHFCzld5W4dYM1PbeN0qx2tXGV63yvC6zW4xNTN9715GU0tgCUdTH+a6pjUzM0NERERUCYYZIiIicjWGGSIiInI1hhkiIiJyNYYZIiIicjWGGSIiInI1hhkiIiJyNYYZIiIicjWGGSIiInI1hhkiIqIa0nh9+RePYYaIiKiGCOH0CNyHYYaIiKiWWE4PwH0YZoiIiGqIbjLNlIthhoiIiFxNc3oAVDv6++I4dGAAyUQGkWgAO3o60dUdc3pYREREc+LMDAGwg8y+V08hncrB59eQTuWw79VT6O+LOz00IiKiOTHMEADg0IEBqKqAx6NCCPujqgocOjDg9NCIiIjmxDBDAIBkIgNNK/3joGkKkomMQyMiIiJaGIYZAgBEogEYRmkFvWFYiEQDDo2IiKgxeTR+ay4XrxgBAHb0dMI0JXTdhJT2R9OU2NHT6fTQiIgaC5vmlY27mQgA0NUdw26Au5mIiMh1GGaoqKs7xvBCRESuw2UmIiIicjWGGSIiInI1hhkiIiJyNYYZIiKiWiK4nalcDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERORqDDNERETkagwzRERE5GoMM0RERLVESqdH4DoMM0RERORqDDNEREQ1hBMz5WOYISIiqiGSaaZsDDNERETkalUNM9/5znfwh3/4h9i2bRtuu+02fOUrX8HQ0FDx/t7eXtx///248cYbcdddd+GNN94oeX4qlcLXv/517Ny5Ez09PfjmN78J0zSr+SkQEREtK07MlK+qYWbDhg34xje+gZdeegn/8i//gosXL+LrX/86AGBkZASf/vSnsXPnTjz//PO499578eCDD+LMmTPF5z/66KN4++238fTTT+OJJ57Aiy++iCeffLKan0Ld6e+L44VnevGDJ/fjhWd60d8Xd3pIREQNjmmmXFUNM3fffTduvfVWdHZ2Ytu2bfjUpz6F3//+9wCAvXv3IhwO46GHHsLGjRvxmc98Btu2bcOzzz4LAEgkEti7dy8efvhhbNu2Dbt27cKXvvQlPPPMM7Asq5qfRt3o74tj36unkE7l4PNrSKdy2PfqKQYaIiIHcWamfI7VzCSTSbz44ovYuXMnAODw4cPo6emBEKL4mF27dqG3txcAcPToUQghcMstt5TcH4/HMTAwUN3B14lDBwagqgIejwoh7I+qKnDoAK8nEZFjGGbKplX7DX/605/ikUceQTqdxvbt2/HUU08BAIaHh7F58+aSx7a0tCAet2cJ4vE4otEoVFUt3t/a2lq8r6ura8FjiMXCi/00Fqy9PVK19ypXejwHf8BTEiBVVUF6POf4uJ1+fzfjtasMr1tleN2WnqoovK5lqnqYueOOO7Bt2zZcvHgR//zP/4y/+Zu/wXe+8515t6LNdP/Ub8LliMfHYVnLH33b2yMYGkou+/tUKhj2IZ3KweOZDIi6biIY9jk67lq/brWM164yvG6V4XWb3WLCSC6n87rOYK5rWvUwEw6HEQ6HsW7dOmzYsAG7d+/GqVOnEIvFMDw8XPLYkZERxGIxAEBbWxsSiQRM0yzOzhRmbQqPofLs6OnEvldPATChaQoMw4JpSuzo6XR6aEREDYs1M+VztM9MYbZFURRs27YNBw4cKLl///792L59OwBgy5YtkFLi4MGDJffHYjF0dvKbbyW6umPYfedGBEM+5LIGgiEfdt+5EV3dDIdERM5hmilX1WZmdF3Hnj178OEPfxixWAwXL17Et7/9bWzduhXr1q1DS0sL9uzZg8cffxyf+MQn8Nprr6G3txePPfYYAKC5uRl33303HnvsMTz++ONIp9N44okn8MADD0BR2PuvUl3dMYYXIqIawihTvqqFGSEE+vr68Nxzz2F0dBTt7e14//vfjy9+8YtQFAUtLS146qmn8Oijj+KHP/wh1q5diz179mDdunXF13jkkUfw6KOP4pOf/CQ8Hg/uu+8+fPazn63Wp0BEREQ1SMgGPASiHgqA+/viOHRgAMlEBpFoADt6OutmhoVFhZXjtasMr1tleN1mt5gC4Hf+6zza1zQt4Wjqw1zXlOszLsRmd0RE9cswG26OYdEYZlyIze6IiOoXo0z5GGZcKJnIQNNKv3SapiCZyDg0IiIiWioNWP2xaAwzLhSJBmAYpedRGYaFSDTg0IiIiIicwzDjQjt6OmGaErpuQkr7I5vdERHVCU7MlK3qHYBp8bq6Y9gN1O1uJiKiRsZlpvIxzLgUm90REdUnVeWiSbl4xYiIiGpJZWcoNzSGGSIiohrCRabyMcwQERHVENbMlI9hhoiIqJYwy5SNYYaIiIhcjWGGiIiohnCZqXzcmu0Ss52SXc+nZxMRNSRr/odQKYYZFyickq2qouSU7OsvJnH8yOBVt+8GGGiIiFzKNJlmysVlJheY7ZTs3t+d5+nZRER1hstM5WOYcYHZTsnW8wZPzyYiqjOMMuVjmHGB2U7J9ng1np5NREQNj2HGBWY7JXv7LWt4ejYRUZ3hMlP5WADsAnOdkt2xKsLdTEREdUSy/rdsDDMuMdsp2Tw9m4ioznBipmwMM1TEnjVERM7L5w2nh+A6rJkhAJO9bNKpXEnPmv6+uNNDIyJqKOwzUz7OzDSgmWZgpvayATDx0cShAwOcnSEiqqLpu1RpfgwzDWa2bsJ63kA44it5LHvWEBFVn8kwUzaGmTo1W/3LbDMwOXOid83E7QB71hAROYEzM+VjmKlD02dfEiNpvPyTd+DxKdBzJkIRLzAltGiaAlUVME0JwISmKTAMiz1riIgcYDHMlI0FwHVo6uyLnjeRSeuQ0oKpWxBCIDmWQz43WS1vGBZa2kK4/oYVSI/riF9OIT2u4/obVrBehoioyuwfLKkcnJmpEUu5LTqZyMDnt7+06ZQOAQDCnnkJN3kxPpbDeDKPFq9anIFZ0xXF8SODCIY90DQfDMPC8SOD6FgVYaAhIqoiwzCdHoLrcGamBiz1tmivV8NIPIP4UAp63iz2X1I1BT6/B6GID5ASuayBYMiH3XduxPn+BE/gJiKqARZnZsrGmZkasJTbovv74kil8pCWvaQE2H8xhAKEgvaXW9UUrFgTxb0PbC8+b98rJ4uzOfmcgXRKh2GYSI5m0d8X5+wMEVGVmDzPoGycmakByUQGmlb6pah0W/ShAwPwBzSEm3xQVAVi4mUFAK9Pm/UwysLJ3PmcgeRYDpZpQRECQgg2zyMiqiLJmZmycWamBhSWhaSUUFUFwZAHQhEVbYsu1MsIjwqf3wMAyGV1pJJ55LJGST3O1Dodj0dFPmsglzMBKQEhIAGEwh4oE8tNnJ0hIlp+FktmysYw47Dpy0KmYWIsYSIQ8OD9d3SX/Xoej4rReAaWJaFqCgJBDYo6uaxUCDC//NkJ5PMmfH4VwZAXhmHBkoC0JAABRbWf6/N7IKVk8zwioiqxuMxUNoYZhxWWhbxeBZm0AdOwoCoC/oCnonqZbEaHaVkQACzTwvhYDl6/HYym9p/RdRPSspDNSGgThcGAXV8TDHvYPI+IyCGSq0xlY5hZZvNtuZ5pWUhO7DQq16EDA/D6NXi8KtIpHaZpQSgKQiEvurpjeOGZ3mKhsWVJKIoCKSUyaQM+vweapkBRweZ5REROEk4PwH1YALyMTh27PO+W60Lh7VSVzoQUCom9Pg3NrQHE2kNoiQWKx8lPLTRWVTvIAJPngBiGhda2MHbfuRHBkK9k6zbrZYiIqkMRTDPl4szMMnrz9b55t1zv6OnEvldPYb6ZkJlmeACU3Ob1anOerxSJBpBO5eDxqAiGPEiO5YCJouOpu5y6umMML0REDlEUhplyMcwso9HhNDTP3Fuuu7pj2A3MuRQ100nXv3rpBCwJ+ANa8bZsxkDh78BMwWhqcPJ4VQSCHmTTBlSPgmDIt6iuw0REtDQ4MVM+hpll1NwaxOhIet5i2vlmQmZqqpdM5CAAeJp8xdsAe3rSH/TOGIymB6doSxAf/CgDDBFRLREq00y5GGaW0W0f7MbeHx/GYotpp561VGBZFsS0KjFNU5DLGvj4lM6+0y3VEtJSniVFRESTBKdmysYws4w2bu7A7js3Lvqb/tRalwJFUa4qeK/WFuqZlr32vXoKu4EZPzcGHyKiMnBrdtkYZpbZUsyEzFQk7POpsCSg6/PP+ix1mCjnLKlygw8REVG5uDXbBbq6Y1dtl/7QXZvw4T/aNO8W6qU+kRso7yypqcGHp3ETEc1Psmte2Tgz4xKzzfDMN7ux0FmUcmZvZlr2mm2Ja6Z6n0oP0SQiagTMMuXjzEydW8gsSrmzNzt6OmGa0j4SQcpZT+IGlrYpIBFRQ2CaKRvDTJ2zZ1HyGB3OIH45hdHhDNKpfEmYKHcpaKZlr9m6BJcTfIiIiFmmElxmqmFLUbi7piuKiwOjEEDxVG7DMLH1pmjxMcu5FLSQplS8GlUAACAASURBVIBERDQFw0zZGGZq1EJ3Ac0XeM73JxAMeZHPmTBNC6qmwutTcb4/gZsnHuPxqBiNZ2BZEqqmIBDUoKjKrEtB5e5Q4vEIREQLx5mZ8nGZqUYtZOlnIbUuyUQGgaCnePBkc2sAgaCnOOvS3xdHNqPDtCwAEpZpYXzMPhphtqUg7lAiIqJawjBToxZSuLuQUDFfAe6hAwPw+jU0Rf1QNRUSgFAUhELeWWdTytmaTURE5bG4zlS2isLMXXfdhf7+/qUeC02xkF1ACwkV8xXgFl7D69OKszctsQDyeaOssaVTeeSyJn7w5H688EzvovrYEBE1NK4zlW3Ompm9e/fOePuZM2fwyiuvYMWKFQCAe+65Z+lH1uBm6vo7fRfQQvq9zFeAW07PmNnGlk7lkUnrCIa8EAIYvDCGl358BC2xIHZ9aAPrZYiIysAsU745w8xXv/pVCCFm7Eb4j//4jwDsHTIMM0tvIbuAFhJ4Cq81W6BY6GvMNTZDlwiGvPas0Jh9mreiCIyNZnl0ARFRmRhmyjdnmOnp6UEwGMQ3v/lNRKOTW3m3bt2KF154ARs3blz2ATay+XYBdXXHcP3FJHp/dx563oDHq2H7LWvKCg6VvsbUsf3gyf3w+TUkRrLFLeBSSnt31EQND8MMEdHCSNbMlG3Ompmnn34aW7ZswX333YeDBw9Wa0y0QP19cRw/Mohg2INYRwjBsAfHjwyWVa+y0Nfo74vjhWd6Z6yJKdTQmKZVcnS9qiksDCYiKpOcVpNI85szzAgh8IUvfAF/93d/h6985SvYs2cPLIsXebnMFRhmshRbpJdiC3ihyFgIAcuyIKX9c0UgqPHoAiKiMuXz/D5brgXtZrr11lvx3HPP4a233sKf/dmfLfeYGlIlp1svxRbpkSspjI/lEB+yjzrI54yyt4AXjjdobglASjsEh8JeKKrCowuIiMqUzxuwLC41lWPBHYDb2trw/e9/H08++SQURUEgwJ+2l9JCT7eeqpKdSFP198WRz5uQlgVFUWCZFpJjOQSCHkRbgsXHLeS4g0INzdSOxMGQj0cXEBFVIJc1EAh6nB6Ga8wZZvbs2YO/+Iu/KAYXIQQ+97nP4XOf+1xVBtdIKjkfqZKdSFMdOjAAn19FNiMnd6xJiWzawAc/ar9Gf18cuayJ8WQOmqYiGPLA65t9+YhHFxARLV4uqzPMlGHOZabvfve7SKfT1RpLQ1tIk7zpyjm9eibDV8ah50xIy955ZJoSqqrA41OKsyz7Xj0FzSOKh1SOJbJIp/JcPiIiWkbZzOyNS+lqc87MzNRfhpZHpbMsC50JmX4g5ZquKPScBSktKIq9A0kC8PhUNLeGAAC/+dVpZMbz9tqtAIQiIC1Az1u484+vK+vASyIiWrhcRnd6CK4yb83M1K22tHwW0iRvJgsJETOdcv37/eegeRXoeTuwSgCWKZEe1xEI6Dj46zMYiaehKAKFPwJSAuGItzjeuV5/36uncP3FJM73JxhwiIjKlM1yZqYc84aZz3/+8/B45l63+9d//dclG1Ajm22WZabAAgD7X38Pw1dSUFUFgZCnGCKmd9ydqbjYsiRMw0KkyYfxZB7WxBKXEIBpWfj9b84BEyFGTEkzmZSOjtVNJeOb6fX1fB6/338OkaivJOCwGzAR0fxyac7MlGPeMLNmzRr4/f5qjIVmMH3WIzGSxs+fO1rctieEvRyYGs8jHPFCVZWrdkDNWFysChimBa9Pg5LSAdUOLIqq2GFnYvlJSgBSlnT1nb70NdPr57L21sJydmcREZEtnco7PQRXmTfM/PVf/zViMX7zccrUWY98zkAmrZf0H5DSXiISADJpA9EWP4avjOOFZ3qLMzkAMBLPQEq7wDcY8sDjU2FlAF03YRgmFCGKje4AQFUVGLoFoQB2n0T7PcNNvqvCyExbxE3TgqYurgcOEVEj0jwKclxmKsuCmuaRc6Y2xhtP5mGZVxdly4lwYxoWxkYzyKYNXBwYRSatIz40jmQiB8u0IIDijiRIYOeutQiGfFCEvVspHPHC57eXFNWJmRo5rRFlPmdc1civ0AFY101IaX9UhAKPTy15HLsBExHNT9UYZsrFMFPjClu28zkD5izndUgJWNLecZTPWRACUBUF0pLIZQyIiZ1IiqoAEFAVBf6ABzffvg73PrAdH71/KwITHXsLYcQwJIQyWfwthH0StmnKq45LmGmL+M5da6FqaknA4XZuIqL5aaqCXI5hphxzLjOtXr0ahsEL6qTClu30+Nzrp9IChCKLoQMoFO5K+4gBCTS32rMiUsqS1D/TTqpcxkAua0BRRcmONtOyZlwqmql4uWNVhNu1iYjKpKhi1h9eaWZzhpmLFy9C0xZ84gEtscIuJj1vz8rYxb6zP96yAFUTgESxWLdATMzB5XMGxpN5QEq88ExvMWBMDyMvPNOLyxfGSnoNSSmhKMqCl4rYDZiIqHyKoiBncDdTOdg0r0b198Xx2s9OwMibsCxZDDJCubqOZSrTkDOGHtOQGB/LIps1IACEIr45t0vv6OnEaz87gXzW/gtVPAnbry1qqYjN9YiI5haO+DA+lnN6GK4y77TLpUuXkMvNfVFXr169ZAMi229+dRr5rA4h7KZ11kSAmSvIAICiTD52ukzaPhE7GPYUC31n2y7d1R3Dh/9oE37zq9NIjGQghEBLaxC3fnB9xeFjtuZ67D1DRDQpl9ORz7PEoxzzhpmPfexjs94nJ/qPHDt2bN43evLJJ/Hyyy/j7NmzaGpqwkc+8hF8+ctfRigUKj6mt7cX3/jGN3Dy5EmsXbsWX/va1/CBD3ygeH8qlcLf/u3f4pVXXoHH48F9992Hr371q1BVdaa3dLVCgCjUqwgh51xiAuwlpmDIi2QiN/GcQuGuXdhrmhLNsUDxNXNZHZmUjsRwpmTJqWCpl4kqORmciKjRqKoCPW86PQxXmTfMfPe730U0Gl30Gx06dAif+tSnsHXrVsTjcTz88MNIpVL4+7//ewDAyMgIPv3pT+OP//iP8Q//8A947bXX8OCDD2Lv3r1Yt24dAODRRx/FkSNH8PTTTyOVSuGrX/0qwuEwHnzwwUWPrxYVwqL9+8nbm5p9SI7lrpqlkdLu7wKgeASBZQFyygMNw4JlWkiN52Ea9osqCqoyS1LJyeBERI1GVRXoOsNMOeYNM9u3b1+SpnlPPfVU8fcbNmzAX/3VX+GRRx4p3rZ3716Ew2E89NBDEEJg48aN2LdvH5599ll87WtfQyKRwN69e/H9738f27ZtAwB86Utfwj/90z/hc5/7HBSlvnaZN7cGMRxPlQSagkzagN+vIZsxiiHH3rgkkUnr8PpU5HOTfxEKjwkEPchmDOSzeslSlH0uk3VV9+Clrm+Zqbkee88QEZVSNAWWKWFO/LtM85szzCznIZMjIyOIRCLF/z98+DB6enpK3nPXrl148803AQBHjx6FEAK33HJLyf3xeBwDAwPo6upatrE64dYPrsevXjqBXM6EMWWLnhB28MgZdl8Zj0eFoZvFwOL1a9Bn6U+gagp8Ps2evrQsQADqxDbuTNqAP6Bh8HwCP3hyP7xeDalUHv6AdlV9CwC88fK79q4o2N0qd/Ssxc23r5vzc6r0ZHAiokZS+HdZz5tQAwwzC+HIbqZkMonvf//7+NM//dPibcPDw9i8eXPJ41paWhCP291m4/E4otFoSX1Ma2tr8b5ywkwsFl7M8MvS3h6Z/0GzPC8aDeLN1/swcGYEEIA/4ClpnictlKyrSgC5zOxFY6nxPKQl0b4ijOErKZimtI8xkBKGbiJlWFBUgVDYhyuXx2GZEoGABx6PBo8HyOcN/O7XZzA6nCmZ+TF0Cwf/8yxCIR92f+S6BX1Oo8NpNLcGcdsHu7Fxc8eMj6XK8NpVhtetMrxuSy8Y8gEAQkEfWttC8zyagHnCzPHjx5f8DfP5PL7whS9g7dq1+Mu//Mvi7fMFp5nur3TmKB4fL+nBslza2yMYGkpW/PxoWwD//WM34AdP7ofPr0EIgUDQg1xWn5gVmfY5zFcgrAjouoVsVkcg6EFyLAfTmuxHI6WEP+iBaVrF7eDjyRw0j/2TgRBA/HJqxmsnJfDm66execeqBX1OU02/Rou9bo2M164yvG6V4XWb3WJCXluHHWDOnxuFOd8W1gYy1zWtakc8wzDw5S9/GalUCk8//XRJQ75YLIbh4eGSx4+MjBTrddra2pBIJGCaZnF2pjBrUy8HYc5WozK91iSTNubunjeLQMhTPFagsD06k5pszCQEkM3o8HgUqKoC0zBLulAahh1yZntrnVsJiYgWbTieAgCMj2UBNDk7GJeo2mKcZVn42te+hv7+fnzve98r2ZINANu2bcOBAwdKbtu/fz+2b98OANiyZQuklDh48GDJ/bFYDJ2d7q+5KPRgSadyJTUq/X3x4kGO6VQeI/E09Lw5ay+ZAjHtK6uoAqqmoLUtPHmO0sS5TcBEAbGwT99Op3QEQx5I2EcjFM5WymaMOWfDPF52iyYiWqzCD67ZDLsAL1TVvvs8/PDDOHDgAL73ve9B13UMDQ0BsOteVFXFPffcgz179uDxxx/HJz7xCbz22mvo7e3FY489BgBobm7G3XffjcceewyPP/440uk0nnjiCTzwwAOu3Mk0fRYmm85f1YMln8vh1Z8eh8+vQkogk9IhMbnteq7JGSEEoEgI+3/gD2jFYtvCjqSXzo1CUcTkbIsETEiYpokxw4SA/bxc1kAkGoCqKFBVgVRy5nOitt+yZsmuDxFRo/J4C2GGs90LVbUw8+Mf/xgA8Cd/8iclt7/22mvo7OxES0sLnnrqKTz66KP44Q9/iLVr12LPnj3FHjMA8Mgjj+DRRx/FJz/5yWLTvM9+9rPV+hSWzEydcBPDGYSbfMUwk8vqE1uvJZqafRiJZwBIRJrswrDxZB6YY8kHEvD7PXaRrwo0t4ZKgsyhAwNQVAWWac34GooQ8AU0CFXB7js3oqs7hh88uR+BoAeGbvF4eiKiZaKoAooikEnPfcAwTapamDlx4sS8j7npppvwk5/8ZNb7Q6EQvvWtb+Fb3/rWUg6t6mbqhKuoCjIpHf6AfcxAalyHZdopIzGShWXZO48yaaN4+nUmpUPXS7dtF2ZtNI+KP//ibcX7CjNB+145iUg0gJErKYTCHoyNXn1UhVAARVUQCvug65Mdegu1O/lpW78L79v7u/Pzbs8mIqL5ef0aUuMMMwvFIgcHzNQJNxT2IJnIQddNWKZVLLxVVGHPnlgSlpjs5uvze6CoChLDGQhFYGoliwSgTDnhYaaZoHzehDXLtI4Aiu9f6NDb3xfH2GhmxsPP7DAjWABMRLREAkEPkqNZp4fhGgwzDpipE66iKmhtC8EX8GDwfKJYkKsUC27tJSUpJa4MjsPjVeALeNHaFkJiNA1DLw0met7CD57cj0g0gLGRNLIZA5YloWoKAkENPr+K9PjMxWWWBXi8CnJZHelxHaZp4aUfHwEw86ndiqLAsiwWABMRLYFr1rfh3OkR9J0YgjQlhLp8DWzrhfsqZ+tAYXeSrpvFnUKmKXHrB9fj3ge2Ixj2Itzkgyg0tDNK04OUQD5nYeXqCFrbg1cFGWByZmV0OIXxZB6mZRW7B48n88UW2SW101P+vqiawPhYDqZlN9Kzg5QdrhSl9C+WvWWbBcBEREvh7HtXkM8byOdMjCevng2nqzHMOKCrOza5PTprIBjyFYtsAXvmRtUUhCNeKNPO5dA0BZqmQFGAs30jONs3Muv7ZDMG9Pxkt+BCOLJMWTxZu2SLt4QdaASQTRuwLCAQ9JbMxNgN82Zenuo7PoT+vni5l4OIiKYJBO36ybFRHsS7EFwXcEhXd+yqAx1/+bMTME0JKS1YJqB5xFX7r03TgqKIYo3KXNuzjYnt1YWlIXOWnUslJBCKeIvbr9Pj+ZIZm5mer05MgY6NZpf95G0iokYQCHoBAInRLDjnPT/OzDisUJybGEkjm9Vh6AZMUwLCQi5rluxWAuwwYZrSDj3zvLa0AEtKe2bl6lw0K3X6+uz0UxOm/H8hWAH2rI2qChw6MLCwNyIiohn5g/ZcQzLBIuCFYJhxWGGbdj5nTtSjKBAALHPep2JBR1NNBI9yysdm3K4tSj8WWJacmPGxi4sLu5+IiKhyiqLA41WRYs3MgjDMOCyZyEDTFJimVXJUwEJmURZ6/lggqEEoi6uGVzUFXp+KcNQPn18tuU/KiR1QHgWGYSESDSzqvYiICPD7NYaZBWKYcVgkGoBhWFBVZd6TwytlGIt7XVVTEG7yARBQVQHLmnlWKJczi0cmEBFRZa5Z34bu6zrQEgshk+b5TAvBMOOwwjZtr0+FJSUsy7JXhpaorYBQ7O3YhW7ClTANC8nRHKS0irNIqmovKRUOtFQUuyhn6q4sIiIq39n3rqDv3cvI5w1keNjkgnA3k4MKu5j0vAHLLJyUKqCogJ4zoWoK8rkFFM/MQRGFAl07zCzkkMrphAB8ARXZtIHhK2lYpoQFu9hXEQKKV0Eo4kUw5GOQISJaIppHQY6HTS4Iw4xDph4xEI74YBgWTHNyZuOFZ3oxOpyyG9JVOKuiKAKKas+k2MciSEBMTvoUAo2YZ6eTlJixW7A5MS7TNJEYzuDazR0VjZOIiK7m9WkwTQvZzOS5fTQzLjM5ZOphk0LYH6dua17TFbXXSqWsbMlpovldc2sAsfYQmpr9iLWH0BoLTTTPs899Coa90DwqlEW2y5YSePv3F9g0j4hoibBx3sIxzDiksItpqqnbms/3JxAMeaFq6mSfFzGt8FagWLNylYlznKSUSKfySI7mkErl4At48NH7tyIS9SEc8SKXNaDnzZLZn0qDTTat4ze/Ol3Rc4mIqFQhzCRG2GtmPgwzDinsYpqqsK25vy+OSwMJpJJ56Hm7ZkZRxdXLQXLm5aHCIZWQwJXBFFLJPCQkPB4V6VQO+149BcDuJ2MaC9zfvUAj8TRnZ4iIlkAg6IGqKrh8YczpodQ8hhmHzHbY5JquKF772YmJM5AmWaacsa+MwNUde6UEfD6tuNSkKPZvU+N5WKYFVRVz9i6wTLmwhnwzEAo7ABMRLUZha/a1m1diZWcTzr03Aiztz511hwXADunqjmE37NqZZCKDSDSAHT2dOHRgAPncwqvXpZz52Mdc1kBxE5OwO/VKCSQTOfgDWukBk0uMHYCJiCp39r0ryGXt7wM+v4bzZ0cxOpJGcyzo8MhqF8OMg6YeNlmw75WTZe9emu3xhSWoqcFFSiCTnj8sVdS/T9h1OuwATES0NGLtIZw+cQWnjg3h5tuvcXo4NYthxkGFPjNTZ2Yi0QCSiaVrX104MbsaFAEIobADMBHREgmGvYi2BHD88EW87/1dJcfe0CTWzDik0GcmncrB59eKhbmh8NL1ErD/zIsl6yY87/spCnbuWsvGeURES2h1VxTJsZxdO0Mz4syMQ6b2mQEAaUmkkjmcfCdb3Im0GEIAN7//Gvz+N/0wqzEzI4CP3rdlxiAz0wwUAw8R0cK0rQjDH/Dg6KEL6NrQ6vRwahLDjEOSiQx8fvvy53MGkmO5Yu2LIgBrkWGmtS2EjlWRq3ZFLRsJXL6YvCq0AMCvXjqBXM6EZVlIp3T86qUT+NBdmxhoiIgWQFEENt2wAocPDmB8LDdx8C9NxTDjkEg0gHQqN9H7RS+uBAmBJdlptGFTm71Funh2weJfcz5vvdmPphZ/ybJZPmcUzxYRwj70MpOxsP/19xhmiIhmcM36NpjTptTT6Tx6fzeAI2+dx60f2MAikWkYZhyyo6dzonmdCcMwoUwUdVW0i2gar0/B+f4ERq6kqlb8C9jbv5OJHKSUUFUFiipKDkkrfm4SGB1OV29gREQuMnVr9lTNrQGcODqI9912DTw+1YGR1S5mO4d0dcew+86NCIZ8UIRY0okTQ7cwdGkM+fziTtyuRKGjsGVaPO2ViGgJxTpCSI/nMTbK4w2mY5hxUFd3DPc+sB0fvX8rxBJuObIsQM9bS35UwYLf35Tzbh+MtrAXDRFROWIdIQBA/2keGTMdl5lqQFd3DIoKmNWfSFk25pTCH6EIyCmFyIoisOtDG7jLiYioDIGgFz6/hqHBcaeHUnMYZqporm/eQihQFAtCCJhldgCuRVLatTumAfiDGnJZA6ZpQRF2LxoA2PfqKaiqKCkY3g2gvT3i7OCJiGpUMOzFaJw1h9NxmalKZmuSVzhhWlUFpERdBBkAxd1TwbAH2bQOaUm0tAbx0fu34Obb15X02RHC/qiqPKSSiGguwZAXo8OZ6rXdcAnOzFTJ9CZ59kez+M3bPj3bwQFWoFAWM9u4DV0iGFbQ0haEYVjQp9TwTO2zU6BpCg+pJKKGN9PW7ALLhH3wZDyN1vZQlUdWuxhmltGpY5fx+ivvIpnIID2eRyjiBTyT2+ks08LFc6O4eG7UdUEGmH8buWVJWKYF4VFLwltXd6ykz06BYVg8pJKIGt5sW7MBIJvNAwAuXRhjmJmCy0zLpL8vjpd+cqS4rCSEQHIsh3zO/gNa6PoL2AWx9So5lkMuqwMonXnZ0dMJ05QTM1L2R9OUPKSSiGgOgaAHPr+GSwMJp4dSUxhmlsmhAwNQtcmakGDYAwFgPJmHlBLjyXy1zn90lLSATNoOcFNnXqb22cllDQRDPuy+cyN3MxERzUEIgbXrWtB3fAjZjO70cGoGl5mWSTKRQSjsK657+vweSAmkx/P29KGUCEV8yGYMWFU5CdI5et5EOpWHoiolMy9d3TGGFyKiMm27pROnjg/hyFvncfPt65weTk3gzMwyiUQD0PXSxjGqpmDFmij+52dvxYo1UaiagkBQq8axSY5Lj+dx/Q0rGF6IiBaptS2EazbGcPjgec7OTGCYWSY7ejqRzegYvpLGlcvjGL6SRj5rFGcmCjUjiqogFPZC1PlXQkr7IMoXnuktbkcnIqLK/MF/WwddN/EfPz3GbdrgMtOyktI+tFpMHFYw9c9bV3cMu4FiEz2PRysWB9cry5IlzfE4S0NEdLW5tmYD9qaRaHMAt32oG7/+j1PY//pp3PL+dcX7PR614aYqGGaWyaEDAwgEPQiFvcXbdH1yazJQWjPyf3/nPx0ZZ7VN36JNRESl5tqaPZWqCazsbELvbweQzxnoWGV3T79284qGO1W7wbJb9dizLaV/mGZrCtffF0c+W0cHM82DzfGIiJbGtZvb0dTix7HDlzB0Ken0cBzDMLNMZioAnq0p3KEDA5Bu7JpXJkW1N6OzOR4R0dJQVAU3vm8NmqJ+HOu9hCsNegglw8wy2dHTCdNYWFO4ZCLjyg7A5bJMiaFL4xgbyWJNV9Tp4RAR1QVNU3DjzasRbvLjnf+6iLMNuMmCYWaZdHXHcNf9NyyoKdz05ah6Z1kSRw9d4K4mIqIlomkqtt28GuEmH1578TjOnGqsf19ZALyMNm7uQLRtcjmlvy+OF57pRTKRQSQawI6eTnR1xyBEI/QCLpXLsQiYiGgpaR4V225egxNHLuMXzx/FR+/fimsa5N9Yhpkq6e+LY9+rp6CqAj6/VrJFOZ3KOz28qrMsi0XAREQzmG9r9nw2Xt+BF//tbfziJ0fxh/dtxTUbYnW/DsMwUyWHDgxAVUVxSWnqFuXphcKNQFEUFgETEc1goVuz57LphhX4rwMDeOWFd/Cnf7YTrR31fcJ2nWe12jF8ZRypsRzil1MYHc4gl9WhaQqGr4zD0Ov7bKaZ+HwqT8gmIlomHq+KrTtXARJ49afvQM/X9w/NDDNV0N8Xh56zYJoWhAAs08J4Mo90Kg+rvv98zWrrjtWslyEiWkbBkBebt6/ESDyN119+1+nhLCuGmSo4dGAA/qAGTBT6CiEAKZHLmlBVYZ950GD6jg85PQQiorrX2h7Czl3X4NQ7l3Hq2GWnh7NsGGaqIJnIIBD0INLkg6IqsKR9wKTXq6KlLQRVVdBoG5pGh1n8S0RUDdtv6UTH6gj2/eIk0uP1ueGEYaYKItEADMOC16ehuTWAWHsI4SYfWtpCWNMVhbRkQzTNm4qnvBIRVYeiCNzxR9fDMCz88qXjdfnvL3czVcGOnk7se/UUABOapsAwLJimxJquKI4fGYQ/qCGXNWAa9fcHbDaK0mBTUUREC7TYrdnTKYpAOOzDrR9Yj/98rQ9vvtaHnt3r6+p0bYaZKujqjmE37NqZqQ3zCtu1/X4fQmEfhi41zpkaUkq88ExvsXEgERHZlmJr9kw0j4LVXVG8/dZ55HI6dt95Xd2crs0wUyVd3bGrvmnve+UkfP7G/BKEm3wljQMZaIiIlt/G69uRSek4efQy1nS14PptK50e0pKokwkmdyrU0hQ10MqLP+CBx6NCVQUOHRhwejhERA1BKAJbblqJSNSPX710Am/+sq8uamgYZhy0o6cTpjl5snYjSYykAdinvfJYAyKi6tE8Krb/QSe2bF+F3t8OYO+PDrv+WB2GGQd1dcdw/Q0rMD6Ww5XBFNBAeSafszA+loVhWDzWgIioyhRF4LY7unHHH23C4IUx/Pjpt/DeyStOD6tiDDMO6u+L4+ihCzBNC0oDfiUyaQPJRA5ruqJOD4WIqCFtunEl7vufN8Hr0/Dyc0fx0r+9jbFR982WN2b1aRX098Xx8x8fQXxovLh7aXqR66EDA8jlTCjFjnkNNDUzwTQtHPzPs+g7PoRdH9rAQmAioiprXxnB//g/34e3D57H7359Bj/6vw7ifbd14aY/WAtVc8dP2gwzy6C/L459r56C16vC59dm3bWTTGRgWRZURVnSngKuIgFFFRgbzRavUXt7xOlREVGd6O+LX9UWo9Z/aFrqPjOzURQBPTd5QODWm1ZjXXcM+984jd/uO4Pjhy9hx64ubNq6ouZDDcPMMij0j/F6NRiGaTcmgolDBwZK/hJFogGkUzqkbLwOwFMVPv/Czqb33brO6SERUR0o/GCp8KCMQwAAIABJREFUqmLOHyxrzXL1mVmoru5WhJt8uHAugTd+/i5+9/+dwbab12DrjtXw+mozNtR21HKpZCIDbVqKnWnXzo6eTvh8al1si1sMywJUTeHOJiJaUoUfLD0eFUIItoMoQ2t7CH/ywE24++M3oiUWxP7X38P//l/7sf/10zV5vlNtRiyXs2dccvB4Jm+baddOV3cMW3esxltv9jfc1uzpAkGNO5uIaEklE5mrGpPyh6aFE0Jg7fpWrF3fiqFLSRzafw7/deAcDv9uAOuubcO1WzrQtaG1JpagGGaWwY6eTvzqpRMYH8tN7FRS4POpeP8d3Vc99vjblxpuZkaIiVLniU9bUQBFVWCaEjt6Op0cGhHVkckfLCdb9vOHpsq0r4zgI3+yBYmRDN4+eB4n37mMvuND8Po0dF/fho2bO7C6q9mxc/cYZpZJIZ/4fB6oqoCiKhDTvsYHf30GyUSu+oNziD+oIZs2oKqKHeCEBGCvZQdDPlcU5hGRe8x2yC9/aKpctCWA2+/ciF13bMD5s6M4efQyTh0bwrHeSwiGvdh4fTuu3dqB9pURiOnf9JYRw8wyOHRgAP6ABn9LAB6fCsuwYEmJY4cHsbIzCqEoUARw4ugggiEvLEvCNC1YpoRpWXW7QzubtgvaJAAJWZyx+tBdmxhiiGjJzXbIL/+9WTxVVdC1oRVdG1qh6yb6+4Zx8uggjhy6gMMHzyPaGsDWm1Zh040r4Q945n/BRWKYWQaFddrhK2nkcxMV6cI+eml4KAWvT4XXr2E8kYNQBJSJXx6PCkUVdpqVEpaUsCwJaQGWJWFZlv3RdHfaUVWB1rYwAEDXr97lRUS0VGY65LfWVWtr9nymb92eS9f6VnStb0Uua+DMqSt49+hlvPnL0zjwxhls2NSGzdtWoX1luOzZGo9HXdBWJYaZZRCJBnBlcAz53JQ/jNKekRiJp0sfbEks5I+KEMKuLVEENE2Z/AMh7VmOwutLaYedWq7DyedMDF0ahxB2MV42ozs9JCKimuH01uzFUlSB67etQOf6ZlzoT+D0iSGcfOcywk0+rF4bRceqyIKLhq/dvAIenzrv45wvQa5DobCnGGQiTb6SWhlNUyo6ukBKCdOUMHQL+ZyJXNawf+UM5HMm8nkTet6EoVslQcYOQQKqOvFLE1A1BaqqQFHsWaAqLmtO+5wAXbeg5yz098WdGQQRES2LcMSH67Z24NYPbcC1W9ohLYl3j17G/jfeQ2p8aetFOTOzDM72jRR/r2oKQhEfpCUhYc+smKZdFyMliluyC7+f/H85+Rig+J9yd3DP3JBvYS9SDDoTS2RTfjPxGlOOYZg6TvH/t3fnwXHVV77Av7+79O1Vq81mSzYWMQaDjdlkGzCGQDYSCFnqJWYYz0yRkJkwNTNMJZAiAwEDlZqpUAl4CsK8R3lmgPBegBCSMC9mDAmBYL9h4ngBbLCxkW2MsVqLW73e5ff+uH2vulvdklqW1N3W91PlknR70dW1pD46v/M7BwUfj33OwbDGpSYiohOUpik4rbMFp3Y049hABjv++wPsf7cPi5edOnmfY9KeiXxmbrhOZiiRhaIM72SSqoB03O3JiiIAISDgBg5urCD8xxZmTLxlpcJMSuHao/Tqa0rfOoB03PqbwoBJumtSowYaIwOh0juXf7AQwxkhRQgIPwMk8tkg905K/n7NrUFYtgPbcrNZuawFx3b8ZxcFTyyKDpReg9JrVvlrK/46x3c/IiKaOPf3fQhz5rWgZ28fhhJZRGPGpDw3g5kpoAc0t/BXApbpABiunVE1xX2hnswXUC9hUvBiL1CQVckHQF5AIYSAUAo+BtyP808kHcB2HDcIsgsLkWWFTE8xP+M0znqgY4MZAMBjP3wNAUNFKByAqiluobShIWCoMAwt/76GQFCD4d0W1BAIqJWLygoCP+8eoigiEhUCIFEUUPpvi7JTxfcvOgXvc8jS+w2fT1EwKPLB2MgnhhjxTunzuKRE2VqpiS4jMsgjoqlwWkczevb24eC+fixacsqkPOe0BjMbN27EE088gZ07d2JoaAi7d+8uun3btm24++678e6776KjowO33XYbLr/8cv/2ZDKJdevWYePGjdB1Hddffz2+9a1vQVXHLg6aTksvmoM3Xnt/xIuBogKGocK2BbKZ8VWIj0vhkk7hweOgKKJop5WqKlDU4Y8Vxa25cRy3b4NjO7Dt/PtVBD6FLMuBZTlIJasvCA4YKgIBDYFg/m0+CCp8a+QDH93Q8sGRCrWwmHoaVfcpi+882mM1ReDYQIXupqLgTUFwN/ycouiOIwOw/G2lAV5JRrHsY0qeb7hxoii5b+ljXUVZOi9LWfL5jjdLV/T5GMgRTQnbcvD29g8BuCMTJsu0BjPpdBrLly/HypUr8cADDxTd1t/fj6997Wu49tpr8Y//+I/YtGkTbrnlFvziF7/A/PnzAQD33HMPdu7ciQ0bNiCZTOJb3/oWotEobrnllun8MsZ04aXzAQB//H8HYebcoCUaC+DyTy0E4PY8OPrhMZi52m+9q8RxxpdZcZfLhgMdTVeg+h97AU9+W3m+j46328q23GLlCy/pREt7GNmMhVzOhq4q6O9PI5e18v9s5DIWcrn8+1lrxIuNe9wGEtV9nYoiCoKekQFQUTBUcrsykUruvOpeLIvvPPrSYPnszFjPWW/GF+xVDoRGe0hpMCcEoCkqho5lUSnwKn6wt5TqHR0ZyFUK4obLzMYXxBVl7AqDuBGfz/1AlskEVhurM5CrvXrZmj0RbvlE+dtyWQu/fu4tHOtPY/WnF+KMRSeN+XyF3ZtHI2QNhgJt2bIFf/qnf1qUmfm3f/s3bNiwAZs2bfJ/MG+44QYsWbIEt912GwYHB7FixQo89thjWL58OQDg6aefxgMPPIBXX321qheWeHxoWrYuz54dw9GjlV9dH39484zoAOxnc/I7qFQv0FEF5p3Rhosvm5/P7rhBT3NzCH19KVQqeJbS29VVsJur6G2Z93MWchkbpjl5GTFNV0bNBhmFwVBQ8+/rDb2bCm1tEfT1JafkuU9k9XTdxv7WmFgQ596/OCAabcl1xO1lll1bWyIYGEiNa+l10rJxRe8UB3Ij6wzH/4fAZJs9Ozbhx27+3d6G3ZpdaSt1KpnDfzy9E71HhnDVtWeha9Hsqp97tGtaNzUz27dvR3d3d9Ev+RUrVuD3v/89AODNN9+EEAIXXXRR0e3xeBwHDx5EZ2fntJ/z8RpvxNno3MyMBKySvzQE0HskCT2gwesPKQTQ2haBZTtuEbMEpL+UNdw4UFHcmpqIrK54zHEkzJyFbKYg2MmVD4ay+WyQmbWRzVojmhVapgPLzCFV5WugEIAeGCvzUz5LVDqNnU48Y7/gFiwmV/3iPLmv5qGgiVRq8iYoT1UgJwCEwgY0nT8/tTDYn8Yv//d2pIZy+OT1Z2P+x2ZN+ueom2Cmr68PZ511VtGx1tZWxONu/5F4PI7m5uai+pi2tjb/tkYMZmpRq1FXJNDfWxwJSAl395MiICDyjZCUomBHSvg1OY7j7eRyYFvDwY6ssJVdUQSMoA4jWH17bctyymR+SgKgMrebueJlMSkLlsVQXWZOUQUMQ4PuZX4KM0NBDS2tIViWUxQAGUEVekCr2QA4ovGa2kCOauHIB8fwwk93AgA+99WlOGVO05R8nroJZsZa7Sp3+0SDgfb26IQeNxGjpcUadU10Mpk5G4O9aZxxVvHa6fGkaL0uyLaX3bElbGe4SFl6hdLT9MtQSpnP9JjIZCxkMyayGQuZdOH7pt8IMZMZft+rufI4tkQ6ZSKdmliRtGFoMEI6jKCGYFDLB3Yagvlj7vH8+yEdwaAGfbTdYieQtrbJK0acSRrlukVjxoT+iKmFSMSArtXNy3NVwuEAWtrCAIBDPf14/ifbEGsKYs3XLkb77Kl77a2bq9Xe3o6+vr6iY/39/WhvdxupzZo1C4ODg7Bt28/OeFkb7z7jVS81M+GogcH+9Iz+CyMQVPGbje+geVbIPzbWdTsefmZHujuuSjM7UrpLWkClhoPHRwso0AIGIk3jWx5zHKdMFmg4G5QtyQzZloN0Kodc1h7xPe5lgxLHqssGCYHyRdH5bJB/PKDmd4wNZ47G27K81uqpZqaRNNJ1y5n2tC4zHc8fZMlktmFrZlKpHEzbRjpl4ukN/41QSMe1a5bCgTzu3+sNUTOzZMkSbNiwoejY5s2bsXTpUgDA2WefDSkl3njjDXR3d/u3t7e3Y+7cxhjn3rM3XjS9NRLVZ3Qgo2oC4UgAicEKW4mnwPBuDwGhCij+qqWaP17cjdmxh4MdfxdWPqM2FcFOKUVREAwp45466724uOMvHOQydtEuMG/HmL87zL/dfT+bHZkNkhJ+pqjaZTFVVcrW/pQ7ZhS8rwdULosRNSjHkfjP599GOpnD9TcuQzgSmPLPOa3BzMDAAA4fPoyenh4AwNtvvw0A6Orqwuc+9zmsX78e9913H77yla9g06ZN2LZtG+69914AQEtLCz772c/i3nvvxX333YdUKoUf/vCHWLNmzXFtkZ0uPXvjeOXFPVBVASOoYaAviQ96ZvaARduSiB9NQddV9OyN18U4g6JgJz/c0zUy2HEcb+TE8LLWdAc7lQghoGkqtKiKMKr7RSKlhJmzS3aKFWeG3CWwkbdbJUXetu0gnXImtCw2XCStlmSD3LdGsHy2SNNr0zuIaLI0+tbs1196Dwf39+PSq87A7JMmnqGqxrQGMy+99BK+853v+B9//vOfBwBs2rQJc+fOxaOPPop77rkHP/nJT9DR0YH169f7PWYA4K677sI999yDtWvX+k3z/vIv/3I6v4QJ27rlIFRV+DuY6rnHzPSS0AMKXnlxD1YBdRHQjKYw2FHVghdM3TteHOxIBwDqL9gZjRDCDxCqZdtOhQCoeIu8lw3KZoaPldbFmfnhqckqM9Pu+RdvkddLt8qX7iQLaLBtB6pa/38Y0YmvkadmHz44iHd2foRTO5qgagKmaY9r6vXxqkmfmVqrRc3M4w9vhhHUIIRANmPi2MCJ319mPJpbgwgYGkzTRjhi4Lo1S6e0ZqbWSmt2CgOf4e3ndsFSV3XP30g1DIWklAW7xcpng0bWCblvS5fFjoeqKTCM4i7RI2qEAvm+QYXB0gwpki7VSN9v0ViwYWpmGrXPTH88hR1vHEJLWxjnXHAaFEVU7DszEQ1RM3OiizWHkEpm4dgOhhKT15ehkRX+7tc0ZVprZ2qltGanlHdNvE6+w1vQpb/13HYcf3nrRPlTRAg3a6nrKiJVbnhwewd5GZ7hLfKmVydUGAwV1gvlC6YL2ZaDlOUAxzNSY9QaIW1EsFSrkRpEk6n3yBB27TiCUCSAs887Zdpr3hjMTJNl3XPxyot7kDyWhcMVJgDuC3biWBaxJre3TKw5NPaDTnCFwYmiCKDwF4JREuzkB5YWZna8GVonWrAzGrd3kFtDgypbWNiWg1zOQigYwNGPEsMF0tnhZomVMkTTNVKj8jLZ8Y3UIJoMju1g7+5efNAziFiTgbOXnQqtBg1hGcxMk86udiw6nMB/vfp+rU+lvkiJoUQO4WgAy7obY1daLRUFO2XqO1rawrDyy1Tlgh235449o4Kd0aiagpAWcHulVBEXFI7UGM4Ejdwq72WDshn39lx25EgNx5HIpN2+Q9UqN1LDa5JYOFKjNBiaqctiNLlSQzm8te0wkokc5s5vwekLZ9VsFyKDmWl0qGcQqqaMSG3PZFICQkqsuvqMui/+bRRegFIu2Bl1GWsSanZmCiEE9IAbFESqLI0oGqnhLY2VG6mR3yrvjdTIZS2/B5JnskdqDBdMF2+V50gNKmRZDg7s68fBff1QVQXnXHAa2idxAvZEMJiZRonBNCJRncW/BRRVwcmnNTGQmSajLmNhnMGOdPzjpc9JY5vqkRpenZCZ3z2WzUz+SA0vGxSJBKAoSkHmJx/0eIXSJcEQeweNT71szS6dgO3YDnbt+BB/2HwAmbSJBQtnofvy0xGJVm4COl0zCBnMTJGevXH8x9M7ET86hFhzCMu65/pFwOFoAKkhFgEL4f5wcHmpfow32PE6J0tHAsgHOl6RckGww0BncmmaAk0LVN2ETEoJ07TdbfFjDVgtOWaZxS+qji2RSZvIpE0c689Ud/66Mkbmp/wA1pnWO6hetmZ7O5GklHhvdy+2/HYfBvvTOK2jGSuuXICTTp2aOUsTwWBmCngN8rz27qlkFq+8uAeLzjkZu3YeQcBQoWkGhhK5EZOYZxJVVdDUEmRWpoEM78bKz0bLBzuqNnzcu1+lzA5rdqafEPlsSkADUO2k+cojNVRFwcBAumK2qLQFhrcshir/mCs7UmNEU8X8MlmweABro4zUqFeHDwzi9Zf34sgHCbTOCuMzXzoHnV1tdRdcMpiZAl6DvEBAg2XZ+TSbjUM9g1h19Rn+SANNU5Gzax99T7dQxB1kaNsSK65YUOvToUl0/MtYJ+bW80Y22kiN0frMFI7U8AqkvWLo8k0UizNExc91PCM13CaQXWedhMuuPqOqx85kqaEcXnz+Lby/tw+RaACrP70QZ547/Vuux4vBzBRIDKbdbaIFvD4qnV3tfibifz7wu1qcXs1JKRGOGFjWPZdZmRmmqmCndDfWCdxn50RUNFIjevwjNcpvlR/PSA130vyetz7CpVd11V1God7kshb274nj8MFj0HUVF6+ajyUXzZ222peJYjAzBbzaGL3gDxnLckb0UbHMmfmb2Mw6mNPZzECGRhh163lpnx1mdk5YkzFSw5sd5gVAHfPrb2mknkhH4uD7A9i/Jw7pSMzpaMbqTy9CU2uw1qc2LgxmpoDXIC+XsyCEG8jYtsSy7rlFk7Nn4CQJCAWQ0sF//74H7+3uRS5n+QXSDG5oLBPO7DTQbCw6PqqqIBRWEAoXL4tFY43xolwLxwYyeOfNI0gmcmibHUbXotkIRwIjrmE9YzAzBTq72rEKwJtbDxftZgJQNDk7MTjztmgLIfxdMAP9abS2h/wC6UYYNEn1rWJmZ5RBoFJKBIM6DENzl7FsL8hhsEO1MV1bs82cjTd+vx9vb/8Q4UgAH//sIsw/o93PYNX70lIhBjNTpLOrHRcsn4+jRxN+NubIoUEIIRCO6hAN9E0ymbzhioD7IuLN5AFsbN1ykMEMTakRU8/zP4aRmIFUJjdiEKi3Bd1xHL9mx3EY7NDUmo6t2fGPknhvdy/SqRyWXDgHF102f0LLevWicc+8QXjbtFVVwJESCuAPmtQD6qRO/G0ERY27HIlc1vK7is6EQZNU30oHgSr+3xxq/ni5YMcp6J7MYIfqm2Xa2LurFx8eOuZutf7yOZh9ysQnfNcLBjNTzNumresqNE2FYzsQANIpC6GwBtuyZ+zgSSEEB01SQykf7CjeKtZwsOMVJksvyBnZULDw+YimQ388hd07jiCbsdC5oBUfv+YsBCONUxczGgYzU6xwm3Y4oiNxLAtICdtyoKgKAkEduq7MyPoZKSUEwEGTdMLwgx1FQEC4sytLGgoWdk9mQ0GaDrbl4L133MnWobCOZcs70NQSPKEaCjKYmWLD27TdLpWxpvwyU77XyiVXduGjGThNezhdD6iCgybpxFepe7KH285pKgz2p7FrxxFkUibmzGvB6QvboZYZQtvoGMxMEW82U1/vEMysg2BYQyisQygC4Wig6MX7xed31fhsa0NVBYQQOImDJomOc9t5vkiZ284pz7Ed7Hs3joP7BxAMaVh68Ry0tIVrfVpThsHMFCiczRSNGUgpOWTSFhxbonVWpKinSs/eOHLZmTfSoHB7LJeXiMY2nm3ngJvVcRzpZ3DYY6fxTHRrtjfluq83iZdf2I3+eAqLzj0FF6+an5/LVayRtl6PhcHMFCidzRSJGggYNsIRA9etWerfr2dvHJt+tbuGZ1pbQlHQ2hpiVoZoEozYdu4Zo8eOt+3c25XFnVi1N9Gt2WcsOgnv7DyC37+0FwFDw2e+fA7mzZDfrwxmpkCl2Ux9vUP4+ZPbkBhMI9YcQjZtwpphW7MB95dqOBqAoipYvvr0Wp8O0YxQqcfO6NvO2WOnUZg5Gy8+/zZ63utD54I2XHHNmQhHqpuJ1cgYzEyBcrOZUskczKyDVDILI6ghlcxisG/m9VXxih+bW8McYUBURybSYycUDiCUzvk1Owx2aiMxmMGbWw/DNG2s/HgXllw4Z8bNoWIwMwXKzWbKZmwEw5q/RqnrKlRVGTHh9YQlAEUItM0OI5uxipbbiKj+lQt2wpEAkik9f3xkjx1ZtO3cKegAzmBnsnx0OIHdO45AD6i49n8sxamdzbU+pZpgMDMFys1myqatEUO7QhF9RvSXUVQBAbdosdz0cCJqfGV77ABFDQUdx72jlIAjnYoNBRnojE1Kif17+tCztw9NLUEsXnYqZp0crfVp1QyDmSlSOJsJAH7+5Da/34xH1RSomgL7RM7OCLi/vISAHlD86eFENLNImd9xJfJ/3EAd0VCwco8dNhQsJB2JXTuO4KPDCZwypwkfWzwbinLi9Y6pBoOZaeItPQE2NM3NUNi2xPnLO7DjDx8glzEhhIBtuz+lQgGCQQ3pVGNv21aEgKIKaLqClrYI62SIaISqeuzMgIaC5bZme9uuHdvBy/+xGx8dTuCClfNw3sVzG3LK9WRjMDNNvKWnrVsO+ruZvBf2k06N4fWX38Ngf9r9hgUQDGsIRwINHcwoikBTaxC2zQ6/RDRxE24o6C1hNdgAvHJbsz921slQVIH//MVu7N8Tx8orF2DpxR01OsP6w2BmGnV2tZd9QS893rM37gc9mq7AMhvrB9EjpcSx/gwUReD1l99jMENEU6JiQ0EAMIqDnUYlpcTLL7yD/XviuOzqM3DOBXNqfUp1hcFMHSoMbnr2xvHyC7uRzdpwHAeKokA6EsGwBjPnwKzjPjVSAori/hD2x1Po2RtnQENE066RgxjP29s/xLtvfYSLL5vPQKYMBjPTqDDjUrjMNNZ9gyEdoXAAuZwFXVdhmjaGjmVR720EvJ4yUkooqoKtWw4ymCEiqlJiMIM//r+D6FzQhvNXdtb6dOoSg5lp4s1rUlXhN8175cU9WAUUZWG2bjmI/t4kcjkbRlBFOBJwi4UtB4vOPQW7dh6BqimINRvu9G1Mz58cmq5AUYBcdvxLXlLC76OjqEB/b3KqTo+I6IQkpcSu7UcQCgfw8c8tmnHN8MZrZu/lmkbevCZdVyGEyDfNE9i65SCA4WAnlczCNG1Ix0EmbSGXtfz7bvuvQ/5zGEF9yr+phXB3VTW1GJAyH8hM4FMqqttNK5ez0bM3PvknSkR0goofTSKVzOHiS+cjGNLHfsAMxczMNKk0rykx6I40KAx2HEe6tTFSIp2yYAR1aJqCXM6Cc8xtGS6EmPL+NIqqIBoLIGBoOOY195tAIkhK93yNoMqlJiKiMRRuzd694wiiMQMLF59c47OqbwxmpsnwvKbhPgCF3XALgx1VVeDkv5G9gCWVzAH5bYeKUjwGQQj3MV7Q4HbateHYE1+CEgJobQ/52R+BiS9oSQcIht0lMy94IyKi8ryt2clEFh8eOoaVV3ZB0bi8NBouM02TZd1zYdvSXUKS7tvCbrix5pAfoIQjOiTcjIaqCpimjWzGraFBvqC2HMeRsCwHUrrNo0ZbhVLU0X8wVG1y5kZpmgJVFbAsyVEGRERV6I+7f/wtOHNWjc+k/jGYmSadXe1YdfUZCEcMZDMWwhGjqJHcsu65yGUs9PWmcGwwk3+UgKorCEcMBAIqYs1BGIa7DFXIm3nkxTjBkI5geIyk2xhpFseWGOxLo683haFEdsJbG71z9Toec5QBEdH4DPSlEGsyEGsO1vpU6h6XmaZRpaZ5Hsuy3XVSCUghEQgo+Pg1i9DZ1Y6fP7kNvUeOld1N5JS0vU4MZhGO6O5UbtuBqghIoGjZyRkjOvGCENt2kE66hb9CuEtG1ZBSQgLQdY1dgImIxslrOjr/Y/ydOR7MzNSJzb/ZB9N0Aw9NU6AqAqbpYPNv9gEA5nQ2V9wWXS4uSSVNd5lIwh/UVvwgt6HdmLuT8g/TNAWxJqOq3UzuUDkg2hTE1dcuYiBDRDROpmnDNG20z47U+lQaAoOZOjHQl3ILfPN1L44jAZk/DuBQz6AbSOSDCSHywchxEEJAEQJNLQb0wOgDymzbmdBWcGZkiIiqlxoyAQAtbeEan0ljYDBTJ9zBaMNZltKPE4P5IZQVVofGKugtx7YlIAAjqKOlbfTCXOkAiWPZ0vluRYQCqKqAqgooCqAoCjMyRERVmnf6LMRibp3MrJOiNT6bxsBgpk6IClGCdzwQ0IoKf6UEHMfL0LhN6UTJ/6aqKQhHA2Wes2DwmiORSZswzdFnPAUMBY4tISWgB1SEIzr0gOp/zlizgViTAUVVIKW7VVw3FAYyRERVen9fLwb6UtB0BdEWo9an0xAYzNSJQIVlHu+4lBJKviNvoUg0gAtWdkLkC2D0/NgBoQBGUEMmZZZ5VgFNV2EENUjpFgx7Kc1KpBRQVLeHTUtbCJGYgZa2EJpbQwgYGlRNgRHU3cJjzS08dmyw4y8R0QQM9KfR0hbm+IJx4m6mOtE6KwKlP4Vc1t3RpKoKAoaK5lZ3vdQ0bURiBjJpC7blQNUUBEPuf99Jp8bQ0hrCQF8KjiMRjgTg5DMupdu4ATeTE47o7rKRAgAC4aiOXNaqeH6Ona/jgdsjR8v3obFtiXldrXhvdxy2M9zfRigCmi7wyot7sOhwAod6Bsc1YJOIiIDB/jROPi1W69NoGMzM1Ill3XMhHQnHkZAy/9Ypbqpnl2zBtm0Huq7i5Rd2Y6A/7W63FgKOI7F42WkVOwDbloNU0nTriYWAqinQdRWapkAoGFEM7E2/VvKdhlVFQX9vComBDKQjcWD/AIyQ6m90khIwDBWRqAHbsvGH1w8glcxu5bGUAAAX+klEQVQWDdhkxoaIqAIJJIeyiDaxv8x4MZipI470NiwJiPzHnjmdzUinTJg5G44jYeZspIZMDCWySKdNQEqoigJIiXTaxHu7e6GqYsSylMerkZEAQvkGe6GIDkggEgsUdQ8WivD7xaiqQM60EWsJonVWGOmUiVzGzAdCoqjjbzZjIp00YdsOkokczJw9YsAmEREVsywHji0RiY2seaTyuMw0hfa8/RF+s/GdcS2vbN1yEMGQBr1puNjLNG1/MOOhnkEEAiqymeFCXSGAXNb2l3XcYwJCSgz0pdDcGkJfb6r8yUn3vpGoDiPoTmJVNQWt7WEEwwE365J/PiklFFVB0FBh5hx/ICYwPEQynbKKZkqZOXe5zNuN5dgOEseyiDW5mR/OaCIiKs9b8o9EWfw7XszMTJGevXG88OzOcS+vJAbT0LTi/47CqdqJwTQc253VpGlKPgPi3r+0aZ5XMLbiigVlP5eaH1gm8w31CmdFrbhiAa5bsxSf+sJiRGIGYs0G2maFEYkFoKgKFBVF5+kNuPQyRrbt/is8MUXJB1kYbubHGU1EROW15GslmZkZPwYzU2TrloNQNTeDIYQYc3mlcNCkp/BFP9YcglVSA1M4cNKts3H8olxvnah9dgSqpuR3IrnHbGt4VEFqKIdkIufPigKAnz+5Da9sfBcBXYUiRNEsqbZZ0aLzDEd0OI5/EiOGW4YjetFwTHdkA2c0ERFVcqinHwAzM9VgMDNFEoNpfynGU5hpKTWnsxmJwSx6P0piIJ5Ccihb9KK/rHsuFGU4KPBqWIyg6s5MAoaDCuEef+XFPVhw5iyEowE0tQTLNtyTEtB0BdetWQoAeOXFPX42yXYcZNImdN1dFtq65SDmdDYjk7bQ35tC/KMkkomc2+tGdec/abqK5tagG0ApCiIxA9F8VseR7AhMRDSWbM4tJyjXJ4zKYzAzRWLNoRGN6Cotr/TsjWPXziMIhjS3eNZ2kE3bWHTOyf6LfmdXO85f3gEhFNiOA6EIhMI6AkEdF14yD5qmQigCekBFU7OBSNSAqgoc6hn0p3WX26YNuH1mgHw2SR3OJknHLSY+NpDxl8p2/OEDOLYDd5O29OOjaCyA9tkRtLS5fWciUR227cA0bffjWADRJoMdgYmIxmDlbBhBzS8loLGxAHiKLOuei9c2vQdbOEU9Wcotr3hBRDAYQDjiRuKmaeNQzyBO2hvH1i0H/SLi81d0lO3ZsmvHh2hqMfx6GW8n0WCfmwma09mMD3oGRj3nxGAaRnD4W8Lbvu040l8qGxrMQgJomzU8L6S/N4XkkOkXEgOAoipomxWBEdLZX4aIqApmzkYozKxMNRjMTJHOrnY0N4fHtZupNIgA3CWpvt4hvPLiHqiq8DMju3YeKbtME2sOIZXMQtdVZDMmhhI5d7u2piCVzOIPrx+oeK5qvqC38DmA4eGSSsFfB94OpfjRJFRVQTiiIxTRMXQsO6KZ3iVXns7ghYioSmbOdusNadwYzEyhM846Cc2zxt61UxpEAF6fARRtg3bfDm/XLrSsey5eeXEPABvppNt3BkIgEg1A11U40oGiiLJLTecv7xjxHJqm5JeaHL8PTS5r+TunFCH87dahsD68pZtZGCKi45IzbX/QJI0Pg5k64AURZi6HbMaCbTtQhAJVE6Nu1y7U2dWOVXCXrAb70lA1BZFoAAHD/S9WVQW2LREwVOSyw7U8wbCGCy+dP+I5EoNptLSGkEzm8sMjpZvtgTv3yd9JJSUyKQurP7WQwQsR0SRwLIkIi3+rwuqiOtDZ1Y5F55zszl2yJTRVgRFSYdsS6ZJBkaP1aOnsasd1a5bi1I4WRJsMP5AB3KGTAoBl2lBV4Q+jVISo2PvGCOk49/zTEI4YyGYsQEpOxyYimmKmaSPIZaaqMDNTJw71DCLWbEDXVeSyFlJJE7bljgEAgFBYH7WIuNCczmb84fUDcKQ7sNIIalBUBeFoAKlkzm9qp+ZHEHjLVj1746PW6Pz8yW3+cphX7GuaNsIR9kIgIppMCncyVYVXq054HYBzWQuJY1k4tjs2AADSSRN9R93Bjro2+n+Zt83bCKnQ8ktLmbSFReecDNtyIOVwF2FIiVQyh/7eJICRW7NLG/0t654L23a7BRd2DWYDPCKiyaWIse9Dw5iZqRNeEXDhNGspJVTN7fciFAWt7W6X4Fde3INVQNmlneFt3gYQdY9527xtW/rPDQzPcfIyNZV2VXk1OqU1NSz0JSKaGqVjamh0DGbqQM/eODKpHAb70u4mJMVNmUnAHwjpDXQcbUcTMHpAoqgArPwEbCn9jsFmzkLP3njFXVWx5hB6SvrdrPrExxjEEBFNAXeIsFXr02goXGaqMa9OxZES0SYDEIB0AAi3qy4k8ktDw/9Vo41FGG3GU9usKDRNwHaGAxnA/Qvg//7srXzX3pHLSHM6m4vGHIw1NJOIiCZOD2jIZBjMVIPBTI0V1qkEQzqaW4IQCiAgEDC0fG8Ytwtv/KMkBvrSSCVzFXc0jVbXMqezGabplJ/R5Dh4b3cci8452d+95A2XPNQzOGotDRERTR7DUJFNM5ipBpeZaqx0WShgaIg1GUgm3J4zwZCG5FAO0nG78dqWDcuysfi85rLPN1pdy9YtBxGOBPwdUh4hAEVxZz4d6hn0h04CbuboyKF8vU2+IE3TVQRDWsXsEBERTZyUEplUbuw7ko/BTI2Vq1NRVAUnz2nGdWuW4udPboMEkMvasG0HqqYiYKg41DOICys8Z2dXe8V6mlBYRy5rw8wNN86TEv7SlLezCQDeeHU//vD6Ab9A2CtIM3M2LNNGa/vwfCYiIpocqq4inWQwUw0GMzVWOkKgtJeMF4B4AygBN2ofKytSWrC7rHsuYs0hDPanKk7PBoBM2sT/+V9vIJXMIZ02yy5JueeAEVPBiYjo+GmqUtSpncbGYKbGxtruPNoOo3J69sbx+svvoT+egqIqiER1v2D3lNNiOHwwh9HaF0gJxHuTFYOYQqXLVUREdPyEAji2M/Ydycdgpg5UWhYCRs/ceNmXvt4hODYAuD1jpOMOlYSUODaYhaoqcByJPYNZqJoC2xrjh2Sc/Q1Gy/AQEdHECFF+KDBVxmCmzlXK3ADAKy/ugW3Zbjoy3zdGCG9gdr5gVwK25XYTth0Jy5RQFDE8KPI4CHaoJCKadJPx+3mmYTDTAMplbn7+5DaoqkAm5bhdfRUFTkHzmNF+FibrB4UFwEREky+XsxGJceZdNdhnpkF5s5wsy+0j4+1G8joIe+97CsMXKQHlOP7nhQD0gIIVVyyY+JMQEVFZ0paINQVrfRoNhcFMg4o1h5BOmW634BKlx4QCxJoM6AG3iNhdHhL5qdmAqroN+jS9/LdDwFD8JSWhuFvHCwuSiYho8gwN5RCOBsa+I/kYzDSoZd1zkUmN3iFSUQWEAATcYl094AYv4WgAbbPDiDUbiDYF8akvLMbV1y4qGxgBQC7nAAJobg1i1klRtM0KIxDU2AGYiGgKSCc/3obGjcFMAxut9qWpxUA0FoCiKnAcIDGYRTCo48KV8xAM6ujvTSExkIGuud8CnV3t0A0Fuq5AUQRUTUBRRX5XlJvZCRjDJVajzYciIqLjE2XNTFUasgD4xz/+Mf793/8diUQCl1xyCdatW4f29hN/gnPhVmwz62ZLCikK/AGSQ/keMALuMpIjJcx8XU3OtBFrCfpbvV95cQ9WAWibFR3R08Y0baSGTChqcdw7Wq8bIiI6PszMVKfhMjPPPPMMHnnkEdx111146qmnkEgkcOutt9b6tKacN107lczCNh1IOXJgpBfICAE4tnR3OeWLXTTNHQ657b8OVRwaWWlI5dKL5lQcXklERJMvGmMBcDUaLjPz+OOP48///M9x9dVXAwDuv/9+XHXVVXjnnXewcOHCGp/d1Cmcru0OffQqclEU1ISjAaRTOf+YlBISQDiiQ9MUmDkLmlYc8XtLRqN1Iz7p1FjFLsVERDR5VFVBwOAmi2o0VDCTy+Wwa9cufOc73/GPdXR0YM6cOdi2bdsJHcwUTtdWNQWO7U7RFkJC5Lv9+j8AUkcu5w6m1DQV4YiOgKHBNG3oAQ2W5VQcj1CpG/FoXYqJiGjyRJsMBAIN9fJccw11tfr7++E4zoj6mLa2NvT19Y37edrbo5N9ahXNnh2blOdpnx1F4lgGuq4iGjNwbCANR0pomoJQSEcqaUI3VLS0hrFydRcA4IVnd0LV3GyOadqAFFi5egH++F8H3d1NBcdXf2LhpJ3rZKinc2k0vHYTw+s2Mbxuk6+1PYzZJ/O6VqOhgpnJEo8PTcvci9mzYzh6NDEpz7V42anu+ALbgaYpMEIashkbmqYi2hzCZZ/42IjMySUfX1B2aSjSFBhxvHlWaNLO9XhN5nWbaXjtJobXbWJ43So7niBPN1Re1zJGu6YNFcy0trZCURTE43F0dXX5x/v6+tDW1lbDM5t6pfUsLW2RMetWuGRERNR4IhE2zKtWQwUzgUAAixYtwpYtW3DxxRcDAA4cOIBDhw5h6dKlNT67qccghIjoxGeEGuqluS403BW74YYbcP/99+Oss87C3Llzcf/996O7u/uELv4lIqKZwzD0Wp9Cw2m4YOZLX/oS4vE4vve97yGRSGDlypVYt25drU+LiIhoUuiBhmsBV3MNF8wAwM0334ybb7651qdBREQ06Uo7rtPYeMWIiIjqiFDE2HeiIgxmiIiI6ogiGMxUi8EMERFRHVGYmakagxkiIqI6wmCmegxmiIiI6ogR5tbsajGYISIiqiOhEIOZajGYISIioobGYIaIiIgaGoMZIiIiamgMZoiIiKihMZghIiKihsZghoiIiBoagxkiIiJqaAxmiIiIqKExmCEiIqKGxmCGiIiIGhqDGSIiImpoDGaIiIiooTGYISIioobGYIaIiIgaGoMZIiIiamgMZoiIiKihabU+gVpQFHFCfq4TCa/bxPHaTQyv28TwulE9EFJKWeuTICIiIpooLjMRERFRQ2MwQ0RERA2NwQwRERE1NAYzRERE1NAYzBAREVFDYzBDREREDY3BDBERETU0BjNERETU0BjMEBERUUNjMENEREQNjcHMFPnxj3+MSy+9FEuXLsVf/dVfIR6P1/qUamrjxo1Yu3YtLrjgApx55pkjbt+2bRu+8IUv4Nxzz8VnPvMZ/Pa3vy26PZlM4vbbb8f555+P7u5ufP/734dt29N1+jXz8MMP47rrrsN5552HVatW4d5770UymSy6D69deQ8++CA++clPYsmSJVi5ciX+/u//HkePHvVv53Ub2ze/+U2ceeaZ2LJli3+M143qEYOZKfDMM8/gkUcewV133YWnnnoKiUQCt956a61Pq6bS6TSWL1+Or3/96yNu6+/vx9e+9jWcf/75+NnPfobrrrsOt9xyC/bv3+/f55577sGOHTuwYcMG/PCHP8Qvf/lLPPzww9P4FdTG1q1bcdNNN+HZZ5/FD37wA7z66qu49957/dt57SpbsGAB7r77brzwwgt45JFHcPjwYdx+++0AeN3G47nnnkM6nS46xutGdUvSpPv85z8vf/SjH/kf9/T0yIULF8rdu3fX8Kzqw+bNm+XChQuLjv3rv/6rvOKKK6TjOP6xNWvWyO9///tSSikHBgbkWWedJV9//XX/9p/+9KdyxYoV0rbt6TnxOvHCCy/Iiy66yP+Y1278Nm3aJM877zwpJa/bWD788EO5evVqeejQIblw4UK5efNmKSWvG9UvZmYmWS6Xw65du7B8+XL/WEdHB+bMmYNt27bV8Mzq1/bt29Hd3Q0hhH9sxYoV/vV68803IYTARRddVHR7PB7HwYMHp/18a6m/vx+xWMz/mNdufBKJBH75y1/i/PPPB8DrNpY77rgDN998M0477bSi47xuVK8YzEyy/v5+OI6D9vb2ouNtbW3o6+ur0VnVt76+PrS1tRUda21t9euM4vE4mpuboaqqf7t3/5lUi5RIJPDYY4/hi1/8on+M1250zz//PJYtW4YLL7wQBw8exA9+8AMAvG6jeeqpp2BZFr7yla+MuI3XjeoVgxmqOSll1bcX/mU4E+RyOfz1X/81Ojo6iuqOeO1Gd+WVV+JnP/sZNmzYAE3TcOeddwLgdavkgw8+wPr164vqsgrxulG90mp9Aiea1tZWKIqCeDyOrq4u/3i5v2jI1d7ePiJr1d/f72e3Zs2ahcHBQdi27f/F5/2VV5oBOxFZloW/+7u/QzKZ9F+UPbx2o4tGo4hGo5g/fz4WLFiAVatWYc+ePbxuFbz11lvo7e3FJz7xiaLjf/Znf4brr7+e143qFjMzkywQCGDRokVFWxkPHDiAQ4cOYenSpTU8s/q1ZMmSousFAJs3b/av19lnnw0pJd54442i29vb2zF37txpPdfp5jgObrvtNvT09OBf/uVfEIlEim7ntRs/L2ugKAqvWwXLly/H888/j+eee87/BwD33nsv/uZv/obXjeqW+r3vfe97tT6JE42maXjooYfQ1dWFXC6Hu+++G3PnzsVNN91U61OrmYGBAezbtw/vvvsuXnrpJVx11VXo7e1Fc3MzTj/9dDz22GP46KOPMGfOHDz99NN4/vnncd9996GlpQXBYBDvv/8+nn32WZxzzjnYt28f1q1bh69+9avo7u6u9Zc2pb773e/itddew0MPPYRgMIhUKoVUKoVgMAhFUdDZ2clrV4ZpmnjwwQcRiURgWRbeeecdrFu3Di0tLfj617+OefPm8bqVEQgE0N7eXvRv/fr1WLt2Lc4880x+v1H9qskeqhngkUcekZdccolcsmSJ/MY3viGPHj1a61OqqWeeeUYuXLhwxL8DBw5IKaXcunWrvP766+XixYvlpz71Kfmb3/ym6PFDQ0Py29/+tjzvvPPkRRddJO+//35pWVYtvpRpVe6aFV43KXntyjFNU37zm9+Ul1xyiVy8eLFcvXq1vOOOO+SRI0f8+/C6jU/h1mwped2oPgkpx6joIiIiIqpjrJkhIiKihsZghoiIiBoagxkiIiJqaAxmiIiIqKExmCEiIqKGxmCGiIiIGhqDGSIiImpoDGaIiIiooTGYISIioobGYIZoBnrttddw44034uKLL8YFF1yAP/mTP8H27dv92w8cOIC/+Iu/wLnnnovVq1fjiSeewI033og77rjDv49lWXjooYdw5ZVX4txzz8U111yDp556qhZfDhHNcFqtT4CIpl8qlcKaNWuwaNEiWJaFDRs24KabbsKvf/1rtLS04JZbbkEgEMATTzwBXdfxwAMP4K233kJnZ6f/HN/97nfx5ptv4p577sG8efOwY8cO3HnnnVBVFV/+8pdr+NUR0UzDYIZoBrr66quLPl63bh02btyI3/3ud2hvb8euXbuwceNGzJs3DwDwT//0T7j88sv9+x84cADPPfccfvWrX6GrqwsA0NHRgffeew+PP/44gxkimlYMZohmoAMHDuDBBx/EH//4R8TjcUgpkU6n8cEHH6C/vx+tra1+IAMALS0tOP300/2Pd+7cCSklvvSlLxU9r2VZUFV12r4OIiKAwQzRjPSNb3wDra2tuPPOO3HqqadC13WsWbMGpmkiFApBCDHq46WUAICf/OQnCIVCRbeN9VgiosnGYIZohunv78eePXvw6KOP4rLLLgMAfPjhh4jH4wCAM844A319fXj//ff97Mzg4CD279+PxYsXA4D/9vDhw7jiiitq8FUQEQ3jbiaiGaa5uRltbW346U9/in379mHr1q249dZbEQwGAQArV67EokWLcNttt2H79u3YtWsXvv3tb0NVVT/rMm/ePHzxi1/EP/zDP+C5557D+++/j127duHpp5/Go48+Wssvj4hmIAYzRDOMoij40Y9+hJ6eHlx77bW4/fbbsXbtWsyePRuAu0y0fv16hEIh3HDDDbj55puxatUqnH766TAMw3+edevWYe3atXjkkUdwzTXXYO3atXjuuefQ0dFRqy+NiGYoIb3FbyKiCoaGhnD55Zfjb//2b3HjjTfW+nSIiIqwZoaIRti0aRM0TcOCBQvQ19eH9evXQwiBT3/607U+NSKiERjMENEImUwG//zP/4xDhw4hFAph8eLFePLJJzFr1qxanxoR0QhcZiIiIqKGxgJgIiIiamgMZoiIiKihMZghIiKihsZghoiIiBoagxkiIiJqaAxmiIiIqKH9f3h0JvIQKx9qAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.jointplot(x='age', y='TT4', data=df, kind='reg', height=8, color='m')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:23.835925Z",
+ "iopub.status.busy": "2021-12-15T11:04:23.828386Z",
+ "iopub.status.idle": "2021-12-15T11:04:24.146853Z",
+ "shell.execute_reply": "2021-12-15T11:04:24.146161Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:25.516486Z"
+ },
+ "papermill": {
+ "duration": 0.429561,
+ "end_time": "2021-12-15T11:04:24.147063",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:23.717502",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAHqCAYAAAAZPQdiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de3BU5f3H8c9uCAqEIcmSajVBEBoMNhuMjSHiD9GplyIYwTo4KBN1RERR0VZJTZFpDBTtyERF0ejY2HqBioQadEYcZkSthhFHd5GLFypXb3F3jSQgJJvz+8OyZRsu2WRz++b9mmGcnOc8m2efGeeds3uSdTmO4wgAAJjh7uoFAACA+CLuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxfbp6AfEUCjWouTk+v9nn8SQpEKiPy2PhyNjjjscedw72ueOxxy253S6lpAw44pipuDc3O3GL+6HHQ8dijzsee9w52OeOxx63Hi/LAwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCmVXFfs2aNioqKdPbZZ2vkyJEtxn0+n6ZMmaLs7GxNmDBB69atixpvaGhQcXGxcnNzlZ+fr0WLFikcDked8/LLL+vCCy+U1+vV9OnTtWPHjnY8LQAAeq9WxX3//v0aM2aMbrrpphZjoVBIM2bMUG5urqqqqlRYWKjZs2dr+/btkXNKS0u1ceNGVVZWqry8XKtXr9bSpUsj4++9957mz5+vWbNmacWKFfJ4PLrpppvU1NTU/mcIAEAv06c1JxUWFkqS1q9f32KsurpaSUlJKikpkcvl0ogRI/TWW29p+fLlmjt3rurq6lRdXa1nnnlGXq9XkjRnzhwtXrxYt9xyi9xut55//nlddtlluuqqqyRJCxcuVEFBgd5++21dcMEF8XquOKRZamwMH/+8wyQmJvAmDgD0EK2K+7H4/X7l5+fL5XJFjhUUFOjdd9+VJG3atEkul0t5eXlR44FAQLt379aQIUPk9/t15513Rsb79+8vr9crn88XU9w9nqT2Pp0oaWkD4/p43cX3wX3a+e9gTHOGj0xTcmr/uK/F6h53J+xx52CfOx573HrtjnswGFRWVlbUsZSUFAUCAUlSIBDQoEGDlJCQEBlPTU2NjA0ZMkTBYDBy7PBzgsHYAhQI1Ku52WnL02ghLW2gamv3xuWxupvGA2HV1/8Y05x9+w6qMRzb1f7xWN7j7oI97hzsc8djj1tyu11Hvaht9wutjnPsmB5p/PCrfAAAEF/tjrvH42lxhR0KheTxeCRJgwcPVl1dXdTd8Yeu6g+dc6Sr9CNdzQMAgONrd9y9Xm+LG+1qamqUk5MjSRo1apQcx9GGDRuixj0ej9LT04/4GPv375ff7488BgAAaL1Wxf3777/Xli1btHPnTknSli1btGXLFh08eFCTJk1SfX29FixYoG3btqmiokI+n09Tp06VJCUnJ2vixIkqKyuT3+9XTU2NysvLNW3aNLndP337a665RqtXr9aKFSv02Wef6d5779XJJ5+s8847r4OeNgAAdrmc471pLmnlypX6wx/+0OL42rVrlZ6ero8++kilpaX69NNPlZGRoeLiYp1//vmR8xoaGlRaWqo1a9YoMTFRkydP1j333BN1k92KFSv0+OOPq7a2VqNHj9b999+voUOHxvRkuKGudRoPhPXZlm9imvOLrJOUeELC8U+MgeU97i7Y487BPnc89rilY91Q16q49xS9Lu5t+H11SZIjfbaVuPcG7HHnYJ87Hnvc0rHi3u5fhUPXaWyM/QpckoZn/qwDVgMA6C74m2MAABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGPiEvcffvhB9957r8aOHauzzjpLV199td5///3IuM/n05QpU5Sdna0JEyZo3bp1UfMbGhpUXFys3Nxc5efna9GiRQqHw/FYGgAAvU5c4v7nP/9ZmzZt0uOPP65//vOfys7O1syZM7V3716FQiHNmDFDubm5qqqqUmFhoWbPnq3t27dH5peWlmrjxo2qrKxUeXm5Vq9eraVLl8ZjaQAA9Dpxibvf79dVV12lnJwcDRkyRHfccYcaGhq0fft2VVdXKykpSSUlJRoxYoRmzpwpr9er5cuXS5Lq6upUXV2tefPmyev1qqCgQHPmzNELL7yg5ubmeCwPAIBeJS5xHz16tN544w2FQiGFw2G9/PLLOvnkkzVixAj5/X7l5+fL5XJFzi8oKJDP55Mkbdq0SS6XS3l5eVHjgUBAu3fvjsfyAADoVfrE40HmzZun3//+9xozZowSEhKUmpqqp59+Wv369VMwGFRWVlbU+SkpKQoEApKkQCCgQYMGKSEhITKempoaGRsyZEir1+HxJMXh2fxXWtrAuD5evH0f3KekpBNjnpeY6I55Xv/+fZWc2j/m73U83X2PLWCPOwf73PHY49aLS9yfffZZ7dmzR5WVlRo0aJBWrVqlW265RVVVVXIc55hzjzR++FV+LAKBejU3H/v7tVZa2kDV1u6Ny2N1lMYDYdXX/xj7vMbmmOft23dQjXG+ybEn7HFPxx53Dva547HHLbndrqNe1LY77j/++KMeffRR/e1vf1Nubq4kadSoUVq3bp1effVVeTweBYPBqDmhUEgej0eSNHjwYNXV1SkcDkeu3g9d1R86BwAAtF6733NvampSY2Nj1Mvq0k9X347jyOv1av369VFjNTU1ysnJkfTTDwKO42jDhg1R4x6PR+np6e1dHgAAvU67456UlKTc3FwtXLhQfr9fO3bs0OLFi7Vnzx6de+65mjRpkurr67VgwQJt27ZNFRUV8vl8mjp1qiQpOTlZEydOVFlZmfx+v2pqalReXq5p06bJ7eZv7AAAEKu41LO8vFynnnqqbr75Zl1xxRV699139dhjj2nYsGFKSUlRRUWFPvjgAxUWFqqqqkpLlizR0KFDI/Pnz5+vUaNGqaioSLfffrsmTJigWbNmxWNpAAD0Oi7neHe89SC98Ya6z7Z8E/O84Zk/07ZPv41pzi+yTlLiCQnHPzEGPWGPezr2uHOwzx2PPW7pWDfU8bo3AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwJi4/G15xEGz1NgY499uN/NLjACAeCLu3URjY+y/sz4882cdtBoAQE/Gy/IAABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjIlb3Ddt2qSioiLl5OQoLy9Pd9xxR2TM5/NpypQpys7O1oQJE7Ru3bqouQ0NDSouLlZubq7y8/O1aNEihcPheC0NAIBepU88HmTbtm0qKirSddddpz/+8Y9yu93atm2bJCkUCmnGjBm6/PLL9eCDD2rt2rWaPXu2qqurNXToUElSaWmpPv74Y1VWVqqhoUF33323kpKSNHv27Hgsr3M1S42NbfjBxIn/UgAAvVNc4l5eXq5LLrkkKsbDhw+XJFVXVyspKUklJSVyuVwaMWKE3nrrLS1fvlxz585VXV2dqqur9cwzz8jr9UqS5syZo8WLF+uWW26R292z3jlobAzrsy3fxDxveObPOmA1AIDeqN3lDIfDevvtt3XKKado+vTpGjt2rG644QZ9+umnkiS/36/8/Hy5XK7InIKCAvl8Pkk/vZzvcrmUl5cXNR4IBLR79+72Lg8AgF6n3VfuwWBQ+/fv19NPP625c+cqOztbzz33nK6//nq9/vrrCgaDysrKipqTkpKiQCAgSQoEAho0aJASEhIi46mpqZGxIUOGtHotHk9Se59OlLS0gTHP+T64T0lJJ8Y8LzHRHfO8tsxp67z+/fsqObV/zN/reNqyx4gNe9w52OeOxx63Xrvj3tzcLEm69NJLdfXVV0v66T30cePG6c0335TjHPvN5CONH36VH4tAoF7NzfF58zotbaBqa/fGPK/xQFj19T/GPq+xOeZ5bZnT1nn79h1UY5xvcmzrHqP12OPOwT53PPa4JbfbddSL2na/LJ+SkqKEhAQNGzYsciwxMVEZGRn66quv5PF4FAwGo+aEQiF5PB5J0uDBg1VXVxd1d/yhq/pD5wAAgNZrd9z79u2rrKws7dixI3KsqalJe/bs0SmnnCKv16v169dHzampqVFOTo4kadSoUXIcRxs2bIga93g8Sk9Pb+/yAADodeJyK/p1112n6upqvfLKK/riiy+0cOFCud1ujR8/XpMmTVJ9fb0WLFigbdu2qaKiQj6fT1OnTpUkJScna+LEiSorK5Pf71dNTY3Ky8s1bdq0HnenPAAA3UFcfhVu0qRJCgQCeuihh/TDDz/I6/Xqr3/9qwYMGKABAwaooqJCpaWlevHFF5WRkaElS5ZEfsddkubPn6/S0lIVFRUpMTFRkydP1qxZs+KxNAAAeh2Xc7w73nqQ7nJDXVt/z33bp992+Jy2zvtF1klKPCHh+CfGgBtkOh573DnY547HHrfUoTfUAQCA7oW4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMiXvcb731Vo0cOVLr16+PHPP5fJoyZYqys7M1YcIErVu3LmpOQ0ODiouLlZubq/z8fC1atEjhcDjeSwMAoFeIa9xXrVql/fv3Rx0LhUKaMWOGcnNzVVVVpcLCQs2ePVvbt2+PnFNaWqqNGzeqsrJS5eXlWr16tZYuXRrPpQEA0GvELe7ffPONHn74YZWVlUUdr66uVlJSkkpKSjRixAjNnDlTXq9Xy5cvlyTV1dWpurpa8+bNk9frVUFBgebMmaMXXnhBzc3N8VoeAAC9RtziXlJSopkzZ+qUU06JOu73+5Wfny+XyxU5VlBQIJ/PJ0natGmTXC6X8vLyosYDgYB2794dr+UBANBr9InHgyxbtkxNTU26+uqrW4wFg0FlZWVFHUtJSVEgEJAkBQIBDRo0SAkJCZHx1NTUyNiQIUNavQ6PJ6ktyz+qtLSBMc/5PrhPSUknxjwvMdEd87y2zGnrvP79+yo5tX/M3+t42rLHiA173DnY547HHrdeu+P+5ZdfasmSJVq2bNkRxx3HOeb8I40ffpUfi0CgXs3Nx/5+rZWWNlC1tXtjntd4IKz6+h9jn9fYHPO8tsxp67x9+w6qMc43ObZ1j9F67HHnYJ87HnvcktvtOupFbbvjvnnzZn333Xe6+OKLo45fd911mjx5sjwej4LBYNRYKBSSx+ORJA0ePFh1dXUKh8ORq/dDV/WHzgEAAK3X7riPGTNGr7zyStSxSZMmqaysTOedd55ef/11VVZWRo3X1NQoJydHkjRq1Cg5jqMNGzYoPz8/Mu7xeJSent7e5QEA0Ou0+4a6pKQkZWZmRv2TpPT0dJ100kmaNGmS6uvrtWDBAm3btk0VFRXy+XyaOnWqJCk5OVkTJ05UWVmZ/H6/ampqVF5ermnTpsnt5m/sAAAQqw6vZ0pKiioqKvTBBx+osLBQVVVVWrJkiYYOHRo5Z/78+Ro1apSKiop0++23a8KECZo1a1ZHLw0AAJPicrf8//rkk0+ivh49erRWrlx51PMHDBigBx54QA888EBHLAcAgF6F170BADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxvTp6gWgZ3C7XWo8EI55XmJiAj9CAkAnI+5olabGZm379NuY5/0i6yQlnpDQASsCABwN11QAABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjIlL3JcuXarCwkKNHj1a48aNU1lZmRoaGqLO8fl8mjJlirKzszVhwgStW7cuaryhoUHFxcXKzc1Vfn6+Fi1apHA4HI/lAQDQq8Ql7h9++KFuvPFGrVy5Ug899JDeeecdlZWVRcZDoZBmzJih3NxcVVVVqbCwULNnz9b27dsj55SWlmrjxo2qrKxUeXm5Vq9eraVLl8ZjeQAA9CpxiXtFRYUmTZqk008/XXl5ebrjjju0du3ayHh1dbWSkpJUUlKiESNGaObMmfJ6vVq+fLkkqa6uTtXV1Zo3b568Xq8KCgo0Z84cvfDCC2pubo7HEgEA6DU65D33UCikgQMHRr72+/3Kz8+Xy+WKHCsoKJDP55Mkbdq0SS6XS3l5eVHjgUBAu3fv7oglAgBgVp94P+DevXv1zDPP6Morr4wcCwaDysrKijovJSVFgUBAkhQIBDRo0CAlJCRExlNTUyNjQ4YMadX39niS2rv8KGlpA49/0v/4PrhPSUknxjwvMdEd87y2zOns79W/f18lp/Y/6nhb9hixYY87B/vc8djj1otr3A8ePKjbbrtNGRkZuummmyLHHcc55rwjjR9+ld9agUC9mpuP/b1aKy1toGpr98Y8r/FAWPX1P8Y+r7E55nltmdPZ32vfvoNqPMqNkW3dY7Qee9w52OeOxx635Ha7jnpRG7e4NzU16c4771RDQ4MqKyvVp89/H9rj8SgYDEadHwqF5PF4JEmDBw9WXV2dwuFw5Or90FX9oXMAAEDrxOU99+bmZs2dO1c7d+7UU089pQEDBkSNe71erV+/PupYTU2NcnJyJEmjRo2S4zjasGFD1LjH41F6eno8lggAQK8Rl7jPmzdP69ev14MPPqjGxkbV1taqtrY28nvqkyZNUn19vRYsWKBt27apoqJCPp9PU6dOlSQlJydr4sSJKisrk9/vV01NjcrLyzVt2jS53fydHQAAYhGXl+VXrFghSbriiiuijq9du1bp6elKSUlRRUWFSktL9eKLLyojI0NLlizR0KFDI+fOnz9fpaWlKioqUmJioiZPnqxZs2bFY3kAAPQqcYn7J598ctxzRo8erZUrVx51fMCAAXrggQf0wAMPxGNJAAD0WrzmDQCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABjTp6sX0F3t33dQjQfCsU904r8WAABiQdyP4sCPTfpsyzcxzxue+bMOWA0AAK3Hy/IAABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGEPcAQAwhrgDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxBwDAGOIOAIAxxB0AAGOIOwAAxhB3AACMIe4AABhD3AEAMIa4AwBgDHEHAMAY4g4AgDHEHQAAY4g7AADGEHcAAIwh7gAAGNOt4v7kk0/qvPPOU05Ojm655RYFAoGuXhIAAD1Ot4n7yy+/rCeeeELz58/XsmXLtHfvXt11111dvSy0k9vtUuOB8BH/fR/cd8Tjau7qVQNAz9anqxdwyHPPPafrr79eF110kSRp4cKF+vWvf61PP/1UmZmZrXoMt9sVt/W43S6dcGLs25OQ4O60eT3heznN0s4vjvwKzIABJ6ih4UCL48NGpKlPn27zc2ePF8//L3B07HPHY4+jHWs/XI7jOJ24liM6ePCgcnJy9Oyzz+qcc86JHL/wwgs1a9YsXXXVVV24OgAAepZucXkUCoXU3Nwsj8cTdTw1NVXBYLCLVgUAQM/ULeIOAADip1vEPSUlRW63u8Xd8cFgUKmpqV20KgAAeqZuEfe+ffvqjDPO0Pr16yPHdu3apT179ignJ6cLVwYAQM/Tbe6Wv+aaa7Rw4UJlZWUpPT1dCxcuVH5+fqvvlAcAAD/pFnfLH/Lkk0/q73//u/bu3atzzz1X999/vwYPHtzVywIAoEfpVnEHAADt1y3ecwcAAPFD3AEAMIa4AwBgDHEHAMAY4v4/+NjZ9lmzZo2Kiop09tlna+TIkS3GfT6fpkyZouzsbE2YMEHr1q2LGm9oaFBxcbFyc3OVn5+vRYsWKRwOd9bye4SlS5eqsLBQo0eP1rhx41RWVqaGhoaoc9jn9nvkkUd0ySWXyOv16txzz9Xvfvc71dbWRsbZ4/i69dZbNXLkyKi/d8Ietx1xPwwfO9t++/fv15gxY3TTTTe1GAuFQpoxY4Zyc3NVVVWlwsJCzZ49W9u3b4+cU1paqo0bN6qyslLl5eVavXq1li5d2onPoPv78MMPdeONN2rlypV66KGH9M4776isrCwyzj7Hx+mnn64//elPeu211/TEE0/oq6++UnFxsST2ON5WrVql/fv3Rx1jj9vJQcQVV1zhPPzww5Gvd+7c6WRmZjqffPJJF66qZ6qpqXEyMzOjjj377LPOBRdc4DQ3N0eOTZs2zVm0aJHjOI7z/fffO1lZWc57770XGX/ppZecgoICJxwOd87Ce6DXXnvNycvLi3zNPneMtWvXOqNHj3Ychz2Op6+//toZP368s2fPHiczM9OpqalxHIc9bi+u3P/j4MGD2rp1q8aMGRM5lpGRoVNPPVU+n68LV2aH3+9Xfn6+XK7/fgZxQUFBZH83bdokl8ulvLy8qPFAIKDdu3d3+np7ilAopIEDB0a+Zp/jb+/evVq9erVyc3MlscfxVFJSopkzZ+qUU06JOs4etw9x/w8+drbjHemDgFJSUiL3NQQCAQ0aNEgJCQmR8UPnc+/Dke3du1fPPPOMrrzyysgx9jl+XnnlFZ111ln61a9+pd27d+uhhx6SxB7Hy7Jly9TU1KSrr766xRh73D7EHZ3GOc4fQzzS+OE/tSPawYMHddtttykjIyPqHgf2OX4uvPBCVVVVqbKyUn369NF9990niT2Ohy+//FJLliyJul/kcOxx+3SbD47paod/7Ozw4cMjx/nY2fjxeDwtXgUJhUKRV0sGDx6suro6hcPhyE/jh34C/99XVHq7pqYm3XnnnWpoaIiE5xD2OX6SkpKUlJSkoUOH6vTTT9e4ceP0+eefs8dxsHnzZn333Xe6+OKLo45fd911mjx5MnvcTly5/wcfO9vxvF5v1P5KUk1NTWR/R40aJcdxtGHDhqhxj8ej9PT0Tl1rd9bc3Ky5c+dq586deuqppzRgwICocfa5Yxy6UnS73exxHIwZM0avvPKKVq1aFfknSWVlZbrjjjvY4/bqktv4uqmXXnrJOeuss5w33njD2bJlizN9+nRn+vTpXb2sHiUUCjmbN292/vGPfziZmZnO5s2bnc2bNzsHDhxwgsGgk5eX55SVlTmff/658+STTzq//OUvnS+++CIy/+6773YmTpzo+Hw+57333nPOO+8859FHH+26J9QN3Xvvvc7YsWOdzZs3O99++23kX1NTk+M4DvscBwcPHnQWL17s+Hw+Z/fu3c7777/vXHvttc7kyZOdcDjMHusj5k4AAAPpSURBVHeQw++WZ4/bh7j/jyeeeMIZO3as4/V6nZtvvtmpra3t6iX1KC+//LKTmZnZ4t+uXbscx3GcDz/80Jk8ebJz5plnOpdeeqnz5ptvRs2vr6937rnnHmf06NFOXl6es3Dhwki08JMj7e/he+w47HN7NTY2OrfeeqszduxY58wzz3TGjx/vlJSUON98803kHPY4/g6Pu+Owx+3BR74CAGAM77kDAGAMcQcAwBjiDgCAMcQdAABjiDsAAMYQdwAAjCHuAAAYQ9wBADCGuAMAYAxxB9DCv/71L02fPl3nnHOOzj77bF177bXy+/2R8V27dumGG25Qdna2xo8fr+eff17Tp09XSUlJ5JympiY9+uijuvDCC5Wdna3LLrtMy5Yt64qnA/Q6fOQrgBb27dunadOm6YwzzlBTU5MqKyt144036vXXX1dycrJmz56tvn376vnnn1diYqIWL16szZs3a8iQIZHH+OMf/6hNmzaptLRUp512mjZu3Kj77rtPCQkJuuqqq7rw2QH2EXcALVx00UVRX99///1as2aN3n77bXk8Hm3dulVr1qzRaaedJkn6y1/+ovPPPz9y/q5du7Rq1Sq9+uqrGj58uCQpIyND//73v/Xcc88Rd6CDEXcALezatUuPPPKIPvroIwUCATmOo/379+vLL79UKBRSSkpKJOySlJycrGHDhkW+/vjjj+U4jn77299GPW5TU5MSEhI67XkAvRVxB9DCzTffrJSUFN133336+c9/rsTERE2bNk2NjY3q16+fXC7XMecf+rDJF198Uf369YsaO95cAO1H3AFECYVC+vzzz1VRUaH/+7//kyR9/fXXCgQCkqQRI0YoGAxqx44dkav3uro6bd++XWeeeaYkRf771Vdf6YILLuiCZwH0btwtDyDKoEGDlJqaqpdeeklffPGFPvzwQ91111068cQTJUnnnnuuzjjjDM2dO1d+v19bt27VPffco4SEhMhV+WmnnaYrr7xS8+bN06pVq7Rjxw5t3bpVK1asUEVFRVc+PaBXIO4Aorjdbj388MPauXOnLr/8chUXF6uoqEhpaWmSfnpZfcmSJerXr5+uueYazZw5U+PGjdOwYcN0wgknRB7n/vvvV1FRkZ544glddtllKioq0qpVq5SRkdFVTw3oNVzOoTfHAKCN6uvrdf7552vOnDmaPn16Vy8H6PV4zx1AzNauXas+ffro9NNPVzAY1JIlS+RyufSb3/ymq5cGQMQdQBv8+OOPeuyxx7Rnzx7169dPZ555pl544QUNHjy4q5cGQLwsDwCAOdxQBwCAMcQdAABjiDsAAMYQdwAAjCHuAAAY8/8meilNxtLfIQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(df['age'], kde=False, bins=30, color='m')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:24.352326Z",
+ "iopub.status.busy": "2021-12-15T11:04:24.350180Z",
+ "iopub.status.idle": "2021-12-15T11:04:24.505108Z",
+ "shell.execute_reply": "2021-12-15T11:04:24.504432Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:25.818671Z"
+ },
+ "papermill": {
+ "duration": 0.258689,
+ "end_time": "2021-12-15T11:04:24.505242",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:24.246553",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHqCAYAAACOWt1JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df1TUdaL/8dcMYoq4KAPmFnKVLNJw8FIGuB4VqjV/kFmZiQe53U1aWjKp6w1lWXQCw2651LKU1HrZWvVqmHcD7948a55WS+hyKkizMk9p+OPGDkiKtArM94++zm2Wd4kFMzg+H+d4jvN5f+bD+20neM5nPh/G4nK5XAIAAPg7Vl9PAAAA9E1EAgAAMCISAACAEZEAAACMiAQAAGBEJAAAAKN+vp5AX9Tc3KrOTu4MBQD4P6vVoqFDBxnHiASDzk4XkQAAuOTxdgMAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYOTVSHjmmWc0bdo02e12TZw4UY888ogaGxslSTU1NYqOjvb4M3v2bI/nt7a2KicnR3FxcYqPj1dRUZE6Ojo89tmyZYuSk5Nlt9uVlpamQ4cOeW19AAD4E69+CmRUVJRWrlypiIgINTU1qaioSDk5Ofrd737n3mf37t3/N7l+ntNzOBzau3evysvL1draqqVLlyo4OFhZWVmSpD179ig/P1/5+fmKjY1VaWmpMjIytG3bti7HAgAA383icrl89pnIr7/+uh555BG9++67qqmp0cKFC/XRRx8Z921paVFiYqLWrVunhIQESVJFRYXWrFmj3bt3y2q1KisrS4MGDdLq1aslSadPn1ZiYqKKi4uVlJTU7Xk5naf4qGgAwCXBarXIZgs2j3l5Lm4nT55UVVWV4uLiPLYnJydr6tSpys7O1tGjR93b9+3bJ4vFogkTJri3JSYmyul0qqGhQZJUX1/vDghJCgoKkt1uV11dXS+vBgAA/+P1c/Cvvvqq8vPzdfr0acXGxqqsrEySFB4ersLCQsXExOjEiRMqLS3VwoULVVVVpQEDBsjpdCokJEQBAQHuY4WGhkqSnE6nIiMj1dTU5N72zX2ampouaI7fVlQAAFxKvB4J5y4qPHbsmH7zm9/oV7/6lZ555hlFRUUpKirKvV9MTIySkpK0c+dOTZ8+XaZ3RSwWS6/MkbcbAACXiu96u8HrkRAcHKzg4GCNHDlSUVFRmjx5sj755BONHj26y36RkZE6cuSIJCksLEwtLS3q6Ohwn01wOp2SJJvNJsl81qCpqUmjRo3q7WV1y4+C++uygZf5ehrAD/K3tr/py1NnfD0NAF7g00v+z50dsFq7Xhrx1VdfqaGhQVdccYUkaezYsXK5XKqtrVV8fLwkqbq6WjabTREREZIku92umpoazZkzR5LU1tam+vp6/fM//7M3lnNelw28TDkx8309DeAHKdq7USISgEuC1yLh7NmzKikp0U033SSbzaZjx47p6aef1nXXXaeRI0dq06ZNCgsL09VXX60vv/xSJSUlCgoK0pQpUyRJQ4YM0axZs1RQUKDCwkKdPn1axcXFSk1NdUfGggULtGjRIt1www3uWyCHDx+uSZMmeWuZAAD4Da9FgsVi0cGDB7VlyxadOHFC4eHh+slPfqLFixfLarWqvb1dRUVFOn78uAYPHqy4uDiVl5dr0KBB7mPk5+fL4XAoPT1dgYGBmjNnjjIzM93jiYmJWrFihUpLS9XY2Kjx48dr7dq1CgwM9NYyAQDwGz79PQl9VW9duBgePpi3G3DRK9q7UY2NJ309DQA9pE/+ngQAANC3EQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYeTUSnnnmGU2bNk12u10TJ07UI488osbGRvd4XV2d7rjjDo0bN04zZszQG2+84fH81tZW5eTkKC4uTvHx8SoqKlJHR4fHPlu2bFFycrLsdrvS0tJ06NAhr6wNAAB/49VIiIqK0sqVK/Vf//Vfeu6553Ts2DHl5ORIkpqbm7Vo0SLFxcVp69atmj17trKysvTZZ5+5n+9wOPT++++rvLxcxcXFqqqq0rPPPuse37Nnj/Lz85WZmamKigrZbDZlZGSovb3dm8sEAMAveDUSZs2apYSEBEVERMhut+u+++7TO++8I0mqrKxUcHCwcnNzNXr0aN1///2y2+3atGmTJKmlpUWVlZXKy8uT3W5XYmKilixZog0bNqizs1OStH79es2cOVNz587VNddco1WrVun48ePatWuXN5cJAIBf6OerL3zy5ElVVVUpLi5OklRfX6/4+HhZLBb3PomJiXrrrbckSfv27ZPFYtGECRM8xp1OpxoaGhQZGan6+nplZ2e7x4OCgmS321VXV6ekpKRuz81mC/6hywP8Wnj4YF9PAYAXeD0SXn31VeXn5+v06dOKjY1VWVmZJKmpqUljxozx2Hfo0KFyOp2SJKfTqZCQEAUEBLjHQ0ND3WORkZFqampyb/vmPk1NTRc0R6fzlDo7XRe8tvPhGyv8RWPjSV9PAUAPsVot3/ri2Ot3NyQnJ2vr1q0qLy9Xv3799Ktf/UqS5HJ99w9l0/g3zzoAAICe5fUzCcHBwQoODtbIkSMVFRWlyZMn65NPPpHNZuvyir+5uVk2m02SFBYWppaWFnV0dLjPJpw7y3BuH9NZg6amJo0aNaq3lwUAgN/x6e9JOHd2wGq1ym63q6amxmO8urpasbGxkqSxY8fK5XKptrbWY9xmsykiIkKSuhyjra1N9fX17mMAAIDu81oknD17Vr/+9a9VX1+vI0eOqLa2VkuXLtV1112nkSNHKiUlRadOnVJhYaEOHjyosrIy1dXVad68eZKkIUOGaNasWSooKFB9fb2qq6tVXFys1NRUWa1fL2PBggWqqqpSRUWFDhw4oOXLl2v48OGaNGmSt5YJAIDf8NrbDRaLRQcPHtSWLVt04sQJhYeH6yc/+YkWL14sq9WqoUOHqqysTA6HQxs3btSIESNUUlKikSNHuo+Rn58vh8Oh9PR0BQYGas6cOcrMzHSPJyYmasWKFSotLVVjY6PGjx+vtWvXKjAw0FvLBADAb1hc57ti8BLUm3c35MTM7/HjAt5UtHcjdzcAfqRP3d0AAAAuDkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwMhrkfDss89q9uzZGj9+vCZPnqyCggK1tra6x2tqahQdHe3xZ/bs2R7HaG1tVU5OjuLi4hQfH6+ioiJ1dHR47LNlyxYlJyfLbrcrLS1Nhw4d8sr6AADwN/289YXeffdd3XfffbruuuvkdDqVl5en1tZWPf744x777d69+/8m189zeg6HQ3v37lV5eblaW1u1dOlSBQcHKysrS5K0Z88e5efnKz8/X7GxsSotLVVGRoa2bdvW5VgAAOC7ee0nZ1lZmfvvUVFReuihh5Sfn99lv/DwcOPzW1paVFlZqXXr1slut0uSlixZojVr1uiBBx6Q1WrV+vXrNXPmTM2dO1eStGrVKiUmJmrXrl1KSkrqhVUBAOC/fHZNQnNzswYPHtxle3JysqZOnars7GwdPXrUvX3fvn2yWCyaMGGCe1tiYqKcTqcaGhokSfX19UpISHCPBwUFyW63q66urhdXAgCAf/LJOfiTJ09q3bp1uvPOO93bwsPDVVhYqJiYGJ04cUKlpaVauHChqqqqNGDAADmdToWEhCggIMD9nNDQUEmS0+lUZGSkmpqa3Nu+uU9TU9MFzc9mC/4BqwP8X3h418AH4H+8HglnzpzRgw8+qBEjRigjI8O9PSoqSlFRUe7HMTExSkpK0s6dOzV9+nS5XK4ux7JYLL0yR6fzlDo7u369H4pvrPAXjY0nfT0FAD3EarV864tjr77d0N7eruzsbLW2tqqkpOQ7LyYMDg5WZGSkjhw5IkkKCwtTS0uLx90MTqdTkmSz2SSZzxqYzi4AAIDz81okdHZ26tFHH9Xhw4f1/PPPa9CgQd+5/1dffaWGhgZdccUVkqSxY8fK5XKptrbWvU91dbVsNpsiIiIkSXa7XTU1Ne7xtrY21dfXKzY2thdWBACAf/Pa2w15eXmqqanR888/r7Nnz6qxsVHS16/+AwICtGnTJoWFhenqq6/Wl19+qZKSEgUFBWnKlCmSpCFDhmjWrFkqKChQYWGhTp8+reLiYqWmpspq/bp1FixYoEWLFumGG25w3wI5fPhwTZo0yVvLBADAb3gtEioqKiRJt99+u8f2HTt2KCIiQu3t7SoqKtLx48c1ePBgxcXFqby83OOMQ35+vhwOh9LT0xUYGKg5c+YoMzPTPZ6YmKgVK1aotLRUjY2NGj9+vNauXavAwEDvLBIAAD9icZmuCLzE9eaFizkx83v8uIA3Fe3dyIWLgB/pMxcuAgCAiweRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgJHXIuHZZ5/V7NmzNX78eE2ePFkFBQVqbW312Keurk533HGHxo0bpxkzZuiNN97wGG9tbVVOTo7i4uIUHx+voqIidXR0eOyzZcsWJScny263Ky0tTYcOHer1tQEA4I+8Fgnvvvuu7rvvPr3yyit66qmntHv3bhUUFLjHm5ubtWjRIsXFxWnr1q2aPXu2srKy9Nlnn7n3cTgcev/991VeXq7i4mJVVVXp2WefdY/v2bNH+fn5yszMVEVFhWw2mzIyMtTe3u6tZQIA4De8FgllZWVKSUlRVFSUJkyYoIceekg7duxwj1dWVio4OFi5ubkaPXq07r//ftntdm3atEmS1NLSosrKSuXl5clutysxMVFLlizRhg0b1NnZKUlav369Zs6cqblz5+qaa67RqlWrdPz4ce3atctbywQAwG/089UXbm5u1uDBg92P6+vrFR8fL4vF4t6WmJiot956S5K0b98+WSwWTZgwwWPc6XSqoaFBkZGRqq+vV3Z2tns8KChIdrtddXV1SkpK6vbcbLbgH7I0wO+Fhw8+/04ALno+iYSTJ09q3bp1uvPOO93bmpqaNGbMGI/9hg4dKqfTKUlyOp0KCQlRQECAezw0NNQ9FhkZqaamJve2b+7T1NR0QfNzOk+ps9N1Qc/pDr6xwl80Np709RQA9BCr1fKtL469fnfDmTNn9OCDD2rEiBHKyMhwb3e5vvuHsmn8m2cdAABAz+p2JBw9etT4g9rlcuno0aPdOkZ7e7uys7PV2tqqkpIS9ev3fycybDZbl1f8zc3NstlskqSwsDC1tLR43M1w7izDuX1MZw1MZxcAAMD5dTsSbrrpJuNp+xMnTuimm2467/M7Ozv16KOP6vDhw3r++ec1aNAgj3G73a6amhqPbdXV1YqNjZUkjR07Vi6XS7W1tR7jNptNERERxmO0tbWpvr7efQwAANB93Y6Eb3s74KuvvlL//v3P+/y8vDzV1NToiSee0NmzZ9XY2KjGxkb3mYGUlBSdOnVKhYWFOnjwoMrKylRXV6d58+ZJkoYMGaJZs2apoKBA9fX1qq6uVnFxsVJTU2W1fr2MBQsWqKqqShUVFTpw4ICWL1+u4cOHa9KkSd1dJgAA+P/Oe+FiSUmJpK/f///d736noKAg91hnZ6feeecdjR49+rxfqKKiQpJ0++23e2zfsWOHIiIiNHToUJWVlcnhcGjjxo0aMWKESkpKNHLkSPe++fn5cjgcSk9PV2BgoObMmaPMzEz3eGJiolasWKHS0lI1NjZq/PjxWrt2rQIDA887PwAA4MniOs8Vgz/96U8lSYcPH9aVV17pcXdBYGCgIiIi9OCDDyomJqZ3Z+pFvXl3Q07M/B4/LuBNRXs3cncD4Ee+6+6G855J2L59uyQpLS1NJSUlCgkJ6dnZAQCAPqnbvyfhpZde6s15AACAPuaCfpnS22+/rTfffFN//etf3b8K+ZzHH3+8RycGAAB8q9uR8MILL+jJJ5/UqFGjdPnll/OLjAAA8HPdjoQ//OEPys3NVVpaWm/OBwAA9BHd/j0JX375paZOndqLUwEAAH1JtyPh5ptvVnV1dW/OBQAA9CHdfrth/Pjxevrpp3XgwAFde+21XX5BUUpKSo9PDgAA+E63I8HhcEiSXnzxxS5jFouFSAAAwM90OxI+/PDD3pwHAADoY7p9TQIAALi0dPtMwrkPevo2WVlZP3gyAACg7+h2JLz66qsej9vb2/W///u/6t+/v4YNG0YkAADgZ7odCec+6OmbnE6nHn30Ud1zzz09OikAAOB7P+iaBJvNpiVLlujf/u3femo+AACgj/jBFy7269dPX3zxRU/MBQAA9CHdfrvhnXfe8Xjscrn0xRdf6IUXXlBMTEyPTwwAAPhWtyMhNTVVFotFLpfLY3tcXJwKCgp6fGIAAMC3uh0JO3bs8HhstVoVGhqqyy67rMcnBQAAfK/bkXDllVf25jwAAEAf0+1IkKRPP/1UL7zwgj755BNZLBaNHj1aP/vZzzRq1Kjemh8AAPCRbt/d8OabbyolJUX79+9XbGysxo0bpw8++EC33Xab9uzZ05tzBAAAPtDtMwlr1qzR/PnzlZub67G9oKBATz31lCoqKnp8cgAAwHe6fSbhwIEDmj9/fpftqamp+vjjj3t0UgAAwPe6HQmDBg3S8ePHu2w/evSogoODe3RSAADA97odCbfccovy8vK0a9cutbW1qa2tTX/5y1+Un5+vW265pTfnCAAAfKDb1yQ8+uijWrZsmRYtWiSLxeLePm3aNC1durRXJgcAAHyn25EwaNAgPfPMMzp8+LA++eQTSdLVV1+tESNG9NrkAACA73Q7Eh566CGNGTNGP//5zxUZGeneXlZWpg8++EDFxcW9MkEAAOAb3b4m4X/+5380ZcqULtsnT56s2traHp0UAADwvW5HwsmTJxUUFNRl+4ABA9TS0tKjkwIAAL7X7UiIjIzUm2++2WX7m2++qYiIiB6dFAAA8L0L+qjoJ598UmfOnNHEiRNlsVi0e/du/eY3v1F2dnZvzhEAAPhAtyNhwYIFcjqd+vWvf63Vq1dLkvr37697771XaWlpvTZBAADgGxf0KZCLFy/WokWLdODAAUnS6NGjjdcpAACAi98FRYIkDRw4UHa7vTfmAgAA+pBuX7gIAAAuLUQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMvBoJ27dvV3p6uq6//npFR0d7jNXU1Cg6Otrjz+zZsz32aW1tVU5OjuLi4hQfH6+ioiJ1dHR47LNlyxYlJyfLbrcrLS1Nhw4d6vV1AQDgjy74UyB/iLa2NiUkJGjixIlas2aNcZ/du3e7/96vn+f0HA6H9u7dq/LycrW2tmrp0qUKDg5WVlaWJGnPnj3Kz89Xfn6+YmNjVVpaqoyMDG3btq3LsQAAwHfz6k/Oc2cGampqvnWf8PBw4/aWlhZVVlZq3bp17o+qXrJkidasWaMHHnhAVqtV69ev18yZMzV37lxJ0qpVq5SYmKhdu3YpKSmph1cDAIB/63PXJCQnJ2vq1KnKzs7W0aNH3dv37dsni8WiCRMmuLclJibK6XSqoaFBklRfX6+EhAT3eFBQkOx2u+rq6ry3AAAA/ESfOQcfHh6uwsJCxcTE6MSJEyotLdXChQtVVVWlAQMGyOl0KiQkRAEBAe7nhIaGSpKcTqciIyPV1NTk3vbNfZqami5oLjZb8A9fEODHwsMH+3oKALygz0RCVFSUoqKi3I9jYmKUlJSknTt3avr06XK5XF2eY7FYemUuTucpdXZ2/Xo/FN9Y4S8aG0/6egoAeojVavnWF8d97u2Gc4KDgxUZGakjR45IksLCwtTS0uJxN4PT6ZQk2Ww2SeazBqazCwAA4Pz6bCR89dVXamho0BVXXCFJGjt2rFwul2pra937VFdXy2azKSIiQpJkt9s9Lopsa2tTfX29YmNjvTt5AAD8gFffbjhx4oSOHTumw4cPS5L2798vSbrqqqu0detWhYWF6eqrr9aXX36pkpISBQUFacqUKZKkIUOGaNasWSooKFBhYaFOnz6t4uJipaamymr9unUWLFigRYsW6YYbbnDfAjl8+HBNmjTJm8sEAMAveDUSXn/9dS1btsz9+Pbbb5ck7dixQ+3t7SoqKtLx48c1ePBgxcXFqby8XIMGDXLvn5+fL4fDofT0dAUGBmrOnDnKzMx0jycmJmrFihUqLS1VY2Ojxo8fr7Vr1yowMNB7iwQAwE9YXKYrAi9xvXnhYk7M/B4/LuBNRXs3cuEi4EcuygsXAQCAbxEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGHk1ErZv36709HRdf/31io6O7jJeV1enO+64Q+PGjdOMGTP0xhtveIy3trYqJydHcXFxio+PV1FRkTo6Ojz22bJli5KTk2W325WWlqZDhw716poAAPBXXo2EtrY2JSQkKCMjo8tYc3OzFi1apLi4OG3dulWzZ89WVlaWPvvsM/c+DodD77//vsrLy1VcXKyqqio9++yz7vE9e/YoPz9fmZmZqqiokM1mU0ZGhtrb272xPAAA/IpXI2H27NnKzMzU+PHju4xVVlYqODhYubm5Gj16tO6//37Z7XZt2rRJktTS0qLKykrl5eXJbrcrMTFRS5Ys0YYNG9TZ2SlJWr9+vWbOnKm5c+fqmmuu0apVq3T8+HHt2rXLm8sEAMAv9PP1BM6pr69XfHy8LBaLe1tiYqLeeustSdK+fftksVg0YcIEj3Gn06mGhgZFRkaqvr5e2dnZ7vGgoCDZ7XbV1dUpKSmp23Ox2YJ7YEWA/woPH+zrKQDwgj4TCU1NTRozZozHtqFDh8rpdEqSnE6nQkJCFBAQ4B4PDQ11j0VGRqqpqcm97Zv7NDU1XdBcnM5T6ux0fZ9lfCe+scJfNDae9PUUAPQQq9XyrS+O+8zdDS7Xd/9QNo1/86wDAADoWX0mEmw2W5dX/M3NzbLZbJKksLAwtbS0eNzNcO4sw7l9TGcNTGcXAADA+fWZSLDb7aqpqfHYVl1drdjYWEnS2LFj5XK5VFtb6zFus9kUERFhPEZbW5vq6+vdxwAAAN3n1Ug4ceKE9u/fr8OHD0uS9u/fr/379+vMmTNKSUnRqVOnVFhYqIMHD6qsrEx1dXWaN2+eJGnIkCGaNWuWCgoKVF9fr+rqahUXFys1NVVW69fLWLBggaqqqlRRUaEDBw5o+fLlGj58uCZNmuTNZQIA4BcsrvNdDNCDXnnlFS1btqzL9h07digiIkLvvfeeHA6HPv74Y40YMUI5OTmaMmWKe7/W1lY5HA5t375dgYGBmjNnjv71X//V42LGiooKlZaWqrGxUePHj9djjz2mkSNHXtA8e/PCxZyY+T1+XMCbivZu5MJFwI9814WLXo2EiwWRAHw7IgHwLxfF3Q0AAKBvIRIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARn0qEnJychQdHe3xp7y83GOfuro63XHHHRo3bpxmzJihN954w2O8tbVVOTk5iouLU3x8vIqKitTR0eHFVQAA4B/6+XoCf2/69OnKzc11P/eZPa8AAA2QSURBVA4ODnb/vbm5WYsWLdJtt92mJ554Qjt27FBWVpYqKys1cuRISZLD4dDevXtVXl6u1tZWLV26VMHBwcrKyvL2UgAAuKj1qTMJkjRgwACFh4e7/wwcONA9VllZqeDgYOXm5mr06NG6//77ZbfbtWnTJklSS0uLKisrlZeXJ7vdrsTERC1ZskQbNmxQZ2enr5YEAMBFqc9Fwuuvv66EhASlpKRo7dq1am9vd4/V19crPj5eFovFvS0xMVF1dXWSpH379slisWjChAke406nUw0NDd5bBAAAfqBPvd0wefJkzZgxQ5dffrn27dunJ554Qq2trXr44YclSU1NTRozZozHc4YOHSqn0ylJcjqdCgkJUUBAgHs8NDTUPRYZGdmtedhsweffCbiEhYcP9vUUAHhBn4qEGTNmuP8eHR0tq9WqlStXKjs7WxaLRS6X6zufbxr/5lmH7nI6T6mz87u/1vfBN1b4i8bGk76eAoAeYrVavvXFcZ97u+GbrrvuOp0+fVrNzc2SJJvNpqamJo99mpubZbPZJElhYWFqaWnxuJvh3FmGc/sAAIDu6dORcODAAQ0cOFBDhw6VJNntdtXU1HjsU11drdjYWEnS2LFj5XK5VFtb6zFus9kUERHhvYkDAOAH+lQkPP7446qrq1NDQ4O2b9+uxx9/XPPmzXO/ZZCSkqJTp06psLBQBw8eVFlZmerq6jRv3jxJ0pAhQzRr1iwVFBSovr5e1dXVKi4uVmpqqqzWPrVUAAD6vD51TcInn3yi+++/X6dOndIVV1yhefPmKSMjwz0+dOhQlZWVyeFwaOPGjRoxYoRKSkrcvyNBkvLz8+VwOJSenq7AwEDNmTNHmZmZPlgNAAAXN4vrfFcDXoJ688LFnJj5PX5cwJuK9m7kwkXAj1y0Fy4CAADfIRIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgFE/X08AAHrb0B/1V7/LLvP1NIAfpP1vf1Pzl2e8+jWJBAB+r99ll+mTh1J9PQ3gBxn99AZJ3o0E3m4AAABGRAIAADAiEgAAgBGRAAAAjIgEAABgRCQAAAAjIgEAABgRCQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIyIBAAAYEQkAAAAIyIBAAAYEQkAAMCISAAAAEZEAgAAMCISAACAEZEAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAIAADAiEgAAgBGRAAAAjIgEAABg5JeRsHbtWk2aNEmxsbF64IEH5HQ6fT0lAAAuOn4XCVu2bNFzzz2n/Px8/cd//IdOnjyphx9+2NfTAgDgotPP1xPoaX/4wx9077336pZbbpEkrVq1SjfffLM+/vhjXXPNNd06htVq6bX5Db0irNeODXhLb/4/0lv6hfL/Hi5+vfH/3ncd0+JyuVw9/hV95MyZM4qNjdXvf/973Xjjje7tycnJyszM1Ny5c304OwAALi5+9XZDc3OzOjs7ZbPZPLaHhoaqqanJR7MCAODi5FeRAAAAeo5fRcLQoUNltVq73M3Q1NSk0NBQH80KAICLk19FQv/+/XXttdeqpqbGve3zzz/XkSNHFBsb68OZAQBw8fG7uxsWLFigVatWacyYMYqIiNCqVasUHx/f7TsbAADA1/zq7oZz1q5dq5deekknT57UxIkT9dhjjyksjNufAAC4EH4ZCQAA4Ifzq2sSAABAzyESAACAEZEAAACMiAQAAGBEJMAv8PHggPdt375d6enpuv766xUdHe3r6aAXEAm46PHx4IBvtLW1KSEhQRkZGb6eCnoJt0DiojdnzhwlJSVp8eLFkr7+LZs333yzKisr+SVagBfU1NRo4cKF+uijj3w9FfQwziTgonbmzBl9+OGHSkhIcG8bMWKErrzyStXV1flwZgBw8SMScFHj48EBoPcQCQAAwIhIwEWNjwcHgN5DJOCixseDA0Dv8buPisalh48HB3zjxIkTOnbsmA4fPixJ2r9/vyTpqquuUv/+/X05NfQQboGEX+DjwQHve+WVV7Rs2bIu23fs2KGIiAgfzAg9jUgAAABGXJMAAACMiAQAAGBEJAAAACMiAQAAGBEJAADAiEgAAABGRAJwiUhLS1Nubu63jufk5Oif/umfvDehHlJTU6Po6GgdP37c11MB/A6/cRGAJCk3N1ednZ2+nkYXf/zjH7V582Z9+OGH6ujoUEREhCZPnqz09HRdfvnlvp4e4Nc4kwBAkjR48GCFhIT0+tc5c+ZMt/ddvny5cnNzdcMNN+j555/Xtm3blJubq7/+9a9at25dL84SgMSZBOCS0tnZqSeffFIvv/yyzp49q+nTpysvL08DBgxQTk6Ojh8/rvLycklyP54+fbqee+45tbS0KD4+XoWFhe5P2Pz888+1evVqvffeezp58qQiIyP1s5/9TLfffrv7a6alpWnEiBEaNmyYKioq1N7ertTUVG3btk2vvfaax/yWLVumhoYGvfTSS3rttde0ZcsWrVmzRjNnznTvc+WVVyoxMVEtLS3GNbpcLuXl5am6ulpffPGFwsPDNXPmTGVlZbk/T+D48eMqLCzU22+/rba2NoWHh2v+/Pm67777JEl//vOfVVJSok8//VSBgYEaOXKkHA6Hxo4d22P/LYCLAZEAXEJee+01zZgxQxs2bNChQ4eUm5urgQMH6pe//KVx//fff1+hoaFau3atTp06pUceeUSrV6/W6tWrJUmnT59WYmKisrKyFBQUpDfeeEPLly/X8OHDlZCQ4D7On/70J6WkpKi8vFwdHR0KCQnRc889p7fffls33nijJOnUqVP67//+b61cuVLS128z/MM//INHIHzTt531cLlcstlseuqpp2Sz2fTRRx8pPz9f/fr10+LFiyVJK1as0FdffaXy8nINHjxYDQ0N+utf/ypJamxs1JIlS/TQQw/p1ltv1ZkzZ/TBBx8oICDge/yLAxc3IgG4hAwZMkQrV65UQECArrrqKi1ZskSPPfaYHn74YeP+gYGBKioqcr8Cnz9/vl588UX3eHR0tKKjo92P09LS9NZbb6mqqsojEoYNG6YVK1bIav2/dzgnT56szZs3uyOhqqpK/fv317Rp0yRJn332maKioi54jVarVdnZ2e7HERER+vzzz7VhwwZ3JBw9elS33HKLxowZ497nnMbGRvdZlnPbr7rqqgueB+APiATgEjJu3DiPV8RxcXE6e/as+6N+/97ff+TvsGHD3K+4JamtrU2//e1vtXPnTvcP1zNnzig+Pt7jONddd51HIEjSPffco8WLF6ulpUUhISHavHmzbrvtNl122WWSvj4jYLFYvtc6N2/erJdffllHjhxRW1ub2tvb9c3PsktPT1d+fr7+8pe/6MYbb9TUqVM1YcIESV+Hz6RJk5SSkqKJEyfqxhtv1E9/+lP9+Mc//l5zAS5mXLgIXMLO9yGwgYGBHo8tFovHc5544gm9+uqr+sUvfqEXX3xR//mf/6nJkyfr7NmzHs8bOHBgl2NPnjxZYWFh+uMf/6j9+/dr3759uvvuu93jo0aN0sGDBy94TX/605/kcDg0Y8YMlZWVaevWrfrFL37hMac777xTr7/+uu655x41NjZq0aJF+pd/+RdJUkBAgF544QX9/ve/17hx47R9+3ZNmzZNO3fuvOC5ABc7IgG4hLz//vvq6OhwP37vvfcUGBioyMjI73W82tpapaSkaMaMGbr22ms1YsQIffbZZ916rtVq1V133aWXX35Zmzdv1j/+4z/q6quvdo/fdtttOnTokLZt22Z8/rdduFhbW6sxY8bo3nvvVUxMjEaOHKkjR4502W/YsGG688479cQTT6iwsFCVlZU6deqUpK9jyG636+c//7nWr1+vCRMm6JVXXunWugB/wtsNwCXkxIkTWrlypdLT0/X555/r6aef1t13362goKDvdbxRo0Zpx44dmjZtmoKCgvTv//7v+uKLLxQWFtat599111367W9/q08//VSPPfaYx9itt96q22+/XY8++qgOHDigKVOm6PLLL1dDQ4O2bt2qH/3oR1q2bJlxThUVFfrzn/+sa665Rjt37tT27ds99nE4HJoyZYpGjRqlv/3tb9q+fbt+/OMfa9CgQXrnnXe0Z88eTZo0SeHh4Tp06JA++ugj3XXXXd/r3wi4mBEJwCVk2rRpGjRokFJTU3XmzBndeuutWrp06fc+3rJly/TLX/5SCxcuVHBwsO6++25NmzZNn3/+ebeeP2zYME2dOlU1NTWaPn16l/HVq1crISFBmzdv1osvvqjOzk5FRERo6tSpWrhwofGY8+bN08cff6zly5ervb1dSUlJevDBBz0ixOVyadWqVTp27JgGDhyo2NhYPf/887JYLBo8eLDee+89bdiwQS0tLQoPD1dKSooeeOCB7/ePBFzELK7zvSkJAL3orrvuUmxsrPLy8nw9FQB/h2sSAPiE0+nU5s2b9cEHHyg9Pd3X0wFgwNsNAHxi4sSJCgkJUW5u7ve+cBJA7+LtBgAAYMTbDQAAwIhIAAAARkQCAAAwIhIAAIARkQAAAIz+H/Hb3YJj7rTgAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.countplot(x='binaryClass', data=df, palette='rocket')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:24.711894Z",
+ "iopub.status.busy": "2021-12-15T11:04:24.710795Z",
+ "iopub.status.idle": "2021-12-15T11:04:24.887084Z",
+ "shell.execute_reply": "2021-12-15T11:04:24.886475Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:25.962231Z"
+ },
+ "papermill": {
+ "duration": 0.282734,
+ "end_time": "2021-12-15T11:04:24.887206",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:24.604472",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHqCAYAAACOWt1JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deVhV1f7H8c9hEhACRByRnGfBSypS5lRe58whS8283tKyzKxbppGhJOZUV81MzZK0LKes1FuawzW1tMzCFCs1FScSmRKEmM7vD3+eOpdlggkH4f16Hp/Hs9bae3/3QTyfs6dlsVqtVgEAAPwPJ0cXAAAASidCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADBycXQBpVFKSoby87kzFABQ9jk5WeTnV9HYR0gwyM+3EhIAAOUepxsAAIARIQEAABgREgAAgBEhAQAAGHHhIoByITMzQ+npqcrLy3V0KUCJcnZ2kZeXrzw8zHcw/BlCAoAyLzMzQxcupMjXN0Curm6yWCyOLgkoEVarVTk52UpNTZSkIgcFTjcAKPPS01Pl6xsgN7cKBASUKxaLRW5uFeTrG6D09NQiL09IAFDm5eXlytXVzdFlAA7j6up2TafaCAkAygWOIKA8u9Z//4QEAABgREgAAABGhAQAAGBESAAA/CXLly9Tv3491aXL7erfv5c2bfpEkvTppxt0//0D1a1bRz366EP6+eejkqTt27eqT59uSku7dLX9Dz/EqVu3joqPP+6oXcAVEBIAANcsPv6E3nproWbPfk2ffbZDCxfGqH79htq1a4cWL16gSZOitWHDFnXp0k3PPvuUsrOz1aFDZ4WH36bp06OVmZmpSZOe16hRYxQUVNvRu4P/QUgAAFwzZ2dn5edb9fPPR5WZmanKlSurbt16Wrt2lYYMGab69RvI2dlZffsOkCQdPPi9JOmJJ57Wzz8f1SOPDFedOnXUp08/R+4GroCQAAC4ZjVrBioiYpJWr16hu+7qqqeeelzHjv2shISzmj9/jrp162j7k5x8XufPX37yn4e6du2uo0ePaPDgBxy8F7gSi9VqtTq6iNImKSld+fm8LUBZkZBwQtWq3ezoMsq8zMxMvf76XB0+/JM8PDx1551/V48evY1jT5w4rocfHq7bb++gn38+qoULl8jFhZkCitOVfg+cnCzy9/cyLsORBADANYuPP66vv96j3377TW5ubvLy8pazs7Puvru/li5dop9++kFWq1UXL17Uzp2f6+LFDOXm5mry5Oc1dOg/NGHCC3J3d9fixQscvSswILYB14GPt7vc3F0dXUaJyM7KUdqFLEeXgVIiOztHixbN1/Hjx+Ts7KxGjRrrmWee080319Zvv2Vp6tQonT17Wu7u7goO/ptCQ2/RokXz5enpqUGDhsrJyUkTJ76of/5ziMLCwvW3v93i6F3CH3C6wYDTDSiqgABvRfWa6+gySsQL68coMfGCo8soEk43AJxuAAAA1xEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYMXcDgHLJz89TLi7OJbKt3Nw8paRcLNIyy5Yt0erVK5SefkFt2rTVuHER8vOrZBwbH39CM2ZEKy7uoPz9/TV8+Igrzr4IFAUhAUC55OLirF0H4ktkW7c1DyrS+A0bPtbSpUv0/POTVaNGDc2Z87ImTYrQnDmvFxibm5urcePGqmHDxlq8+G3FxR3QjBnRql69BpMl4S8jJABAKbNmzQrdd98QdejQSZI0YcILuvfeu/Xzz0dUt259u7G7d+9SYuI5LVmyXB4eHqpbt76+/Xaf1qxZQUjAX8Y1CQBQimRnZ+vIkcMKDW1la6tZM1DVq9dQXNyBAuPj4g6qadPm8vDwsLW1atVGcXEHS6RelG2EBAAoRX79NU35+fkFrj/w9fVVSkpKgfEpKSlXGJtcrHWifCAkAEApYrVai7pEsdQBSIQEAChVfHx85eTkVOBIQGpqqvz8/AqM9/OrdIWx5jshgKIgJABAKeLm5qb69Rto3769trYzZ07r7Nkzatq0eYHxTZs2U1zcAWVlZdnavvnmazVt2qxE6kXZRkgAgFKmX7+BWrFiuXbs+K8OH/5J06a9qNDQVqpbt77i4g5o8OD+Skw8J0kKC7tVlSsH6KWXovTzz0e1fv1H2rx5o/r3v9fBe4GygFsgAZRLubl5RX5+wV/ZVlH06tVHKSnJmjXrJaWnp6t16zCNGxchScrKylJ8/Anl5uZKklxdXTVz5mzNmDFVDz00VJUq+WvcuAhuf8R1YbEW/SqZMi8pKV35+bwtKLyAAG9F9Zrr6DJKxAvrxygx8YKjyyiShIQTqlbtZkeXATjUlX4PnJws8vf3Mi7D6QYAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYMRjmQGUSz4+HnJzK5n/ArOzc5WWllmkZZYtW6LVq1coPf2C2rRpq3HjIq44s2Nubq7efvtNbdjwsVJSklW1anX961/j1Lp1W0nSuXO/aO7cl/Xtt98oNzdXTZo00+OPP6V69eoXWNfKle9p7tyXNXz4CD344MOSpH379mrMmEcKjK1du47eeWdVkWveseO/mjDhaXXv3ksREZNs7QMG9FZCwlm7sUuWvKsGDRpJknJycrRgwTxt3fqZfv01TbVq3azhw0eoQ4dOkqT4+OOaMWOqjh07qqysLAUG1tKQIcP09793t63vww/XaOPG/+inn36Qn18lrV69rkB9X3yxU6+9Nltnz55RnTr19PTT49WkyaUJs9LSUjVpUoSOHj2i9PQLqlKlmvr1G6CBAwfbln/77Te1bdsWnToVL2/vm9ShQyeNHPmYPD09r/h+1q/fUDExyyVJZ8+e0T333FWgrgoVKmjLll2SpN9++01vvrlAmzdvUlpaqkJCQvX00+NVo0bNAsv9FYQEAOWSm5uL5r2xrUS2NXpEpyKN37DhYy1dukTPPz9ZNWrU0Jw5L2vSpAjNmfO6cfzMmVP1448/aMKEiQoMDNIvvyTopptusvVPmRIpi8VJs2e/Ljc3N7311kI9++yTBT4g4+NPaNWq9wuEhxYtQvTRR5/atT322EjdfnvHItecmpqquXP/rRYtQoz7MmbMv3THHV1sr318fG1/f+edGG3btlkTJ0apWrXq2rZts154YbyWLVupoKCb5ezsop4971LDho3l4eGhPXu+VHT0JFWrVl3BwS0lSdnZ2br99g5q2rS5tm/fWmD7J04cV0TEM/rnP0eqXbsO+uijNXr66TF67721uummm2SxOKlDh84aNepxeXvfpLi4A5o27UX5+VVSly7dJEkHDuzX4MEPqHHjxkpOTtaMGdG6ePGinnsu0m5bf3xPXVx+/ziuUqVqgfc7KmqiXeBatOg1ffHFTkVGTpGfn59iYt7UuHFjFRPznt26/ipONwBAKbNmzQrdd98QdejQSQ0aNNKECS/om2++1s8/Hykw9ujRI/r00w2aOnWmWrduq+rVa6hly1DVrfv7B31c3AENHDhIDRo01M0319YDDzyohISzSk1NtY3Jy8tTdPQkjR49Vt7eN9ltw9XVVf7+lW1/kpOTdOpUvLp27VHkml9+eZoGDBiowMBaxn338vKy29YfP/Di4g6oc+cuCg1tpRo1amrIkGGqWNFLR48eliTVrBmo7t17qV69+qpRo6b69h2gevUa6MCB723rGDhwkAYPfsB4FEWSPv74AzVr1kJDhw5XnTp19cQTT8vd3UOfffaJJOmmm27S3Xf3V8OGjVW9eg3dccff1aZNW33/faxtHTNnztHf/95NQUG11bJlqB56aJR27NheYFt/3M8/hiFnZ2e7PmdnF8XGfmv3fm/evEnDh49USMjfFBRUW+PGRejkyXh9/fVu435dK0ICAJQi2dnZOnLksEJDW9naatYMVPXqNRQXd6DA+C++2KnAwFrasmWT+vXrqcGD+ysmZrHy8n6febJZs2Bt2bJJFy9eVHZ2tj79dIMaNmwsX9/fP5iWL1+qatWq2w7d/5lPP/2PGjduqtq16xSp5s8++1TnzyfqnnsGXXHdCxfOU69ed+rhh4fr88//a9fXrFkLffXVlzp37hdZrVZt375VeXm5at48uMB6rFarvv32G508eULNm7e46j5dFhd30G4/LBaLbrmltfG9l6QjRw7r++/3X/HIiHTpFIWXl3eB9gEDeqtfv56KjJyghISEKy6/efOnuukmH7Vp09bWlp2drQoV3GyvXVxc5OTkpIMHzXVeK043AEAp8uuvacrPzy9wLt/X11cpKSkFxicknNGZM6f11Ve79eKL03X+fKJmzpwqV1dXDRkyTJIUFTVVEyY8ra5dO8hisahmzUC70wBHjx7R2rWr9dZb7161vry8PG3e/Knuv394kWo+f/685s+fqzlzXpeTk/n76cCBg9W4cRO5u7tr164dev75cZo1a67tw3Ho0OFKTk5Sv3495ezsrAoV3DV16kwFBFSxW8/99w/U6dMnJUnPPPOc7VRDYaSkpBj348iRw3Zt//rXGH377V7l5OTowQcftp1q+F/p6el6771l6tmzt62tcuXKGj9+oho1aqILF35VTMxijRnzsJYtW6EKFdwLrGPjxv+oS5eucnZ2trXdcktrLV++TM2aBcvHx0dvvbVIOTk5Sk5OKvS+FgYhAQBKEau1aNPU5+dblZOTo4iIS+feJemXXxK0du0qW0hYuPA1ubm56bXX3pCbm5vef/9djR//Ly1aFCOLxaLo6EiNGfOU3ZGFK/n66z1KTU3VnXd2LVLNM2dGa+DAwQoKuvKU3QMH/n6EoWHDxkpIOKtVq96zhYTNmzfqq692a9q0V1StWnV9+eUuRUZO0MKFMXanL2bNmqOMjAx9881XevXVf+vmm+uoWbPmV63x//emUKPGj39e6enpios7oNdfn6t69erbXaMhXfq2HxExTjVq1NT99//D1h4UVFtBQbVtrxs3bqJ+/Xpp166d6tz5Trt1nDhxXIcOxWncuAi79rFjn9GLL05U377d5eTkpNtv76iGDRtfMYBdK0ICAJQiPj6+cnJyUkpKsu1wvnTpgj8/P78C4ytVqiQ3NzdbQJCkoKCbde7cL5KkU6dO6uOP1+rDDz9R5coBkqTnn5+sbt066uuv96h582D99NOPiox8zrZ8Xl6eYmO/1aZNn2jFig/ttrdx438UFnarXS2FqTk29lvt3v2FFix4VZKUn58vSdq06RNt377H+F40bNhYa9eutr1esGCeRo0ao3bt2kuS6tdvoH37vtbHH6/Vo4+OsY27/F7Uq1dfx479rPfff0cvvjjNuI3/5edXSSkpyXZtpvc+IKCKAgKqqE6dujp/PlFLl75lFxJyc3MVGfmcLl7M0Jw5r//pxYSenhUVGFhLCQlnCvR9+ukG1a1bz3aHx2WVK1fWnDmv6+LFDGVn58jX11d9+nSz+3dwPRASAKAUcXNz+/8Pv736299ukSSdOXNaZ8+eUdOmBb8NN2vWQtnZ2Tp37hdVqVJVknT69ElVrVpNkpSVlSVJBb5hWiwWWa1WVaxYUUuXvm/XN3VqlBo3bmr3zV6SLl7M0I4d/9Vzz00qcs0LFixRfv7v10m88cal0x0jRoy64ntx7NhRVatWzfY6KytLzs7/ux9Of3okw2q1FunbddOmzbRv3179858jbW379u3VoEH3X2Ubv58KyM/P15QpkTp9+qTmzVtku/XxSn77LUtnzpxW1ar2H/BWq1Wfffap+vW754rLenpWlKfnpTsqkpLOKzy83dV2sUgICQBQyvTrN1Bz576ihg0bqVq1Gnr11VcUGtpKdevWV1zcAU2ZEqk5c15XQEAVtWnTVrVr19H06dF67LEnlJR0XsuWxei++4ZIkm6+ubaqV6+padOmaOTIR+Xq6qp3331bbm5uat68hZycnOzuhJAkd3d3+fn5FTg18N//bpWLi6tuu+32ItUsye4IgyTbhXyX+48cOay9e/eoVaswubu764svdmjdug8VHT3Dtkx4+G1avHiB/PwqqWrVavrii53au3eP7r//0mmVLVs+k5OTRfXqNZB06dTIxo3/0eTJL9nWkZR0XsnJSfrllwTl5OTo8OEfJcn2Tf2uu/rpH/8YpHfeifn/WyA/UGbmRXXp0t22zvPnE9W4cVO5ubnpwIH9ev/9d+1CxYwZ0fr22280a9Yc5eTkKCnpvCTJ19dPzs7O+uijD+Tv7686derpwoULWrJkkTw8PBQefpvde/Ttt9/o3LlfjNc77N//nTIy0hUUVFtHjhzWK69MV69efa5418a1IiQAQCnTq1cfpaQka9asl5Senq7WrcNs56SzsrIUH39Cubm5ki5d1T5jxmzNmjVNI0Y8oEqV/NW37wDbHQSurq6aOXO25s+fozFjHlF+fp4aNGikmTPn6KabfIpU18aN/1GnTneqQoUKRaq5MFxdXbV162YtWfKG8vLyFBRUWy+88KLatetgG/Pkk+O0YMGrioqaqAsXflVgYC1FREyy3Y3g4uKsmJjFOnXqpJycnBQUdLOef36y2rfvaFvHhx+u0ZIlb9heDx9+KUzt3LlX0qVQNWXKDM2fP0dvvrlQderU+//36tJtoW5ubvrwwzU6dmymrNZ81agRqBEjRql//4G2da5f/5Hdui9btepjVa9eQ7m5uXr11X8rMfGcKlb0UosWIZoz5/UCRxw2bvyPbrmldYELM6VLRx/mzHlFv/xyVr6+furVq4+GDx9R6Pe7sCzWol4lUw4kJaUrP5+3BYUXEOCtqF5zHV1GiXhh/RglJl5wdBlFkpBwQtWq2X8rLu1PXASuN9PvgSQ5OVnk7+9lXIYjCQDKJT60gavjYUoAAMCoxELC66+/rj59+qhly5Zq3769pkyZooyMDLsxsbGx6tevn1q0aKEePXpo+3b7x1hmZGRo/PjxCg0NVVhYmKZNm2b3VDFJWrNmjTp37qzg4GANHTpUJ06cKPZ9AwCgLCqxkPDtt9/qoYce0gcffKCXX35ZO3fu1JQpU2z9KSkpGjFihEJDQ7V27Vr16dNHo0eP1vHjx21joqKi9P333ysmJkazZ8/W+vXr9frrvz817Msvv1RkZKRGjRql1atXy9/fXyNHjrRd4AMAAAqvxELCokWL1Lt3b9WtW1etW7fWE088oS1bttj6161bJy8vL0VERKh+/fp6+OGHFRwcrBUrVkiS0tLStG7dOk2cOFHBwcEKDw/X2LFjtXz5cttDOd5991317NlT99xzjxo2bKipU6cqISFBO3bsKKndBACgzHDYNQkpKSny9v59wov9+/crLCxMFovF1hYeHq7Y2Eszax08eFAWi0WtW7e2609KStKpU6ds62jb9vcJMDw9PRUcHGxbBwAAKDyH3N1w4cIFvfXWW+rfv7+tLTk5WU2aNLEb5+fnp6SkS5NVJCUlycfHx26Ci0qVKtn6goKClJycbGv745jkZPtHbF7NlW4FAXBJQEDBGe1Ks3PnnOTiwnXaKN+cnJyK/Ltb4iEhOztbjz/+uGrVqqWRI39/QtXVHtdg6v/jUYfrieckoKhutA/Nv+pGe05Cfn6+cnPzHV0G4FD5+fnG390/e05CiUbr3NxcPfnkk8rIyNC8efPsJrzw9/cv8I0/JSVF/v7+ki5NZpGWlmZ3N8PlowyXx5iOGpiOLgAAgKsrsZCQn5+vZ599VvHx8XrjjTdUsWJFu/7g4GDt2WM/E9ju3bsVEhIiSWratKmsVqv27t1r1+/v76/AwEDjOjIzM7V//37bOgAAQOGV2OmGiRMnas+ePXrjjTeUk5OjxMRESZe+/Ts7O6t3796aN2+eoqOjdd9992nLli2KjY213Sbp6+urXr16acqUKYqOjtbFixc1e/ZsDR482DbD15AhQzRixAi1atVKISEhmj9/vqpVq6Z27a7vrFgAbnw+3u5yc3ctkW1lZ+Uo7UJWocdv375VH3ywSj/8EKeMjAzbvAJXEh9/QjNmRCsu7qD8/f01fPgI9ejR+6+WDZRcSFi9+tKc4Hfffbdd+5YtWxQYGCg/Pz8tWrRIUVFReu+991SrVi3NmzdPtWvXto2NjIxUVFSUhg0bJldXV/Xt21ejRv0+zWh4eLgmTZqk+fPnKzExUS1bttTChQvl6loy/xEAuHG4ubuW2HwbL6wfIxUhJGRlZSk0tJVatWqjhQtf+9Oxubm5GjdurBo2bKzFi99WXNwBzZgRrerVa9imbQauVYmFhB9//PGqY1q2bKkPPvjgiv0VK1bU9OnTNX369CuOGTBggAYMGHBNNQJAadC1aw9J0r59f34EQZJ2796lxMRzWrJkuTw8PFS3bn19++0+rVmzgpCAv4x7ggDgBhYXd1BNmzaXh4eHra1VqzaKizvowKpQVhASAOAGlpKSIj8/+zu4fH19lZJStOfDACaEBAC4ofFMFxQfQgIA3MD8/CoVOGqQmppa4OgCcC0ICQBwA2vatJni4g4oK+v3uye++eZrNW3azIFVoawgJABAKfPrr2k6fPhHnT59afK6w4d/1OHDPyonJ0dxcQc0eHB/JSaekySFhd2qypUD9NJLUfr556Nav/4jbd68Uf373+vIXUAZ4ZAJngDA0bKzci49v6CEtlUUO3d+rqlTJ9teDx8+RJK0atXHysrKUnz8CeXm5kqSXF1dNXPmbM2YMVUPPTRUlSr5a9y4CG5/xHVhsV5tZqVyiAmeUFQBAd4l9mAeR3th/ZgbboKnhIQTqlbtZkeXATjUlX4PSs0ETwAA4MZBSAAAAEaEBAAAYERIAAAARoQEAOWARVZrvqOLABzm0r9/S5GXIyQAKPPc3NyVmnpeubk54oYulCdWq1W5uTlKTT0vNzf3Ii/PcxIAlHl+fgFKT09TcvIvys/Pc3Q5QIlycnKWh4eXvLx8irwsIQFAmWexWOTt7Stvb19HlwLcUDjdAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCoREPCpk2bNGzYMN1yyy1q1KiRXd+ePXvUqFEjuz99+vSxG5ORkaHx48crNDRUYWFhmjZtmvLy8uzGrFmzRp07d1ZwcLCGDh2qEydOFPt+AQBQFrmU5MYyMzPVtm1b3XrrrXrllVeMY3bu3Gn7u4uLfXlRUVE6cOCAYmJilJGRoWeeeUZeXl4aPXq0JOnLL79UZGSkIiMjFRISovnz52vkyJHasGFDgXUBAIA/V6KfnJePDOzZs+eKYwICAoztaWlpWrdund566y0FBwdLksaOHatXXnlFjz76qJycnPTuu++qZ8+euueeeyRJU6dOVXh4uHbs2KFOnTpd570BAKBsK3XXJHTu3FkdO3bUk08+qTNnztjaDx48KIvFotatW9vawsPDlZSUpFOnTkmS9u/fr7Zt29r6PT09FRwcrNjY2JLbAQAAyohScww+ICBA0dHRat68uVJTUzV//nw98MADWr9+vdzd3ZWUlCQfHx85OzvblqlUqZIkKSkpSUFBQUpOTra1/XFMcnJykWrx9/f66zsElGEBAd6OLgFACSg1IaFu3bqqW7eu7XXz5s3VqVMnbdu2Td27d5fVai2wjMViKZZakpLSlZ9fcHvAlZS3D83ExAuOLgHAdeLkZLnil+NSd7rhMi8vLwUFBen06dOSpMqVKystLc3uboakpCRJkr+/vyTzUQPT0QUAAHB1pTYkZGVl6dSpU6pRo4YkqWnTprJardq7d69tzO7du+Xv76/AwEBJUnBwsN1FkZmZmdq/f79CQkJKtngAAMqAEj3dkJqaqrNnzyo+Pl6SdOjQIUlSvXr1tHbtWlWuXFkNGjTQr7/+qnnz5snT01MdOnSQJPn6+qpXr16aMmWKoqOjdfHiRc2ePVuDBw+Wk9OlrDNkyBCNGDFCrVq1st0CWa1aNbVr164kdxMAgDKhREPC1q1bNWHCBNvru+++W5K0ZcsW5ebmatq0aUpISJC3t7dCQ0MVExOjihUr2sZHRkYqKipKw4YNk6urq/r27atRo0bZ+sPDwzVp0iTNnz9fiYmJatmypRYuXChXV9eS20kAAMoIi9V0RWA5x4WLKKqAAG9F9Zrr6DJKxAvrx3DhIlCG3JAXLgIAAMciJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAAKNCh4QzZ87IarUWaLdarTpz5sx1LQoAADheoUPCHXfcoeTk5ALtqampuuOOO65rUQAAwPEKHRJMRxEkKSsrS25ubtetIAAAUDq4XG3AvHnzJEkWi0VvvvmmPD09bX35+fnat2+f6tevX3wVAgAAh7hqSPj4448lXTqSsHHjRjk7O9v6XF1dFRgYqKeffrr4KgQAAA5x1ZCwadMmSdLQoUM1b948+fj4FHtRAADA8a4aEi5btmxZcdYBAABKmUKHBEn66quvtGvXLp0/f175+fl2fS+99NJ1LQwAALV2Y4UAABfpSURBVDhWoUPC4sWLNWvWLNWpU0dVq1aVxWIpzroAAICDFTokvPPOO4qIiNDQoUOLsx4AAFBKFPo5Cb/++qs6duxYjKUAAIDSpNAh4c4779Tu3buLsxYAAFCKFPp0Q8uWLTVnzhwdPnxYjRs3lqurq11/7969r3txAADAcQodEqKioiRJS5cuLdBnsVgICQAAlDGFDgk//PBDcdYBAABKmUJfkwAAAMqXQh9JuDzR05WMHj36LxcDAABKj0KHhMsTPV2Wm5urX375RW5ubqpSpQohAQCAMqbQIeHyRE9/lJSUpGeffVb33XffdS0KAAA43l+6JsHf319jx47VzJkzr1c9AACglPjLFy66uLjo3Llz16MWAABQihT6dMO+ffvsXlutVp07d06LFy9W8+bNr3thAADAsQodEgYPHiyLxSKr1WrXHhoaqilTplz3wgAAgGMVOiRs2bLF7rWTk5MqVaqkChUqXPeiAACA4xU6JNSsWbM46wAAAKVMoUOCJB07dkyLFy/WkSNHZLFYVL9+fT344IOqU6dOcdUHAAAcpNB3N+zatUu9e/fWoUOHFBISohYtWiguLk533XWXvvzyy+KsEQAAOEChjyS88sorGjRokCIiIuzap0yZopdfflmrV6++7sUBAADHKfSRhMOHD2vQoEEF2gcPHqyffvrpuhYFAAAcr9AhoWLFikpISCjQfubMGXl5eV3XogAAgOMVOiR06dJFEydO1I4dO5SZmanMzEx9/vnnioyMVJcuXYqzRgAA4ACFvibh2Wef1YQJEzRixAhZLBZbe9euXfXMM88US3EAAMBxCh0SKlasqLlz5yo+Pl5HjhyRJDVo0EC1atUqtuIAAIDjFDokPPHEE2rSpIkeeeQRBQUF2doXLVqkuLg4zZ49u1gKBAAAjlHoaxK+/vprdejQoUB7+/bttXfv3utaFAAAcLxCh4QLFy7I09OzQLu7u7vS0tKua1EAAMDxCh0SgoKCtGvXrgLtu3btUmBg4HUtCgAAOF6RpoqeNWuWsrOzdeutt8pisWjnzp169dVX9eSTTxZnjQAAwAEKHRKGDBmipKQk/fvf/9b06dMlSW5ubho+fLiGDh1abAWWJX5+nnJxcXZ0GSUiNzdPKSkXHV0GAOAvKNIskGPGjNGIESN0+PBhSVL9+vWN1ynAzMXFWbsOxDu6jBJxW/Ogqw8CAJRqRQoJkuTh4aHg4ODiqAUAAJQihb5wEQAAlC+EBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYFSiIWHTpk0aNmyYbrnlFjVq1KhAf2xsrPr166cWLVqoR48e2r59u11/RkaGxo8fr9DQUIWFhWnatGnKy8uzG7NmzRp17txZwcHBGjp0qE6cOFGs+wQAQFlVoiEhMzNTbdu21ciRIwv0paSkaMSIEQoNDdXatWvVp08fjR49WsePH7eNiYqK0vfff6+YmBjNnj1b69ev1+uvv27r//LLLxUZGalRo0Zp9erV8vf318iRI5Wbm1sSuwcAQJlSoiGhT58+GjVqlFq2bFmgb926dfLy8lJERITq16+vhx9+WMHBwVqxYoUkKS0tTevWrdPEiRMVHBys8PBwjR07VsuXL1d+fr4k6d1331XPnj11zz33qGHDhpo6daoSEhK0Y8eOktxNAADKhCLP3VBc9u/fr7CwMFksFltbeHi4vvjiC0nSwYMHZbFY1Lp1a7v+pKQknTp1SkFBQdq/f7/dtNWenp4KDg5WbGysOnXqVOha/P29rsMeISDA29EloJjwswXKh1ITEpKTk9WkSRO7Nj8/PyUlJUmSkpKS5OPjI2fn36darlSpkq0vKChIycnJtrY/jklOTi5SLUlJ6crPt17Lbvyp8vYfa2LiBUeXUGL42QK4UTk5Wa745bjU3N1gtf75h7Kp/49HHQAAwPVVakKCv79/gW/8KSkp8vf3lyRVrlxZaWlpdnczXD7KcHmM6aiB6egCAAC4ulITEoKDg7Vnzx67tt27dyskJESS1LRpU1mtVu3du9eu39/fX4GBgcZ1ZGZmav/+/bZ1AACAwivRkJCamqpDhw4pPj5eknTo0CEdOnRI2dnZ6t27t9LT0xUdHa2jR49q0aJFio2N1b333itJ8vX1Va9evTRlyhTt379fu3fv1uzZszV48GA5OV3ajSFDhmj9+vVavXq1Dh8+rOeee07VqlVTu3btSnI3AQAoE0r0wsWtW7dqwoQJttd33323JGnLli0KDAzUokWLFBUVpffee0+1atXSvHnzVLt2bdv4yMhIRUVFadiwYXJ1dVXfvn01atQoW394eLgmTZqk+fPnKzExUS1bttTChQvl6upaYvsIAEBZYbFe7YrBcqg4727YdSD+uq+3NLqteVC5ugI+IMBbUb3mOrqMEvHC+jHl6mcLlHU3xN0NAACgdCEkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAo1IVEsaPH69GjRrZ/YmJibEbExsbq379+qlFixbq0aOHtm/fbtefkZGh8ePHKzQ0VGFhYZo2bZry8vJKcC8AACgbXBxdwP/q3r27IiIibK+9vLxsf09JSdGIESN01113acaMGdqyZYtGjx6tdevWqXbt2pKkqKgoHThwQDExMcrIyNAzzzwjLy8vjR49uqR3BQCAG1qpOpIgSe7u7goICLD98fDwsPWtW7dOXl5eioiIUP369fXwww8rODhYK1askCSlpaVp3bp1mjhxooKDgxUeHq6xY8dq+fLlys/Pd9QuAQBwQyp1IWHr1q1q27atevfurYULFyo3N9fWt3//foWFhclisdjawsPDFRsbK0k6ePCgLBaLWrdubdeflJSkU6dOldxOAABQBpSq0w3t27dXjx49VLVqVR08eFAzZsxQRkaGnnrqKUlScnKymjRpYreMn5+fkpKSJElJSUny8fGRs7Ozrb9SpUq2vqCgoELV4e/vdfVBuKqAAG9Hl4Biws8WKB9KVUjo0aOH7e+NGjWSk5OTJk+erCeffFIWi0VWq/VPlzf1//GoQ2ElJaUrP//Pt3Utytt/rImJFxxdQonhZwvgRuXkZLnil+NSd7rhj5o1a6aLFy8qJSVFkuTv76/k5GS7MSkpKfL395ckVa5cWWlpaXZ3M1w+ynB5DAAAKJxSHRIOHz4sDw8P+fn5SZKCg4O1Z88euzG7d+9WSEiIJKlp06ayWq3au3evXb+/v78CAwNLrnAAAMqAUhUSXnrpJcXGxurUqVPatGmTXnrpJd177722Uwa9e/dWenq6oqOjdfToUS1atEixsbG69957JUm+vr7q1auXpkyZov3792v37t2aPXu2Bg8eLCenUrWrAACUeqXqmoQjR47o4YcfVnp6umrUqKF7771XI0eOtPX7+flp0aJFioqK0nvvvadatWpp3rx5tmckSFJkZKSioqI0bNgwubq6qm/fvho1apQD9gYAgBubxXq1qwHLoeK8cHHXgfjrvt7S6LbmQeXq4raAAG9F9Zrr6DJKxAvrx5Srny1Q1t2wFy4CAADHISQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADBycXQBAABcKx9vd7m5uzq6jBKRnZWjtAtZJbpNQgIA4Ibl5u6qqF5zHV1GiXhh/RiphEMCpxsAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYMcETikVubp4CArwdXQYA4C8gJKBYuLg4a94b2xxdRokZPaKTo0sAgOuO0w0AAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiLkbAJR5fn6ecnFxdnQZJSI3N08pKRcdXQbKCEICgDLPxcVZuw7EO7qMEnFb8yBHl4AyhNMNAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAqEyGhIULF6pdu3YKCQnRo48+qqSkJEeXBADADafMPUxpzZo1WrBggWbMmKHAwEBNnTpVTz31lN5++21HlwYAxS43N08BAd6OLgNlRJkLCe+8846GDx+uLl26SJKmTp2qO++8Uz/99JMaNmxYqHU4OVmKrb4KruXj0bCS5O3l7ugSSpRPlfLzH3Nx/o4Ul/Lyu+fi4qy33/vS0WWUmGGDwvndK8Z1WqxWq/W6b9FBsrOzFRISorfffltt2rSxtXfu3FmjRo3SPffc48DqAAC4sZSpaxJSUlKUn58vf39/u/ZKlSopOTnZQVUBAHBjKlMhAQAAXD9lKiT4+fnJycmpwN0MycnJqlSpkoOqAgDgxlSmQoKbm5saN26sPXv22NpOnjyp06dPKyQkxIGVAQBw4ylzdzcMGTJEU6dOVZMmTWy3QIaFhRX6zgYAAHBJmbq74bKFCxdq2bJlunDhgm699Va9+OKLqly5sqPLAgDghlImQwIAAPjrytQ1CQAA4PohJAAAACNCAgAAMCIkAAAAI0ICygSmBwdK3qZNmzRs2DDdcsstatSokaPLQTEgJOCGd3l68MjISL3//vu6cOGCnnrqKUeXBZR5mZmZatu2rUaOHOnoUlBMuAUSN7y+ffuqU6dOGjNmjKRLT9m88847tW7dOh6iBZSAPXv26IEHHtCPP/7o6FJwnXEkATe07Oxs/fDDD2rbtq2trVatWqpZs6ZiY2MdWBkA3PgICbihMT04ABQfQgIAADAiJOCGxvTgAFB8CAm4oTE9OAAUnzI3VTTKH6YHBxwjNTVVZ8+eVXx8vCTp0KFDkqR69erJzc3NkaXhOuEWSJQJTA8OlLwPPvhAEyZMKNC+ZcsWBQYGOqAiXG+EBAAAYMQ1CQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICUA5MXToUEVERFyxf/z48frHP/5RcgVdJ3v27FGjRo2UkJDg6FKAMocnLgKQJEVERCg/P9/RZRTw0UcfaeXKlfrhhx+Ul5enwMBAtW/fXsOGDVPVqlUdXR5QpnEkAYAkydvbWz4+PsW+nezs7EKPfe655xQREaFWrVrpjTfe0IYNGxQREaHz58/rrbfeKsYqAUgcSQDKlfz8fM2aNUurVq1STk6OunfvrokTJ8rd3V3jx49XQkKCYmJiJMn2unv37lqwYIHS0tIUFham6Oho2wybJ0+e1PTp0/Xdd9/pwoULCgoK0oMPPqi7777bts2hQ4eqVq1aqlKlilavXq3c3FwNHjxYGzZs0MaNG+3qmzBhgk6dOqVly5Zp48aNWrNmjV555RX17NnTNqZmzZoKDw9XWlqacR+tVqsmTpyo3bt369y5cwoICFDPnj01evRo23wCCQkJio6O1ldffaXMzEwFBARo0KBBeuihhyRJmzdv1rx583Ts2DG5urqqdu3aioqKUtOmTa/bzwK4ERASgHJk48aN6tGjh5YvX64TJ04oIiJCHh4eev75543jv//+e1WqVEkLFy5Uenq6/vWvf2n69OmaPn26JOnixYsKDw/X6NGj5enpqe3bt+u5555TtWrV1LZtW9t6PvnkE/Xu3VsxMTHKy8uTj4+PFixYoK+++kpt2rSRJKWnp+vTTz/V5MmTJV06zXDzzTfbBYQ/utJRD6vVKn9/f7388svy9/fXjz/+qMjISLm4uGjMmDGSpEmTJikrK0sxMTHy9vbWqVOndP78eUlSYmKixo4dqyeeeELdunVTdna24uLi5OzsfA3vOHBjIyQA5Yivr68mT54sZ2dn1atXT2PHjtWLL76op556yjje1dVV06ZNs30DHzRokJYuXWrrb9SokRo1amR7PXToUH3xxRdav369XUioUqWKJk2aJCen389wtm/fXitXrrSFhPXr18vNzU1du3aVJB0/flx169Yt8j46OTnpySeftL0ODAzUyZMntXz5cltIOHPmjLp06aImTZrYxlyWmJhoO8pyub1evXpFrgMoCwgJQDnSokULu2/EoaGhysnJsU31+7/+d8rfKlWq2L5xS1JmZqZee+01bdu2zfbhmp2drbCwMLv1NGvWzC4gSNJ9992nMWPGKC0tTT4+Plq5cqXuuusuVahQQdKlIwIWi+Wa9nPlypVatWqVTp8+rczMTOXm5uqPc9kNGzZMkZGR+vzzz9WmTRt17NhRrVu3lnQp+LRr1069e/fWrbfeqjZt2ujvf/+7qlevfk21ADcyLlwEyrGrTQLr6upq99pisdgtM2PGDH388cd67LHHtHTpUn344Ydq3769cnJy7Jbz8PAosO727durcuXK+uijj3To0CEdPHhQAwcOtPXXqVNHR48eLfI+ffLJJ4qKilKPHj20aNEirV27Vo899phdTf3799fWrVt13333KTExUSNGjNDTTz8tSXJ2dtbixYv19ttvq0WLFtq0aZO6du2qbdu2FbkW4EZHSADKke+//155eXm21999951cXV0VFBR0Tevbu3evevfurR49eqhx48aqVauWjh8/XqhlnZycNGDAAK1atUorV67U3/72NzVo0MDWf9ddd+nEiRPasGGDcfkrXbi4d+9eNWnSRMOHD1fz5s1Vu3ZtnT59usC4KlWqqH///poxY4aio6O1bt06paenS7oUhoKDg/XII4/o3XffVevWrfXBBx8Uar+AsoTTDUA5kpqaqsmTJ2vYsGE6efKk5syZo4EDB8rT0/Oa1lenTh1t2bJFXbt2laenp5YsWaJz586pcuXKhVp+wIABeu2113Ts2DG9+OKLdn3dunXT3XffrWeffVaHDx9Whw4dVLVqVZ06dUpr167VTTfdpAkTJhhrWr16tTZv3qyGDRtq27Zt2rRpk92YqKgodejQQXXq1NFvv/2mTZs2qXr16qpYsaL27dunL7/8Uu3atVNAQIBOnDihH3/8UQMGDLim9wi4kRESgHKka9euqlixogYPHqzs7Gx169ZNzzzzzDWvb8KECXr++ef1wAMPyMvLSwMHDlTXrl118uTJQi1fpUoVdezYUXv27FH37t0L9E+fPl1t27bVypUrtXTpUuXn5yswMFAdO3bUAw88YFznvffeq59++knPPfeccnNz1alTJz3++ON2IcRqtWrq1Kk6e/asPDw8FBISojfeeEMWi0Xe3t767rvvtHz5cqWlpSkgIEC9e/fWo48+em1vEnADs1ivdlISAIrRgAEDFBISookTJzq6FAD/g2sSADhEUlKSVq5cqbi4OA0bNszR5QAw4HQDAIe49dZb5ePjo4iIiGu+cBJA8eJ0AwAAMOJ0AwAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADD6P1iFs4z5GXFzAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.countplot(x='binaryClass', data=df, hue='sex', palette='BuPu')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:25.095631Z",
+ "iopub.status.busy": "2021-12-15T11:04:25.094592Z",
+ "iopub.status.idle": "2021-12-15T11:04:25.267793Z",
+ "shell.execute_reply": "2021-12-15T11:04:25.267250Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:26.138981Z"
+ },
+ "papermill": {
+ "duration": 0.279812,
+ "end_time": "2021-12-15T11:04:25.267948",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:24.988136",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAHqCAYAAACdjZ29AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxU1f3/8fds2UOWScKWhEAQCEuCEQ2gorauKEXQb7X6s9oF/apUqbaKpRZFsNrFYmurovVLqbXuuOCCFRXXoFhJkFUigWyQZLKQPZnl9wcyMiQhCUwymdzX8/HoH3POnZnPtWTmPeeee47J4/F4BAAADMcc6AIAAEBgEAIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAg7IGuoBAqK5ukNvNnZEAgIHNbDYpLi6y035DhgC320MIAAAYHpcDAAAwKEIAAAAGRQgAAMCgCAEAABgUIQAAAIMiBAAAYFCEAAAADIoQAACAQRECAAAwKEIAAAAGRQgAAMCgCAEAABgUIQAAAIMiBAAAYFCEAAx424rKlbe7VC63O9ClAEC/Yg10AUBvcbnd+s2Tb2njrmJJUvoQu37/4wsVGRYS4MoAoH9gJAAD1mc7i7wBQJIK9jn01hc7A1gRAPQvhAAMWNUNTe3b6tu3AYBREQIwYE0bO0JR4aHexzaLWWdlpgewIgDoX0wej8cT6CL6msNRL7fbcKdtSHsravRS7pdqbXPpwpMzlJGSFOiSAKDPmM0m2e1RnfYTAgAAGKC6CgFcDgAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAYVsBBw4403auzYsdqwYYO3LS8vT3PnztWkSZM0c+ZMrV+/3uc5DQ0NWrhwobKzs5WTk6P77rtPLperr0sHAGBACEgIeOmll9TU1OTTVl1drXnz5ik7O1urV6/W7NmzNX/+fBUWFnqPWbJkiTZv3qyVK1dq+fLlWrNmjR5++OE+rh4AgIGhz0PA/v379eCDD2rp0qU+7a+++qqioqK0aNEijR49Wtddd50yMzP1zDPPSJJqa2v16quv6s4771RmZqamTZumBQsW6KmnnpLb7e7r0wAAIOj1eQhYtGiRrrvuOg0bNsynPT8/Xzk5OTKZTN62adOmKS8vT5K0ZcsWmUwmnXzyyT79DodDxcXFfVM8AAADiLUv3+zpp5+W0+nU5Zdf3q6vqqpKGRkZPm1xcXFyOBySJIfDoZiYGFksFm9/fHy8ty81NbXbddjtUcdSPgAAA0qfhYDS0lI99NBDevrppzvs93g8R31+R/2Hjxr0hMNRL7f76O8HAECwM5tNR/3h22chYOvWraqsrNS5557r037NNddozpw5stvtqqqq8umrrq6W3W6XJCUkJKi2tlYul8s7GnBolODQMQAAoPv6LARMnTpVr7zyik/brFmztHTpUp122mlau3atVq5c6dOfm5urrKwsSdL48ePl8Xi0ceNG5eTkePvtdruSk5P75BwAABhI+mxiYFRUlMaMGePzP0lKTk7W4MGDNWvWLNXX12vZsmUqKCjQihUrlJeXp8suu0ySFBsbq4suukhLly5Vfn6+cnNztXz5cl1xxRUym1nzCACAnuo3355xcXFasWKFPv/8c82ePVurV6/WQw89pLS0NO8xixcv1vjx43X11Vfrpptu0syZM3X99dcHrmgAAIKYydPVjLwBiImBAAAj6GpiYL8ZCQAAAH2LEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAAAABtWnIeDPf/6zzjvvPGVmZmr69Om69dZbVVFR4e3Py8vT3LlzNWnSJM2cOVPr16/3eX5DQ4MWLlyo7Oxs5eTk6L777pPL5erLUwAAYMDo0xAwatQo3X333Xr99df1yCOPqKysTAsXLpQkVVdXa968ecrOztbq1as1e/ZszZ8/X4WFhd7nL1myRJs3b9bKlSu1fPlyrVmzRg8//HBfngIAAAOGyePxeAL15u+8845uvfVWffHFF1q1apVWrlypdevWyWQySZKuvPJKZWZm6vbbb1dtba2mTZumJ554QlOnTpUkPf/883rggQf04Ycfymzufp5xOOrldgfstAEA6BNms0l2e1Tn/X1Yi4+6ujqtWbNG2dnZkqT8/Hzl5OR4A4AkTZs2TXl5eZKkLVu2yGQy6eSTT/bpdzgcKi4u7tviAQAYAKx9/YavvPKKFi9erMbGRmVlZWnFihWSpKqqKmVkZPgcGxcXJ4fDIUlyOByKiYmRxWLx9sfHx3v7UlNTu13D0VIRAABG0ech4Dvf+Y4yMzNVVlamv/zlL/rNb36jP//5z+rqqkRH/YePGvQElwMAAEbQ1eWAPg8BUVFRioqKUlpamkaNGqUZM2Zo165dstvtqqqq8jm2urpadrtdkpSQkKDa2lq5XC7vaMChUYJDxwAAgO4L6DoBh37dm81mZWZmasOGDT79ubm5ysrKkiSNHz9eHo9HGzdu9Om32+1KTk7uu6IBABgg+iwEtLW16U9/+pPy8/NVUlKijRs36pe//KUmTJigtLQ0zZo1S/X19Vq2bJkKCgq0YsUK5eXl6bLLLpMkxcbG6qKLLtLSpUuVn5+v3NxcLV++XFdccUWP7gwAAAAH9dktgk6nUwsWLNCmTZtUU1OjxMREnXrqqbrpppuUlJQkSdq0aZOWLFminTt3KiUlRQsXLtQZZ5zhfY2GhgYtWbJEb731lmw2m+bMmaPbbrvNZ7JgdzAnAABgBF3NCQjoOgGBQggAABhBv10nAAAABBYhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADCoHoWAF154QRdffLGys7NVVFQkSXr88ce1du3aXikOAAD0nm6HgGeeeUb333+/zjnnHDmdTm97XFycnnzyyV4pDgAA9J5uh4Ann3xSd999t2688UZZLBZv+4QJE7Rr165eKQ4AAPSeboeAPXv2KDMzs117RESE6uvr/VoUAADofd0OAYmJidq7d2+79i+++EIpKSl+LQoAAPS+boeAiy++WPfdd592794tk8mk5uZmrV+/Xn/4wx90ySWX9GaNAACgF5g8Ho+nOwe6XC4tWrRIL7/8sjwej0wmkyRp7ty5Wrp0qfdxMHA46uV2d+u0AQAIWmazSXZ7VKf93Q4BhxQVFWnLli1yu92aOHGiUlNTj7vIvkYIAAAYgd9DwEBACAAAGEFXIcDa3Re68847O2w3mUwKCQnRyJEjdcEFFyg+Pr7nVQIAgD7X7ZGAq666Stu2bZPT6dTIkSMlSYWFhbJarUpLS9Pu3btlNpv11FNPafTo0b1a9PFiJAAAYARdjQR0++6A888/X9nZ2Vq/fr1Wr16t1atX67333tNJJ52kOXPmaP369crKytL999/vl8IBAEDv6nYI+Pvf/65bbrlFMTEx3raYmBgtWLBAjz32mCIjIzV//nxt2bKlVwoFAAD+1e0QUFlZ6bNnwCFtbW2qqqqSJNntdjU1NfmvOgAA0Gu6HQKmTJmie+65x7t7oHTwdsFly5ZpypQpkqSCggINGzbM/1UCAAC/6/bEwOLiYt14443auXOn4uLiZDKZVFVVpbFjx+qvf/2rhg8frnfeeUfNzc2aOXNmb9d9XJgYCAAwAr+vE/Dxxx97dw0cPXq0pk+ffnwVBgAhAABgBH4NAbW1tfrggw9UWlqq1tZWn7758+cfe5V9jBAAADACvy0WlJ+fr3nz5snj8ai+vl7x8fFyOBwKCwtTUlJSUIUAAADQg4mBv//973XuuecqNzdXoaGh+ve//613331X48eP1y9+8YverBEAAPSCboeAbdu26ZprrpHZbJbZbFZra6uGDBmiX/ziF3rggQd6s0YAANALuh0CLBaLbDabpIPrAezbt0+SFBcXp9LS0t6pDgAA9JpuzwkYM2aMtm3bptTUVGVlZemRRx6R2+3Wc889591LAAAABI9ujwRcf/31slgskqSbb75ZVVVVmjdvnjZu3Khf//rXvVYgAADoHT1eJ+BwNTU1iomJkclk8mdNvY5bBAEARuC3WwQ7EhsbezxPBwAAAdTtywEAAGBgIQQAAGBQhAAAAAyKEAAAgEERAgAAMKg+CwEPP/ywZs+ercmTJ2vGjBlaunSpGhoafI7Jy8vT3LlzNWnSJM2cOVPr16/36W9oaNDChQuVnZ2tnJwc3XfffXK5XH11CgAADCh9FgK++OIL/fSnP9WLL76oP/7xj/rwww+1dOlSb391dbXmzZun7OxsrV69WrNnz9b8+fNVWFjoPWbJkiXavHmzVq5cqeXLl2vNmjV6+OGH++oUAAAYUI5rsaDj8cYbb2jx4sX69NNPJUmrVq3SypUrtW7dOu/iQ1deeaUyMzN1++23q7a2VtOmTdMTTzyhqVOnSpKef/55PfDAA/rwww9lNnc/z7BYEADACHp1saDjUV1drejoaO/j/Px85eTk+Kw+OG3aNH388ceSpC1btshkMunkk0/26Xc4HCouLlZqamq33/to/0EAADCKgISAuro6PfHEE7rkkku8bVVVVcrIyPA5Li4uTg6HQ5LkcDgUExPj3b9AkuLj4719PQkBjAQAAIygq5GAPr87oLW1VT/72c+UkpKia6+91tve1VWJjvqDbc8CAAD6kz4dCXA6nfr5z3+uhoYGrVy5Ulbrt29vt9tVVVXlc3x1dbXsdrskKSEhQbW1tXK5XN7RgEOjBIeOAQAA3ddnIwFut1u333679u7dq8cee0yRkZE+/ZmZmdqwYYNPW25urrKysiRJ48ePl8fj0caNG3367Xa7kpOTe/8EAAAYYPosBNx5553asGGDfve736mtrU0VFRWqqKjw3uc/a9Ys1dfXa9myZSooKNCKFSuUl5enyy67TNLBHQsvuugiLV26VPn5+crNzdXy5ct1xRVX9OjOAAAAcFCf3SI4duzYDtvXrVvn/SW/adMmLVmyRDt37lRKSooWLlyoM844w3tsQ0ODlixZorfeeks2m01z5szRbbfd5jNZsDuYGAgAMIKuJgYGbJ2AQCIEAACMoN/dHQAAAPoHQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQIAADAoQgAAAAZFCAAAwKAIAQAAGFSfhoC33npLV199tU466SSNHTu2XX9eXp7mzp2rSZMmaebMmVq/fr1Pf0NDgxYuXKjs7Gzl5OTovvvuk8vl6qvyAQAYUPo0BDQ1NWnq1Km69tpr2/VVV1dr3rx5ys7O1urVqzV79mzNnz9fhYWF3mOWLFmizZs3a+XKlVq+fLnWrFmjhx9+uA/PAACAgcPal282e/ZsSdKGDRva9b366quKiorSokWLZDKZNHr0aL3//vt65plndPvtt6u2tlavvvqqnnjiCWVmZkqSFixYoAceeEA33HCDzGaubAAA0BN9GgKOJj8/Xzk5OTKZTN62adOm6eOPP5YkbdmyRSaTSSeffLJPv8PhUHFxsVJTU7v9XnZ7lP8KBwAgSPWbEFBVVaWMjAyftri4ODkcDkmSw+FQTEyMLBaLtz8+Pt7b15MQ4HDUy+32+KFqAAD6L7PZdNQfvv1mDN3jOfqXckf9h48aAACAnuk3IwF2u11VVVU+bdXV1bLb7ZKkhIQE1dbWyuVyeUcDDo0SHDoG/Vfujr164j+f6UBjs849cYyu+e4Umc3dD3FNLW0KsVpksfjm1janS8WVNXr0zQ36qrRSWSOH6qZZpyk2KtzfpwAAA06/CQGZmZlauXKlT1tubq6ysrIkSePHj5fH49HGjRuVk5Pj7bfb7UpOTu7rctEDVXWNWvrMOrU5D97O+cwHeRoSF62ZU8Z1+dzm1jbd/8J7+mT7HkWFhera83N07oljJEkvfvyl/vnu52psafMe/9G2PZLJpN9cfrY8Ho/2lFcrOiJUNQ3NShwUqUERYb1zkgAQhPo0BNTU1KisrEx79+6VJG3btk2SlJ6erlmzZumhhx7SsmXLdPnll2vdunXKy8vT0qVLJUmxsbG66KKLtHTpUi1btkyNjY1avny5rrjiCu4M6Oe2F5d7A8AhebvLuhUCnv9osz7etkeSVNfUouUvf6CTRieroblFj76Z2+Fz8neXaeve/brv+Xe1v6be226zWvS/F0zVRSdnyOVya9PuUlktZmWmDeXSEgBD6tMQ8M477+iOO+7wPr744oslSevWrVNycrJWrFihJUuW6N///rdSUlL00EMPKS0tzXv84sWLtWTJEl199dWy2WyaM2eOrr/++r48BRyD9KF2mc0mn8mYY4cnSJIKy6v1+VfFGhIXrbqmFrncbp0+YaTCbFZ9uLVQH2zd7fNaLrdHhfurVNvY3On7xUSE6eePv9quvc3p0qNv5OqUE1L0m3+t1e791ZKkzLQh+u3VM2W1ECYBGIvJ09WMvAGIuwP6hsfj0fMf5evd/AKZTSbtq6lTU6tTZ2Wm69zJY/T8R5v16Vd7deS/wPiocMVFR6igzNHuNcNsVj31yyv0xH8+05rPtrXrH5EUp6KKGrmP8s/6rMxRejf/a5+2Oy//rk4bP/LYThQA+qmu7g7oN3MCMPD8+dUP9frGHd7H4SFWPXPb/9P24nLdvvL1Tr+oq+qbVFXf1GFfm8ulD7fu1msbt/u02yxmXXP2FP3f2xuPGgAktQsAkvT2pq90yphUhVgtHTwD6P+aXK16bt8nKmjcr8mD0vS9pCmymBjdwtExEgC/yd9dpuWvfKCK2gYlxURpX02dnC63zzE3zzpVT63fpIoDDQGqsnPnZY/RLRfPCHQZwDG5Z9fzyq39yvv40sFT9aPkswJYEfqDoFknAMGtqq5Rd6x6QyWOA2p1ulTsqG0XACTplU+3dRkATJKGxkf3UqWdeye/oM/fE/CHJlerNhwWACTpvaot7Y7b2VCqm7b9n+b+9/f67derVe/sfG7N8Wh2tarO2fFoHvoXLgfAL/J2l3X4pX+k3furujzGI6msqs4PVfVMPGsLIEiFmK2KtobrwGFfvDHWCH3VUKb0iCEym0xyedy6t2C1KtoOSJI+rN6uaEu45o843+e1PB6PCpr2K8oSpjCzTftaapQeMUQ2c/culT1V+qGe2/eJnB6XZsRnaMGIi7r9XPQ9QgD8IjUpNtAlHLdke0ygSwCOicVk1rXJZ2v5ntfl9LhkM1lU0LRfC7avlN0WpV+NmqsYW4Q3AByytb7I53Gds0mLvnpaBY37JEkmmeSRR3ZbtBaNmqPytgOKs0ZqYnTHy7R/1VCmf5V94H38XtVWTYxK1QWJJ0qSSpqrtLOhVBlRyRoSGvyfGQMBIQB+kT7Eruz04fpvQUmgSzlmR7vtEOjvzrJP1ImDRurzA1/rgcI13nZHW71u3bFKN4+4QHZblBxt366dMTZyuMpaqvVR9Q7F2iJU2lztDQCS5JHnm9eo0+07/6U2z8H1Pk6LG6c7Rs1pV0NhU0UHbeWSpLWVefrLntflkWSWSb8c+T3NiB/vl3PHsWNOAPwmLSku0CUcl9PGpwW6BOC4xNoiFW/reBLYk6UfauGoORoRliCzTMqJOUFnxU/QjVv/rv8reVd/KnxNays3dfrahwKAdPBSwq7DwsIhWYNGyHrEHQnZg0ZJklaVvKdD07Hd8mhV6foenh16AyMB8JvTJ4zUi598GegyjklcVLi+f3pWoMsAjtuEqBTF26JUddgvfklqcDVrfFSy/jZhnrdteeFranF/u+x2jbOx2+/T0MGkwqSQGN2Zfqn+XfahmlytmpmYrZzYE+T2eNToavU5tqK1Tvfsel7fS5qirEFp3X5f+BchAH4THx0R6BKO2eDYKDU0t7K3AIJeiNmq+8ZcqWUFL2hPc6W3PXvQSN26fZXqXc06P2Gy5gw+pcPn/3DYGdpaX6xQs1VWk0VfN+5XjbNBda5vv/StJov+UbJeV8mjEwf5LrI1JSZdU2LSfdrMJpPOTcjSmorPvW1Oj0u5tV/p09pd+sv4HystPMkfp48e4nIA/OaWDpbqDRbbiyt097/fDnQZgF8MDY3T5Og0WWWWzWTRSYNGaWPt19reUKLiZoceL16nD6q3aVbSFIWYvv0tGGq2Kit6hO4+4fuaPChNGw8UqKjF4RMApINf4DsaS3X3rudU3fbtLb/7W2p8RhYkqc3t1L6WGs1L/q6uTzlXcdZIn363PPqw2nfxL/QdRgLgF1v27JejrvtDif3Rl3v2yelys4cAgt67VV/q5YqNBx94pM8PtF8l8/Par3V6WoZOGjRKn9TulCS1uJ367derdfmQU/XXorVdvk+bx6XFXz2jX46arfu/fkm7m8oVaQnT/NTzNCN+vD6r3aUHCtfogLNJcbZINbta1XRESJAO3oWAwODTDn7x0bbdXR8UBPbX9P36BIA/uDxubawt0DuOL7X5wJ4ujx/5zfD7nmbfGf2VbXV6qOjNbr9vQdN+/X73y9r9zV0ADa5m/WXPm2pwNuvBwte9axdUtzV0GgAu/OYWQvQ9RgLgF9PGjdALHwfnpMDDJQ6K7PogoJ/xeDy6Y8e/tKWhWJIUbrId9fhJUama+c0X74SoFJW2VB/X+5c0+y4C1uhuUVFzpaqdR18dNNIcqhtGnKfYTu5oQO9jJAB+kZIwMBb+KKk60PVBQD/zUfUObwCQpCZPm9LDB8tq6nilvvSIwbKZD/4G/EnydxRjPb5Jvc1H/MI3SYqyhGlMxNBOn3OuPUv/yrpZZ8ZPOK73xvFhJAB+ERsVLrNJCvZ9mcwmrk0i+By5b4AkHXA2aVR4kkqaq9TgbvHpi7NG6a9739TXjeUaEZ6o2h7cGniI1WSW09PxUuEeSWsd+VqUPldPFL+rLfVFqmzzvdQWZQ1lOeF+gBAAv9hbURP0AUCSRgT5gkcwpuQwe7u2irYD3mWCDy3/K0khJqv+Ufqe3N883t7Q81U+rx52hj6t2aVtjZ0/12oyKyFkkG4bNVu5NV/pnoLnffptJr5++gMuB8Av9lUPjGH0itr+t8Ux0JXzErI6XSlQOrj874UJJ2py9Ai1epzeAHAsYqwRunTINH1/6DSZD5vVf/glhUHWcJ2fMNn7eErMKKVHDPE+jrSE6pyEzGOuAf5DFINfjEseGAt9DIoIDXQJQI/F2iL1t/E/1U3b/k/lrbUdHtPscmpX4/4O+w4fKejKj4afJbPJpFNiT9DfJszT57UFSglL0MSoFH1Su1ONrhadGjtOMbYI/bf2a22pL1akOVTfiZugJmezSltr1OBq0f9ueUxLRn+f1QIDjBAAvwi1Bv+1PZOkUBt/Egg+Lo9b9+x6odMAIEkf1GxTq8fZYV93AkBOzGj9NPm7anS36tXyjcqIStboiCFKOexSxJnxE1TVVq+PqrfrpfJPVXKUuw6cHpf+uPtVrcr6WZfvjd7DJx784q+vfRLoEo7bAJjSAIP6/MDX2tJQdNRjjucSgCRtqN2louYqlbZ8ezvgDann6cLEbO/jwqYK/XL7P9V4xETEzlQfw4RE+BdzAuAXJY7Of4EEC+4LQLCqaet6LsspR6znL8nnmv4hg20xsjymkxoAACAASURBVHTy13B4AJCkJ0ve93n88N613Q4AkjQ8lIm4gUYIgF9cPHVioEs4bh5JDc3d/wAD+ouU0IQujxkXOVwTo1J82k46IhhYZFZF2wG5ujlqUOdqUvM3uwOuKf9cX9YffTTC571MZi094fJuH4/eweUA+MXpE0cq5EWLWp2urg/uxwrLazQhdXCgywB65PDd+TrzbtUW3XvCD/TS/k+1t7lSk6JH6KKkk/T5ga/1p91rdMDVJJc6vu+/Mx5JH9fs0EmD0vUfR367fus3vzOdcsssk2JtkYqyhGlsxDD9z9BpSggd1KP3g/8RAuAXjS2tQR8AJCkxhmWDEVw8Ho/er97a5XH7m2r0g/wHvY+jrOGSpPertuqAq+mY3/+PhWs67XMeFirc8qi6rV5VbfVqcLXotPhxGh4Wf8zvC/8gBMAvthWVB7qE42YySUkxrGGO4FLaUt2tSX+NavV5/B9HvuKskXq3aktvldbOoSodbXVatutFnWUfr3MSJisjanif1QBfzAmAX4SFBH+e9Hgkl6tnw6FAoA0NjZPlGD/KP6zZ7udquq9VTq115OsXO1bpwcLXA1aH0REC4BcDZbGgitr6QJcA9IjZZNLPRpx/TEHgeHcP9Je3HHndusMB/hf8P9/QLwyUjXfMFnIxgs85CVk6JyFLjc5W7W7ar9t2PunTn2CLbreBT3/T4GpRrI05OX2NTzz4RV3TwLi1LiGaDyEErwhriDKikpUWnujTfkPqeUqydT4Tf0ZchtLCEn1WBwjpww1+kkPtTBIMEEYC4Bef7twb6BL8omCfQycM6/qea6A/KW+t1fLC17WlvkjjIofp5hEztaF2lxytdZoRn6ETIoZqcGisytvab/QVYQ7RR9U7NDE6RXcMnaPP675WtCVcs5Km6MnS9/WO40t55FGIyapmT1u755tl6tbExM6OizKH6oGMHx7bieO4EQLgFwNhG2FJio8KD3QJQI89WPi68uoKJUlf1hfpsaJ1+lX6XO1rqdboiKH629612lzfcVBvdB+8ayCvbo8k6d4xV0iSvjiw2+fe/44CgCSNjRyubQ3FHfaFmqxq8TgVYQ7R3MFT9a+yD9rtU2AxWxRpCev+ycKvCAHwi9SEmECXcNzCbVbZB3E5AMFna73vl/DWhmJdvfkhuTxuxduiVNfWvXUA8uv2yuVxy2Iya0sHq//ZTBa1eXzXA+koAFw2ZLp2NpTpi7rdkg4Gjac6CACSVO889jUKcPyYEwC/aGkL/oWC7IMiuj4I6Ic6us/e5Tl4u2tVW73a1L2/T488+qRmpyRpdPjQdv1HBoCOhJqsmjP4FNUfsQBRZ5cMhocyFyCQCAHwi5Kq4N9AqKGl4+FOoL+7acRMDQ2N9ctr7W+pkcfj0YvlG3r8XIvMWpB2kaKt4RoTOaxbz2Hp4MAiBMAvLAPg1rpQqyXQJQDHJLdmp8paarp9fHJovAZZO57/srOxTNsbSjq8HHDIkJBYDQ5pfwnQJbdcHpeq2xq0vqrrpYwP1mLvXtHoFcH/yY1+YX918C+ys68m+M8BxvRm5aYeHV/cUqUDnVyLz63Z6b2U0JkfJ5+ls+IndNhnMpn0UfV21bua2/VZTe2/cq4Ydlo3KkZvIQTAL04dNyLQJRw3q3lgLHgE44ny4+z6cPPBtQYmRaV620LNVo0IS5RZJkWZw9TibvNuQHQ4uzVKU2PHKMracT2jI4b4PA4xWTucLIi+QwiAX0SGhwa6hON2xVnZgS4BOCZXDjtdNvnnctYPh58hi8mse064TDePmKkLEibrfPtk7WmukFse1bub9UDhGiWERCnxiAWIpsaNUZjZplNjxyrBFu3TF2kObRdWWj1Obanv+PZC9A1uEYRfxEdHyGYxqy1IN+CJDAvRlWecGOgygGNy4qCReiLzBm0+sEdN7laFmm1avW+DCpp7trvn7SNna0b8eElScXOV/lHynmqcje2O80i67+uX27W/VvFfZUaNUIQlpN0yxTMTs9Xobr+yaEoYcwICiZEA+IVJkjNIA4AkNTS36hd/73xfdKC/i7dF6Qz7BJ2feKI21RV2GQCGhcZpzBG3Ae47bHLhk6XvdxgAunL/7pf09+J32rV/UrNDr1X8t137n/e80eUcBPQeQgD84qvSyqC/srd5zz5V1/X8Qw/oT8paqvW2Y3O3jito2u/T9u+yj9Tmdko6uL7AsXDLo/LW9ssTF7dUdXj8lvoifXFg9zG9F44fIQB+YR4gk+qa25yBLgE4Li3u7v0b9ujgLX2Ha/M4vb/KM6OPfbJvZxMDO9PiZo2OQGFOAPxi7PDErg/q58JsFg2NZ+ESBC+Px6MPqrd1e1OfI40MT1KYJUSStKepol2/VRY5u7H64BVDT5PVZNbf9r7V4TyAwyXaBmlKTHqPa4V/EALgFyZT8I8EJLJvAILc2so8PV320TE91ySTrhl+piTpq4YyfXagoN0xRwsASSExmhp7gk6OSVf2oFGSpHWOzfrim42NOpNgi1ao2XZMNeP4EQLgN8Pio1VaVdf1gf1UdFhIoEsAjktu7VfH/FyPPFpV+r5cHre21pf06LlWmXWuPVPfsU/U4NBYlTRXqaSlSpcMmaq8uj1HHZXY1lji3bQIfY8QAL/ZH+Qr7gX/Fkgwspf2f6bPand1eVyIyao2j7PDr+Vdjft0d8Hz6um4nksePVn2gZ4q+1BTYtL1We0ueXRwEaPEkEHa3/rt3iImyee9R4YnEQACiP/y8BuXO7jvDwgPYSQAwanF3aa/F6/r1rGdBYDDHa3f3MHXxqFV/9zy6NNvAoAk1buafQKAJE2MTNGo8MGSDq4R8PO0i7pVN3oHIwHAN9pcjAUgOO1oKO32RMBjjepmmZQ9aJTmjzhPf9nzhj4/xtv6WjxODQ6N0ZRBI3XZ0FO9ExERGIQA+IXLHfyLfeyvbn9vMxAMjndiXVd3E5hl0ulxGdrbXKlnyz7RDann6YX9G/RVQ5nc8qigcX+nzz3SzsYyqbFMn0gqaqnSr9MvOa7acXwIAfCL7cXtbycKNpV1TWppcyrUxp8FgsuYiKEaFhKn0tbqHj3v0Jd/V6MIbnm0vvrg1sC7m8q1vaFEfxn/Ezk9Lv108yPdeq/J0WkqbCr3WYUwt2anGl0tirAE/94jwYo5AfCL2Ijg/yM2m0yyWviTQPAxmUy6OW1mj54TYrIe01oCkvR1U7m21ReroHG/Ktraj6BdkHCiBh22y2Bm9AhdM/xMJYb4rsMRZQlTiJnQHUh84sEvLBb/7GAWSCMHx8li5k8CwcflceuV8o1HPWZydJpCTQe/cK0ms370zZoAx+rL+iINCYmV1eT7tz8tdozmjzhfKyZcpwUjLtT1KeeqtLlKC7av1O6mCtm+Od4is36c/J12z0ffIoLBLxIGwEI7jAIgWH1Ss1Mf1ew46jHJYXZdNnS62twujYxIUrwtSo8Vrzvm0YAxkcMUY4vQdSln6/Hid9TibtPoiCG6IfU8SVK0NVzZg0bqN7ue8e4o6PS4ZDNZ9N34iZoRP56VAvsBPvXgF1aLWREhwb3qV1FFbdcHAf3Q/sN2/+vMmorPdcfOp7SrcZ/ibVGS5F3Z72gSrNEK62DiofObPQrOsWfpqmEzdGb8eP1g6Gne1y5pduj6rY+r8Ijlh9s8Lq2r+lJ37XpW7zi+7PL90bsYCYDfxESGqrE1eDcCcbKdKYJUTuwJWlW6vlv/hleVrtfnBwqUEpagK4edrnBLiPIOFOqAq6nD468Ydpr+vPeNdu0v7f9MOxvL9Fr5f1XtbJAkvVe1VdennKuLkk7SaxVfqMHV3GkdHknP7/tE37FP7N5JolcQAuAXTpdbB5qOvlFIf8ewGIJVcphdS064XC/t/1QHnE3a3nD0ZX+31BdrS32x/lOZrwnRybps6HQ91sliQ051HCyKWhz6b137tQIeKXpL71VtUVJITLu+I1cLdAX9BuTBj889+MWWPfvU0By8owCSlJIYF+gSgGOWFT1Ci0f/j4aHxXf7OS65lV+3V0+WfqC08KR2/WMjh+mChBM1JmKoT7tJUk1bQ4ev6ZG0raFEH1Vv92kfGZ6kWUlTfNrmDj6l27WidzASAL9we4I/0ZdU1qq51amwEP4sELy6s3/AkZrcrbpsyDQ1uFpU3OxQeWutNh0o1I6GUs3f+nf9cuQsbasvUV5doewh0To3YbJ+W/CiiluqOn3NI0cQ/mfwVM2IH6/M6BH6unG/Jg9K04SolB7XCv9iJAB+YY8O/rsDGlvbVFTZ9QQroD8bEZbYYbvlKB/3JknpEUN0QeKJ+nHyd7S9oVSN7lZJ0p7mCq0qfV8zk7J1R/pcXZtyjtLCEzUv5WyFmw8u+WvuxpZDu5r2y2QyaVrsGF057HQCQD/BTx74xdf7KgNdwnGzmE1KSYgNdBnAcbk+9VwtLXhBpS3VirdG6rKhp+rkmHR93VSuP+5+VU3ffLmHmmxq8bQp1GTVlcNmeC8j1DubVdXmuyPonqb2K4JOiUnXPzJv1O7GcsXbonXbzn+qupNLBJKUETncj2cJfyEEwC9OGZMa6BKO2zmTT+BSAILeiPBErZhwnSpaDyi/bo821++VRx5dkHii/p11sypa6xRitiohJFrVbQ0KM9sUftgmPjG2CCXaBvmsBHhSzCi9V7VFXxzYrVHhgzUz8UTZzFY5PW7l1e2Ro61ON42YqTcrvvDZRfCQuYNzND1ubB/9F0BP8IkHvwj29fbNJpNuvGh6oMsA/MJkMultx2b9q+wDSdLbjs16ufwz3XPC5RoW9u0E2DhbpFwet57fl6uNtQUaEZ6gwSGxPgHAJCncFKLf737lm5bNenH/Bs0dnKN/lr7vHVlYW5mnCxJO1KvZC/Xi/k/1tiNfMdYIXTV8BkP//Vhwf3Kj32h1Bvc2vJNHDVOIlT8HDBxrKzf5PC5rqdGvdjylxyddL4vp4PwAt8ejf5V+oGf2fSxJ2ly/VyEm378Dj6Q3j3ityrY6rSh+u917vlH5hZLD4nXJkBxdMiSnyxrdHo/Mpq7nE6D38KkHvwj2JXf/W1Cir0ordcKwhECXAhw3t8fT4fbC5W0HtKOhVOMih+vx4nV6s+ILtXl8A3yrx9nueeGWEDW4u7cOyAfV23VxF7f+ra3M06qS99TgatG5CVm6LuUcbzBB3+K/OvzCZrXIFuRBYPUnLGGK4FfU7NB1Wx5VSQe375llUlLIIL1X9aVeLv9MLR5nu70Dwk02n9n+sdZI3Zh6nizduANAkoaEtl8k6HClzVX6y57XVeNsVJvHpdcq/qu3KvO69drwP0YC4Bf7quvU5gruZXc/3laoNqdLNiu7miF4PV70tkpbqr2PTTLJI48sMuvKYacrIWSQdjSUdvjcEJNV1484T6cMSteL5Z8q3halixJPkslk0mMTr9fSguf1dVO5JMlui5LjiLsIBofE6sqhpx+1vp2NZe0mDu5oKNUFiSf2/GRx3AgB8IuBcH99U6tTB5paZI+OCHQpwDEravYdAfDIo2Un/ECp4QnezX0mRqVqTcV/vceYJN0x6mJlRqcp2houSbr6iK2GB4fG6C/jf6K9TZWymswaFhav4maHTJKiLOEqb63VqIjBXQ7rj49MllkmnxEIJg4GTnCP36LfmJA6WBGh/t1FMCLUJovZ/5OGTJKy04e1ax891E4AQNDLiR3t83hs5DBNHpTmDQCSdHp8hq4ceppirREaEhKrW9Jm6dS4DG8AOJrU8AQN+2ZNgeQwu4aH2RVji9AJkUO7dV0/KTRGt42arWGhcRpkDdf3h0zX2fZJPTxL+IvJ4xkA6732kMNRL7fbcKfd6/7nt/88rk2EzCaTBsdGylHXqFZn71xaiA4P1d+un6PEmEg980GeVn/ypVrbXJo4YrB+9r3TlBQT1fWLAP1Yq9upJ0vf1+cHvtbI8CRdM/wsJYREB7osBIjZbJLd3vnnGiEAflHiqNWPH3yu036zSYoIDVFDc6vP9UCbxayTT0jWmZmjdcbEUSqurNVP/tz563RlcEykoiNCtaus4zXNJ6QO1gM/nXXMrw8AwaSrEMCcAPhFVFjoUfsvOGmcfnzOyXp/y249+MqH3vbLZmTpqrNOOux1QmQxm+TqIKSF2awakRSnmVPGacroZD346gf6dGext3/UkHgVV9Zqf+3BpUttFnO7yYrfzfIdKgUGCrfHo6LmSiWERCvSEhbocjpU52xSdVuDUsLsMrE+QL/ASAD85p6n39aHWwu9j+dOn6iIEJve+uIrldfWy2Yx67zssWpzurT2i53e4y49dZLmnfftwiL/WPe5nlr/RYfv8aOzp+jyGZO9j7cXl2tbUbmSYqJ0z9NvH3V38lCbVc/cdqXC/Tx3AQi0spZqLf7qWZW0VCnUbNP1KefqnITMQJfl45XyjXqi+B21eVxKC0/U3aMv4zJFH+hqJMBy11133dV35fQPTU2tMl706X1nTBylrLShSoiJ1C0Xn66zMkfr7U27lF9YJungL5WdpZUq2Ofwed7WonKdNSldgyIO/nqZPGqYzpg4SmE2q7YW7fc5NiosRGdMHOV9nDAoUhkpSdpTXq33t+xuV1OozSqX260Qq0U/m3WqxiW33zMdCHZ/27tWX9YXSZJcHrc21RVqVtJJspn7x2BvTVuDfrPrGTk9B0fmapyNanG36ZRYRuZ6m8lkUkRESKf93B0Av8ocOVTXfHeKhtsPLhhS4qjt1vPKqg74PE5NjNX3T89styfB5FHtZ/VL0vjUwR2uWtjSdnD1M7fHo8GxTPrDwFR22LoAktTsblP1EffwB1J5a603ABxS2sFiRuh7hAD0qlMz0ro8JizEqklpQ9q1D4oI0+IfnO29de+y07N04ZSMDl/DHh2hOy8/W0kxUbKYTQo/YjdAp8ut5z7MP6ZzAPq7abG+O/SNCEvQsND4AFXTXnrEEA0O8V1JcFrsmABVg8MxJwC9yuPx6IWPN+sf6z5vt8mQ1WJWakKsLpuRpXV5u1Rd36SzJ4/WxVMnHvf77quu09V/esanLWFQpB772SWKCO18aAwIRi6PWy/s36Dcmp1KDo3X/xs2Q0ldLN/bkQPORq0seU87Gko1MSpFlw89Tc/v+0Sb6gqVHjFE1ww/02e9gZ4oaa7Sv0o/0P7WWp0eN06zk05mcmAfGJBzAh599FEtWLBADz74oDZv3qypU6cqIqL7i7wwJ6B3HGhs1v0vvKflL3+gT3cWaWxykuKiwjU+dbCSYqL08bY9PscPighVxYEGvf/lbpU4DqiqrlEbvyrWkLhopQ+xH1ctUeGhKihzqLjy28sRjS1tqjzQoFPHpx3XawP9jdlk0u7Gcm2sLdC+1lpFW8M1Lmp4j1/n3oLV+qB6m2qcjdrZWKbcmp367ECBapyN2t1Urq8ayro14bDR1aIH97yuPxW+pk9qdmhURJJGRiRpeuxY7Wut1cvln2ltZZ7ibJEaEZ54LKeMbhpwcwJeeOEFPfLII1q8eLGefvpp1dXV6ZZbbgl0WZD08Ouf6KOthWpsadOWvfu17Jl13r4ZE0dpzBE79NU0NMvZwX4Dudv3tGs7FgsvPbNd2yd+em2gP9laX6yHi95SZVudHN9s87u5bm+PXsPlcevzAwU+bUfONfiyvkiNrq4XBFtVsl7vVm1Ro7tFOxvLtKzgRbk8br3t2Kxn932sA84mlbZU6/dfv6Ly1u7NG0LvCLoQ8OSTT+pHP/qRzjnnHGVkZOjee+9Vbm6udu7c2fWT0avyC/f5PN5bUaPahmZJUojVogd+Okt3Xv5dff+0o/+SSEmI9Us9YSE2DbcP6pXXBvqTLzv4wu9pCLCYzBoaGufTFm72/QWZYItWmLnry2mH7lQ4pLKtTvtaqvVlvW9NLrm1rb6kR3XCv/rH/SPd1Nraqu3bt+uOO+7wtqWkpGj48OHKy8vTmDHdm2hytOsjOHZZ6UO17otd3sfJiTFKH5Hgc91vztBYVdc16qXcLe3mCEjS5PRh+t/Z0xQd4Z/FTu764Xla+PfX5DjQqCFx0brzqrOVmMi9yRhYTjGP1j9K1/u2DUvv8b/132Rdol9telpVrfUaHBajn405Xw9/9R+VNFUp1hahOzMv0eDEQV2+TpZ9hHYXl3sfx4dEasLwZJ3kGaW3HZu97SaZlJM8WomR/E0GSlCFgOrqarndbtntvteL4+PjVVXV/dtNmBjYO37y3ZPlqGnUpt2lSkuK061zZqiysuPblH459ww98kauquoa5ZGUMChCV52VrfNPGqfmhjY1N7T5pabUuBj9Y8FlKq+t15C4aFnMZlVU1PnltYH+Ik1JumrYDL2wb4M88mju4FM0WkN7/G89RYl6YsINqmit1eDQWFlMZj2Sca32tVQrMWSQbLJ26zUvs09XaV21PqvdpaGhcfrZiAtU42jSqWHjNDNxr/5Tma9IS6h+OPxMhTWGqKKRv8neMqD2Dti/f79mzJih119/Xenp6d72Sy+9VOecc46uu+66br0OIaB3udxuWczdu9Lkch+cE9Dd4wF0zuPxyKODEwX7A5fH3eHOgm6Pp9/UONB1FQKC6pM3Li5OZrNZDofvinNVVVWKj+8/98QaXU++0C1mMwEA8BOTydSvvlw721q4P9VodEH16RsSEqJx48Zpw4YN3raioiKVlJQoKysrgJUBABB8gmpOgCRdeeWVuvfee5WRkaHk5GTde++9ysnJ6fakQAAAcFDQhYBLL71UDodDd911l+rq6jR9+nTdc889gS4LAICgE1QTA/2FiYEAACMYUBMDAQCA/xACAAAwKEIAAAAGRQgAAMCgCAEAABgUIQAAAIMiBAAAYFCEAAAADIoQAACAQRECAAAwqKDbO8AfzGa2sQQADHxdfd8Zcu8AAADA5QAAAAyLEAAAgEERAgAAMChCAAAABkUIAADAoAgBAAAYFCEAAACDIgQAAGBQhAAAAAyKEAAAgEERAgAAMChCAILCo48+qtNOO01ZWVm64YYb5HA4Al0SMOC99dZbuvrqq3XSSSdp7NixgS4HvYAQgH7vhRde0COPPKLFixfr6aefVl1dnW655ZZAlwUMeE1NTZo6daquvfbaQJeCXsIuguj35syZo7POOks33XSTJKmoqEhnn322Xn31VY0ZMybA1QED34YNG/TDH/5QO3bsCHQp8DNGAtCvtba2avv27Zo6daq3LSUlRcOHD1deXl4AKwOA4EcIQL9WXV0tt9stu93u0x4fH6+qqqoAVQUAAwMhAAAAgyIEoF+Li4uT2WxudzdAVVWV4uPjA1QVAAwMhAD0ayEhIRo3bpw2bNjgbSsqKlJJSYmysrICWBkABD9roAsAunLllVfq3nvvVUZGhpKTk3XvvfcqJyeHOwOAXlZTU6OysjLt3btXkrRt2zZJUnp6ukJCQgJZGvyEWwQRFB599FH985//VF1dnaZPn6577rlHCQkJgS4LGNBefPFF3XHHHe3a161bp+Tk5ABUBH8jBAAAYFDMCQAAwKAIAQAAGBQhAAAAgyIEAABgUIQAAAAMihAAAIBBEQKAAeKqq67SokWLOu1fuHChrrnmmr4ryE82bNigsWPHat++fYEuBRhwWDEQMIhFixbJ7XYHuox2Xn75ZT377LPavn27XC6XkpOTNWPGDF199dUaPHhwoMsDBjRGAgCDiI6OVkxMTK+/T2tra7eP/dWvfqVFixZpypQpeuyxx/Taa69p0aJFqqys1BNPPNGLVQKQGAkABhS3260//OEPeu6559TW1qYLLrhAd955p8LCwrRw4ULt27dPK1eulCTv4wsuuECPPPKIamtrlZOTo2XLlnl3aCwqKtL999+vTZs2qa6uTqmpqfrJT36iiy++2PueV111lVJSUpSUlKTnn39eTqdTV1xxhV577TWtXbvWp7477rhDxcXF+uc//6m1a9fqhRde0AMPPKALL7zQe8zw4cM1bdo01dbWdniOHo9Hd955p3Jzc1VeXq7ExERdeOGFmj9/vnc9+3379mnZsmX69NNP1dTUpMTERP3gBz/QT3/6U0nS22+/rYceeki7d++WzWZTWlqalixZovHjx/vt/wsgGBACgAFk7dq1mjlzpp566int2bNHixYtUnh4uH796193ePzmzZsVHx+vRx99VPX19br11lt1//336/7775ckNTY2atq0aZo/f74iIiK0fv16/epXv9KQIUM0depU7+u88cYbmjVrllauXCmXy6WYmBg98sgj+vTTT3XKKadIkurr6/Xmm2/q7rvvlnTwMsCIESN8AsDhOhu18Hg8stvt+uMf/yi73a4dO3Zo8eLFslqtuummmyRJd911l5qbm7Vy5UpFR0eruLhYlZWVkqSKigotWLBAN998s84//3y1trZq69atslgsx/BfHAhuhABgAImNjdXdd98ti8Wi9PR0LViwQPfcc49uueWWDo+32Wy67777vL+gf/CDH2jVqlXe/rFjx2rs2LHex1dddZU+/vhjrVmzxicEJCUl6a677pLZ/O0VxhkzZujZZ5/1hoA1a9YoJCRE5513niSpsLBQo0aN6vE5ms1m/fznP/c+Tk5OVlFRkZ566ilvCCgtLdU555yjjIwM7zGHVFRUeEdJDrWnp6f3uA5gICAEAAPIpEmTfH7RZmdnq62tzbsV7JGO3BI2KSnJ+4tZkpqamvTXv/5V7777rvfLs7W1VTk5OT6vM2HCBJ8AIEmXX365brrpJtXW1iomJkbPPvusvve97yk0NFTSwV/0JpPpmM7z2Wef1XPPPaeSkhI1NTXJ6XTq8L3Qrr76ai1evFjvv/++TjnlFJ155pk6+eSTJR0MNqeddppmzZql6dOn65RTTtG5556roUOHHlMtQDBjYiAwgHW1SajNZvN5bDKZfJ7zu9/9Tq+88opuvPFGrVq1Si+99JJmzJihtrY2n+eFh4e3e+0ZM2Yom8olygAAAxlJREFUISFBL7/8srZt26YtW7bo+9//vrd/5MiRKigo6PE5vfHGG1qyZIlmzpypFStWaPXq1brxxht9arrkkkv0zjvv6PLLL1dFRYXmzZunX/ziF5Iki8Wixx9/XP/4xz80adIkvfXWWzrvvPP07rvv9rgWINgRAoABZPPmzXK5XN7HmzZtks1mU2pq6jG93saNGzVr1izNnDlT48aNU0pKigoLC7v1XLPZrEsvvVTPPfecnn32WZ144ok64YQTvP3f+973tGfPHr322msdPr+ziYEbN25URkaGfvSjH2nixIlKS0tTSUlJu+OSkpJ0ySWX6He/+52W/f927R6kkSAM4/g/pYlJGqME0myT0lSCiLCx2k0hWCwbsNi0IqQUWT+KKAqWFlYWghCLELSwWxJSio1YCWohEkEQBAUbRcwVV3knXMghovv82pl5eWeqB95ZW+Pw8JCnpyfgd9gZHh5mZmaGarXKyMgI+/v7Xd1L5CfROEDkB3l4eKBSqVAqlWi322xubuK6LtFotKd6hmHQbDaxLItoNMrOzg53d3cMDAx0dd5xHLa2tri6umJ1dfXdmm3bTE1NMT8/z+XlJaZpMjQ0xM3NDQcHByQSCXzf/7Cner1Oo9Egm83SarUIguDdnpWVFUzTxDAMnp+fCYKAdDpNLBbj5OSEo6MjxsfHSaVSXF9fc35+juM4Pb2RyHemECDyg1iWRSwWY3p6mpeXF2zbZm5urud6vu+ztLSE53n09/fjui6WZdFut7s6Pzg4SD6f5/j4mEKh8Nf6xsYGo6Oj1Go1dnd3eXt7I5PJkM/n8Tzvw5rFYpGLiwsWFhZ4fX1lYmKCcrn8LmR0Oh3W19e5vb2lr6+PXC7H9vY2kUiEeDzO6ekpe3t7PD4+kkqlmJycZHZ2trdHEvnGIp1/DQ1FRP6D4zjkcjmWl5e/uhUR+YP+BIjIp7i/v6dWq3F2dkapVPrqdkTkAxoHiMinGBsbI5lMsri42PPHRBH5XBoHiIiIhJTGASIiIiGlECAiIhJSCgEiIiIhpRAgIiISUgoBIiIiIfULywYewuBFOZkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.stripplot(x=\"binaryClass\", y=\"age\", data=df, palette=\"viridis\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:25.479821Z",
+ "iopub.status.busy": "2021-12-15T11:04:25.479135Z",
+ "iopub.status.idle": "2021-12-15T11:04:25.636062Z",
+ "shell.execute_reply": "2021-12-15T11:04:25.636613Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:26.296291Z"
+ },
+ "papermill": {
+ "duration": 0.266167,
+ "end_time": "2021-12-15T11:04:25.636757",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:25.370590",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 58,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAHqCAYAAACdjZ29AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dfVSUdf7/8dcMYqW4CIN2I5CmK2EJu5QB5tHaX6WS5O1J02O0Z7M2JTO7ESO/JIJH23KpteNd67LWmnkTFbatntClNYMOuwkesyyPN+DNpjMwP0FdhJnfH/6cb7NaosIMM5/n45z9g+tzzcx72MAn11zXjMXtdrsFAACMY/X3AAAAwD+IAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFAd/D2AP9TWNsjl4spIAEBws1otiojo/KPrRkaAy+UmAgAAxuPlAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAACQl1drRYsyJXTWefvUQAgaBABCAjFxUX69ttv9OGH7/l7FAAIGkQA2r26ulpt21Yqt9utbds+5WgAALQSIgDtXnFxkVwutyTJ5XJxNAAAWgkRgHbv888/U3NzkySpublJn3/+mZ8nAoDgQASg3UtNvVMhIR0kSSEhHZSaeqefJwKA4EAEoN1LTx8tq9UiSbJarXrggTF+nggAggMRgHava9cIDRo0RBaLRYMGDVZ4eFd/jwQAQaGDvwcAWiI9fbQOHarhKAAAtCKL2+12+3sIX7Pb6z1nmwMAEKysVotstrAfX/fhLAAAoB0hAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABD+S0Cpk2bpri4OJWXl3u2VVZWasyYMerfv7/S0tJUWlrqdZuGhgZlZWUpKSlJycnJWrBggZqbm309OgAAQcEvEfD+++/r1KlTXttqa2s1ZcoUJSUlqaioSCNHjlRmZqb279/v2Sc3N1c7d+5UYWGhCgoKtHHjRi1ZssTH0wMAEBx8HgH//ve/9dprrykvL89re3FxscLCwpSdna0+ffro8ccfV0JCgt59911JktPpVHFxsebMmaOEhASlpqZqxowZWr16tVwul6+fBgAAAc/nEZCdna3HH39cN9xwg9f2qqoqJScny2KxeLalpqaqsrJSkrRr1y5ZLBYNGDDAa91ut6umpsY3wwMAEEQ6+PLB1qxZo6amJk2YMOG8NYfDofj4eK9tERERstvtkiS73a7w8HCFhIR41iMjIz1rsbGxLZ7DZgu7nPEBAAgqPouAw4cPa/HixVqzZs0F191u90/e/kLrPzxqcCns9nq5XD/9eAAABDqr1fKTf/j6LAK++uorHT9+XPfdd5/X9kceeUSjR4+WzWaTw+HwWqutrZXNZpMkRUVFyel0qrm52XM04NxRgnP7AACAlvNZBKSkpOjDDz/02paenq68vDwNGjRImzZtUmFhodd6WVmZEhMTJUn9+vWT2+1WRUWFkpOTPes2m03R0dE+eQ4AAAQTn50YGBYWpr59+3r9T5Kio6N17bXXKj09XfX19crPz9fevXu1fPlyVVZWavz48ZKkrl27asSIEcrLy1NVVZXKyspUUFCgiRMnymrlPY8AALhU7eZfz4iICC1fvlz//Oc/NXLkSBUVFWnx4sXq2bOnZ5+cnBz169dPGRkZmj59utLS0vTEE0/4b2gAAAKYxX2xM/KCECcGAgBMcLETA9vNkQAAAOBbRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoXwaAa+//rqGDh2qhIQEDRw4UM8884yOHTvmWa+srNSYMWPUv39/paWlqbS01Ov2DQ0NysrKUlJSkpKTk7VgwQI1Nzf78ikAABA0fBoBN910k+bOnau//vWvWrp0qY4cOaKsrCxJUm1traZMmaKkpCQVFRVp5MiRyszM1P79+z23z83N1c6dO1VYWKiCggJt3LhRS5Ys8eVTAAAgaFjcbrfbXw++ZcsWPfPMM/ryyy+1atUqFRYWqqSkRBaLRZI0adIkJSQkaNasWXI6nUpNTdXKlSuVkpIiSVq/fr0WLVqkbdu2yWptec/Y7fVyufz2tAEA8Amr1SKbLezH1304i5cTJ05o48aNSkpKkiRVVVUpOTnZEwCSlJqaqsrKSknSrl27ZLFYNGDAAK91u92umpoa3w4PAEAQ6ODrB/zwww+Vk5OjkydPKjExUcuXL5ckORwOxcfHe+0bEREhu90uSbLb7QoPD1dISIhnPTIy0rMWGxvb4hl+qooAADCFzyPgV7/6lRISEnTkyBH94Q9/0P/8z//o9ddf18VelbjQ+g+PGlwKXg4AAJjgYi8H+DwCwsLCFBYWpp49e+qmm27S4MGD9d1338lms8nhcHjtW1tbK5vNJkmKioqS0+lUc3Oz52jAuaME5/YBAAAt59f3CTj3173ValVCQoLKy8u91svKypSYmChJ6tevn9xutyoqKrzWbTaboqOjfTc0AABBwmcRcObMGf3+979XVVWVDh06pIqKCj333HO65ZZb1LNnT6Wnp6u+vl75+fnau3evli9frsrKSo0fP16S1LVrV40YMUJ5eXmqqqpSWVmZCgoKNHHixEu6MgAAAJzls0sEm5qaNGPGDO3YsUN1dXXq1q2b7rzzTk2fPl3du3eXJO3YsUO5ubnas2ePYmJilJWVpSFDhnjuo6GhQbm5udq8ebNCQ0M1evRoPf/8814nC7YE5wQAAExwsXMC/Po+Af5CBAAATNBu3ycAAAD4FxEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABjqkiJgw4YNGjVqlJKSklRdXS1JevPNN7Vp06Y2GQ4AALSdFkfAu+++q4ULF+ree+9VU1OTZ3tERITefvvtNhkOAAC0nRZHwNtvv625c+dq2rRpCgkJ8Wy/5ZZb9N1337XJcAAAoO20OAIOHDighISE87Z36tRJ9fX1rToUAABoey2OgG7duungwYPnbf/yyy8VExPTqkMBAIC21+IIGDVqlBYsWKB9+/bJYrHo9OnTKi0t1SuvvKKxY8e25YwAAKANWNxut7slOzY3Nys7O1sffPCB3G63LBaLJGnMmDHKy8vzfB0I7PZ6uVwtetoAAAQsq9Uimy3sR9dbHAHnVFdXa9euXXK5XLr11lsVGxt7xUP6GhEAADBBq0dAMCACAAAmuFgEdGjpHc2ZM+eC2y0Wizp27KhevXpp+PDhioyMvPQpAQCAz7X4SMDkyZO1e/duNTU1qVevXpKk/fv3q0OHDurZs6f27dsnq9Wq1atXq0+fPm069JXiSAAAwAQXOxLQ4qsDhg0bpqSkJJWWlqqoqEhFRUX6+9//rttuu02jR49WaWmpEhMTtXDhwlYZHAAAtK0WR8Af//hHzZw5U+Hh4Z5t4eHhmjFjhlasWKHOnTsrMzNTu3btapNBAQBA62pxBBw/ftzrMwPOOXPmjBwOhyTJZrPp1KlTrTcdAABoMy2OgNtvv13z5s3zfHqgdPZywfz8fN1+++2SpL179+qGG25o/SkBAECra/GJgTU1NZo2bZr27NmjiIgIWSwWORwOxcXF6Y033lCPHj20ZcsWnT59WmlpaW099xXhxEAAgAla/X0Ctm/f7vnUwD59+mjgwIFXNqEfEAEAABO0agQ4nU794x//0OHDh9XY2Oi1lpmZeflT+hgRAAAwQau9WVBVVZWmTJkit9ut+vp6RUZGym636+qrr1b37t0DKgIAAMAlnBj4u9/9Tvfdd5/Kysp01VVX6Z133tHWrVvVr18/Pfvss205IwAAaAMtjoDdu3frkUcekdVqldVqVWNjo6677jo9++yzWrRoUVvOCAAA2kCLIyAkJEShoaGSzr4fwNGjRyVJEREROnz4cNtMBwAA2kyLzwno27evdu/erdjYWCUmJmrp0qVyuVxat26d57MEAABA4GjxkYAnnnhCISEhkqSnnnpKDodDU6ZMUUVFhV588cU2GxAAALSNS36fgB+qq6tTeHi4LBZLa87U5rhEEABggla7RPBCunbteiU3BwAAftTilwMAAEBwIQIAADAUEQAAgKGIAAAADEUEAABgKJ9FwJIlSzRy5Ej94he/0ODBg5WXl6eGhgavfSorKzVmzBj1799faWlpKi0t9VpvaGhQVlaWkpKSlJycrAULFqi5udlXTwEAgKDiswj48ssv9eijj+q9997Tq6++qm3btikvL8+zXltbqylTpigpKUlFRUUaOXKkMjMztX//fs8+ubm52rlzpwoLC1VQUKCNGzdqyZIlvnoKAAAElSt6s6Ar8fHHHysnJ0dffPGFJGnVqlUqLCxUSUmJ582HJk2apISEBM2aNUtOp1OpqalauXKlUlJSJEnr16/XokWLtG3bNlmtLe8Z3iwIAGCCNn2zoCtRW1urLl26eL6uqqpScnKy17sPpqamavv27ZKkXbt2yWKxaMCAAV7rdrtdNTU1io2NbfFj/9Q3BAAAU/glAk6cOKGVK1dq7Nixnm0Oh0Px8fFe+0VERMhut0uS7Ha7wsPDPZ9fIEmRkZGetUuJAI4EAABMcLEjAT6/OqCxsVFPPvmkYmJi9Nhjj3m2X+xViQutB9pnFgAA0J749EhAU1OTnn76aTU0NKiwsFAdOvzvw9tsNjkcDq/9a2trZbPZJElRUVFyOp1qbm72HA04d5Tg3D4AAKDlfHYkwOVyadasWTp48KBWrFihzp07e60nJCSovLzca1tZWZkSExMlSf369ZPb7VZFRYXXus1mU3R0dNs/AQAAgozPImDOnDkqLy/Xyy+/rDNnzujYsWM6duyY5zr/9PR01dfXKz8/X3v37tXy5ctVWVmp8ePHSzr7iYUjRoxQXl6eqqqqVFZWpoKCAk2cOPGSrgwAAABn+ewSwbi4uAtuLykp8fwlv2PHDuXm5mrPnj2KiYlRVlaWhgwZ4tm3oaFBubm52rx5s0JDQzV69Gg9//zzXicLtgQnBgIATHCxEwP99j4B/kQEAABM0O6uDgAAAO0DEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKJ9GwObNm5WRkaHbbrtNcXFx561XVlZqzJgx6t+/v9LS0lRaWuq13tDQoKysLCUlJSk5OVkLFixQc3Ozr8YHACCo+DQCTp06pZSUFD322GPnrdXW1mrKlClKSkpSUVGRRo4cqczMTO3fv9+zT25urnbu3KnCwkIVFBRo48aNWrJkiQ+fAQAAwaODLx9s5MiRkqTy8vLz1oqLixUWFqbs7GxZLBb16dNHn376qd59913NmjVLTqdTxcXFWrlypRISEiRJM2bM0KJFizR16lRZrbyyAQDApfBpBPyUqqoqJScny2KxeLalpqZq+/btkqRdu3bJYrFowIABXut2u101NTWKjY1t8WPZbGGtNzgAAAGq3USAw+FQfHy817aIiAjZ7XZJkt1uV3h4uEJCQjzrkZGRnrVLiQC7vV4ul7sVpgYAoP2yWi0/+YdvuzmG7nb/9D/KF1r/4VEDAABwadpNBNhsNjkcDq9ttbW1stlskqSoqCg5nU6vqwHOHSU4tw8AAGi5dhMBCQkJ550wWFZWpsTERElSv3795Ha7VVFR4bVus9kUHR3t01kBAAgGPj0noK6uTkeOHNHBgwclSbt375Yk9e7dW+np6Vq8eLHy8/M1YcIElZSUqLKyUnl5eZKkrl27asSIEcrLy1N+fr5OnjypgoICTZw4kSsDLsNnn32qbdtKL75jO+F01kmSwsO7+nmSSzNo0BDdeedgf48BABfk0wjYsmWLZs+e7fl61KhRkqSSkhJFR0dr+fLlys3N1TvvvKOYmBgtXrxYPXv29Oyfk5Oj3NxcZWRkKDQ0VKNHj9YTTzzhy6cAP3E6nZICLwIAoD2zuC92Rl4Q4uqAwLNw4TxJ0qxZc/w8CQAEjoC5OgAAAPgWEQAAgKHazZsFAYAJAu2kXCkwT8zlpNyW4UgAAOAnOZ1Oz8m5CC4cCQAAH7rzzsEB9xcqJ+YGL44EAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoTr4e4BgsHr1KlVXH/D3GEHt4MGz399zn2uOthMTc6MmTnzY32MA8AEioBVUVx/QN99+p5Cru/p7lKDlag6RJH1XfdzPkwS35tN1/h4BgA8RAa0k5Oqu6nTj//H3GMAVOXmgxN8jXBKOwvkGR+J8wx9H4YgAAAGruvqA9n/3ta4L41dZW+oklyTp9NHv/DxJ8Dpa3+SXx+UnB0BAuy6sg36dEOnvMYAr8qcqh18el6sDAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiksEW4HTWafm03UB90YrwH9rPl0npzNwfi04nXWqrW/y2+VVQGs5Wt+kCKfv37GTIwEAABgqcJK/HQsP76pj/7eJtw1GwDt5oETh4YHzGRjh4V111anjvFkQAt6fqhy62g8/exwJAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAICh+AAhAAHtKB8l3ObqG12SpLCO/N3YVo7WN6mnHx6XCGglzafrdPJAib/HCFquptOSJGuHq/08SXBrPl0nKcrfY7RYTMyN/h7BCN8fPCBJirqO73db6Sn//PdMBLQCfhG1vYP//5dQbEzg/AMVmKIC6r/niRMf9vcIRli4cJ4kadasOX6eBK2NCGgF/CJqe/wSAoDWxws8AAAYiggAAMBQRAAAAIYiAgAAMBQRAACAoYgAAAAMRQQAAGAoIgAAAEMRAQAAGIoIAADAUEQAAACGIgIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQARkBy5Yt06BBg5SYmKipU6fKbrf7eyQAAAJOwEXAhg0btHTpUuXk5GjNmjU6ceKEZs6c6e+xAAAIOBa32+329xCXYvTo0br77rs1ffp0SVJ1dbXuueceFRcXq2/fvi26D7u9Xi5XQD3tVvfZZ59q27ZSf4/RYgcPHpAkxcbe6OdJLs2gQUN0552D/T0G2pFA+9mTAvPnj5+9s6xWi2y2sB9d7+DDWa5YY2Ojvv76a82ePduzLSYmRj169FBlZWWLI+CnviGm+NnPrlFoaIi/x2gxmy1SkgJqZuns97lbty7+HgPtSKD97EmB+fPHz17LBFQE1NbWyuVyyWazeW2PjIyUw+Fo8f1wJEDq33+A+vcf4O8xjHDs2Al/j4B2hJ893+Fn7+JHAgLunAAAANA6AioCIiIiZLVaz7sawOFwKDIy0k9TAQAQmAIqAjp27Kibb75Z5eXlnm3V1dU6dOiQEhMT/TgZAACBJ6DOCZCkSZMmaf78+YqPj1d0dLTmz5+v5OTkFp8UCAAAzgq4CBg3bpzsdrteeuklnThxQgMHDtS8efP8PRYAAAEn4N4noDVwdQAAwARcHQAAAC6ICAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYiggAAMBQAffZAa3BarX4ewQAANrcxf69M/KzAwAAAC8HAABgLCIAAABDEQEAABiKCAAAwFBEAAAAhiICAAAwFBEAAIChiAAAAAxFBAAAYCgiAAAAQxEBAAAYighAQFi2bJkGDRqkxMRETZ06VXa73d8jAUFv8+bNysjI0G233aa4uDh/j4M2QASg3duwYYOWLl2qnJwcrVmzRidOnNDMmTP9PRYQ9E6dOqWUlBQ99thj/h4FbYRPEUS7N3r0aN19992aPn26JKm6ulr33HOPiouL1bdvXz9PBwS/8vJyPfzww/rmm2/8PQpaGUcC0K41Njbq66+/VkpKimdbTEyMevToocrKSj9OBgCBjwhAu1ZbWyuXyyWbzea1PTIyUg6Hw09TAUBwIAIAADAUEYB2LSIiQlar9byrARwOhyIjI/00FQAEByIA7VrHjh118803q7y83LOturpahw4dUmJioh8nA4DA18HfAwAXM2nSJM2fP1/x8fGKjo7W/PnzlZyczJUBQBurq6vTkSNHdPDgQUnS7t27JUm9e/dWx44d/TkaWgmXCCIgLFu2TG+99ZZOnDihgQMHat68eYqKivL3WEBQe++99zR79uzztpeUlCg6OtoPE6G1EQEAABiKcwIAADAUEQAAgKGIAAAADEUEAABgKCIAAABDEQEAABiKCACCxOTJk5Wdnf2j61lZWXrkkUd8N1ArKS8vV1xcnI4ePervUYCgwzsGAobIzs6Wy+Xy9xjn+eCDD7R27Vp9/fXXam5uVnR0tAYPHqyMjAxde+21/h4PCGocCQAM0aVLF4WHh7f54zQ2NrZ43xdeeEHZ2dm6/fbbtWLFCn300UfKzs7W8ePHtXLlyjacEoDEkQAgqLhcLr3yyitat26dzpw5o+HDh2vOnDm6+uqrlZWVpaNHj6qwsFCSPF8PHz5cS5culdPpVHJysvLz8z2f0FhdXa2FCxdqx44dOnHihGJjY/Wb3/xGo0aN8jzm5MmTFRMTo+7du2v9+vVqamrSxIkT9dFHH2nTpk1e882ePVs1NTV66623tGnTJm3YsEGLFi3S/fff79mnR48eSk1NldPpvOBzdLvdmjNnjsrKyvT999+rW7duuv/++5WZmel5P/ujR48qPz9fX3zxhU6dOqVu3brpoYce0qOPPipJ+uSTT7R48WLt27dPoaGh6tmzp3Jzc9WvX79W+/8CCAREABBENm3apLS0NK1evVoHDhxQdna2rrnmGr344osX3H/nzp2KjIzUsmXLVF9fr2eeeUYLFy7UwoULJUknT55UamqqMjMz1alTJ5WWluqFF17Qddddp5SUFM/9fPzxx0pPT1dhYaGam5sVHh6upUuX6osvvtAdd9whSaqvr9ff/vY3zZ07V9LZlwFuvPFGrwD4oR87auF2u2Wz2fTqq6/KZrPpm2++UU5Ojjp06KDp06dLkl566SWdPn1ahYWF6tKli2pqanT8+HFJ0rFjxzRjxgw99dRTGjZsmBobG/XVV18pJCTkMr7jQGAjAoAg0rVrV82dO1chISHq3bu3ZsyYoXnz5mnmzJkX3D80NFQLFizw/AX90EMPadWqVZ71uLg4xcXFeb6ePHmytm/fro0bN3pFQPfu3fXSSy/Jav3fVxgHDx6stWvXeiJg48aN6tixo4YOHSpJ2r9/v2666aZLfo5Wq1VPP/205+vo6GhVV1dr9erVngg4fPiw7r33XsXHx3v2OefYsWOeoyTntvfu3fuS5wCCAREABJH+/ft7/UWblJSkM2fOeD4K9r/990fCdu/e3fMXsySdOnVKb7zxhrZu3er5x7OxsVHJycle93PLLbd4BYAkTZgwQdOnT5fT6VR4eLjWrl2rBx54QFdddZWks3/RWyyWy3qea9eu1Y+bmtgAAAONSURBVLp163To0CGdOnVKTU1N+uFnoWVkZCgnJ0effvqp7rjjDt11110aMGCApLNhM2jQIKWnp2vgwIG64447dN999+n666+/rFmAQMaJgUAQu9iHhIaGhnp9bbFYvG7z8ssv68MPP9S0adO0atUqvf/++xo8eLDOnDnjdbtrrrnmvPsePHiwoqKi9MEHH2j37t3atWuXHnzwQc96r169tHfv3kt+Th9//LFyc3OVlpam5cuXq6ioSNOmTfOaaezYsdqyZYsmTJigY8eOacqUKXr22WclSSEhIXrzzTf15z//Wf3799fmzZs1dOhQbd269ZJnAQIdEQAEkZ07d6q5udnz9Y4dOxQaGqrY2NjLur+Kigqlp6crLS1NN998s2JiYrR///4W3dZqtWrcuHFat26d1q5dq1/+8pf6+c9/7ll/4IEHdODAAX300UcXvP2PnRhYUVGh+Ph4/frXv9att96qnj176tChQ+ft1717d40dO1Yvv/yy8vPzVVxcrPr6eklnYychIUG//e1v9Ze//EUDBgzQe++916LnBQQTXg4AgkhdXZ3mzp2rjIwMVVdX67XXXtODDz6oTp06Xdb99erVSyUlJRo6dKg6deqkP/3pT/r+++8VFRXVotuPGzdOb7zxhvbt26d58+Z5rQ0bNkyjRo3SrFmz9O2332rIkCG69tprVVNTo6KiIv3sZz/T7NmzLzjT+vXr9cknn6hv377aunWrNm/e7LVPbm6uhgwZol69euk///mPNm/erOuvv16dO3fWv/71L33++ecaNGiQunXrpgMHDuibb77RuHHjLut7BAQyIgAIIkOHDlXnzp01ceJENTY2atiwYXruuecu+/5mz56tF198UQ8//LDCwsL04IMPaujQoaqurm7R7bt376677rpL5eXlGj58+HnrCxcuVEpKitauXatVq1bJ5XIpOjpad911lx5++OEL3uf48eO1Z88evfDCC2pqatLdd9+tJ5980isy3G635s+fryNHjuiaa65RYmKiVqxYIYvFoi5dumjHjh1avXq1nE6nunXrpvT0dE2dOvXyvklAALO4L/aiIQBcgXHjxikxMVFz5szx9ygA/gvnBABoE3a7XWvXrtVXX32ljIwMf48D4AJ4OQBAmxg4cKDCw8OVnZ192ScmAmhbvBwAAICheDkAAABDEQEAABiKCAAAwFBEAAAAhiICAAAw1P8D03+SXzg3DXMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.boxplot(x='binaryClass', y='age', data=df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:25.856664Z",
+ "iopub.status.busy": "2021-12-15T11:04:25.851678Z",
+ "iopub.status.idle": "2021-12-15T11:04:26.994021Z",
+ "shell.execute_reply": "2021-12-15T11:04:26.993321Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:26.451286Z"
+ },
+ "papermill": {
+ "duration": 1.252163,
+ "end_time": "2021-12-15T11:04:26.994143",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:25.741980",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 59,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAIvCAYAAAC81DtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXCUdZ7H8U/n4jCBIjFGJwmOIuGSBFQIR+QaXEBnBmGijjqouDseuOuBu3igiAQi6jI7oqWkVlGEUseRGbxQERhxQAloaeICEXTjEg5j6AQNkJCjn/3Doc3RSTpXd3/h/aqiin6e3/P0J0+6k0+eox+X4ziOAAAAjAgLdgAAAIDWoLwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMigh2gs5WUlLdr+V69uqus7FgHpQk88geP5eyS7fyWs0u281vOLrU9f3x8TCekQVPY89KCiIjwYEdoF/IHj+Xsku38lrNLtvNbzi7Zz3+qoLwAAABTTvrDRjjJeKTq6lqfsyIjw6njAHAKoLzAlOrqWu3ZVexzXt8BCYrswi5fADjZ8XcqAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTIoIdAKjHI1VX13ofHi49purjPz2WE4RMAICQQnlBSKmurtWeXcXex9HRXXXkSKX3cZ+UM4IRCwAQQjhsBAAATKG8AAAAUygvAADAFM55QeA1OCm3Hk7IBQC0gPKCgGt4Um5dnJALAGgJh40AAIAplBcAAGAK5QUAAJhCeQEAAKZwwi5OGmFhrvq3EqgjMjKcqg4AJwnKC04aNdUefb37O5/z+g5IUGSX8AAnAgB0Bv4WBQAAplBeAACAKZQXAABgCue84JTQ3Mm8Eif0AoAllBecEpo7mVfihF4AsIS/NQEAgCnseUHHa+6u0RJ3jgYAtAvlBR2uubtGS9w5GgDQPhw2AgAAplBeAACAKRw2AsR9kQDAEsoLIO6LBACW8PckAAAwhfICAABM4bAR2qa5z3Lhc1wAAJ2I8oI2ae6zXPgcFwBAZ+KwEQAAMIU9L0ALuCM1AIQWygvQgpbuSN1v0JnyVDc+0edw6THJI4oNAHQwygt84+aKfmuq3ERHd9VZyT35jBgA6GCUF/jEzRU7BoecAKDjUV6ATtTSISc+vRcAWo+/+QAAgCnseQGCiBtCAkDrUV5OZXxKbtA1d1ipqauYTqDcADhVUV46SjNFIGi/ZDw/Xq7b5AmjjrSngE/JDVVtvURbkiIjwlVd08YThf/xWm7qtUNpAhBsJ315CQtzdcw6PFJNjafpQY60t9Dtc1aflHh5appeNCIirMl1NzevxfmOVLS/VEePHvc5++xzTleXrr5fAuHhYU3Oa2l+Ry4b1SVcXWoimpwfjEz+zo/qEt6pz+t4mn7NnX3O6U3Ok1p4Tf7jtXzaaV18vnaaW7Y9r9eIiLC2l6IG788fDlfIU/NTsWvXuoOkI352BYvl7JL9/KcCl+M4HCAAAABmGPtbBAAAnOooLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMigh0gENzuI/J42nbz7F69uqus7FgHJwoc8geP5eyS7fyWs0u281vOLrU9f3x8TJufsz2/o05mzW1T9ry0ICIiPNgR2oX8wWM5u2Q7v+Xsku38lrNL9vOfKigvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAlICWl3Xr1un666/XhRdeqH79+rU4vrCwUDNmzFBqaqomTJigv/zlLwFICQAAQllEIJ+soqJCI0aM0KhRo/SHP/yh2bHV1dW6+eabNXDgQL322mvKy8vTvHnzlJSUpOHDhwcosfTFp/u05uXP5Tgds76ISJfGTu6nlEEJ2r2jWJvf36PjlbX1xrj+USkdT8c8J/zkkuTj+9y1W4RGTzxPKYMSvNN27yhW7qZCHfnhuKJ7dFH62HPqzW/tOACA/wJaXqZOnSpJys3NbXHshx9+qOLiYq1Zs0bdu3dXSkqKtm/frlWrVgWsvOzeUawNbxZ06Dprqh1teKtAB/d9r12fH/RZiigtQdJEQa2sqNHf1n4pSd7Suemd3aqp+fEbdeSH49r0zm7v/BO++HSfX+MAAK0Tsue85OfnKzU1Vd27d/dOGzlypPLy8gKWIXdTYees2FGTxQWhyVPreF8PuZsKvYXkhJoaT6PXy8Z3vvRrHACgdQK656U1SktLFRcXV29abGys3G53q9cVFxfdpgxHfjjepuX8QXGx58gPxxUfH9Pk6+LE/BO+L6vwa1wos5LTF8vZJdv5LWeXAp8/MjxcHlf9XwpdukaoW/eogOawJGTLi9OBv93d7iPyeFq/vugeXTqtwLhcFBhront0UUlJeZOvixPzT+jZq5vPAtNwXKiKj48xkdMXy9kl2/ktZ5fanr89hWfnFwd0vLKm3rS+AxJ05Gjn/QFtQXPbNGQPG8XFxTXay+Jrb0xnSh97Tues2CUNGHKWXK7OWT06Xli4y/t6SB97jiIi6r91IiLCGr1eJkzp59c4AEDrhGx5SU1NVX5+vioqfvrLdevWrUpLSwtYhpRBCZp2zZAOLRkRkS794pf9NXZSiib8sr+6dA1vNMYV9tMVRwigJr7PXbtFaPyl/bwn2aYMStDYKSmK7tFF0o97UsZOSWl0Eu7gC5P8GgcAaJ2AHjY6fPiwDh48qL1790qSdu3aJUnq06ePCgoKNGfOHK1YsUIJCQm6+OKLdcYZZ2ju3Lm69dZblZeXp7ffflvLly8PZGQNvjBJZ/bu2SnrThmU0Om/yE7VXbidzd/vXSC+xwBwqgloedm4caPuu+8+7+PLL79ckrRhwwZVVFSosLBQ1dXVkqSoqCjl5OTooYce0vTp0xUfH68FCxYE9DNeAABA6AloeZk+fbqmT5/uc15SUpK+/PLLetPOPfdcrVy5MhDRAACAEZxZAQAATAnZS6UBADgVnHNevGpr63+gZWRk44s58BPKCwAAQRQRFaYwD5+d0RocNgIAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCkBLy85OTnKyMhQWlqaZs2aJbfb3eTYDRs26PLLL1daWprGjBmjRYsWqaqqKoBpAQBAqAloeVm9erWWLVumhx56SK+88orKy8s1e/Zsn2P37t2rO+64Q7/61a/01ltv6dFHH9W6deu0bNmyQEYGAAAhJiKQT7Zq1SrNnDlTl1xyiSQpOztbEydO1O7du5WSklJv7I4dO3Taaafpn//5nyVJycnJmjJlinbs2BHIyAAAIMQEbM9LVVWVCgoKNGLECO+05ORkJSYmKi8vr9H4888/X0ePHtX69evlOI4OHjyov//97xo9enSgIgMAgBAUsD0vZWVl8ng8iouLqzc9NjZWpaWljcYnJyfrmWee0V133aWKigrV1NTo6quv1nXXXdfq546Li25zbkmKj49p1/LBRv7gsZxdsp3fcnbJdn7L2aXA52/v76hTUUAPG7VGcXGxHn74Yd10000aM2aMDhw4oEWLFun555/XzJkzW7Uut/uIPB6nTTni42NUUlLepmVDAfmDx3J2yXZ+y9kl2/ktZ5fanr89hac9v6NOZs1t04CVl169eiksLExut1t9+vTxTi8tLVVsbGyj8S+99JJ69+6tm266SZLUv39/HT16VI888kirywsAADh5BOycl6ioKPXv31+5ubneaUVFRdq/f7/S0tIaja+srFRYWP14YWFh8ng8nZ4VAACEroBeKn3ttdfq+eef1/r161VQUKC5c+cqPT1dKSkpys/P1+TJk1VcXCxJGjt2rLZs2aJVq1apqKhIH3/8sZ544gmNHz8+kJEBAECICeg5L5mZmXK73Zo/f77Ky8s1atQoZWVlSZIqKipUWFio6upqSdKoUaOUnZ2t5cuX6/HHH1fPnj31i1/8QnfffXcgIwMAgBDjchznpD9LiBN2yR8MlrNLtvNbzi7Zzm85u8QJu6GkuW3KvY0AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCkBLy85OTnKyMhQWlqaZs2aJbfb3eTYmpoaLV26VOPGjdP555+vSZMmacuWLQFMCwAAQk1EIJ9s9erVWrZsmR577DElJSUpOztbs2fP1ooVK3yOnzdvnnbs2KFFixbp7LPP1sGDB9WzZ89ARgYAACEmoOVl1apVmjlzpi655BJJUnZ2tiZOnKjdu3crJSWl3tgvv/xSr7/+ut59910lJydLkpKSkgIZFwAAhKCAHTaqqqpSQUGBRowY4Z2WnJysxMRE5eXlNRq/adMm9e7dW2vXrtXYsWM1efJkPf3006qtrQ1UZAAAEIL83vNSUFCg8PBw9e3bV9KP5WL16tXq27evbr31VkVENL+qsrIyeTwexcXF1ZseGxur0tLSRuP37dunoqIibd68WUuXLtV3332nefPmKTIyUr///e/9jS1JiouLbtX4huLjY9q1fLCRP3gsZ5ds57ecXbKd33J2KfD52/s76lTkd3mZN2+err/+evXt21fffvutbr/9dg0bNkyvvvqqjh8/rn//93/v0GCO46i6ulqLFy9WYmKiJOnAgQN66aWXWl1e3O4j8nicNuWIj49RSUl5m5YNBeQPHsvZJdv5LWeXbOe3nF1qe/72FJ72/I46mTW3Tf0+bFRYWKgBAwZIktatW6fBgwfr2Wef1WOPPaa1a9e2uHyvXr0UFhbW6Oqi0tJSxcbGNhofFxenqKgob3GRpHPOOUfffvutv5EBAMBJyO/yUl1drS5dukiStm3bpjFjxkiSfv7zn+vQoUMtLh8VFaX+/fsrNzfXO62oqEj79+9XWlpao/FDhgxRVVVVvbKyd+9enXXWWf5GBgAAJyG/y8s555yj9957TwcOHNCWLVs0cuRISVJJSYl69Ojh1zquvfZaPf/881q/fr0KCgo0d+5cpaenKyUlRfn5+Zo8ebKKi4slSRkZGerTp48eeOAB7dmzRx999JFycnJ01VVXteHLBAAAJwu/z3m57bbbdOedd+rxxx/X6NGjNXjwYEnS5s2bNXDgQL/WkZmZKbfbrfnz56u8vFyjRo1SVlaWJKmiokKFhYWqrq7+MVhEhHJycjR//nxlZmYqLi5O11xzja677rrWfo0AAOAk4nIcx++zhA4dOqSSkhL169dPYWE/7rT57LPPFBMTo/POO6/TQrYXJ+ySPxgsZ5ds57ecXbKd33J2iRN2Q0lz27RVH1J3+umn6/TTT/c+Pnr0qIYOHdr2ZAAAAK3k9zkvy5cvr3dV0Zw5c3TRRRdpwoQJ+vrrrzslHAAAQEN+l5eXX37Zu9flk08+0fvvv68lS5Zo8ODBevzxxzstIAAAQF1+Hzb67rvvvPcW+uCDDzRp0iRdeuml6tu3r2bMmNFpAQEAAOrye89Lt27dVF7+40lM27ZtU3p6uiSpa9euqqys7Jx0AAAADfi952X48OF69NFHdcEFF2jnzp26+OKLJUn/+7//qzPPPLPTAgIAANTl956XuXPnKioqSu+//74WLFjgPf/lww8/1KhRozotIAAAQF1+73lJSEjQsmXLGk1/8MEHOzQQAABAc/ze8wIAABAK/N7zUl1drZycHL355ps6cOCAampq6s3ftWtXh4cDAABoyO89L0899ZT+9Kc/6eqrr5bL5dKdd96pzMxM9ezZUw888EBnZgQAAPDyu7y8/fbbWrBggW644QaFh4drypQpysrK0q233qrPPvusMzMCAAB4+V1eTtyQUZK6d++uI0eOSJImTJigDz74oFPCAQAANOR3eTnjjDPkdrslSYmJidq+fbskaffu3QoPD++cdAAAAA34fcLuiBEjtHHjRg0ePFiZmZlasGCB1q5dq927d+vXv/51Z2YEAADw8ru8ZGVlyXEcSdKVV16pmJgYffrpp/r1r3+tq666qtMCAgAA1OV3eZEkl8vl/f+UKVM0ZcqUDg8EAADQnGbLS3Fxsd8rSkhIaHcYAACAljRbXsaOHVtvb4svjuPI5XLxIXUAACAgmi0vL774YqByAAAA+KXZ8jJ8+PBA5QAAAPBLi5/zUlxcrEcffVTl5eWN5v3www969NFHdejQoU4JBwAA0FCL5eXFF19UWVmZYmJiGs3r0aOHDh8+zOElAAAQMC2Wlw8//FDTpk1rcv706dP1t7/9rUNDAQAANKXF8rJv3z717t27yflJSUnat29fh4YCAABoSovlJTw8vNnPeykuLubeRgAAIGBaLC/9+/fXhx9+2OT8TZs2ee82DQAA0NlaLC9XXHGFnn32Wb3zzjuN5q1du1bPPfecrrjiik4JBwAA0FCL9zaaOnWqcnNzddddd+mPf/yj+vTpI5fLpa+++kp79+7V1KlTdfnllwciKwAAgH83ZszOztbYsWP1xhtv6JtvvpHjODrvvPM0e/ZsTZo0qbMzAgAAePl9V+lJkyZRVAAAQNC1eM7LCdddd53efvttVVVVdWYeAACAZvldXhITE/XAAw9ozJgxWrx4sb7++uvOzAUAAOCT3+XlkUce0ebNm3XnnXdq+/btuuyyy3TNNdfo9ddfZ28MAAAIGL/LiySddtpp+u1vf6vVq1drzZo16t+/vx588EFlZGRo0aJFKioq6qycAAAAklpZXk4oLy/XJ598ou3bt8vj8Wj48OH6/PPPNWXKFL388ssdnREAAMDL76uNJOmTTz7Rq6++qnXr1ik2NlZXXHGFMjMzFR8fL0l69dVXtWTJEl199dWdEhYAAMDv8jJ58mTt27dPF198sZ544gmNGTNGLper3piJEydq3rx5HR4SAADgBL/Ly2WXXaYrr7xSCQkJTY6JjY1VQUFBhwQDAADwxa9zXqqrq/Xyyy/rhx9+6Ow8AAAAzfKrvERGRiosLExhYW06vxcAAKDD+N1GrrjiCq1cubIzswAAALTI73NevvvuO7377rvaunWrBg0apO7du9ebn5WV1eHhAAAAGvK7vOzdu1cDBw6U9GORqavhVUcAAACdxe/ywiEjAAAQCjgDFwAAmNKqT9jdtm2b3nrrLe3fv1/V1dX15r344osdGgwAAMAXv/e8vP7667rxxht16NAh5ebmKjo6WocOHdLOnTvVu3fvzswIAADg5Xd5efbZZ3Xffffp6aefVmRkpO677z69/fbbmjx5ss4888zOzAgAAODld3kpKirSmDFjJElRUVE6duyYXC6XbrjhBv3pT3/qtIAAAAB1+V1eYmJiVFlZKUmKj49XYWGhJOnYsWM6cuRI56QDAABowO8TdocMGaLt27erb9++GjdunBYvXqwdO3Zow4YNuvDCCzszIwAAgJff5eWee+7RsWPHJEn/+q//qqNHj+qDDz7Qeeedp/vvv7/TAgIAANTld3lJSkry/r9r16566KGHOiUQAABAc/iQOgAAYIrfe17Kysr02GOPafPmzXK73XIcp978Xbt2dXg4AACAhvwuL3PnzlVBQYFmzJihhIQEbsYIAACCwu/ykpubq+eee05DhgzpzDwAAADN8vucl549eyo6OrozswAAALTI7/Jyyy236JlnnlFNTU1n5gEAAGiW34eN3nnnHX3xxRcaM2aM+vTpo8jIyHrzly9f3uHhAAAAGvK7vJx55pncgBEAAASd3+XlkUce6cwcAAAAfuFD6gAAgCnN7nm58cYb9cQTTygmJkY33nhjsyvy95yXnJwcrVy5UuXl5Ro9erSysrIUFxfX7DL/8z//o6uuukoXXHCBVq5c6dfzAACAk1Oz5aXuh9ElJCS0+8lWr16tZcuW6bHHHlNSUpKys7M1e/ZsrVixosllqqqqdN9992nYsGGqra1tdwYAAGBbs+Wl7nkuJ/5fWVmpvXv3SpJ69+6trl27+v1kq1at0syZM3XJJZdIkrKzszVx4kTt3r1bKSkpPpf5r//6L6Wnp6tnz57atm2b388FAABOTn6f81JVVaVFixZp+PDhmjp1qqZOnarhw4dr4cKFOn78uF/LFxQUaMSIEd5pycnJSkxMVF5ens9lPv30U23cuFF33323vzEBAMBJzu+rjRYsWKCNGzfqgQce0AUXXCDHcfTZZ59p6dKlqqys1MKFC5tdvqysTB6Pp9H5LbGxsSotLW00vqKiQvfff7+ysrLUrVs3f2MCAICTXKs+pG7JkiUaN26cd1rfvn11xhln6O67726xvLTWkiVLlJGRoeHDh7d7XXFx7butQXx8TLszBBP5g8dydsl2fsvZJdv5LWeXAp+/vb+jTkV+l5fIyEj17t270fTk5GRFRLS8ml69eiksLExut1t9+vTxTi8tLVVsbGyj8du3b9eePXv08ssvS5I8Ho8cx9HAgQP1/vvvKzEx0d/ocruPyONx/B5fV3x8jEpKytu0bCggf/BYzi7Zzm85u2Q7v+XsUtvzt6fwtOd31MmsuW3qd3m54oor9MILL+jhhx/2XoHkOI5WrlypzMzMFpePiopS//79lZub692bUlRUpP379ystLa3R+CeffFKVlZXexy+99JK++OILPfLIIzrjjDP8jQ0AAE4yzZaXBx980Pt/j8ejd999V1u2bFFqaqok6YsvvtDhw4c1adIkv57s2muvVXZ2tgYMGOC9VDo9PV0pKSnKz8/XnDlztGLFCiUkJDTayxMXF6fu3bs3eVUSAAA4NTRbXr755pt6jwcOHChJOnTokCTprLPO0llnnaWioiK/niwzM1Nut1vz589XeXm5Ro0apaysLEk/nqBbWFio6urq1n4NAADgFOJyHOekP9DGOS/kDwbL2SXb+S1nl2znt5xd4pyXUNLcNuXeRgAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAlICXl5ycHGVkZCgtLU2zZs2S2+32OW7Xrl26/fbblZGRoaFDh+rKK6/URx99FOC0AAAg1AS0vKxevVrLli3TQw89pFdeeUXl5eWaPXu2z7E7d+5UYmKinnjiCa1Zs0YZGRm65ZZb9PXXXwcyMgAACDERgXyyVatWaebMmbrkkkskSdnZ2Zo4caJ2796tlJSUemN/85vf1Ht8++2367333tOWLVvUp0+fgGUGAAChJWB7XqqqqlRQUKARI0Z4pyUnJysxMVF5eXktLu84jg4fPqwePXp0ZkwAABDiAlZeysrK5PF4FBcXV296bGysSktLW1x+1apVqq2t1fjx4zsrIgAAMCCgh43a6sMPP9SSJUv01FNPqWfPnq1ePi4uul3PHx8f067lg438wWM5u2Q7v+Xsku38lrNLgc/f3t9Rp6KAlZdevXopLCxMbre73jkrpaWlio2NbXK5Tz75RHfccYcWLVqkjIyMNj23231EHo/TpmXj42NUUlLepmVDAfmDx3J2yXZ+y9kl2/ktZ5fanr89hac9v6NOZs1t04AdNoqKilL//v2Vm5vrnVZUVKT9+/crLS3N5zL5+fm6+eabde+99+qyyy4LVFQAABDCAnqp9LXXXqvnn39e69evV8GTvPwAABB0SURBVEFBgebOnav09HSlpKQoPz9fkydPVnFxsSTpyy+/1L/8y7/oqquu0oQJE1RSUqKSkhKVl9tt9AAAoP0Ces5LZmam3G635s+fr/Lyco0aNUpZWVmSpIqKChUWFqq6ulqStG7dOn3//fd67rnn9Nxzz3nXMW3aNC1evDiQsQEAQAhxOY5z0h9o45wX8geD5eyS7fyWs0u281vOLnHOSygJiXNeAAAAOgLlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnkBAACmUF4AAIAplBcAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmBIR7AAAAJzKaqo8qq31BDtGSIiMDPdrtwrlBQCAICr8qkTHK2uCHSMk9B2QoMgu4S2O47ARAAAwJeDlJScnRxkZGUpLS9OsWbPkdrubHFtYWKgZM2YoNTVVEyZM0F/+8pcAJgUAAKEooIeNVq9erWXLlumxxx5TUlKSsrOzNXv2bK1YsaLR2Orqat18880aOHCgXnvtNeXl5WnevHlKSkrS8OHDAxm7zXbvKNbm9/foeGXtjxNckhypa7cIOY6j45W1iu7RReljz1HKoIRGy+ZuKtSRH47L5ZIcR96xkuqtt2u3CJ3bP157vy7VkR+Oq0vXcFVV1crhECqM6NI1XH0GnOF9Ddd9j/h6/Z94bzTFFeaS43EaLdvwfVZX3fecr/FNzd+9o1hb1n+lyor6u/0brqOl9bdWR6+vvVqbJ5j5N723W7s+PyjHkVwuacCQszR2UkpAnhsdw+U4jhOoJ5s2bZrGjx+v22+/XZJUVFSkiRMn6s0331RKSv0XzoYNGzR79mx9/PHH6t69uyRpzpw5qqys1NKlS1v1vG73EXk8bfsy4+NjVFJS3urldu8o1sa3CuTP1o2ICNPYKSn1fshteme3amoat4+wcJc8tQH7lgEhJSz8x1LSlp9aDd9ndfl6z9Ud39T8lMEJKsj/tsn35Il1SGp2/Q219HOnpbyB1to8wcy/6b3d2vnZwUbTBw79scC09Wd+fHxMmzNt/fvXnPPyD3XPeWlumwbssFFVVZUKCgo0YsQI77Tk5GQlJiYqLy+v0fj8/HylpqZ6i4skjRw50ufYUJS7qdDvH7A1NR7lbiqst6yv4iKJ4oJTmqe2bcVFavw+q8vXe67u+Kbm7/r8YLPvyRPraGn9rdXR62uv1uYJZv5dnzcuLs1NR2gK2GGjsrIyeTwexcXF1ZseGxur0tLSRuNLS0t9jm3uHJmmxMVFt3qZutrSqJvbpd3U+BPP09plAfin7vus4fTmxjc1358i1dz7uak8UvM/d1rKG2itzRPM/E19zxznp20e6G04cPDP2nx04GTTpWuEunWPanFcyF4q3ZFHs4Jx2Ci6R5dWlZDoHl28z9PaZQH4p+77rOF0X++5E+Obmn/inJqWnlPy/Qu7qTwt/dxpKW+gtTZPMPM39T1zuaSSkvKgHDaqrq2lvPxD9dFaHTn642sjJA4b9erVS2FhYY32nJSWlio2NrbR+Li4OJ9jG+6NCVXpY8+Ry+Xf2IiIMO+JiCeWjYjw/a0JC/dzpcBJKCzc5ff7qqGG77O6fL3n6o5vav6AIWc1+548sY6W1t9aHb2+9mptnmDmHzDkrFZNR2gK2J6XqKgo9e/fX7m5ud6rhYqKirR//36lpaU1Gp+amqoXXnhBFRUV6tatmyRp69atPseGohMnnbXlaqMT/+dqI5wqgn21UcP3XMPxzc0/K6mnX1cbNbf+1mopb6C1Nk8w85+4qoirjWwL6NVGr732mrKzs+tdKi1JL774ovLz8zVnzhytWLFCCQkJqqqq0mWXXabBgwfr1ltvVV5enubPn6/ly5e3+lLpYBw2ChXkDx7L2SXb+S1nl2znt5xdanv+9hw2as/vqJNZc9s0oOe8ZGZmyu12a/78+SovL9eoUaOUlZUlSaqoqFBhYaGqq6sl/binJicnRw899JCmT5+u+Ph4LViwwMxnvAAAgM4R0D0vwcKeF/IHg+Xsku38lrNLtvNbzi6x5yWUhMQJuwAAAB2B8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAUygvAADAFMoLAAAwhfICAABMobwAAABTAnpjxmAJC3MFdflgI3/wWM4u2c5vObtkO7/l7JL9/KeCU+LGjAAA4OTBYSMAAGAK5QUAAJhCeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKZQXAABgCuUFAACYQnlpRk5OjjIyMpSWlqZZs2bJ7XYHO5JP9957r/r161fv3wsvvFBvTF5enqZPn67Bgwfr0ksv1aZNm4KSdd26dbr++ut14YUXql+/fo3mt5Tz6NGjuvfee3XBBRcoPT1dixcvVm1tbaDiN5s/Nze30fdh6tSpIZP/mWee0dSpUzVkyBCNGTNGCxcu1NGjR+uNCeXt31L+UN/+S5cu1aRJk5SamqpRo0bp7rvvVklJiXd+KG/7lvKH+rav67bbblO/fv2Um5vrnRbq2x4+OPDptddec4YMGeKsW7fO2blzp/O73/3Oue6664Idy6d77rnHueOOO5zvvvvO++/YsWPe+aWlpc6wYcOcrKwsZ8+ePc6yZcuc888/3yksLAx41jVr1jhPP/20s2zZMiclJaXePH9yzpkzx7n00kudvLw856OPPnJGjx7tPPnkkyGRf+vWrU5KSkq970NpaWm9McHM//vf/9554403nK+//trZtm2bM2nSJOfee+/1zg/17d9S/lDf/m+++abz8ccfO0VFRU5eXp5z9dVXOzfeeKPjOKG/7VvKH+rb/oS//vWvzsyZM52UlBRn69atjuPY2PZojPLShMsvv9x54oknvI/37t3rpKSkOF9++WUQU/l2zz33OPfcc0+T81esWOGMHz/e8Xg83mnXXHONs3jx4kDE8+nED7u6Wsp5+PBhZ8CAAc7HH3/snf/nP//ZGTlypFNbWxuY4P/gK7+vaXWFUn7HcZy1a9c6w4YN8z62tP0dp3F+a9t/w4YNzpAhQxzHsbftHad+fgvb/ttvv3XGjRvn7N+/v155sbjt4TgcNvKhqqpKBQUFGjFihHdacnKyEhMTlZeXF8RkTdu4caNGjBihX/3qV8rJyVFNTY13Xn5+vtLT0+Vy/XSb95EjR4bc19JSzh07dsjlcmnYsGH15rvdbu3bty/geZsyYcIEjRs3TnfddZcOHDjgnR5q+cvKyhQTE+N9bG37N8x/goXtX15errfeeksXXHCBJHvbvmH+E0J528+dO1c333yzfvazn9Wbbm3b40eUFx/Kysrk8XgUFxdXb3psbKxKS0uDlKppY8aM0X/+539qxYoVmjlzpp5//nktXbrUO7+0tFSxsbH1lunVq1fIncPTUk63262ePXsqPDzcO//E+FD4WuLj47Vo0SI9/fTTWrx4sdxut6677jpVVlZKCq385eXlWr58uX7zm994p1na/r7yW9j+b7zxhoYOHaqLLrpI+/bt05IlSyTZ2fZN5Q/1bf/KK6+opqZGv/3tbxvNs7LtUV9EsAOg/S699FLv//v166ewsDA9/PDDuuuuu+RyueQ4ThDT+a+lnL7m1/1rKdjOPfdcnXvuud7H559/vsaPH6+//e1vmjJlSsjkr6qq0r/9278pOTlZN910k3e6le3fVH4L23/ChAlKTU3VwYMH9eSTT2revHlaunSpmW3fVP5Q3vYHDhzQU089pVdeecXnfCvbHvVRXnzo1auXwsLC5Ha71adPH+90Xw09FA0aNEjHjh1TWVmZYmNjFRcX12iPUVlZWaM9S8HWUs7TTz9d33//vWpra71/BZ34yyfUvhZJio6OVu/evbV//35JoZG/pqZGd911l44ePaoXXnhBERE//QiwsP2by99QKG7/6OhoRUdH6+c//7nOPfdcjRkzRl999ZWJbd9c/vPOO6/RuFDZ9jt37tShQ4f0T//0T/Wm33DDDZo2bZqZbY/6OGzkQ1RUlPr371/vUrqioiLt379faWlpQUzmnz179qhbt27q1auXJCk1NbXe1yJJW7duDbmvpaWcAwcOlOM4+uSTT+rNj4uLU1JSUkCz+qOyslL79u3zHmMPdn6Px6N77rlHe/fu1X//93/rtNNOqzc/1Ld/S/kbCrXt39CJv+jDwsJCftv7Ujd/Q6G07UeMGKE33nhDa9as8f6TpIULF+qOO+4wue0hLpVuyp///Gdn6NChzvvvv+/s2rXLmTFjhjNjxoxgx/IpOzvb+fzzz52ioiLnvffeczIyMpzs7Gzv/BOXAi5cuND56quvnJycnKBdKl1WVubs3LnTefXVV52UlBRn586dzs6dO53jx4/7lfM//uM/nF/+8pdOXl6e8/HHHzsZGRkBvWSxufyvvPKKs379euf//u//nC+++MK5+eabnXHjxjlHjhwJifz333+/M3r0aGfnzp31LmmtqalxHMe/10ko5w/l7V9VVeX84Q9/cPLy8px9+/Y527dvd373u98506ZNc2pra0N+27eUP5S3vS++LpUO1W0P3ygvzVi2bJkzevRoJzU11bnllluckpKSYEfy6cYbb3TS09OdQYMGOZdcconz5JNPOsePH6835rPPPnOmTZvmDBo0yJk8ebLzwQcfBCXr6tWrnZSUlEb/ioqK/Mp55MgRZ86cOc6QIUOcYcOGOdnZ2d5fXsHOv2rVKmfixInO+eef74wcOdK57bbbnG+++SZk8vvKXXfbO05ob/+W8ofy9q+urnZuu+02Z/To0c6gQYOccePGOXPnznWKi4u9Y0J527eUP5S3vS91y4vjhPa2h28uxzFyNicAAIA45wUAABhDeQEAAKZQXgAAgCmUFwAAYArlBQAAmEJ5AQAAplBeAACAKdzbCDiF3HvvvfrrX//a6uWGDx+ulStXasKECcrMzNSsWbM6IR0A+IfyApxiLrroIv3xj3/0PvZ4PPXuT7Nu3TotWLBAmzdv9k6LjIwMaEYAaA7lBTjFREZGKj4+vsn50dHRktTsGAAIJs55AQAAprDnBTjFbNu2TUOHDvU+jouL0/r164OYCABah/ICnGJSU1P16KOPeh+Hh4cHMQ0AtB7lBTjFdO3aVWeffXawYwBAm3HOCwAAMIXyAgAATKG8AAAAU1yO4zjBDgEAAOAv9rwAAABTKC8AAMAUygsAADCF8gIAAEyhvAAAAFMoLwAAwBTKCwAAMIXyAgAATKG8AAAAU/4fMzR6WAlPBywAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.jointplot(x='FTI', y='binaryClass', data=df, kind='scatter', height=8, color='m')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:27.212903Z",
+ "iopub.status.busy": "2021-12-15T11:04:27.212218Z",
+ "iopub.status.idle": "2021-12-15T11:04:27.263231Z",
+ "shell.execute_reply": "2021-12-15T11:04:27.262563Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:27.414156Z"
+ },
+ "papermill": {
+ "duration": 0.163334,
+ "end_time": "2021-12-15T11:04:27.263345",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:27.100011",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " T3 measured \n",
+ " T3 \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " binaryClass \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " 1.000000 \n",
+ " 0.003606 \n",
+ " 0.014563 \n",
+ " -0.017870 \n",
+ " -0.063881 \n",
+ " 0.079468 \n",
+ " -0.113521 \n",
+ " -0.029502 \n",
+ " 0.052704 \n",
+ " 0.039562 \n",
+ " ... \n",
+ " 7.311084e-02 \n",
+ " -2.149247e-01 \n",
+ " 6.750898e-02 \n",
+ " -3.760948e-02 \n",
+ " 8.536127e-02 \n",
+ " -1.575229e-01 \n",
+ " 8.453378e-02 \n",
+ " 5.001749e-02 \n",
+ " NaN \n",
+ " -0.003174 \n",
+ " \n",
+ " \n",
+ " sex \n",
+ " 0.003606 \n",
+ " 1.000000 \n",
+ " 0.098510 \n",
+ " -0.043533 \n",
+ " 0.030484 \n",
+ " -0.005755 \n",
+ " 0.079550 \n",
+ " 0.036586 \n",
+ " 0.020372 \n",
+ " 0.046353 \n",
+ " ... \n",
+ " -7.500437e-02 \n",
+ " 6.275929e-02 \n",
+ " -7.387180e-02 \n",
+ " 1.669887e-01 \n",
+ " -4.934307e-02 \n",
+ " 2.255718e-01 \n",
+ " -5.016697e-02 \n",
+ " 3.853089e-02 \n",
+ " NaN \n",
+ " 0.050808 \n",
+ " \n",
+ " \n",
+ " on thyroxine \n",
+ " 0.014563 \n",
+ " 0.098510 \n",
+ " 1.000000 \n",
+ " 0.005995 \n",
+ " -0.002201 \n",
+ " -0.042053 \n",
+ " 0.010152 \n",
+ " 0.037583 \n",
+ " 0.063373 \n",
+ " 0.094412 \n",
+ " ... \n",
+ " -1.450614e-01 \n",
+ " 6.484854e-03 \n",
+ " 2.496392e-02 \n",
+ " 2.128008e-01 \n",
+ " 3.885187e-02 \n",
+ " 4.636815e-02 \n",
+ " 3.828521e-02 \n",
+ " 1.857484e-01 \n",
+ " NaN \n",
+ " -0.081060 \n",
+ " \n",
+ " \n",
+ " query on thyroxine \n",
+ " -0.017870 \n",
+ " -0.043533 \n",
+ " 0.005995 \n",
+ " 1.000000 \n",
+ " -0.012446 \n",
+ " 0.012594 \n",
+ " 0.045247 \n",
+ " 0.005858 \n",
+ " -0.014610 \n",
+ " -0.029808 \n",
+ " ... \n",
+ " -3.340948e-02 \n",
+ " -6.465900e-03 \n",
+ " 2.960328e-02 \n",
+ " -4.702231e-03 \n",
+ " 3.155031e-02 \n",
+ " 4.384229e-04 \n",
+ " 3.141982e-02 \n",
+ " -3.550040e-03 \n",
+ " NaN \n",
+ " -0.007448 \n",
+ " \n",
+ " \n",
+ " on antithyroid medication \n",
+ " -0.063881 \n",
+ " 0.030484 \n",
+ " -0.002201 \n",
+ " -0.012446 \n",
+ " 1.000000 \n",
+ " -0.021624 \n",
+ " 0.072050 \n",
+ " -0.012819 \n",
+ " 0.006589 \n",
+ " -0.017264 \n",
+ " ... \n",
+ " 1.094961e-02 \n",
+ " 7.921225e-02 \n",
+ " -2.464939e-02 \n",
+ " 2.381055e-02 \n",
+ " -2.953201e-02 \n",
+ " 6.036462e-02 \n",
+ " -2.978795e-02 \n",
+ " -1.660334e-02 \n",
+ " NaN \n",
+ " -0.021689 \n",
+ " \n",
+ " \n",
+ " sick \n",
+ " 0.079468 \n",
+ " -0.005755 \n",
+ " -0.042053 \n",
+ " 0.012594 \n",
+ " -0.021624 \n",
+ " 1.000000 \n",
+ " -0.024040 \n",
+ " -0.000762 \n",
+ " -0.025384 \n",
+ " 0.027718 \n",
+ " ... \n",
+ " 6.695144e-03 \n",
+ " -7.647155e-02 \n",
+ " -5.699708e-03 \n",
+ " -3.700575e-02 \n",
+ " 9.399140e-03 \n",
+ " -3.906941e-02 \n",
+ " 9.068046e-03 \n",
+ " -2.118940e-02 \n",
+ " NaN \n",
+ " -0.001749 \n",
+ " \n",
+ " \n",
+ " pregnant \n",
+ " -0.113521 \n",
+ " 0.079550 \n",
+ " 0.010152 \n",
+ " 0.045247 \n",
+ " 0.072050 \n",
+ " -0.024040 \n",
+ " 1.000000 \n",
+ " -0.014251 \n",
+ " -0.015048 \n",
+ " -0.021364 \n",
+ " ... \n",
+ " 2.686496e-02 \n",
+ " 1.811466e-01 \n",
+ " 2.109671e-02 \n",
+ " 1.724903e-01 \n",
+ " 3.294152e-02 \n",
+ " 3.347023e-01 \n",
+ " 3.280814e-02 \n",
+ " -1.669842e-02 \n",
+ " NaN \n",
+ " -0.034516 \n",
+ " \n",
+ " \n",
+ " thyroid surgery \n",
+ " -0.029502 \n",
+ " 0.036586 \n",
+ " 0.037583 \n",
+ " 0.005858 \n",
+ " -0.012819 \n",
+ " -0.000762 \n",
+ " -0.014251 \n",
+ " 1.000000 \n",
+ " 0.003104 \n",
+ " -0.012026 \n",
+ " ... \n",
+ " -2.345292e-02 \n",
+ " -2.414553e-02 \n",
+ " 3.049073e-02 \n",
+ " -2.180623e-02 \n",
+ " 1.067220e-02 \n",
+ " 2.792243e-02 \n",
+ " 1.048764e-02 \n",
+ " -3.182840e-02 \n",
+ " NaN \n",
+ " -0.017633 \n",
+ " \n",
+ " \n",
+ " I131 treatment \n",
+ " 0.052704 \n",
+ " 0.020372 \n",
+ " 0.063373 \n",
+ " -0.014610 \n",
+ " 0.006589 \n",
+ " -0.025384 \n",
+ " -0.015048 \n",
+ " 0.003104 \n",
+ " 1.000000 \n",
+ " 0.047296 \n",
+ " ... \n",
+ " 1.504369e-04 \n",
+ " 1.205665e-02 \n",
+ " 3.219634e-02 \n",
+ " -8.848056e-03 \n",
+ " 2.854012e-02 \n",
+ " 9.405826e-03 \n",
+ " 2.838493e-02 \n",
+ " -1.681719e-02 \n",
+ " NaN \n",
+ " 0.003590 \n",
+ " \n",
+ " \n",
+ " query hypothyroid \n",
+ " 0.039562 \n",
+ " 0.046353 \n",
+ " 0.094412 \n",
+ " -0.029808 \n",
+ " -0.017264 \n",
+ " 0.027718 \n",
+ " -0.021364 \n",
+ " -0.012026 \n",
+ " 0.047296 \n",
+ " 1.000000 \n",
+ " ... \n",
+ " -6.354673e-02 \n",
+ " -4.749603e-02 \n",
+ " 2.443261e-02 \n",
+ " -9.012716e-03 \n",
+ " 1.451686e-02 \n",
+ " 1.383247e-02 \n",
+ " 1.409980e-02 \n",
+ " -1.971919e-02 \n",
+ " NaN \n",
+ " 0.086282 \n",
+ " \n",
+ " \n",
+ " query hyperthyroid \n",
+ " -0.038054 \n",
+ " 0.065274 \n",
+ " -0.023796 \n",
+ " -0.010905 \n",
+ " 0.126566 \n",
+ " -0.035206 \n",
+ " 0.117605 \n",
+ " 0.015501 \n",
+ " 0.064212 \n",
+ " 0.019464 \n",
+ " ... \n",
+ " 2.797884e-02 \n",
+ " 1.662303e-01 \n",
+ " -4.777950e-02 \n",
+ " 1.278489e-01 \n",
+ " -2.046639e-02 \n",
+ " 7.426861e-02 \n",
+ " -2.096692e-02 \n",
+ " 1.022023e-01 \n",
+ " NaN \n",
+ " -0.013446 \n",
+ " \n",
+ " \n",
+ " lithium \n",
+ " -0.030126 \n",
+ " 0.014155 \n",
+ " -0.002509 \n",
+ " -0.008026 \n",
+ " -0.007436 \n",
+ " -0.013944 \n",
+ " -0.008266 \n",
+ " -0.008266 \n",
+ " -0.008729 \n",
+ " -0.001860 \n",
+ " ... \n",
+ " -3.154233e-03 \n",
+ " 7.874605e-03 \n",
+ " 1.768610e-02 \n",
+ " -1.391340e-02 \n",
+ " 2.341344e-02 \n",
+ " 1.516916e-02 \n",
+ " 2.334597e-02 \n",
+ " -2.594666e-02 \n",
+ " NaN \n",
+ " -0.005603 \n",
+ " \n",
+ " \n",
+ " goitre \n",
+ " -0.051830 \n",
+ " -0.007886 \n",
+ " -0.010098 \n",
+ " 0.038000 \n",
+ " -0.010241 \n",
+ " -0.019205 \n",
+ " 0.012447 \n",
+ " -0.011385 \n",
+ " -0.012022 \n",
+ " -0.024527 \n",
+ " ... \n",
+ " -3.528926e-02 \n",
+ " 1.179153e-02 \n",
+ " -1.073740e-02 \n",
+ " -1.894053e-02 \n",
+ " 4.514355e-03 \n",
+ " 3.507619e-02 \n",
+ " 4.357692e-03 \n",
+ " -3.986537e-02 \n",
+ " NaN \n",
+ " -0.027575 \n",
+ " \n",
+ " \n",
+ " tumor \n",
+ " -0.025037 \n",
+ " 0.076303 \n",
+ " -0.029773 \n",
+ " -0.004011 \n",
+ " -0.017353 \n",
+ " 0.010949 \n",
+ " 0.123728 \n",
+ " -0.004990 \n",
+ " -0.020371 \n",
+ " -0.034582 \n",
+ " ... \n",
+ " -1.850360e-02 \n",
+ " 9.743979e-02 \n",
+ " -4.999352e-02 \n",
+ " 5.863822e-02 \n",
+ " -2.302622e-02 \n",
+ " 9.020034e-02 \n",
+ " -2.336217e-02 \n",
+ " 1.210741e-02 \n",
+ " NaN \n",
+ " 0.003747 \n",
+ " \n",
+ " \n",
+ " hypopituitary \n",
+ " -0.024927 \n",
+ " -0.024489 \n",
+ " -0.006099 \n",
+ " 0.140500 \n",
+ " -0.001749 \n",
+ " -0.003279 \n",
+ " -0.001944 \n",
+ " -0.001944 \n",
+ " -0.002053 \n",
+ " -0.004188 \n",
+ " ... \n",
+ " 8.240570e-03 \n",
+ " -1.574029e-02 \n",
+ " 4.159247e-03 \n",
+ " -2.564535e-02 \n",
+ " 5.506148e-03 \n",
+ " 6.597107e-03 \n",
+ " 5.490280e-03 \n",
+ " -3.088991e-02 \n",
+ " NaN \n",
+ " -0.004708 \n",
+ " \n",
+ " \n",
+ " psych \n",
+ " -0.100116 \n",
+ " -0.098832 \n",
+ " -0.073571 \n",
+ " -0.026247 \n",
+ " -0.024318 \n",
+ " -0.032883 \n",
+ " -0.016577 \n",
+ " -0.027034 \n",
+ " -0.028546 \n",
+ " -0.012320 \n",
+ " ... \n",
+ " 9.932121e-02 \n",
+ " 2.731614e-02 \n",
+ " 5.783966e-02 \n",
+ " -3.839169e-04 \n",
+ " 5.223382e-02 \n",
+ " -1.469148e-02 \n",
+ " 5.195723e-02 \n",
+ " 1.010479e-02 \n",
+ " NaN \n",
+ " -0.028575 \n",
+ " \n",
+ " \n",
+ " TSH measured \n",
+ " 0.105131 \n",
+ " -0.035249 \n",
+ " 0.041818 \n",
+ " -0.117891 \n",
+ " 0.001736 \n",
+ " 0.015588 \n",
+ " 0.001401 \n",
+ " 0.039310 \n",
+ " 0.041509 \n",
+ " 0.055090 \n",
+ " ... \n",
+ " 4.447227e-01 \n",
+ " -3.873973e-02 \n",
+ " 6.714294e-01 \n",
+ " 3.725929e-03 \n",
+ " 5.062649e-01 \n",
+ " 1.202644e-02 \n",
+ " 5.080050e-01 \n",
+ " -1.515987e-04 \n",
+ " NaN \n",
+ " 0.095209 \n",
+ " \n",
+ " \n",
+ " TSH \n",
+ " -0.056167 \n",
+ " 0.031808 \n",
+ " 0.017138 \n",
+ " -0.009453 \n",
+ " -0.010668 \n",
+ " -0.022099 \n",
+ " -0.019693 \n",
+ " 0.026230 \n",
+ " -0.004125 \n",
+ " 0.025978 \n",
+ " ... \n",
+ " 7.449362e-03 \n",
+ " -1.473313e-01 \n",
+ " -9.420131e-04 \n",
+ " -2.612998e-01 \n",
+ " -5.979489e-03 \n",
+ " 7.102821e-02 \n",
+ " -6.287426e-03 \n",
+ " -2.930229e-01 \n",
+ " NaN \n",
+ " 0.423958 \n",
+ " \n",
+ " \n",
+ " T3 measured \n",
+ " 0.073111 \n",
+ " -0.075004 \n",
+ " -0.145061 \n",
+ " -0.033409 \n",
+ " 0.010950 \n",
+ " 0.006695 \n",
+ " 0.026865 \n",
+ " -0.023453 \n",
+ " 0.000150 \n",
+ " -0.063547 \n",
+ " ... \n",
+ " 1.000000e+00 \n",
+ " -5.629704e-17 \n",
+ " 4.169044e-01 \n",
+ " -3.912926e-02 \n",
+ " 2.626320e-01 \n",
+ " 6.912897e-03 \n",
+ " 2.641218e-01 \n",
+ " -4.180689e-02 \n",
+ " NaN \n",
+ " 0.032866 \n",
+ " \n",
+ " \n",
+ " T3 \n",
+ " -0.214925 \n",
+ " 0.062759 \n",
+ " 0.006485 \n",
+ " -0.006466 \n",
+ " 0.079212 \n",
+ " -0.076472 \n",
+ " 0.181147 \n",
+ " -0.024146 \n",
+ " 0.012057 \n",
+ " -0.047496 \n",
+ " ... \n",
+ " -5.629704e-17 \n",
+ " 1.000000e+00 \n",
+ " -7.890859e-03 \n",
+ " 5.090651e-01 \n",
+ " 1.686030e-03 \n",
+ " 4.072415e-01 \n",
+ " 8.274354e-04 \n",
+ " 3.088371e-01 \n",
+ " NaN \n",
+ " -0.177683 \n",
+ " \n",
+ " \n",
+ " TT4 measured \n",
+ " 0.067509 \n",
+ " -0.073872 \n",
+ " 0.024964 \n",
+ " 0.029603 \n",
+ " -0.024649 \n",
+ " -0.005700 \n",
+ " 0.021097 \n",
+ " 0.030491 \n",
+ " 0.032196 \n",
+ " 0.024433 \n",
+ " ... \n",
+ " 4.169044e-01 \n",
+ " -7.890859e-03 \n",
+ " 1.000000e+00 \n",
+ " -9.790712e-17 \n",
+ " 7.480946e-01 \n",
+ " 2.030617e-03 \n",
+ " 7.466088e-01 \n",
+ " 2.260306e-04 \n",
+ " NaN \n",
+ " 0.053129 \n",
+ " \n",
+ " \n",
+ " TT4 \n",
+ " -0.037609 \n",
+ " 0.166989 \n",
+ " 0.212801 \n",
+ " -0.004702 \n",
+ " 0.023811 \n",
+ " -0.037006 \n",
+ " 0.172490 \n",
+ " -0.021806 \n",
+ " -0.008848 \n",
+ " -0.009013 \n",
+ " ... \n",
+ " -3.912926e-02 \n",
+ " 5.090651e-01 \n",
+ " -9.790712e-17 \n",
+ " 1.000000e+00 \n",
+ " 4.124238e-02 \n",
+ " 4.264837e-01 \n",
+ " 3.975493e-02 \n",
+ " 7.791005e-01 \n",
+ " NaN \n",
+ " -0.291677 \n",
+ " \n",
+ " \n",
+ " T4U measured \n",
+ " 0.085361 \n",
+ " -0.049343 \n",
+ " 0.038852 \n",
+ " 0.031550 \n",
+ " -0.029532 \n",
+ " 0.009399 \n",
+ " 0.032942 \n",
+ " 0.010672 \n",
+ " 0.028540 \n",
+ " 0.014517 \n",
+ " ... \n",
+ " 2.626320e-01 \n",
+ " 1.686030e-03 \n",
+ " 7.480946e-01 \n",
+ " 4.124238e-02 \n",
+ " 1.000000e+00 \n",
+ " 1.930243e-16 \n",
+ " 9.971181e-01 \n",
+ " 6.114169e-04 \n",
+ " NaN \n",
+ " 0.015901 \n",
+ " \n",
+ " \n",
+ " T4U \n",
+ " -0.157523 \n",
+ " 0.225572 \n",
+ " 0.046368 \n",
+ " 0.000438 \n",
+ " 0.060365 \n",
+ " -0.039069 \n",
+ " 0.334702 \n",
+ " 0.027922 \n",
+ " 0.009406 \n",
+ " 0.013832 \n",
+ " ... \n",
+ " 6.912897e-03 \n",
+ " 4.072415e-01 \n",
+ " 2.030617e-03 \n",
+ " 4.264837e-01 \n",
+ " 1.930243e-16 \n",
+ " 1.000000e+00 \n",
+ " 2.324199e-16 \n",
+ " -1.740050e-01 \n",
+ " NaN \n",
+ " 0.028337 \n",
+ " \n",
+ " \n",
+ " FTI measured \n",
+ " 0.084534 \n",
+ " -0.050167 \n",
+ " 0.038285 \n",
+ " 0.031420 \n",
+ " -0.029788 \n",
+ " 0.009068 \n",
+ " 0.032808 \n",
+ " 0.010488 \n",
+ " 0.028385 \n",
+ " 0.014100 \n",
+ " ... \n",
+ " 2.641218e-01 \n",
+ " 8.274354e-04 \n",
+ " 7.466088e-01 \n",
+ " 3.975493e-02 \n",
+ " 9.971181e-01 \n",
+ " 2.324199e-16 \n",
+ " 1.000000e+00 \n",
+ " -4.936400e-17 \n",
+ " NaN \n",
+ " 0.015431 \n",
+ " \n",
+ " \n",
+ " FTI \n",
+ " 0.050017 \n",
+ " 0.038531 \n",
+ " 0.185748 \n",
+ " -0.003550 \n",
+ " -0.016603 \n",
+ " -0.021189 \n",
+ " -0.016698 \n",
+ " -0.031828 \n",
+ " -0.016817 \n",
+ " -0.019719 \n",
+ " ... \n",
+ " -4.180689e-02 \n",
+ " 3.088371e-01 \n",
+ " 2.260306e-04 \n",
+ " 7.791005e-01 \n",
+ " 6.114169e-04 \n",
+ " -1.740050e-01 \n",
+ " -4.936400e-17 \n",
+ " 1.000000e+00 \n",
+ " NaN \n",
+ " -0.313791 \n",
+ " \n",
+ " \n",
+ " TBG measured \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " binaryClass \n",
+ " -0.003174 \n",
+ " 0.050808 \n",
+ " -0.081060 \n",
+ " -0.007448 \n",
+ " -0.021689 \n",
+ " -0.001749 \n",
+ " -0.034516 \n",
+ " -0.017633 \n",
+ " 0.003590 \n",
+ " 0.086282 \n",
+ " ... \n",
+ " 3.286576e-02 \n",
+ " -1.776835e-01 \n",
+ " 5.312853e-02 \n",
+ " -2.916767e-01 \n",
+ " 1.590087e-02 \n",
+ " 2.833745e-02 \n",
+ " 1.543102e-02 \n",
+ " -3.137907e-01 \n",
+ " NaN \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
28 rows × 28 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine \\\n",
+ "age 1.000000 0.003606 0.014563 \n",
+ "sex 0.003606 1.000000 0.098510 \n",
+ "on thyroxine 0.014563 0.098510 1.000000 \n",
+ "query on thyroxine -0.017870 -0.043533 0.005995 \n",
+ "on antithyroid medication -0.063881 0.030484 -0.002201 \n",
+ "sick 0.079468 -0.005755 -0.042053 \n",
+ "pregnant -0.113521 0.079550 0.010152 \n",
+ "thyroid surgery -0.029502 0.036586 0.037583 \n",
+ "I131 treatment 0.052704 0.020372 0.063373 \n",
+ "query hypothyroid 0.039562 0.046353 0.094412 \n",
+ "query hyperthyroid -0.038054 0.065274 -0.023796 \n",
+ "lithium -0.030126 0.014155 -0.002509 \n",
+ "goitre -0.051830 -0.007886 -0.010098 \n",
+ "tumor -0.025037 0.076303 -0.029773 \n",
+ "hypopituitary -0.024927 -0.024489 -0.006099 \n",
+ "psych -0.100116 -0.098832 -0.073571 \n",
+ "TSH measured 0.105131 -0.035249 0.041818 \n",
+ "TSH -0.056167 0.031808 0.017138 \n",
+ "T3 measured 0.073111 -0.075004 -0.145061 \n",
+ "T3 -0.214925 0.062759 0.006485 \n",
+ "TT4 measured 0.067509 -0.073872 0.024964 \n",
+ "TT4 -0.037609 0.166989 0.212801 \n",
+ "T4U measured 0.085361 -0.049343 0.038852 \n",
+ "T4U -0.157523 0.225572 0.046368 \n",
+ "FTI measured 0.084534 -0.050167 0.038285 \n",
+ "FTI 0.050017 0.038531 0.185748 \n",
+ "TBG measured NaN NaN NaN \n",
+ "binaryClass -0.003174 0.050808 -0.081060 \n",
+ "\n",
+ " query on thyroxine on antithyroid medication \\\n",
+ "age -0.017870 -0.063881 \n",
+ "sex -0.043533 0.030484 \n",
+ "on thyroxine 0.005995 -0.002201 \n",
+ "query on thyroxine 1.000000 -0.012446 \n",
+ "on antithyroid medication -0.012446 1.000000 \n",
+ "sick 0.012594 -0.021624 \n",
+ "pregnant 0.045247 0.072050 \n",
+ "thyroid surgery 0.005858 -0.012819 \n",
+ "I131 treatment -0.014610 0.006589 \n",
+ "query hypothyroid -0.029808 -0.017264 \n",
+ "query hyperthyroid -0.010905 0.126566 \n",
+ "lithium -0.008026 -0.007436 \n",
+ "goitre 0.038000 -0.010241 \n",
+ "tumor -0.004011 -0.017353 \n",
+ "hypopituitary 0.140500 -0.001749 \n",
+ "psych -0.026247 -0.024318 \n",
+ "TSH measured -0.117891 0.001736 \n",
+ "TSH -0.009453 -0.010668 \n",
+ "T3 measured -0.033409 0.010950 \n",
+ "T3 -0.006466 0.079212 \n",
+ "TT4 measured 0.029603 -0.024649 \n",
+ "TT4 -0.004702 0.023811 \n",
+ "T4U measured 0.031550 -0.029532 \n",
+ "T4U 0.000438 0.060365 \n",
+ "FTI measured 0.031420 -0.029788 \n",
+ "FTI -0.003550 -0.016603 \n",
+ "TBG measured NaN NaN \n",
+ "binaryClass -0.007448 -0.021689 \n",
+ "\n",
+ " sick pregnant thyroid surgery \\\n",
+ "age 0.079468 -0.113521 -0.029502 \n",
+ "sex -0.005755 0.079550 0.036586 \n",
+ "on thyroxine -0.042053 0.010152 0.037583 \n",
+ "query on thyroxine 0.012594 0.045247 0.005858 \n",
+ "on antithyroid medication -0.021624 0.072050 -0.012819 \n",
+ "sick 1.000000 -0.024040 -0.000762 \n",
+ "pregnant -0.024040 1.000000 -0.014251 \n",
+ "thyroid surgery -0.000762 -0.014251 1.000000 \n",
+ "I131 treatment -0.025384 -0.015048 0.003104 \n",
+ "query hypothyroid 0.027718 -0.021364 -0.012026 \n",
+ "query hyperthyroid -0.035206 0.117605 0.015501 \n",
+ "lithium -0.013944 -0.008266 -0.008266 \n",
+ "goitre -0.019205 0.012447 -0.011385 \n",
+ "tumor 0.010949 0.123728 -0.004990 \n",
+ "hypopituitary -0.003279 -0.001944 -0.001944 \n",
+ "psych -0.032883 -0.016577 -0.027034 \n",
+ "TSH measured 0.015588 0.001401 0.039310 \n",
+ "TSH -0.022099 -0.019693 0.026230 \n",
+ "T3 measured 0.006695 0.026865 -0.023453 \n",
+ "T3 -0.076472 0.181147 -0.024146 \n",
+ "TT4 measured -0.005700 0.021097 0.030491 \n",
+ "TT4 -0.037006 0.172490 -0.021806 \n",
+ "T4U measured 0.009399 0.032942 0.010672 \n",
+ "T4U -0.039069 0.334702 0.027922 \n",
+ "FTI measured 0.009068 0.032808 0.010488 \n",
+ "FTI -0.021189 -0.016698 -0.031828 \n",
+ "TBG measured NaN NaN NaN \n",
+ "binaryClass -0.001749 -0.034516 -0.017633 \n",
+ "\n",
+ " I131 treatment query hypothyroid ... \\\n",
+ "age 0.052704 0.039562 ... \n",
+ "sex 0.020372 0.046353 ... \n",
+ "on thyroxine 0.063373 0.094412 ... \n",
+ "query on thyroxine -0.014610 -0.029808 ... \n",
+ "on antithyroid medication 0.006589 -0.017264 ... \n",
+ "sick -0.025384 0.027718 ... \n",
+ "pregnant -0.015048 -0.021364 ... \n",
+ "thyroid surgery 0.003104 -0.012026 ... \n",
+ "I131 treatment 1.000000 0.047296 ... \n",
+ "query hypothyroid 0.047296 1.000000 ... \n",
+ "query hyperthyroid 0.064212 0.019464 ... \n",
+ "lithium -0.008729 -0.001860 ... \n",
+ "goitre -0.012022 -0.024527 ... \n",
+ "tumor -0.020371 -0.034582 ... \n",
+ "hypopituitary -0.002053 -0.004188 ... \n",
+ "psych -0.028546 -0.012320 ... \n",
+ "TSH measured 0.041509 0.055090 ... \n",
+ "TSH -0.004125 0.025978 ... \n",
+ "T3 measured 0.000150 -0.063547 ... \n",
+ "T3 0.012057 -0.047496 ... \n",
+ "TT4 measured 0.032196 0.024433 ... \n",
+ "TT4 -0.008848 -0.009013 ... \n",
+ "T4U measured 0.028540 0.014517 ... \n",
+ "T4U 0.009406 0.013832 ... \n",
+ "FTI measured 0.028385 0.014100 ... \n",
+ "FTI -0.016817 -0.019719 ... \n",
+ "TBG measured NaN NaN ... \n",
+ "binaryClass 0.003590 0.086282 ... \n",
+ "\n",
+ " T3 measured T3 TT4 measured \\\n",
+ "age 7.311084e-02 -2.149247e-01 6.750898e-02 \n",
+ "sex -7.500437e-02 6.275929e-02 -7.387180e-02 \n",
+ "on thyroxine -1.450614e-01 6.484854e-03 2.496392e-02 \n",
+ "query on thyroxine -3.340948e-02 -6.465900e-03 2.960328e-02 \n",
+ "on antithyroid medication 1.094961e-02 7.921225e-02 -2.464939e-02 \n",
+ "sick 6.695144e-03 -7.647155e-02 -5.699708e-03 \n",
+ "pregnant 2.686496e-02 1.811466e-01 2.109671e-02 \n",
+ "thyroid surgery -2.345292e-02 -2.414553e-02 3.049073e-02 \n",
+ "I131 treatment 1.504369e-04 1.205665e-02 3.219634e-02 \n",
+ "query hypothyroid -6.354673e-02 -4.749603e-02 2.443261e-02 \n",
+ "query hyperthyroid 2.797884e-02 1.662303e-01 -4.777950e-02 \n",
+ "lithium -3.154233e-03 7.874605e-03 1.768610e-02 \n",
+ "goitre -3.528926e-02 1.179153e-02 -1.073740e-02 \n",
+ "tumor -1.850360e-02 9.743979e-02 -4.999352e-02 \n",
+ "hypopituitary 8.240570e-03 -1.574029e-02 4.159247e-03 \n",
+ "psych 9.932121e-02 2.731614e-02 5.783966e-02 \n",
+ "TSH measured 4.447227e-01 -3.873973e-02 6.714294e-01 \n",
+ "TSH 7.449362e-03 -1.473313e-01 -9.420131e-04 \n",
+ "T3 measured 1.000000e+00 -5.629704e-17 4.169044e-01 \n",
+ "T3 -5.629704e-17 1.000000e+00 -7.890859e-03 \n",
+ "TT4 measured 4.169044e-01 -7.890859e-03 1.000000e+00 \n",
+ "TT4 -3.912926e-02 5.090651e-01 -9.790712e-17 \n",
+ "T4U measured 2.626320e-01 1.686030e-03 7.480946e-01 \n",
+ "T4U 6.912897e-03 4.072415e-01 2.030617e-03 \n",
+ "FTI measured 2.641218e-01 8.274354e-04 7.466088e-01 \n",
+ "FTI -4.180689e-02 3.088371e-01 2.260306e-04 \n",
+ "TBG measured NaN NaN NaN \n",
+ "binaryClass 3.286576e-02 -1.776835e-01 5.312853e-02 \n",
+ "\n",
+ " TT4 T4U measured T4U \\\n",
+ "age -3.760948e-02 8.536127e-02 -1.575229e-01 \n",
+ "sex 1.669887e-01 -4.934307e-02 2.255718e-01 \n",
+ "on thyroxine 2.128008e-01 3.885187e-02 4.636815e-02 \n",
+ "query on thyroxine -4.702231e-03 3.155031e-02 4.384229e-04 \n",
+ "on antithyroid medication 2.381055e-02 -2.953201e-02 6.036462e-02 \n",
+ "sick -3.700575e-02 9.399140e-03 -3.906941e-02 \n",
+ "pregnant 1.724903e-01 3.294152e-02 3.347023e-01 \n",
+ "thyroid surgery -2.180623e-02 1.067220e-02 2.792243e-02 \n",
+ "I131 treatment -8.848056e-03 2.854012e-02 9.405826e-03 \n",
+ "query hypothyroid -9.012716e-03 1.451686e-02 1.383247e-02 \n",
+ "query hyperthyroid 1.278489e-01 -2.046639e-02 7.426861e-02 \n",
+ "lithium -1.391340e-02 2.341344e-02 1.516916e-02 \n",
+ "goitre -1.894053e-02 4.514355e-03 3.507619e-02 \n",
+ "tumor 5.863822e-02 -2.302622e-02 9.020034e-02 \n",
+ "hypopituitary -2.564535e-02 5.506148e-03 6.597107e-03 \n",
+ "psych -3.839169e-04 5.223382e-02 -1.469148e-02 \n",
+ "TSH measured 3.725929e-03 5.062649e-01 1.202644e-02 \n",
+ "TSH -2.612998e-01 -5.979489e-03 7.102821e-02 \n",
+ "T3 measured -3.912926e-02 2.626320e-01 6.912897e-03 \n",
+ "T3 5.090651e-01 1.686030e-03 4.072415e-01 \n",
+ "TT4 measured -9.790712e-17 7.480946e-01 2.030617e-03 \n",
+ "TT4 1.000000e+00 4.124238e-02 4.264837e-01 \n",
+ "T4U measured 4.124238e-02 1.000000e+00 1.930243e-16 \n",
+ "T4U 4.264837e-01 1.930243e-16 1.000000e+00 \n",
+ "FTI measured 3.975493e-02 9.971181e-01 2.324199e-16 \n",
+ "FTI 7.791005e-01 6.114169e-04 -1.740050e-01 \n",
+ "TBG measured NaN NaN NaN \n",
+ "binaryClass -2.916767e-01 1.590087e-02 2.833745e-02 \n",
+ "\n",
+ " FTI measured FTI TBG measured \\\n",
+ "age 8.453378e-02 5.001749e-02 NaN \n",
+ "sex -5.016697e-02 3.853089e-02 NaN \n",
+ "on thyroxine 3.828521e-02 1.857484e-01 NaN \n",
+ "query on thyroxine 3.141982e-02 -3.550040e-03 NaN \n",
+ "on antithyroid medication -2.978795e-02 -1.660334e-02 NaN \n",
+ "sick 9.068046e-03 -2.118940e-02 NaN \n",
+ "pregnant 3.280814e-02 -1.669842e-02 NaN \n",
+ "thyroid surgery 1.048764e-02 -3.182840e-02 NaN \n",
+ "I131 treatment 2.838493e-02 -1.681719e-02 NaN \n",
+ "query hypothyroid 1.409980e-02 -1.971919e-02 NaN \n",
+ "query hyperthyroid -2.096692e-02 1.022023e-01 NaN \n",
+ "lithium 2.334597e-02 -2.594666e-02 NaN \n",
+ "goitre 4.357692e-03 -3.986537e-02 NaN \n",
+ "tumor -2.336217e-02 1.210741e-02 NaN \n",
+ "hypopituitary 5.490280e-03 -3.088991e-02 NaN \n",
+ "psych 5.195723e-02 1.010479e-02 NaN \n",
+ "TSH measured 5.080050e-01 -1.515987e-04 NaN \n",
+ "TSH -6.287426e-03 -2.930229e-01 NaN \n",
+ "T3 measured 2.641218e-01 -4.180689e-02 NaN \n",
+ "T3 8.274354e-04 3.088371e-01 NaN \n",
+ "TT4 measured 7.466088e-01 2.260306e-04 NaN \n",
+ "TT4 3.975493e-02 7.791005e-01 NaN \n",
+ "T4U measured 9.971181e-01 6.114169e-04 NaN \n",
+ "T4U 2.324199e-16 -1.740050e-01 NaN \n",
+ "FTI measured 1.000000e+00 -4.936400e-17 NaN \n",
+ "FTI -4.936400e-17 1.000000e+00 NaN \n",
+ "TBG measured NaN NaN NaN \n",
+ "binaryClass 1.543102e-02 -3.137907e-01 NaN \n",
+ "\n",
+ " binaryClass \n",
+ "age -0.003174 \n",
+ "sex 0.050808 \n",
+ "on thyroxine -0.081060 \n",
+ "query on thyroxine -0.007448 \n",
+ "on antithyroid medication -0.021689 \n",
+ "sick -0.001749 \n",
+ "pregnant -0.034516 \n",
+ "thyroid surgery -0.017633 \n",
+ "I131 treatment 0.003590 \n",
+ "query hypothyroid 0.086282 \n",
+ "query hyperthyroid -0.013446 \n",
+ "lithium -0.005603 \n",
+ "goitre -0.027575 \n",
+ "tumor 0.003747 \n",
+ "hypopituitary -0.004708 \n",
+ "psych -0.028575 \n",
+ "TSH measured 0.095209 \n",
+ "TSH 0.423958 \n",
+ "T3 measured 0.032866 \n",
+ "T3 -0.177683 \n",
+ "TT4 measured 0.053129 \n",
+ "TT4 -0.291677 \n",
+ "T4U measured 0.015901 \n",
+ "T4U 0.028337 \n",
+ "FTI measured 0.015431 \n",
+ "FTI -0.313791 \n",
+ "TBG measured NaN \n",
+ "binaryClass 1.000000 \n",
+ "\n",
+ "[28 rows x 28 columns]"
+ ]
+ },
+ "execution_count": 60,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_corr = df.corr()\n",
+ "df_corr"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:27.547304Z",
+ "iopub.status.busy": "2021-12-15T11:04:27.546624Z",
+ "iopub.status.idle": "2021-12-15T11:04:30.108321Z",
+ "shell.execute_reply": "2021-12-15T11:04:30.108860Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:27.462956Z"
+ },
+ "papermill": {
+ "duration": 2.738255,
+ "end_time": "2021-12-15T11:04:30.109006",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:27.370751",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAJ8CAYAAABgGKxrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3hVVda431tTbnrvIYQkJEDogdACCEhRuggIoqKICiKIOI4FxBEsqCh9cChSDU16Cb1DSEghpPfee25uPb8/briBgW9kHPGb3+d9nyfPc3LuPruefc46a6+1tkgQBAETJkyYMGHChAkT/+cR/29XwIQJEyZMmDBhwsQfg0nwM2HChAkTJkyY+JNgEvxMmDBhwoQJEyb+JJgEPxMmTJgwYcKEiT8JJsHPhAkTJkyYMGHiT4JJ8DNhwoQJEyZMmPiTYBL8TJgwYcKECRMm/iSYBD8TJkyYMGHChIknwKlTp5gxYwbdu3cnKCjoV9NnZ2czffp0QkNDGTx4MPv37//d62QS/EyYMGHChAkTJp4ASqWS3r17M2vWrF9Nq9FoeP3113F0dGTv3r288cYbfPLJJ9y8efN3rZP0d83NhAkTJkyYMGHCBABjxowB4MaNG7+a9uLFi5SWlvLLL79gaWlJYGAg0dHRbN++nbCwsN+tTibBz4QJEyZMmDBh4jGpq6ujrq7uofM2NjbY2Nj85nwTEhIIDQ3F0tLSeC48PJyVK1f+5jwfhUnwM/Gnw9PT83+7CiZMmDBhooXCwsInkq++JPCJ5Lt1z1xWr1790Pk5c+Ywd+7c35xvVVUVjo6OD5xzcHCgsrLyN+f5KEyCnwkTJkyYMGHCxGMyY8YMxo0b99D5/0TbByAIwn90/eNiEvxM/OmYNWsWH7++A4DoeNjyMyRnQHGpiLdnCrzxIoAUkdV8yhpHY2NjQ15eHhZWzri52FBZ3ci+I7H8fOgWU8eFMW5EF+ztFOQWVLL+p4v8vPEdAKRSKQeOXiK0vScSicGPSq8XiLtbwPvLDtCs0jB6aCiD+wYR4GuHra0tlZWVWNvYUlPThFgswsHeCpEIRCLRQ+2YOHEir732GmE9+2HvoECn09PQ0IxeL6BQmFFSUsv2bVdQKMwYO7Y7Lq4K6urquH79OlKndgzqHoCFmQyAgrJaPlx7hKZmNQunDaZrkBdm8kc/Hg7tiWb118cBsLG1YPHXz9Mh1AuRSIRIJCIxMZFx48YRHh7O4iUr8PFxpL6+mdo6JZYWctxcbfnH1kuUV9Qz9fneuDoryM/PZ+XKldyu8+eNSf0Y3jcYW2sLdHo9MqkEsUiETqfnWnw2CgszuoV4P1CnyuoGMvIq6Nzek2a1Fo1Gh72tBRKxGL0gUFBcw3dfL2XPnj0ABHZ8G4Cnh3bkjdcGYWtrSUNDM9t2XKVHdz86dfRCpdKQmBiLra0t3t7eWFgoqKhsQKcXcHGyRqXScOFyGms3nmP+nKEMjmiPVCpBp9MRExPDVytuUF3ThJenPSu+noKzk3VrfSsb2LMvmj17b5J6dxULFizg3Xfffaiv9YKACGhoVHHxahoernb4tXFCKtFTX19Pc3MzTk7uIILs3AqSU4sID2uHm6sNxSW1xCfmM3pkl4fyFQQBrUZHWmox0dcy6T+wPd5tnKiqbCA5sYBBwzo+cuy/i7xA7w6+9AjyRiQCQQCZVMKIRRspq26g5NgKAAYPHsw336zByckaEBCLxZSW1mFvb0lJSS3btl/hzJm7AKSm/M/tX7jyIBdvZ+LjaseHM4fRNcjrkfXS6fRUFFVzcPNFxGIRT00Mw8vPBYnUMO9USjU3bl1nxYoVJCYm8re1exnVPwQ7KwtEIhGCAGKxiB8PXGPjgWsAWBUe5f3336dv375YWFgiEkFVdSNx8XkEtHPFzc2W5mYNgl7A3FxGRWUDP+/eTG5uLjNnziSofQhymQQBKK6o4y9rDpOSW4aPqx0Lpw2mR3tvJBIx92a2UqlE2ajF2taS6vJ6Du64hl+gG0PHdnuovfPmzWPv3r1IpVI+W7eXkX2CsbI0p6SyDkdbS6wszACoa2xm85GbuFHMwIEDsbW1pbSqiX1R8ew9dRsAiUTM1mXT8Pd2fqicCxcuEBYWhrm5+UPPIJ1OT1VV4wPnunRpz6RJk5gzZw7ePr4Ul9byU+Q1oi4kP5Cud3c/Xps2AF9vB0pLih85pr8HevRPJN//dEn3f8LR0ZHc3NwHzj1KC/ifIlmyZMmS3zVHEyb+y+nduzcSUTVo75CRA80qGD0MYhOhUzD07Awi67+A5XjmzF3ImTNnePHFF7GwkLNg8R4yc8uY88pg/Ns4M2ZYZ1ZvPs+mXZdRWJrx9quDOXXyJBUVFSxevJhBEX3R6PRk5VaQV1SFs4M1Xu52dAnx4tjZO4SGeFJbq6SNpzVWVlZ8/vnnbN+Xy9hnumJrY0nkgWgEvYCjgzWI4G9fH2HlutN8sXQWnp6e+Pj40LVbZ1QqDbduZePv74JcLmXn9qsk3y1i3vzhhIX5sekfF3lv0ctcv36d9957j7aezuj0elZsO8vpm2m4Olrz0jNhDA8PprymgcUbjhObmk//zn5UVlZiZmbG53/dR8SQDmz4PoqykloAvlgzneAOXlRW1HNoTzSduvri4uJCnz59eP3114k6e5dvV59CJpUQHubPxStpODpYoVRqeGFyb3b8fJ2/vDeTxsZGli1bRoCvMxHd27H8xyhKKuroHuKDVqdn8ZpjNDWrGRreHnMzKcePHWHKlCmsX7+e00kSRg3sREV1A0tWHcPN2YZgfzdyC6tYtv4kFmYygtq6Mnz40yQnJ5OZmYmjSy/6hgfw0V+eRaPRUVpWR0VlI8Of7kRdQzMff7qf6zcyGTs6jLKyMmbOnMnlWzD2ma44Olix72AMOyJv8PyEnowY1oluXXy5cDmN1evPUFIYw6hRo+jaxZfTZ+/yj40zcbBXcPlqGqei7hAU6I6trSWhnbxRKjVcvvQL4eHheHl58dKb2zl4NI5hg0OQy6Xs2R/N4ePx9OzuR8dgT6Jv57B24zm+/eodRo0ahZ+fH1t2XmHdj+fpGOLBiKGdOH0+ma9WnqBJqeGFSb3R6wVeeHUj/Xp5olar+emnn7h6tpTA9h6YW8jpGxFE7K1svlj8C0UFVTz/Yl8QYPKz3xF39wgZGRns2LGD4cOHE+LrSklVPbFphaTkluPrao+ZXMqOqFgam9U0pF8lNDSU3bt3k55exrVrGTSrtHi425GeXsKHH+1FqdQw7+1hpKYWU1hYTWXFTcLDw+nYsSMqrcDyLVHsPhWLuZmMqcO7c+ZmKuv+MomyqgaaVBqUag3a5kaSk5NxdXVFLBaz4p1t3LmZxeufjKOiuIbjO6/h0caJA5sukJ1cSMde/pSWlvLWW2/Rpk0bRg3tjwgoKq+jUanGwkyKSCTCztqC/WcTCPB2YvvqT0lLSyMkJIQjxxM4fPQ2ep2eIYM7EBefR3ZOOd7eDlgpzPjm+5PcuJnF23OeQ6lUotfrcffyZsXO8yRlFRPRtR3P9Avh1PUU1v9lEgjgbGdFbaOSxvo6cnJy8PDwwMLSjM3fnST6Uhqvvz8SnVZPSUEVezdfJj+rnON7o+kzOIRjx46RnJzM4sWLGTdqCJ9vjuLm3VzGDuiETCrhm53niU7Op2+oH23c7LG3UfDOO++wZs0atDbtWTBjMAUlNWQVVDBvWgS9QtuQU1TFRz8cxtxMhouDNTXVVZSUlDBnzhymTHkBsViEWq2lpkZJU5Oa5mbNQ8/W7Ox0Vq9ezapVq9i8LxulUs3814eSkl5CYXENAEHtXPlu6SROnb/Lt+uiiL95kOHDhz+RZ72+4Ycnkq/Y6u1/+5rCwkIOHDjwL5eCm5qa+Omnn3jppZeQyQwf5Vu2bMHR0ZERI0b85vr+M6ZwLib+dGzevBmR4jUAInrDglkwcjDI5S0JRAqwnIJQ/y1RUVE8/fTTxMbG0tCoontnH46fTWL/0VgiegcSeTiGk+eTyC2oYt3WC2TmlDNr1iwUCgXTpk3j0o10ZBIx73wayfxP91LfqKK+oZnOIV64u9iy50gsAqDXG75Mk5KSCO3gjaWFGecvp7Ju03kKS2rIzitHLBIx/tluVFU3Ul5eztmzZ5HL5aQkF1Fb24S/vwvnziWzb280w4aHsmfPTYqKqlGptBw7Fk9BQQFhYWE0NTUhl0n4YfdFDl68w4nrKcz/9gBikQh7G0s+Xn+M1LwyenXw5dKlS7i4uADQd2B7crLKuBOXB4CHlz0dQr3R6fXMmryeLevOAVBZWUnPnj1JTk7m75svkpdfxdqN59hz4Bbdu/ii0ejo1NGLcxdT2PvLLTIzM9mwYQOnTp2if7d2rP35EpdiM3F3seVOejH1jSr8PB1Z/mMU+SU12Fpb0NzcTHl5OeXl5fTs5IuNlRmLfzhKYWkNfbq2Zd/J27T1cSK7oJIPvz1Mo1JNVVUV4eHhxvtg2pRw1GodHy7ZR1VVIxqtFr1eQKPWkplVxu34PN5991169eqFSqWiY4hBC3rjVhZenvbcjs9j5ZoofH0caWhUsfSLw8TG5/HRRx+RlJRE27auPDU4BGtrCy5cTGHxkgPs2n2dz5cfRiQSoVJp6RLqY6yPTqejqrqR7l18sVKYc/5yKmv/cZ4TZ5L4fMVRRCIR/m2cSUkvIScnh4iICM6cOUNwkDv5hVXY2ypobFSh0+nJK6gi8kA0qRkliMUiunfxxdbWlj59+rB06VKOHIhl5ZdHcXO3Q63SUlPVSH5uBVHHEoi9mYVILKK6qpEtW7awdOlSIiMjAbA0l/Phj8dZtv0My3ecYeuJaABc7Vu1mbNmzSI+Pp73Fu1m7bozWFuZA+Dj40h+fhV79tzk8uU0Jj/f23iNTCbDysqK1ZGXOHYlmdiUQj5aewyNRseCFwZha23BpbgsPF1seXXpLubPn0/37t2pq6sjN7WYcwdiOL3nJoe2XKRr//ZcO5nI/DHfceDv59i07DA5KcUkJSWh0+kYP348V+OzMTeT89rfdjPp/S00NKlRqbW083bG3cmGBdMHc+bMGQRBIC4ujpWrTnHsZCIeng7k5VcSFOhGG18njp1I4OLlNIYP7cTFy6lcuHABBwcH+vfvz6rIS/xyIZHNR25yKS4LkUjEgqmDsLWy4E5WMQICPx68zoIFC+jQoQPFxcXo9QKOrrZE/XKbQzuu0ybAFa1Gx+Gd19n49XGiDsQa++zeM2bt3stcjMti+oieaLQ6quuV2FpZsONkDLujbuPuZMOOHTu4desW+fn5HDybSEZeOSH+bliayxj7VGdSskupqm3kdnIBn6w6CoC9vT1vvfUWSUlJCIKAWq3FzEzWoukVHrks+eabb3Lo0CE2btxIXmEVPx+8xcXr6Uwd3+qROml0D1IyStjw00VyC6qM99aTQCfon8jfv0NNTQ3Jycnk5Rmem8nJySQnJ6NWq0lISGD48OGUlpYC0L9/f1xcXPjwww9JT09n7969HD16lGnTpv2u/WIS/Ez86Th//jwiqTeIXR+dQNYRkcgMVBcB6NmzJ+fOneNWfA6hwYalpvTsMiQSMakZJQ9ceuN2Nj179qRz586Ym5sjl0u5k1ZMY5MaQRDIzq9AoTBDrxfo1N4DgIHhgcTHxwOwadMmZr8SgUgE0bezjfl6uNkhCAIh7T1Y+tcxBAYGGusWHZ0FgLOzNdE3s4iOzsLd3Q4nJ2tiY7KxsJDTpYsvAKNHjzYuyc4e34fI5S8x9/kByGQSahqUNCnVNCrVjOwTTIifG2+88QZ6vR6RSES/QcEc29/64pG3LAVnpZfS1Kgynm9oaEAQBPLz8x/om5sxWbi72SEWi3B2suJmTPYDv2dnZyMWi7iZaFjqCA305FpCNjfv5NI5yJOQtm7YWRuWb0eOHElCQgKXLl3ihdE9Scsuo1Gppr2/G2ZyKT8fjUGn1xMa5ImAod8dHR25cuWKYYhlYoIC3bgZncWdJINhuYOdgoLCatoHuSMWG5a1Lly4gE6no2fPnnQM8SQ7t4LgIHduxxse4rcT8hAEAQtzGV06ebeMgzMWFhaIRBDacu7a9UxjO2/FZKPXC1hbmxOX0Lqs4+7uzp6f3uCtWYMRiSAvv9WgOzo2B71eIDDAzVg3AGtra2prlUilYtoHuqHV6amtazL+npVTjkgk4s1XByGRSNi0aRNDhgwBIOZGFoIgoBcE6mqVreOQWYZIJGLb/rnExsayZ88e4zX5ZTU0KNXGtHdzDC+skDatc+nefAGQSsW0bWtYQnR0tGpZ+oWb0VmEhHgY2+Lm5oZYLOa1ceEc/u41Vr47jg7+btxIyiXYz5U7GUX07ezH3awSJg/rxvLlyxEEAVtbW87uv2UsO+Z8Cm4+jji52QIGE4nuA9vj6e9CdHQ0ZmZmyGQyzORS7mQU0ahUoxcEbiblGs0CwkPb0K29F6mpqQYtZ0gIG1bPYPSoLrQPdOPKtXTc3exIzywlrEdbUtNKCAn2oJ2/K2FhYWRmZmJubs7VxBxD3/i50TnAg4yCCkL8XEnMLCI6OR8EGD2go1GwUigUCILArUtphvvkchoWCjOCQr3YeeEvbDn5Lh+tnGJs671nzL1yfN3syS2ppkGp4qVRPdmz7CXcHK0Ri8WMHTsWJycnALqHeOPjbs+1+GzatzXMl/KqBkLaunFk7Wz2fDcTiViEUqmkvr7eWJ5MJkUQBOzsLLG2Nn/gPry/TufPn3/g3M3YbEKCWse6U7AnN2KzH7r2/ypnz55l7NixfPTRRwCMHTuWsWPHUlZWhlKpJDs7G43GoD2Vy+Vs2LCB8vJyxo8fz9q1a1m6dOnvGsoFTDZ+Jv5g9uzZw7Zt28jNzcXBwYExY8YwZ84cpFIparWaJUuWcPz4cWxsbJg3bx6rV69mzpw5jB8/HoD8/Hw+//xzbty4gUKh4Omnn+a9997D3Nz8setQVlZmOBC7gL704QTiFlsXfQUALi4ulJeXU1XdSGDbfxIW/+nZV1XdhKurq1FLZqUwQ63WcmrH2wZBSRCoqmlCKhHjaG8FgKerLZ6ugwFYtmwZb855n7ZtzHlqQAhHTyZyMyabi1fT+fi9Z7C0kGNjbc6xY8cYNWoULi4uVFUlIhaLEIvFVFU1Gu1uHB2tuH49k9FjurPsi+f44qvnkMlkRu3iwh8OYW9twXvTB+Nsp2jJA9q4OzBvcgRvfLmHhoYGmpqasLS0RC/oOX08wdjWvNwKVM0anJxtsLO3pK7OIDz4+Bi0WP+sEbhXL6lUbKhr9YP2QfdsiDRaHQBOdgoamlQM6R2EVCJm46dT2H86jueGdWPFihVcvXoVHx8fVq/dgIuDNQ62ljjaKQxjXNVAY5OaD2YP48M3hwMC5eXlREVFAfDKjAhEIhFHjscZyzczl1FYVI2vjyPW1ubU1irRarXU1tbyzTffIJW2LL3suML+Q7Et42uwfUpKLuLLzyYikYiRShdx+/ZtJBIx7u4GQbe6ugGFpRmRu99CKpUY7TbPnDXYud2+fZt33nkHlbgXf313JAH+rkx7PpyEpAJu3c5Fp9PTpFRjpTAzatDGjx9Pt27dePPdXdjaWCKVSpDLpZw6k2RsU26uQXjMK6iktDiN9PR0tm7dyrfLDnPicJxxPO4f16wMw5zYtP4c125vZvTo0WzduhWA+qZWAR9ApzeMsYNNa/iJe/MFHLC1NdTrHo6OCioq6qmqakQul2JtbWiLIT0s+O4XLOQyJgzuzN8/fJ5zt9KxNJdTWdtEoK8zHk626HQCs2fP5tChQwD0HtaJyLWnDfdYuSHERoewtsz7agpyMylarY51H+8jIiKCxsZGzM3NsbIwo7K2VUCurDXY1KrUWvw8DPZUb7/9NnK5nFWrVoEkhLdmP4VUKqGoyLBkeeRoPGqVltdfHQjAhtUz+OabFeTk5AAQ+fkMg32qWMSPB69jaS5nwqBQKmubOHsrnW92nuPdFwYRExMDGIT4VZ8eJPZqBgDVFQ0AbF9zlpgr6Tg4WTPxlf6A4SPh3jyurG2ZVxIxbdwdyCutpqy6gVWRF/lghkFgV6lUxMfHo9FoEBDx9aYz3EzMZVif9gBcisngxOVkispqcLRT8NXCsVhbWxMUFERqaioqlZamJjU2Nhao1VqkUgn29pZUVTUZ57lYLEImk7U+X+/1bXUjZnIp1lbm1NYpcbS3emjuPyn0/DHOEv+K8ePHG99f/4yXl+ED437atm3Ltm3bnmidTIKfiT8UQRD4y1/+gre3N1lZWXz00Uc4OzvzwgsvsH79eq5cucLatWuxt7fniy++eMCNXa1WM3PmTJ566ikWLVpEQ0MDn332GV9//TUff/zxb6nNb6r/g/+3HoeGeDLnlYHIpBK+/fZb4/lGpZqX3/0JSws5814ZRGiwJ01KDSAQGuyJXC415tulSxfq6psB6N7FF2src85eTAEMjiEAS786wrefjeSVV1751bq28TV85W/dconIPcs4fvw4IpFBSFz93gQAJGIxw8ODKak0vDSXv/UM6/dfIauwte9FIhEJsTnsOPyO8dyuLZfJTC/By8eRyJML0WkNL6Jbt27Rs2fPx+rPR9e79Vit0XLsUhLdgr3ZeewWc6dGAPDhhx+i1+tZtWoVqVmlhLb35JlBHSkub42tpdfr2X00hrPX0pg3YyChQR4MGjSIpqYmRg0PBeCzxePR6wWqa5oeqENwkAef/HU0ev0cLC0tuX79Ota2PkglYp4b24PKygaOnmwVloIC3Dh4NI7RI7ug1Wro3LnzQ+1qUqp4bfYmzM1krFn1ImZmMqa/0IftW9OMaXbuiaGxyaBRy8mrYPKEMG7dzn0or2HDhvHVV1+xcOFC0jO9eOG5XgD8tOsq7m52/PT3VwHD2AIomzVUVVWxePFi7OzsmDRtEDKZQSBLvlNIRXmrZicr3fDiXvDBM2h1wwC4c+cOHTs+2uHjoUH7F/xzsnv/371rEICtzOV8M3+s8fewDr7GY4lYjEgEH647SmqsQfAuLy8nuHsb/Dt6kXmnwJi2tKCKt4Z/haXCjBEv9GHeV5MBjJqVf0nLx9zp06d5+umnKSoqIjpeRVCgGyOeDjUmi+gfSM8ebdm+6yrTpvRh1booXnvtNY4dOwbA8p9O8+GMoQiCiFljw8kvrTFe2yXAk7mTBlBR08jKr5exbNky1Go1cz4eTWVZPTcvtgoDibdyyM0oIzejjMSYHI7ELSUiIoKdO3c+VHWlSsO1xBzCO7bhYlwWni7RLJgyCE9PT1544QVKS0sZOf2vLJgxmKraVuFr0cyhxuOfDt6gurYJFwcrXnnlFd5///377PkEdDo9jY0qHByssLCQ0dSk5rH4X5DBnpRzx//vmJZ6TfyhTJo0iT59+uDt7U1ERAQvvfQSJ0+eBGDXrl3MmzeP8PBw2rdvz9KlS2lubjZee+zYMezs7Hj//fdp27YtoaGhfPDBB+zdu/ffcoN3dr6n0St/dIJ758UGoamsrAxnZ2fs7RRUtQgI94q7X+GXklHK4VMJFBQUsHDhQsDgjWlva0lhSQ3p2WWUlNdRWd2IwlJOZXUjKZmllFc1GF98J06coKy8Dn1LAW4uBs8xiUSMpYUcjVZHTW0TCQkJeHt7U1ZWhoODAr1eQK/X4+CgwN7eoPWqqmpkxKjO6HR69kTeJDk5mZKSEuMS7Oebo5j2yXYW/nDQ0BaRCAER/l5OvDf9Ka7+4x1yc3NRKBSGJbMwf47sj+GNaRt4Y9oGju6/RWFeFVnppYwZ+AVTnvkOMHgz38vvfu7VS6vVG+ra8v897o2hvEUgqahpxMFWgUwqoaSijgNnEjhzw/BCnDJlCsOGDWPbtm2UVtajUmtxd7alssbwMnNxsMLaypzs/ErScsooqaijrKyMBQsW0LdvXxQKMwRBQCYzaMk83O1wcrSicydv1GotcQl5vPrmZkaMGIFer+eXX36hoKiaJqWaXXtvMPPFfi3j24wgCJSU1vLj1kvMfHMzTz31FDt2GLzGa2qa0OsF7O2tEAQoKqohN68SmUyKTqdnYEQww4YNM/4dPBZnGH+9QGlZHW6utg+Nf4+uvqxbt47333+fffv28fz4nkyfEm70skxJL+HVOVt4dc4Wtuy4gkqtpay8zqiFvnXrFu6e9rw2x6ANqv0nodfewTAuf5m33Vivffv2AWBtafZAWknL8l1VfetS8b35AlBb24S2RYN77568dy+o1VoaGpqN1wCUVTcw7ePtTPt4OwfPJyIRi2hqVuNoa0l5dQMVNY00NKmIiDBobLOyDGYOrl4OhnxblpIrimoozqkgM6kQvd5gn5aZmWn0HG5QqnC0bdVSOthYotcLmMmlFJYZHJfS0tIeaEtaRgmCIODhYQfA2NHd+XHzBYqKalCrtRw6EsfGjRt5+umnAUjKLGHKJ9t4/qOf2HHiFq4OVsa2zJs8AAszGe+vOWwU4G7fvo1EKmHanKcAsHMyrAhUV7QK5VqNoS8dHByMfeZoaxgvnV6goUmFvbVlqxZQbJhLmzZt4vz58yQnJ7Pn5G1OX0vhxTG9qGiZLwu+3M+MD7Yx44NtHDidgE4voNPp8PZ+0HteJBKh1wsIgsGr9/7lXr1eQKPRGO8zY9/aWaJSa6lvNIx1ZXXDQ3PfxB+LSfAz8YcSFxfHzJkz6d+/P127dmXlypWUlJRQV1dHVVUVHTp0MKb18fHB1tbW+H9qaipJSUl07drV+PfKK6/Q3Nz80PLCv2LgwIEIuoJHL/MCaO4gCCowMyyrREdHM3DgQHp09iUh2aBVCGjrgk6nJ9C/delXrdYSHODOtWvXOHXqFM3NzajUWjoGumNpIUckgh6hvqjUWkPYk5Qi1GotsYl5xpdLQ0MDCUkFxq/j4paXUI+ubRCLRaSlG2wKg4ODDZqI6Gh69GwLQHl5PT16tiUsrC0lJTVUVNRjZ2dJdXWjUVt48+ZNYxgCLxdbCspqMG+x1bM0l2NhJuPlpTuZ9sk2pn2yjY8//rgl3IXAG9M2EPnTFYoKqikqqKa+rpmk+HyCO3ohEkFNy0u9Q4cOiESih14aYd39KCmtRa8XKK9ooGd3vwd+9/PzQ68XCOtk0PKpOWMAACAASURBVPIkpBXSO7QNPTv6Ep9qsMPzdrVHrxeIjo4mJyeHmpoaUjJLUFjIqaptIiWrFJVay6SR3ZGIxSSkFhr6vaMv5eXlyOVytm7dyszZm8jMKuNGdBavvrGZlNRi0jNKEQSBlLRimps1FBXV4Ovri0Qi4cKFC9y5W0iHYA/MzKTIZIY+6xLqg0gkQi6XolZrKSyuIScnBz8/Q9vS0gzj1buXv7GdPbobxrKysgGZTEpOTo7xr76hmYQWzVVQgBtlLZq4e+NfVl7P+/NHMn/+fPbt28fChQt5aWpf3v9kH8mpxfTs7mesR2FxDYEBrtxNKSIxqZBu3bphZWXF1KlTDTZ8my4iEolwdW+dYwA9evtTUlxDUkKBsV7+/ob6e7vYoTCXG9MG+xru/3u2fvfPFzAI+VlZhg+pysoGKlqEmLCefty9W2S8LxMSEmhubqZbe28KymooKKvBw9kWmVRCcnYpHdt5kJRVgqOtAoW5nHnz5gEYw1yUtthDdh8YTGl+JRUltYjFIuZ/M5W+w0O5efoOzc3NxnnZrNbSsZ0HCnPDvOzZwQedXo9YJOJCTAYllXX4+/s/0BZPDwdUKi19egdQWlaLVCox3K8923I32dAWnU6HRqOhubmZ7ve1pa5JhUwq5W52KZ38PVCYGwRoQRAYMGAAIpHI+Ay4J0r16BdAaWE1FaWtWux7glZNTY2xz8I7tgGgrKoeJzsrwjr4EJdeZLjvWuZSSkrKA2OsawkTlJJtmC++Hg4UlNZQUFpDfVMztlbmDy3byuUSRCIRmhbhUyIRG8fvHvHx8URERDxwLqybH3dTW8c6MbmQsK4Pzv0nhU4Qnsjf/++YwrmY+MNobGxk4sSJ9OjRgwULFjBjxgxsbW1JSkri+eefZ+PGjUydOvWBmEUbN26kX79+BAcHExUVhbW1NevXr2fy5MlMnjyZKVOmMH36dGNYh8ehY8eOSJTfg/YOjU1QVj8UC9e1HD4Sha1VIy6OGszM7TG3f4mExHRyc3N57bXXkEolbNl9lS4dfXh1al8u3cxg+KCOlJbX0bmDF19/MhFXZ2vefXcBhYWFODo6MnrUU2i1Onp382No//Z4ezhgZ2tJenYZOw7cxMHOEnMzGUMjQo0aDDOFF2E9/BABMpmE58b0YNLYHkilEn4+cJPnx/WkQ7Avzs7OJCQkMGxoBFKpmLzcCnr39ic42IP9+24RGOhGeJ9A5HIpo8d048aNqzQ0NDBmzBjUGh0hfm6IRCJeGd2bmvomzORSGppU+LjZE5OSj52VJQtfm4CVlRWCILBmxQmsrM1ZveVVKsvryM+pxMvXka5hbendPxA3dzs6dfVFJBIRFxdHx44dkckNmq21302jWxdfDh6NIyjAjazsMvqFBzBhdDdu3brJqFGjeOmll7h8O4tRAzqSU1RFUBsXeoW2QS6VcPh8IpNHdGdA93YUV9QRfeMKEomEl19+mbmzJiMRi9Dp9SRnluBkZ8nIgR3JyC0nJauMudMH0tbbEQ8Pd86dO8cvv/yCxKwTVVWNTJsSTmFRNX5tnBEEAWcna6qrG0lJK8bXx4mvvphHbGwsp06dQiwPYtjgDvTs5kdyWjElpXUsfHsYjY0q3Fxt8fKwRyIRs23LVwQEBFBSUsuXXx/h2VFdCApyx8fbEVcXG+a8NRSZTIJUKuHEqURux57nxo0byOVy6psNseGGDu6AlcKM9MxSZDIp7739NHK5FIWlGd+vP82t60e5cOECffr0YcWqU6Skl9DYpGLa873RaLTU1CoZPqQDE8f04HjUHWLichjQpw2zZ8/Gx8eHm1fTCO8XRGZaCYHBHlgqzNCotXy/8WW69WzLuZN3KMyvxN5Fyddff210Cmpq1hAWbPDk7uDnxmvP9MbCTEbUrVQszeWY1efx1ltvERAQgI2NhVGb6uPjSG5eBTU1jQwaGMyzz3ZFKhVz/kIy+XmX+eCDD6ioqGDiqAhUai2Th3Ujops/ao2O974/xNAwg52no52CPp386NopiPz8fPz8/CgrrCb67F2+PTifzn0CyLxbSFlhFW/+bSI9B4cgFovwa+/J9h3bSU5OxsrKiiED+6LV6ejdqQ0j+obg6WKLmUxKQVkNl25n0azS8vzoQbi7u+Pn50dggBuDBrTnzt0Cgtt7EB2TjVKpYuhTHQls54qZXEpjk4rXZo6loKCAxMREJo6MoEGpom9oW14d3Ru9Xs+C7w8yNCwInV6PjaU5/Tu3ZfiwIeTk5Bgdtq6eucs7n46jc6+2ZCYXU5xfhbWtBc+9OoCPvpuKVCbh9OnT5OfnY25uzpSxQ8kuqqSoopY+ndpgLpdx8FIiT/cKZmSfEFQaLUGBgaSnpzN48GBWL19Ah3bu7IuK43ZyAU52Cl4c0wutToe5XMb8Fwfh6+mIWCyioaGBiooKJkwYj4WFHI1Gi04ntDh3iJFKxeh0huVfgOXLP2PhwoXU19ejk7oxfFBHJjzbnZUbThvDuZSV1/PS8+HI5BIqKhvo0en3DVVyP6r6755IvmbW859Ivn8UIuGPChVt4k9PYmIiEydOJDY2FoXCoOr/5JNPuHz5MmfPniU8PJxFixYZI6Ln5+czZMgQli9fzvjx49m1a5cx7IdcLv9XRf1LPv30U2MA55u34ZcL4/niiy8YPHiwceug3t0lbPn7fMqbxtwXwNkJV2cbqqob2XtfAOfxI7viaK9AKpXwt5VHWff1LMCw5HnhSizeHvaIW5Y99XqBuKR83l/+C80qDa8834dXnu/zUB1TM0oxk0vw8XI0Bso12KI1kpZZyoY1S/npp58e2b57X+QlxTXs2HGVPn0CGBDRnubmZmpqakhPT8fNtz1+noa8EeBudgkrtp+jsVnNwmmD6BLgiUqjJSs9hZCQECQSCSP7LMPV3ZZtB+fx9acHiToaz7MTe/DS7EFY21g8VI9Lly7h7hmEr7ej0Z7sUajVamMA59jatrwxqR8j+oVgZ22BXi8gkRqC3Gp1eqLv5GIml9HG1RJra2saGhpwcHBgyapjjBwQQmh7T1RqLWKxCEsLuTHwc35JNX5eTsyfP5/IyMgHAji/MDkcTw97mppUbNt1lR7d/OjUwQuVWktRYQ4WFha4urqi1Yqorm3Cx8sBjUZHk1LNhcuprP/xPIsWjKBvr3ZIpWKjAP/XjwzL9t5eDvywcho29/VRaWktP++5yeEjt6mv2c+NGzeoqanBUmFFY6OKgqJqnByscXWxQSQymAzodHrs7lue/J9obFQhl0spLq2lqKQGXy8HHOwVNDc3PaBBv5/6OiXmFnJkMgn5ORXI5BLsHa3QatXGuXo/ekEw3tP3s3TpUj755BM2btzIhAlTcXB4+Nra2iYuXkrl2We6MmXqOi5e+Btr1qyhV69euLi4Gk0EsosqWbrxJMk5pfi42bNw+iC6BnoZnINEIsrKykhOTqaNexCefs7I5FLOH4xBJBIR0rMtzu52j2zrd999h1NgP57p3wFbK4tHeqfGJOdz7ujPLFy4EK1Wi05vsDGsqKwn6W4hgQFuuLnZomrWIG5Zhi8prWVP5E8oFAoGDRqEt4+voY9EUFRey4frj3E3uwRfN3vee2Ew3YO9jDaYYAjgrFLqsbI2RyaXcuFEIgorM9q2d8fG7kEnmXvs2bMHpaINo/qGYGVpRlWtwTxCLpWg0wvEpRXy1fYzvBBmT+/evbG3tzdovQ9eZ0PkFQTBoOnf9sV03JxsEIlEaLV67mQUs3rFYl588UV69eqFmVnrEr9hSVeHUqnG3l5BXZ0SlUoLtAZwnjt3Lt7evhSX1bL152tEXbj7QL17d2/LrOn98fFyoKy0BC+vRwfm/k+pKfL+9US/ATuP/F9P9F+MSfAz8YdRWVlJREQEc+fOZeTIkVy9epVvv/0WhULB2bNn+eGHHzhw4ADLly/Hzs6Or776ipiYGJYsWcK4ceNoaGhg9OjRhISE8Prrr2NjY0NGRgYxMTEsWrTosevh6elJfszj2Zh4d281gG7b851/kbKVrOjWDbX9ej3el2H2jdYv03Zd5v1q+oy4743H7QPnPFYZKWmte0t6Dn14l4RHURj1jfG4g+frj3VNUuEG43FA6K+3JT2htS3eAxc8Vhn551udZ3z7Pd41uZdbr7kn+P0aaXdaA8A+TlugtT1BIY+3Z2fq3VXG43adH6+MjPjWPvst13Twmf1Y1yTlrTceu41c+Kvp7+3cARDU/jHbn9Lafs8hj3lfnm69L0PFEx/rmgT9XuOx11O/Xk7BmdYyfsv94jHs8dpSdKq1nE52Lz3WNYk1W/6tcu4vwyfi8eZL3oXW+RIXl/IvUrbSpUt747F/j8d7XmbeWvnE9uo1CX6PxmTjZ+IPw9HRkaVLl7Jz506eeeYZLl26xOzZrS+g2bNnEx4ezuzZs5k1axbPPvssCoXCqN2zsrJi27ZtiMViXn75ZcaMGcP333//kDGxCRMmTJgwoUN4In//v2PS+Jn4r6WsrIwBAwYQGRlJaGjor1/wmHh6ev5ueZkwYcKEif+MJ6XxKy96Ms96Z48nU98/ClMcPxP/NWRnZxMfH0/Xrl2pra1lxYoV+Pn50alTp//tqpkwYcKECRP/JzAJfib+axCLxWzfvp1PP/0UuVxO9+7d+fLLLx+KB2fChAkTJkz8Gv8XQq88CUxLvSb+dHh6ev4mR43f4hDiPuLxDLyLj99nSN7h1w3J05Jajch9+z6mc8OVVmPtf8fw+h6/xSHkcRwv7ne6aBP+eM4wOddanWF+i7G61+DHa0vB2da2/LuOOv7dH7OPY/6zPv6jnDsCOv36fZme+J/dl8Ht3nqsa5Iz1hiPf8tYPk4595fhOOnXHVsAKiPvc275Dc49ti8/Xjm1m/+9cu4v47c4Q/0W545/x1HrSS31lhR6PJF83TyLnki+fxQmjZ+JPx0HDhxgw88ppGU+GMB56rgwxo3ogr2dgtyCStb/dJGsaMNvgwcPRuS8AsTOqNVqDh8+xJrVP1BUXM7bMwXeeLE1H3t7exYtWsSwYcNwdjY4noha4qY0Nqs5dTOV7yIv0KzW4uZgzdwJ/em6bBrW1tbExMSwZXsamVnlPD20I6+81B/nlt0IBEFArxdIzyhl7ZoCJkyYQK9evVBp4E5aEeHd/Cguq2XK/C28PrkfwwcEY60wIyWrjJWbzyIvC+DkyZPI5fKWnT4E9IIhNENFVT1ymRQnRytj6BBbGwtKSyazadMmMjIy+HjpNNq4O9DUrMHO+uHwLZkFFXy68QT3HuGjR4/m8y9mY3/fPq5anR6RSER5ZT17TtzGyd6KsM/H4O7ujk6no6pOjUwmxdnBisrqRvaduM2cFwc+YhQXcubMGSIjI/ni6zceqE9tQzNf/hjF+ej0R47/6tWrGTdunHGnkKLyOv666jApOWW4OVrzxqR+9O7UBktzGWLR20gkhjAaarWWZpUWczMpqVml1DU0069nu4fyb2p6E0tLS7Q6HXqdgFgsoryygX1HYok8eAuA3t39ePfNYbg629DcPJcvv/ySv//970gkYt6c0JfJw7ohe0T4jmaVBnMzGfDwS/VeLLV7lJbXUlnViLenAxYWcgoLJnLr1i38/f0JDAhBLBYjkYgwMzfsQdzY0MyG76M4eTTemEenTp04fPgwUqkUQQCRCJqUatRqLQpLM0pKa9m+6xoODgpGDg/FxWke9fX1qNVqrG0dsbSQAaKW0C8CjUo1p6+mkpZVxvuv39smrFVwU6u0iCUiKsrruZtUSECQGx4e9uh0egRBoFmpIT2thCVLr7Ju3bqHgoQD6PR6Dp5L5PtdF3gqLJBPZg1v+aW1z4qLqln2t0N4ezvw8swInJytjb9pNTpycytYvaaMd99995FlCIKATq9HEEAmlTB0yUZKaxsICAjg2LFjyOVy4w42j7q2tlbJzt3X2Lsv+qHfe7X15seXxlNSW8+VjFx6+XnjZmuon0wiQUBAWDKXgoICzp8/z5ixz2Fna4kggEajJSOjlO07r3HjZiZPD+vE1Mm9cXGZbwyZFF8lNjwf+gdjZ2OBVPLwfXboTCIhLfNSJBJhYWGYX3q9gFKpRqnUIBKJUCjkyOVSxGJDGJjw8HCuXbuGVCplzpQBDO8bjJXCjNTsMr796SypOa0Bodd+OIluId4PjP/vjWnDtkdjCuBs4k/HtWvXmPPaOI6fTULZsgflc89257Wp/Vi9+Tybdl1GYWnG268O5tTJk3h4eLB7927E2hsIjVvJSL9F34iX6dHFkvMX79IpxJ2eodWGzEWWDB27F6lUSnZ2Nh7evmh1evJKq0jOKcXDyQ5XRxva+7hwOTGbTX+ZgkqrY97sV9iyZQuBgYHMees5qqsbeW/BCCwt5FTXNKFs1mBhLkMQIDevkldnTqW0tJTXX3+drFonZozrRXVdE1qdHndnG0YN7MAX66PYcSgaPy9HXp/Sj2efGYmdnR16vZ4fd16hqKSWkEA3fj54i/69A7BSmLNx+2X69vTHwlzO9j3X+WXvP1iyZAnjx4/n2NVkvtx6BmuFOUG+LsSnF2JpLmf51ih2R8XibGfF7Al9idy9i6CgILZv346ZmYyK6kaiLqfQ3t8VsViEIMDZa2lMeaYHJeW1fPvlYlavXs3t27eZNnUS1gpzFq88wp3UIua/8hQqtZYv1p0k8mgMFmYyXJyskcuk7Nu3j88++wydXkDQC0RdS8HPywm9Xs/wfiGcvpZCbUPrln+1udeYPn06c+bMQRAgMaOIA+cSiOjRjhH9QrgSl826D5+juLyeg+cSiejRjoqKClatWoVGo8Hf35/cgkreW3YAP29H+ocFkJxRzKuLtrPrYDSNTSrqGprxb+PSstsJJCQX4O5iy/Ezd3hhYi9q6wxbm333t+eRSsRk5JRRV1PGqFGjqK6uZsyzI3mmXwc0Wh3peeVkF1XiYGNJTb0SiVjEqRupvPPtflZ88CplZWWEhYVx7NQd2ge6U1nVgEJhRnpGGWKJCEd7K9xcbPnH1kt8v+40J4+s59lnn+Xnn38m6lAJg4Z1xFJhhqAX2LX1CkHBHgx4qgOpdwspKqjGzEzKrn1ftQTqlXLkeBzFJTUE+Lsil0vZvvsad5OLeGfOMIKD3Pl+7WkWfzQLiURCv379yCqowsrSkL9EIiansBJrKwtcHa3xcrfHwU7BD1vPsWndcs6cOcOQIUPIyCjFydGamFtZDHoqhMT4PJRKNUmJBfi3c2XD2jPY2FryzvxXmTFjBgBt/ANpVmvIzK/E0dYSnV7A2d6KoDYuFJTW0LdLW5pVGiIjd7N8+XI2bdpEXpYVPj5OvPPuCCws5dyOzSU9vRiflr2tk5IKefXVKSxZsoQPPviAn4tE/Hwlnqe7BGIuk3I3v4xLyTn4ONtjLpOy7XwsOr2ef3w8jzt37uDn58dzk9cQuecmOTkVhIe3A8HwAXjm7F3at3ena5c21NY2cfXKIeM96tlvCOtnjCM+vwQXGytK6xrYcT2OXv7eNKk1WMil1Cibqa+upqGhgSFDhlBcXMPGTRe4m1RI126+FORX8cLUPiib1bz91lB27rrO+4tm0tjYyLJlywho48yAnu34YkMUjU1qfD0dUKm1vPLX7Wzae42dh29hJpeyc9M3nD59mrFjx6LXC4jFYpRKDQqFGXq9gJWVHLFYTH19M0qlGpFIxMSJ4zl58iRz5sxh3KghLP8xiu1HovHzdGT2pH4cvZiEUmV45o4a0IGEtCImjh76QHSH35Oa+hUI8Lv/2do8nmb2vxVTOBcTfzrmz5+PWqNjzPDOxnNTxvYk8nAMJ88nkVtQxbqtF8jMKWfWrFnMmjWL+Ph4hJq3oPlngty3IFFto1NoBDKZCJG01XNMpHgVCwsL3nzzTYYMGcLlhCxkUgmvfRXJu2sOoVRruJ1WwLCw9gzu2g5fN3s+3XSCO3fukJGRYYxH+MqM/pSX15OZVYajgxUfLznAxctpVFU1EhjghiAIFBcXc/fuXcYP7cyJi3dxsrdCKhEzdmhn1u+8xOWYTLLyK/l87UlkUgm2trbExsYiCAI79t7g2/VRXLiWzjPDQrmbVkxjk4rB/YJITi8m8tAthg/uQGRkJHl5eWi1WtbsuUxOcRXx6YUIAnQO8GR15CWOXUkmNqWQTzeeRKPVMX36dMLDw43bO20/FI3CUk5uURUikYjaeiUqjZa9J27TOdiLy5cvk5uby8iRI0lKL6ahSYWzgzXnr6chACq1lhMX7hJ3t4DFK48gFolQKpUEBQWRkJCAmUzK99vP89n6k0SeiKVRqUYsFjFzQvgD4+7k5MTixYsRBIH80mpyiqrYcugmu0/EIpdK+GTW0xSX1/HJumNMe6YngiAQERHB5s2b6dOnD/uP36Z9OzeamzUsW33CsN+wrWH/5qqaJrbsuY6jvYKoqCgAcgsqmf9RJBevpxPo78r+I7G8MCGMKePC0Gp0fL3mJDl5lZSVlbF582beeustxg8K5Up8NmZyGW9/s593vjmAUqUhp7gKczMZF25nUFnbRHl5OcOHD2fv3r0E+Lu2bINXT3pmKT4+DuQVVCGVSrgRnUXf8ABKyuq4fv06Y8eOZefOnfj5u6CwMuPiuWRycyowM5Py5ae/IBaLmDZzAABvLxqJtbU1xcXFAHy76hTOTjaUVzZQWdXA8KEdidwfjUajpa6+mctX08nLy2PZsmXs3r2bjgHuXInJRCIRcS0um4KSGppVGuKTC+kQ4A5A5PHbHD16lIiICOLi4pj7xlaalCrah3iSl1uJf4Abc9/YyvK/HeLSxVQGDQ7hq+WH0el09O7dmwkTJnAlLgszuYwTV5IRBIFGpYrbqQUM7d0eO2sLJGIRl+OyWLRoERcvXiQ+Pp6bN7IYMqwj5eV1pCQX8f67u/hs8S9cuphKVWUDgUHupKSk0LFjR8rLy6msb6J3oC92lhboBYF5mw7x2Z4zbD5j0Ni52Vnz1wmDiY6O5tixYwBUVzdSXd3IMyM7U15WR12dkpyccpZ9cZhLl9Oorm5k8qTerc8OkYivJo1g1414EgqKadZoeX/vCewsLbA2N0cE7L6ZgJOVglWrVhEcHExlZSWWlmacPJnIz3tucOBADF5eDjQ1qRk3pjvnLySzd380mZmZxuD3/bq3Y/0uw/Ohuq6JqtpGVBotg3oFUlXbRFVtE0fO3+Hy5cs8++yzxMXFUVOjRBAM2kqlUoOlpRyZTEpDQzNarR6dTqCpSU1WVhZz585l2rRprP35EpdiM8kqqORvG06i0egY/1TrM5eWuV1e/j/smW7iiWES/Ez8r3HkyBGGDx9Op06d6Nu3Lx9//DFgiGD/6aef0rt3b3r06MHs2bMpKjLYVJSXl9OpUydiYmIeyGvOnDno9Y+n2Nfr9dyKzyE02BAt3t3F9v+xd97xVZTpHv/O6SfJOek9lJAGhJAEktCLlIhYANuKgo0VC9LEVbCvirhrF8XCgoAoCiggUpXeCST0VNJ7OSftJKfP/WOSE6LsynrX6/Xe/D6f80lm5n3fecvzzjzzVPx9dZxIL+hU7kRGAcnJySQnJ7Nv375O10TLIQRFN/z8ghHtpR0X1KmcPHmSt956C41Gw6iESIxNkiTOKYqcvFSEr94Nh9NJdHdJDWyxdSSxdzqd2G0O/P11aLVKLl6SFKdWq520UwV4e7vj5elGS0sLAwcOZN68eYjA35b/gFMUcdOqUKsUHD9T6GozdUQfbHYHWq32Zzk7T6YX4O3pRp2xGa1GiZ+PByfSCziRXkBwoBfBwcF4eXmhVqsJ8PZw1ZPJBARB4NHbhvHRwjsYHh+OUxQ5cbGIlJQUmpubEQSB0sp6Rg+KIrFvN5xOkSaTGS+dluNnCjh+tpCQAE+CgyUmIDk5mTqjCTeNkrOZpfSOCEIhl+Gl1+LvI91bEKT71tXVMWDAAHJzc6XxnpXGe/xsIUF+bbmIA71d/RUEScXrdDqRyWSdJIFHzxYgl8voFebH+bwKXp9zMz2CvXE6RLZt20ZaWhoajYY6owmHw0lc7xCcTpFao4lAfz1bVjzK+o8eYvFTt7hyNQNcyq5wzXHfmBDSzhQSHOjFkKReFJXVsedgx1rs37+fbt26oVYqUKsUXMgrx9Rqdc1pRJgfoii6crwCrmwKMVFBlFcYiY4M5HJBDVqNit5RQThFkW5hPiTEdeOzZQ/w+OOPu9TW/eK7AwInD+eidVPR2NDK6RP5OJ0iUTHBjJ/Yn+jekn2Uv78/TqcThUJG7+ggamua8PZyJzjIC38/HQ6HkwB/XacMGHq9lAVC76Elv6SO2Mhg0i+WkHauCB9PN5xOEYVcxoalM0hPT2fixIlSpp7Ufmi1KgL89Rw7mkNwsJdLDZt2Ip8+fUPRaJUolUr0ej0ajQa1UpqvicP7cCgjn+PnCl17LCLMD0EQGBTXg/z8fAoLCzly5Ag3T0okpncwWq2KtJP5rn6nncjH28eD4GAvIiIiOHLkiOtaYngIFruDAxfzqWmU7HgvlkjmIncO60+/7oH8VIGmUMiIiQnGzU2Nh4eardvOSDSRlo+3tzvBwV4u+p83bx6iKLLiUGf1b2KPEM6UlKNSKFzZUn744QdEUaS+vp6gIE8CAySaP3W6gOBgL7RaJQH+ek6mdX6mFRQUIJMJnDxb5Drn76PDXati+qQU3lp4K/2iO+zikpOTOXDgAGq1AkGQsgJZrXbkcol1+KmHgNlsZujQoWg0Go6fK3Sdd4oiJy8UER/TObzKqKRIzp07x28Fh/jb/P7o6GL8uvC7oLq6moULFzJr1ix27tzJxx9/TGxsLAAvvvgixcXFLF++nPXr1+Pt7c2jjz4q5VL19+fhhx/mmWeeobW1lRMnTgDw7LPPXnOuXgCD0YSvt+Ss0f7XUG/6SZkWAgMDCQgI6PgqVUQjBGQgeK+Q6vqowNHx4kDRnRtvvNGVGqusHsYDpwAAIABJREFUph4vDy3P3SvZM9U2tODr6U6jyUyL2Uqjycz8O0fh4eGBSiUln/f19Wizn1FTUFhLeUU9f35gJBaL3ZX6zN3dnaCgIKZPn87LS7djtzuxXPFArmsbS49QH2bfO4oTZwrb1DJNrq4OSerF3JljpRdjYi+eXbIZvU6LwWjCYJTqBwQE4OUlpb7y9ZLmqbjCyO7jEtOybOMRcopreHv+FG4Z2Y+6hhYCAgJobJQSywf4epDQOwx/Hw/Cw3xx06gwNLRw8lyRa75vuukmcnJyCA0NZVBCOIve2EJOQbVrXaQ1khi/EcmRaNRKbDYbAQEBOByOTuM1NrQAUN/UgkbdYWP1wJQhyOVyF7Nkt3cw23VtdRRyGbeNjcdslVRRMrlAcHAwFy5cAOD+O4dgsdpdfSksqaXW0My8v27g7x/tQu+hRSGXuQKONzZJat06owm1SuFKa6XRKNnx44VOtFZd3WH7pHNTu/oEkk2dt05Lq8WGn1fHnOzbt4/bbrsNQYDiMknCNzChBwBarQoBySZQEAQ2bc3gkUce4cknJRVVQJAnMplA/MAeeHho+HHHORwOJ60tFhRKOTNnj2Px89+QlpbmStnm5SmlDYuMCHDRoY+PO1k5FSgUcvr1lV7qiYmJjBs3DoDBCeHE9Apk484MNuzIoK7ehI+3O6ZWCz8cyeKZN7/jk08+QaVSMWXKFOYtuIE3/7YNuUJGealkPuHrK8230dCMSq1gzrzrqauro7i4GAAPNzU2u5M+vYLYtO8cdQ0t+Hq509hsRq2S7Bc1KiVffvklW7dupWfPnsyak4pCIcfdXY3R0AxAeC9/Zs9NdY3t008/dUlvAXr6e+OhUbHx6HnXOYdT4gLGxkfx1JrtmM0dHxQAnm1z5uGhRhRFfmhbd4PB5LpPQEAAQ4cOZfr06SzcuPNnzJS/zp3aphaOXi7i9qQ4juYVuT6E2+0PR42MYdt3T/D6a3cCsPaLI8jlMozG5k5ttUdIsLXR/8W8Cl75cAd7jmVTW2+iyWTmo7/+ieS4HowbN47Q0FDmz5+Ph4eGxsZW7HYnzrYxOxxO3N3VrjbVagUJCQn4+PgAHXuyHXX1JtczBGDX0Uxe+HAbd9xxB134n0UX49eF3wXV1dWo1WrGjh1LaGgocXFx3HXXXZSWlrJjxw7ee+894uLi6NWrFy+//DJFRUUuY/xHHnkEd3d3Xn75ZT74QEpD1v7V/O/gWhzaf1bGXoBYNwmxXvLYFPEAeU/pmjIJUKNSqUhMTATA2NxKVnEVNwzug95d06mpVouNvyzbSkJUCJmZmeTm5jJgwABOpxe6yoQEe+Hj7U5KcjjPLbrZdb6mpgalUsmCBQswXMEkXAmlQs7i+Tfz6VdHaGw2/+x6xvkS3v90DwCXcsp5dt5Efho5p9P42/49f7mC7CKJUblcWsM7X+5n+5FL3Dsx2VUnMDAQgKIyAyWVRhwOJ5W1TbSYrfh6uTM0MdzV7JkzZ0hNTcVut3Mus5TnH7+B6PCfZmORbj55fH+qahuxWCw/G49MEHjkruEApF8qdb1AE3qHctv4eGbPvrr3Y++eHfdSKGQuG6QaQzNvvvmmay237bmAWqVw9aWozIip1UpBcS2nzhXz6lJJxTdq1Kir3sffT2JgHA6n68Xr7eXG0KFDXerBqyGymyTts9ocBPvp2f/x4+Tk5PDQQw8hk0m5gQcnRUjjvkKS43A4ycqpBOCxh0bj7u7O7NmzO83D6PH9eOXZjdTWNHW651drjlCYX+MqK5PJ+HrNowCcPHXFh44IW7dLziDv/G0qpaWlfPfddy5ngILSWrIuV/KnGwdy85g4Vx27w0lWfhW5RTWsWbMGu91OZmYmNqudWXPGcyV+ugfHju+Hn58fS5YscZ0LC/SirLqeE+eL2m8BgKFNMnco4zLPPfccs2fPZuPGjVjabHuvRElxHR+8v9t1PGfOHC5fvkxOTg5/HpdMoJcHLRYrR7M75ljR9qF1KreEvMq6n7XZDkEQyM6ppLn553Sr0+l4//33WbBgAT18vTn1/CxmjkwhzMeTmaOkPaWQCQTqPWi12hjUqxtFRVIf2pnfrOxKHnpkJYuXSPaCd9ye8k/7cuX8HD9TyN7jOdQ3tmK22Hhp6XbOZZVxz81JHDlyBLvdzgcffIDZbEOn06JQdLAMzc0WZDIBPz8P/Pw80GpVbNq06V8+V6+8tGXfeU6cLyI7O/tf9vW/A+dv9Pujo4vx68Lvgt69exMTE8O4ceNYuHAhO3bswGazkZeXh81mY8SIESQmJpKYmEhKSgpms9n1Na1QKFiyZAmbNm0iJibmV93f20uyzQJJIgPg49U5XIuPlxvV1dVUV1fj7+/fdtYGjmIQJYmWwVCOoBrUduk8OCs5c+aMS7LS1GJxec0F++jw1btR12BC766hrrGF09kl3PbcKvr160dCQgL33Xcfbm6S163JZMFqtTPjkZVMf3A5K1cfwtamFtZoNAiCwKpVqzi4bj4H181Ho1LgrpUkWpPH98fX251e3f1YMGMsk8fHI4oiM2fORKFQsPfbBdx+8wCcoogoipy5WEpWXiU2uxMfb3fXXNTU1FBfXy/NU0PHF7yjTa3e9vHPubxygv30+OrdqKmpcTE/cTGhvPLhDmoMzew7noPOXUOjycz0yYPw8ZS8fUtLSyksLKSqqorz2eVkXq7knskprnVpX6PQIC8GxkmJ32tqaqiurnapLgN8dbw69yZi2pg4ARFDW38HxnbHS+fGiRMnXOUH9OnGzSP7cWTVPJcEw+kUOXD6Mt/uOec6zsnJwc3Nra0PzchkwhX04uaSjLb30ensYHr1bZ7GPl5uWKx2ontJ5+VyGU88Op69mxaQkhiOIAguKWE7zfi2zY0gQHT3AGrrTejc1WQWVDHthbWkpqayaNEiNBoNJ07lcymrHLvdQX2DJGW02x3I5TKcThGL1c6fZ69m0aJFCILAli1b0GiViKLIpq9PkNGmDpTLZWjdJPr582Pj2HHoWY4ePdrWD6FtTpzIFXJaW60S/RtNaDRKrFY7k/70PlOmTGHkyJF8++23AFRUN9JqtvHFd2nMvGsYPp5uGOpN6D00Lolva2srVVVVlJaWotGqyMmqwOkUCQ71bttjUrnb7khBFEWef2YD48aNc+2xVouNED89m/dJkrgr71FW1QBAQZnBNb+nTp1Co1VJ9oAmC95tZgR2u+Q5bLNKe2z37t1cvnyZ1NRUtp3KwlfnRl1T548sH3dpjYf16Un6m3MpKirizTffRKFQ8MPOp7hhQn8cbZ7shUW1rnre3u6uvezpKZk7rFq1is8evB2VQoFcJkMmCDw+ZihuKiVDo3qikstJfXslA/66lGHDhgG4PoCKimspL6+noW398y5X4XSKeF9hngEdTLTqJx7jPl5uLgndhZwKgvz1rnWxWCyYTBbsdgdarcql0rfbHdTXt1Bb20RdnYn6+hZUKpXLJtT3p89TTzfXnvyfggPhN/n90dHF+HXhd4FCoeDzzz/n7bffxtfXlzfeeIO7776blpYW3N3d2bx5c6ffrl27UCqVrvoZGRnIZDKioqKu2bavHYIgkBTfg3OZkm1eRXUDNXVNpCT27FQuJTGctLQ00tLSGD16dOc2VCMQHaXU1lSD0K5StID1JEFBQfz444+YzWYsVju922z5KgyNpPTtTl1jC3KZjLN5HbGrGhoaMBqNbaE2gqioqKe11cqAxB6Ul9dTXl5Pr57+GIwmGhtb0el0fPnll6SmpnL/U2t4Z+UeKUyKsQmrzQEI1BiambZgFQ88vYaGplZqamrIzMzEbrczY95qtu4+R8qAcIwNLSQn9EQQBJqazaQkhpMyIJyKqgYqKiowGo1YLBaqr1AbBfnqEUWRqO4SQxzdPYAqQxPJfbtz8uRJzGaza11EUeRcdhmJfSWbyqZmM4IAgxKk8DPtL4q0tDRSEnoiEwSUCjlZ+VXYHU6p74ZmJo3rT0NTK2FB3pw8eZK0tDSioqKw2uy8sWAy4aG+HDx9mYqaBvpFh3I2W5rfb384w/SFq0lNTeXAgQM4nU7Kaxo4cDqP6c99TkzPABwOJ9WGJvy93MktrqGhqZVAPx19+/aloaEBs9nM6CFRCILA+axyBAGS+vfgXFbHGjqdIlabHY1Gkuz2iZak0CkDwrmUXY5KpaCmronjp/PJL6hhxtzVHDmZR0ZGBhs2bKCsrAyLzY7FaqdfZAjuGhVD48Jx06jILalBLpORnlVCaXU9hYWFjB8/nkuXLnH4WB5REQHk5FUxalg05RX1lJRKjjR+vh5cyiqntMyIh4cHDQ0N3HnnnfQI90cUISjYy9X/ASm9kMkE8nOrePS+T3n0vk9JTU0lM1NymvjzY5+Rk1dFfFw3KqoaqKxqoKa2iZSkXlzKKqe52UJaWhoFBQX06tVLsulsMdMvOhi1UoFSIScprgd1DSbkMlmnuUtLSyM+XnKCQBBobjYzdFgUlRX1GOqaeXLhjcTGhZGdVcHxo3kUFhaye/duzGYzvp7uyGQCe0/mIAiQHNudugZpjx1Iz6OytpEewR32nv369aO11YrFbKO1xUpScof0OTklAqOxmcqKempraxFFkcLCQkbGhgMCAZ4euKs7mPRgH8m27rkvdnLnmxJD/uabb2K323nokZVs/T6D5mYzNpuDnm0ewwApyeEYjCYqKxvYu3cvY8aMITU1lVs/XMutH67l67RzVNQ3ct+KDQTpdXioVMz5citNZgs2h5Po6GgEQaBnz56cPVfsYviSk8KprGzAZnPS3GwmOaljbADh4eE4nSLJ/Xt0PMsESOrXQcvR4QFU1zW51uXKZ58ggEqlwOHoUPm2O30IgiTt3rp1K2azmcH9e3aql9yvh2tPduH3RVc4ly78bpDJZISFhTFs2DBuuukmXnvtNe6//37WrVvH1KlTCQ8Px8vLy/Vrl9Y0NTWxePFili5dyvDhw9m9ezfR0dHXfN+wsDB69+7D60t3usK5OEWRe+8YQlVNIza7g7smJzNicCQLFjzBmTNnmD9/PnLtdeC0YBGGINc9SmXJfr7eeJIgv3oiIhNxC1qGrPUT1J534u3tTX5+PmNHDkGllGNsbKFvj0B6BPngo3fj6IUCNh+6wE1D+xLsq+fTvz9LUFAQzz33HPkFRtauO8rEG+Lx99PRLzaUQSkRjB4Zg1ajpNlkQaWSYTQaEUWRZ5+YQUKfMKprpYf17sOZ3DFxALdfn0Ct0cSoQVH0DPPllZdf4u6775ZCjQD9+4Zxw5h+bN5xhjHDYwgN8uK73We5bmgMsb1D+Ob7dHz1IrfffjsqlYo7xydyIa+CJ+4eTeqQPlzKr+T6wb2J7ObHxGF90bTF85o/by4Wi4UJEyYgipAS14OCsjqGD5TUkVqNkou5FUwcFcvFvEryss4gl8vp3bs3N6SOJiTQi293ZhAS6MmI5EhEEQrLaplx5zDMFhu+Ph789a9/5cyZM8ydOxeb3YmftwfHzxZyw4i+VNQ04uvlzt9X/MjAvt14adaNbN5zjvNHvuXy5cvcfffduLupaWyxIAhw/82DsNodvPvFfu4Yn0jPEB9C/T3RqpUMHTqUXbt24XA46Ns7gpJyIwdP5DL7/uuIiQike5gPrWYbMpnAkzPH0S3EB71Oh0wmw1OvZfDAXiTF9+DgsRwmTUjg088PsedAFtPuGISPtzvJiT2x26wkJyfz97//HaPgx3UDI7E7HKTEdufmEbEuh4+j5wvYclCyEQtT1/Pqq6+Sm5vL7gOFXDeiNzqdBj9fHecvltK9my9qtYLQEG8+X3eMiF4BPPP0DMrLy7nuuut4e/E2EpLCie4TjKenFv8AT2Y/eQNKlYK3Fn/HpfOlyBVyPl7xHLW1tYSGhuLmpiI0xBsfb3f0Og3fbDlNdFQQt00aSE5eJTMfHEVhQS4rVqwgMjKS42eLSOnfAwGBgf26Y2gwofPQ4OPpRnVtExU1jUwaF0eAl5L77rsPb29vTM1mIqOCyEgvJLZfGOmnCrn+hv4MGhSBUinRV0Z6IcaGi1itVvR6PeOuG4HD4aR3z0BGJkXSI1jaY8fOFRDgraPa0MyNw/vy4IMPMmjQICZNmoRMJmP792cYMCAc/wA9I0bG0C+uG6PH9EGjUXH2TDHXTxjBJ598QkBAAIuffJwTucW4qVQk9gqhwWQmObIbD6cORqtSsuHYOSw2By256bz66qu4u7uz9IMf0WpV3DN1CHK5gJ+fDl8fD/r1C+PGifFo1ApWrjrIwQPfUFdXR3JyMq/Nf5z1aefo5e9DdKA/I6N7YrJYEQQYEdWTQL0HEQE+PPPgNFpbW/Hy8qKxSdKEvLb4DhITepCdXcHAAeF8u/kUN92YwORbBnD69EluvPFG7r//fo6k5zNxdD8KywzcNzmFKePiCQn04sutp5h6UxJjh8Rw6XIFRXnnKS4u5uGHH0ajUaJUyrFaHWi1SkwmKzKZDJlMQKWSo9dr0WiUlJSUMGfOHPR6PffeeSOF5QYUchmPTx1Jr25+vPrpLlrNNkIDPPnThIGYLTbM1Zd46KGH/lOvlU6obXjrNwnn4uf528Ue/J9AV+aOLvwuOHv2LCdOnGDYsGF4eXmxc+dO3nvvPfbv38+LL75IQUEBCxcupEePHlRUVLBjxw7mz5+PTqejpKSEkJAQFAoF1dXVjBs3juXLlzNo0KBrundaWhqffJVJ9lUCON86MRFvLzeKSg18vPoAXy2XbPnGjh3L6lUfgKDDarXw9tvvsGrVKlfdKVOm8Prrr+OsuY6pjwewaNEievfujd0poFDIXKoVk9nGD2nZvP31fsxWO49OHsrkkXH46t0xGAysW7eOrTvNWCx2rh/fjxkPjMTPt0Nd09Ji5ce9l1j+yfP85S9/YciQIahUKnYfzqSiuoGxQ2OYOn8VTzwwhimp8djsDjLzKnl31T52ff40b7zxBlOnTkUUJWYXERqaWqkzNuPhpsbP1wNTWwBnvV5LdVUlK1asICQkhIceegib3YHVZsfucKJWKRHo8PBVyGUseHczX70hZUW49957WfjMC+g9Omwb29VeNYZmtuw5R9+IIKK6eeDj44PZbEav11NV24i3pxuG+hY27kjHW+/GLeP74+GmprKmkeAATwYNGkRpaSmzZs3imWeeueo6v/LxTgCef2QCU+Ys5+Q3LwGQmprKp8v/4bLPKq9p5JkPvieroIpxg6KZe/coAnx0NDWb0ajlKBQKnE4ntUYTCrkcD3c1uQXVKBUyYiKCsNudGBtMtJptdA/1+Vk/nE4n1bVNbNx6RQDnpF4seHQ8gf56LBYLr7/+Op9++indJ/yFx24bxk0jYvF0l9T5Fpud7UcyeXedRDMA9yWrmTVrFiUlJfj5Sypkm82Bm1aFIBNABGN9C06nE09PNwwGE8FBnv90T4iiiKnZwqfv/8DO7yXP08AgTz7fNIfGxkZ0Oh1OpyTVMZms2B1OPNzVVFTVs+9AFhOvj8PfT09TUxMGgwGFQoGffwAgIJcJbY5XIi2tNn48moXN7mB4UgQBvro2GpK1SYkFVCoFdbXNXLxQSp++oQSHeF21z2+99RaHDh1i8+bNNJssbcGiocVs44fj2bz75X4evm0Yo5Mi8ff2QKmQ43Q6qaio4KsvzrBj21lSJ8Tx4J9H4evXEcDZbLZxOa+Kjz5+nc2bN/OXv/yFefPmsfDz7VwqqWbhbdeREtnNRT9X4uWXX+aFF17A4XAwfsIbTP3TYKbdM5SPP93LtHuGufZyY2MrX6yTAji3Z9W48847eeeddxj35gqmDOjLXSnx+Hq4/ewe0lrbOHjwIEeOHGHBgqdxc1NJtGKxcf5CKRs2niTtVAEL5t/AjRPjsVqtrgDOZ+p68fBdw7lhZF+89FocDhFBEGk2WckrrmHDjnRuvi7OtS9bWlrQ6z0RhM4BnDUaJW5uKtf+N5utJCUNwGg0olAoWPzhRm4Y3hcPNzXZhVW8vWYfWQXSMzfAR8eLj06gV5gf7hpFJ1OH/ySyS36bzB0x3f7YmTu6GL8u/C64fPkyixcv5uLFi5jNZiIiIpg7dy6jRo3CYrHwzjvvsG3bNoxGI4GBgQwfPpxnnnmGjRs38uGHH/L999+7vMc+/vhjNmzYwNatW132WP8KXSnbulK2daVs60rZ9u/coytl2x8zZdulktBfLvQr0LfbH1tl3ZWyrQu/CyIiIli5cuVVr6nVahYuXMjChQt/du2ee+7hnnvu6XTukUce+c0iv3ehC13oQhe68H8JXRK/Lvy/Q2job/MV2IUudKELXfj38VtJ/M6XhP0m7cZ1K/3lQv+L0SXx60IXutCFLnShC//n4BT/+KFXfgt0hXPpQhe60IUudKELXfh/gi6JXxf+X+LfNdSHX+eo8WscQnql/HLf8k929OvXOGpciwMJdHYi+TVz9u86d/waQ/3gCde4Ljv/ew4R/+48/xrnjqj+19av3HNX9OtX3OfXOFF0H/nLa1l8sGMtwwdfI70c76CXON8HrqnO+brPXP9fy36Bznum59BfHkvh0Y6xeN17bU4X9Ws6nC5+jRPFr3FU+nf3mM/UaxuLYV3HWH6Nc0efiMeuqU7m5WXXVO7X4P9CsOXfAl2M3/8jtDtLvP76679zTzrwe/VpaFIECx9LxbstQ0JFdQPPv7GV7PyOEC+3jO/P0Ce+JjY2Fm9vb2b+/WuG9+/FxMF98HDTkFVURaPJzMiEiJ+0/gTV1dV4enoiKO0gqLCaq9i65XM+WPYZFVUCcx8bw6OPvwAyb7AVsm2bmZiYGFpbW6lrsOPj6YaHu5rs/Cre+8c+cvI7h5559NFHeeyxx6Q8uoJAbW0TG7aeJjmxJ/37hmG22DiZXkign45+fUKRyQTs9nl88803LFjQwShNSI3jrjtTCAv1cUXkb221surzI2z4RkoWn5qayty5c+nXL86VC9hssTFh+gfMvHs414/ui6dOi8Viw+kUkQmPkJ+fz9GjR5l+3wO4aaRQDYIg8NpHu/h+f0ee2senjSJl8SSCg4NxOBzUNUn5aD3aMkiU1zTy4sfbGZsSzXVJUXjp3ag1NrN3lx/BwcGkpKSg1rhhttlx16hQyGU4nE4KKgzIBIFAHx0yQaCirhHzE9cTGRmJSqXC4XBy6FgupzOKuPPWZIIC9VRUNrBm3TF+3H+J68fG8syCG8nPvx2ZTEa3bt2QyWRYrHa++T6dT9YcdI0hLMSbF5+8iajwwLaUd0/idDq5bkrHy/aGsf24/rpYevXwQ61S4BRF1Gpl22vpCSwWC0qlslOQ8nY0NLbiqddy8HA2PXv6ExSop7joVo4dO8bQoUPp1r0HNXVNKORy/H11IIDodFJWUc+5S6XERAbTo5sPVZV3sXLlSvLy8njxhRl07+FLa4sVUQSdXtOW1UGg3mhi+7YzrPnsEMePH3flg70SNruDh174kuyC6k7no6Ki2L59OxqNBplMRl5hNV6ebujc1GQXVFNcZiA2OpjuIR30BgukjCByOQvuW87FjKJObe489+rP7g+v4nA4yMvLQ+vhT1CAHovVju4naREBCkpqWbpiH/knpWOFQsFj00YycXRsW6ghEUEmQwDqG1tZvy0db08tYz66Dz8/v5+19+XRDBRyORPjY/DQqDtfXDKf7t27M2bMGD786PFfpP1hA3rh5/UIDoeDqqoqgkK6daL9Jct3M25wNEMSeuGl03C5pJYPvjxI8QF44oknWLBgAXlFNXjptejc1ZRVNaCQywj298TukAK5K5VynI7ZOJ1OrFYr+YZmPt1zkkOZUsaWh8amMKJ3OLHdAlEp5JhtdmoamtkQIvLOO+/gdDqRyQQ8PNSoVB0sg8Vip6np56kgf4rUCf2ZOm0ogUGeVFbUs3bNYfb+cNF1vT0rTBf+59AVwPn/KMaMGYNOp6NPnz6ucz/++COAK4H6/wYMGjSIkSNHolarf7nwfwg//vgjn330CjKZwPsr93Ehp4IRgyKZMCqW7/ecdwV17t83lIKs4+zYsYPrr78ejUrJmIFRvLr6B9bsTKNXiC+jEiO5WFDJva9+wYa9ZxgR34vzZ07z4YcfMnHiRGTOQhA05F5YxrDrniIpzsj+Q2XE9Y8nKWotmL5E8HiQgIBQZs2ahYeHBylJ8eQV1rDo9S30DPNl5j3D2bHvgqtfd9w0gDmP3oW7uzvLli2jpkFLXGwogwaE09Rk5tklm7mYXcGDU4cSFODJ7v2XWPbZfvKzDjJt2jQMBgNlFVKqqVmPjCU6KghBgP0Hs2loaKFbmA8DE3tirG/h2JEtzJ8/n5EjR3LwZB7eei1NJjOeOi3jR/Qhrncof1u2Gw83NTa7E29PN6be9Sd0Oh0PPfQQcpmMI6fzKSg10DPMl5T4nmzde96VD9ffx4N1K9/igw8+ICMjg+l334lKqWDN92kcO1fIqKRIbhoRS6i/F6/+YzcrNh+n1WJj5j23YDAYeOyxx/CPTqZfeDCFFXX87Ys9eLpriYsIoay6gbnvbeK7Ixe5c0wC3UJDyM/P5+mnnyY4LI5hg6IYMiiCtV8fZ9k/9tHSamP+rPEYjCZm3DuCnMtVhIX64u/vz/Lly/l6eyHBAZ6MH9WXllYrF7PL0WqUrHz3PkKDvNl94CKeHlpUShkKhQJDvYnsPIlhv2tKMhnni9n43WmGDYrEYnXg4a4m/XwxwQGeWK1WVCoVMpmM2rpm0s8WsWbdMWpqm9i++xwJ/bsRGRHI2q+O89HyfXho65g6dSrbt2/ng9VnmTQhAW8vN77ffZZN2zLoHR2C2WIjZUA4BcW1PLN4E2fTtvDSSy9x66238uOu8xw4kMWIkTFotEoMhmYO7MsiOiaIz1YeJD+vmvIyI5/+YxFZWVlMmDABu8NJWVU9Onc1MpmMCcP7snV/x1qqVQo+/ts8ysrKCAkJoaGpFT9vD14tt7GcAAAgAElEQVRduoMvNqcR2cOf8SP6oFLIKSqrw9vTnSaTBbVKQUVFBXq9nqaGVtKP5XXar9vWn6Sq3EhJfg2tLVZCuklhnFavXs2YMWPQalU88dIGfH086B7qw5G0ywT66/lg5T4+/+YEMpmMOTOuY/euXdTW1vLiiy9y6y3jkckgp7CaQH9P7HYH76/aT0FJLffdNhitRkXGqWP4+PigVqupbGjG7nTw8d7jPDAiCYBSQwP1La28snkvvQJ9aWw1M3bEcMLDw1m/fj0ymYyj6f+a9ncfyeJvLzxGRkYG9913n0T7353kxNlCRiZHcsOIvigUchZ/vIsvt5/CTaPiLw+Mo6qqkgcffBC73U6AnxevfLiTo+n5TBmfgJtGRYvZSlGZgQAfHYdPX2btZ8v44osv+PDDDwmIH8KiyddxKLOAmiYTQ6K7081Xj16rQa1UcN+HX3O+pIonp90mZd05d44nn1yAUinHbnfQ3CwFlFarFSgUMiwWu2utPv74A9f//j7JDB0ezaLnJ7Fu7VE+WbaH1lYrc+ZPIDurgvIyIwC33Tnwn+a3/u+itOE9RIT/+C/U89qk7P9b0WXj14VfDavV+t9uQ6fTodPpfrngfxCPPSapIN5fuY9NO8+wZuNx1m89jVIpZ/L1Ca5yG75P5/333+fw4cMAjE6M5MNvD3PwbD6Xy+v462e7cDqd+OjdqGtsISzAi7AAL2bNmsXYsWM5c+YMYt1kwEnvaD/kls+JG/goKrU7onkf2DJAlQCCgtzcXCZOnMjYsWP5dscZ4vuGYTbbWPLBTqw2B5Ou6NfUyckYDAa2bNnCkiVL+PuHu6hpy9phtdnJK6hmaFIvWlqtCILAZ+uOcvpcMUuWLGHFihWu8QMoFHKqqxu5lFnBK699xxNPfUWdwYTN5mDqnzoCYmdkZKB31/D11tN8v+cCNpuD0CAvPll7iCNpl3l6ySYeXvgFZoud0aNHu/LV5hbV8PSbW3j/8/0AKBUypoyPd7W7bf9FDh8+TFFREbfccguiCGarnbp6E6u+O8lXO9ORy2SU1zZw4kIRFbWNjBgQQXl5ObW1teTn55OaEoPD6WTG61+z93Qec97dRFOLhf6RIdgdTvz07njr3BBFkaNHj7Jz504W/fVbRNGJTBA4dCyX4lID6zelceREHrNmXseyf+yjorIeURTZsmULr7zyCifTC5n73NeYWqzcectAAMaN7IOnTktWnpRf9tjpfFavXo0gCNx7x2DXOF99exsbvjtN924+eLirqa1rotbQjN5Di8PhQKfTcfbsWQCWf3aA4UOiuHCpjKUf7+GHvZfQqJUUFNawcfMpiksNRERIc9CrVy96RwWhUso5dCKPbqE+7Nh7kTeX7aZXD3+aTBZaWm0UlRpYv349xcXF2O12/vHpfsaOiyUrswKbzYHDIfLOmzs4dDCbESNiSDuZD4DBYGD8+PGIoshbn+2hvrEVBIEte86hUsqZMq5jLZ98YCznz58nMjISh8OB3kNL5uVKjpy6TEFJLa+8vx2z2YZWo6S8qoFLuRXc/OAyWlpaXJ72193Y0V47jHXNbP3qBGs/2kvcQCnVmMlkwtfXl/T0dJpNFgb270FeQQ3NJgtDBvZi/Xen+GZ7Bucyy1i2+gCXC2uZOXMm7u7uTJs2jeIyA8XlRqpqm7iYU0GTyYKnTsvKDcfZuCMDdzc1ubm5aLVazpw5w+0ffIG3uxt5VQY+P5qBj4cbVY3NNFts7MvK5/mNu+kV4Iu3t7drf729cs8v0v7pC8VX0L6I2WrH0GBi1ZYTbDtwEblMRlZ+FedzyymtrOfTDUcoqzLyyiuv8NRTT+Ht7U3m5UoOn77MiKRILuZVICJitTmY+fw61u9IJyY8kOXLl7tyD7+7/TAtFiuJ4dKcf7jrGBqlkiPZhQBUNTTzw7lcDhw4QEJCAsnJySgUEqvQ0NCK1WqnsdGMKIJarbxCcvtz/OnuIRzYe4lvNpykpLiOjV+f4PDBbO66e4irTHJy8j+t/9+FUxR+k98fHV2M3/8CtLa28txzz5GcnExiYiJz587FYOhIKr5w4UKefvpp3n77bZKTkxkxYgRr1qz5p+1Nnz6dsrIyFi1aRExMDNOnT3ddE0Xxn7YzYcIEvvzyy05trVy5kkmTJgHw7bffMmbMGDZv3syYMWMYM2YMAOfPn+euu+4iLi6O0aNHd8poMXfuXGbMmOE6zs/PJz4+3sVM/TRe35gxY1i1ahWzZ88mPj6eiRMncvLkyU59Onr0KLfeeiv9+/enqqqKc+fO/eIcX4nBgwcjkwmcyChwnTueXoBcLmNgXPd/Wk+pkHP0QqHr2CmK1NabCPLRs/Oth3nlzzcAUkq45ORk9u3bBzhBtIEyCdFyCEEe3KY+khK0C6oBYM2gpaWFoUOHotFoWL/1NA6Hk7g+ITidIqfOFtK/j/SQDg7wxN9Xh7+/P/v373f1xdRixW530jsqGLlcYPggKa+sKIqsfPdeVr13P48//jgHDx6ke/fu+PnpUChk9I4JQqtVknYq39VWa6sVpVJOcJAXwcHBJCcnY7FYEBH5YrO0FiIigiCQe4Wqz+kUSTtbSEpKCoMHD0YQBIrK6jrNoUwmY2C/q89x+7oo5TLOtOX0PHq2AEEQiOrmR7C/Hk8PDQN6h+Hl5UXPnj1JS0tDqZBTaWjC1Gp1rcvR8/mIokh8ZChqlZQ1RRRF15zJ2rJJiKJIXN+O8D7enm6olAr2HcpCEAQ8PDw6zbMgSMnpfbw9kMkE4vqEYnc4qalrpndkEEtX7CMrKwtRFAnw1+N/RdYVgLg+oVzKqSA6IpDWVitajZJTp07hcDhce/6B6cMRRZE3Ft/B9eNiUShkKJVyStskJAqFjPj4eA4cOMCAAQOI6xPGxexyjqVdpm9MCDKZQFpGIaIoolEpyDhf7Lq/l5cXarWawGBPYnoHo1LJKSqoITDQk682Pk58Qnf69e+Gl1dHIHRpXWQcP1tI9xAfGhpb2Xs8B7lcRlKstJY3jOhLn4ggQkJCOHr0KIIgIJMJrg+SdvpoaGqlxWyjT1QwJ84UolYpEATBldfZ11+HX6D+qvQRFRuKSi2pwk+cOMGAAQPYt29fp/2hViuRy2XcPD6eN56/jX4xUuaGExkFJCcnEx8fj0ajIby7LxdyyhmRFElkDz9USjnXj+iDXCZwPKOQkABPPDw8cHd3JyYmhi1zpWeon86NwzmFhPl4olEqiAsL5MAzM1l23yTX/Lrm60xhp/7/Mu3LJNpvy5l7IVfKDhHTM6AT/QX46rFarTgcDmQyGdV1Ug7t/jGhnDhTgEwmw+kU+eucG7llTBwhAZ4sWrQIuVyOXC7npgF90KqVpBd0hFDJKCwnrnuQ6zgmxJ+UlBT27Nnj0sbYbA6uDP4miiKiKKJUyq86JoVCRkzvYNdHRDvSTl6mT99QF8P40+d7F357dDF+/wvw+uuvk5aWxkcffcTatWupqKhg0aJFncr88MMPAKxfv57HHnuM1157jdzc3Ku2t3TpUoKCgnjmmWc4fPgwS5cuvaZ2pkyZwnfffdepre+++87F+AHU1taydetWli1bxmeffYbJZGLmzJlER0ezefNmFixYwLvvvsvOnVK6rBdffJHMzEzWr1+Pw+Fg4cKF3HLLLQwfPvyfzsfy5csZO3YsW7ZsISEhgSeffBKbTVKP5OfnM3v2bO655x62bduGv78/27dvZ9euXdc01wDe3lLC9rr6DocKQ9v/fj4eV63TjroGU6fj/Io6auubmfXWRl7/Yg92h4PNmzcTGBiI0WgE90cR5AEgDwBnDQA+Pl4IqqEg8wFZAAgaEhISXJlIauqaaGo24+vt0da3Fny9JSeR9r/t6eraoVTIkckE1CoFYcHeeLircdOqsNudbPvxAl98e4JHHnmEG2+8UWrHxx1PvRsKhRx3dzUGozSucWP7Ehzk6bLlCwgIICgoiLi4OF55bzuiCEH+elRKydZHJu/89WuobyEgIMA1lvU7M342h/4/meNx48aRk5PjsqdatHQr2UXVbfPdAoDD6WTz239m+9KHAVCpVGzcuJFlyyTD8BA/PZNHxrnarKlvwSmKPH//eN6YNQlRFDEajRw7dgyVSsWM6SNcjLFvW3+uHxNLoL8euVyGzkODSiWXXqxXzPP02wejUilQtJXx9fZAqZCRHN+Dv775PVar3cXESOvVeay+3h40NZtRKOSEBEl5Vquqqqivr8disQDwxns7aTZZqKxs4Mk5E3j4wVEIgkCrWWJsPfVuKJVKSktL0Wg0BPrrqDOaqDOaUKsUbF83h93rJVVUWaWRb75Pd93fy0tKf9ajuy8KhRydXkvPcH8APltxgG82pCGXy3jltTtcddr3i5+PB146LdWGJtc+8PfxoEeID7OnjeJMZgmCILhMSgBXirl2yGQCMgF8vdwx1JuY88B11NXV0djY6Crj43d1DYCPf8f5I0eOEBAQQE1NjWt/XMqt4LtdktR0w9ZTNDWb+WDxXSTF98BQbyIwMJCAAImJcteqmZKagEol56vv0zmfVUZwgCcz/jTU9SwoKyvD4XCwYsUKKhqaqDe18sLksYR5S4xpdkUNC9fvZNaaLbTa7NQ2mVi7dq2L9q98vrTjp7Q/dECvTrT/7HtbySmU6C3zcqW0VsE+eOu1yGUCS+bdgrtWhVardY2lfY59vd1ptdhQKuQE+Oqoqmtiyae7AXjwwQfJy8ujoKCARZNHM2/VVjLLOuj671sOkF0uPZ92PPMg6+fdw6pVq1i3bh2nT59GFMW21GxSeTc3lesZ8c8kfp6e0vPFYGjudN5YZ0KlVqDTSeYmn3zyyVXr/yfgQPhNfn90dDF+vzOam5v55ptveP7550lKSiI2NpYlS5awf/9+Cgo6JFKhoaE88cQThIeHM3XqVHr06MGpU6eu2qaXlxdyuRydTpIMtT/sf6mdSZMmce7cOUpKSgDIy8sjJyeHm266yVXfYrGwePFievfuTVRUFFu3bkWtVvPiiy8SERHBzTffzLRp01xSPx8fH1566SVef/11XnvtNWpra3n66af/5ZzccMMNTJ48mZ49ezJ37lyqqqooLpakFsuXL2fq1KncdtttLoP7IUOGsH79+n9/8q+CfzeaeWGFEZPZyuXyOvalS2pGp9OJQqHglVdeQVAmIJr3A05QxALw7rvv89AjryILOA6qISDvwaZNm/hpLPUrj6/Wr88++4ycnBym3d45R7FwxYPYZndQa2jmhwOZLF26lMmTJ7e1/fP2hg2J5Ml5E/hm02nXOZ1Oh1wuZ8OGDRjqW4iNDmbs8N6Y2+16rtKOu7t7W25WOkkEO8bV+fjIkSOkpqa6GKbnHppATI+ATmU0KiVPv/cdq7+XHE4UCgVPPfUUsbHSnJZVN/CnMZI6PCEqlKnjEpEJUg7Rb/afpdrYjK+vL5mZmeTm5hIVGXhFf0S6hfowa+YYvtx44ucDasOsB0Yz457hKNvyLt9x80AEQTJOP3wyj4Li2p/VeX/JXez8ei47v57Lk7PGM6B/d4YNigTgQlY5La0d5hLtzE/e5WocDienMgr5csMJbprQoR6Miw1j7Qopof28eVe3M5r37Fc8tOBzAMKCfbhxfNzPyrTTlkwQaH+PFeTXkN9mk9gnNpTIqMBOdW65Lo6WViuNzR0G/SKweN7NbD94kesGRTN79uxOdDthVF92r53D7rVzmH5rZzodOSiSESmRPPDAA51p/RpyClzJjLf340R6AZdyKgAoLDPw8jvbOJ9VxtTJyVdt93JxDU6nSHVdI4VlBuobW7ltQqLrelpaGk6nk5EjR+Lt7sat768lvbCcyUn9ADiSW8zxvGKemDCcxlYLk99dQ2Vl5b90Vvjp0NIvFnei/Wcfvp7oNgmfwykVFuQC2z9+jP2r5zE0sRf7TuZ2+ri4ErK2e1ttdpZ9cZCiMkmK/PXXX2OxWLj55pvZeOICr02dQJ/Qjj32p6HxxHWTJH7vbD2EzeHgySefJD8/n2nTpmG3O5HJZPj6euDn54FCIe9k2/drILY9PK58v3ThfwZdjN/vjNLSUmw2GwkJHTZcERER6PV68vM7ROTR0dGd6vn7+1NX11mNdi34V+0EBQUxaNAgtmzZAsCWLVsYMmSI68sSJEYuKKhDJZCfn0+/fv2QyzvE/QkJCZ36npqayvDhw1m7di2vvvoqHh7/Wqp2ZR/b792uBsvJyWH16tUkJiaSmJhIRUUFFy5coLT02iOpG42SyszXqyPUSrt3b91Pvk5/Cl/PzuFZfPVu1F4hBTyZWcyOHTuwWCx89NFHiPUPS5I9ezE4pTH85cn7+XrVjTirR4F5J9izUalUVFRILy1/Xx06D41L8uDt6eaSyNW1/bXb7bzxxhukpqayZedZbHYHTqeIxWqnrKIem82B2WxDo1a66uTk5Ljm3mA00dDYgt3uwGSyMHBAT154dhJvvbuLouJabDZJFe3p6YkgCNx///0c2PAEHy+5G5VSjlYjqdyS+ndWXfWNCiI4OJimpqafzXE7ao2d57i1tZXCwkLXGl8uqWH6TZIBfWCbhKSkup79p/LYdTQTgPT0dBoaGti0aRMgSR2CfSVJTGZhFUfOS/T3wTeH+WTLMdIyi6mqquL8+fMkJCSw8MWNiKKkrjYYTcT2CcFTr2X2I2MRRZFvv5jF6OG9EUXRRbe3TIjntfd2sOLLw1isdjZsPY2pxYIgCIwd2Ye93y5g77cLePPNN10v/137LjBj3mpmzFvNZ18eJftyFQLgcDjZczCLOmMzgYGBeHl5tXld2mlptUrrbzBx8VIZWq0KURTRalRk51by8JzV2Gw2du7cidlspqqmCV9vd3y83LBY7eTkV1NUIu3pknIDf542wjXX9fX1ABSXGLDbHbS2WmlqlBg5g8GEt4871jYJUmCQJ9CxX8YPiaG4Qlojn7b90tjcSkQ3P6ZOTMJb78apU6d4++23Xc8DuVyGSqXgiVc2snn3WZxOEacoMSbxfcKY99IGcnNz0es71LvGuqvvwZ8yVNXV1fj7+3faH+18VXvJC9nlBAfo8fFyp7q62sUw2uwOCkvrqDOa8PVyx9vTjbp6Ex5uakKvGLfdbic8PJwHPt1AVWMzZ4srCPGSJI+tViufPngrWpWSP6/4BmOLmXPnzmG3t0ngroH2zRZ7J9rPK6ll2s3JneY483IlYx98n693nEYukzE6JQqNRsP770uhlm4cFcvBL+djbGhBo1bidDppbrF0aiMjIwOdTkdhYSHvbDvEhZJKHhgt7TGVQs4TNw1n44nzAOzPzGfKm2v4xz/+QUNDA59//jkOhxO73UFdXTN1dc00Nra6JH1O59UZ9YYG6fni8xMpp7ePO1aLneY2j+AXXnjhqvX/E3CIst/k90fHH38Ef3Bca8a8n4Z5aFdT/bv4pXYmT57M1q1bEUWR77//vpOaF0Cr1XY6vpY+tLa2kpWVhVwup6io6BfLKxQdIQPaH/btX7gtLS3MmDGDzZs3s3nzZvR6PTNmzPineX+vhuPHj+N0iqQk9HSdGzwgHIfDyekr7KF+CpvdwZDYjjqCACl9u3M2r9x1TiYI9OnTh8rKSgYNGgTycFDGIlp2I6gGIzpKuXA+nYb6YnBWIFqPgSqRUaNGsXXrVsxmM3feNAC5XMb5zHIEAZLie3AuU7LHqahuoKauiZqaGmJjYyksLKSp2Yy7mwqFQkZWrmSsfymnAkdbGIYLbXUjIiKwWCyUlJRQW9uE3e4kK1tSJ40cHsPrb2zjhz0XSUnqhcFoorKygb1797Jnzx5KSkqwOxys23KKzbvOYmqxIIoippYOidXN4+KI7xvGjh07OHDgAE6nk0HxHfPVvo6nL1x9jtvXxUvvhrKNBobE90QURS6XSNK0ogojlbWNaLWSU8TRo0ex2R2E+OmpNLQ5uNjtJEaFIQgC+9JzaTSZOZtXjp+fH0qlEqPRSHCgV9saCpy/VMbhY7nc/+hKTmcUkZ1byZ8fX8WRE3mYTCaKioq44447eOrlb9i17yLREYFcyi6nobGVU2eLcDqdFBbVuhi8b7/9FoA6YzP/WHuEsop6yirqGZIcQVSvABwOkey8Svr3DeV8ZhlJSUnI5XICAwO5lFXOgIQe0vpfKiMyIgCz2SY504R6Y7XaKS4xcPbsWQYMGEB6ejrnM0uJjQlhSHIEl7LLcTpFkhN6IAgCOnc1qitssIxGIxaLhaqKBrKzKnA4nHh6ulFV1UBtTRPJKREU5Esqv6rKhivWxYlSqaCkUmICB8dL++X42ULu+csqZr38NQvf2uLai3a7nf9i77zDq6rSt32fll5Ir5AGSahJgBBAegm9KW2UojQBQUAUFGV0lCYwiIIgisgAg4iKgPRepYSSQglppPdeT1/fHzs5EEUHGXU+/eW5rnMRzll79bX3u9/2GIUgOa2AF+Zv425iDpVVauxsLbCxMkeplJORXUJSWgHdunUzCYrFBRUU5j0w+z6MwJZe9e43UVFR9OjRo975aObngsFgJDBA0lYG+rmSX1hBhzDJHzQ2Nha1Wk1uQTlNPB2JvZdFhxBfwltL5uCKKjVtgr3JLShn+fLlGAwG0tLSyCmT9lZzTxeMRkFOaTnvj5F8eqd8vocKtabe2X+yvW/EwdYKs1qNcsdQaY6v3U6nWq3j3weimP7uLtRqHdu2bWPYsGEYjUYSUvN5fuE2YuKzCG/jg8EgTMJYRKgfOfllODg4UFZWRlmZtKZymczUjlIhRylXmLSRWr2BjKIyioqKMBgMlJZKL5J1vnxCgEIhQ6mUI5PJTC+JP4Zeb+RefA7tO/jX+z68gz9372SZ+mhlZfWoy38TGJH/Lp8/O/78I/iTo3HjxiiVSqKjo03fJScnU15ejr+//y9c+ctQKpUYDI8+kL+EyMhICgoK+PzzzyktLaVv376/WN7f359bt27Vays6Orpe31evXo21tTWrV69m5cqVv0o792MEBweTmpqKj48PPj4+WFtbY2Fh8av4dzdu3AjAy5N6MSyyDeOe7sCYIe3R6QzsOyb5CHWLaMqujyfTrVs3kwby+r0MXh7ZlYEdg/H3dOLdyQOws5by+Xk42dHSz50vFknm861btxIWFobM6VvQxaHRGBGW48lJ+RSd3pzCUncyS0eiN58JKJHL5Rw9epSTJ08yYmAYMbczMDdX8sas/liYK4ns3pyutSbCL/dG4ejoyLBhw1i4cCGvzozEpdYvSqVSEuDrwuXryVhbmSOEYOyIcIYPCOG1117DzMysXrBCekYhdnaSMB8R7s/smX3o1jUQRwdrdn51mZqaGq5cuYKPjw9CQFx8Ju6udlhZmhF7N4uJozrRuZ0/SxcMZcGMSDRaPWvXrmXXrl0AzHuhF1PHdGbySCmKT28QxMRn4WhvxcDuLTn02Uz69OmDl5cXR44cQSYDP09HisuqmDAknFF9wjAKQbCvGx1aNWF4z9ZYW5rRvHlz7t+/L0V2JmQik8mwNFfRs21TPpw7AjtrC24mZCIE+Hs60S00AIVCgZOTE9OmTWPdqr+h1xsxGgVPdWyKQyNrenQJJLytL1eup3A/rZDKSjUajQY/Pz/279+PwSB4fkxnuncKZM9ByW/u2Jk7lJbX4OfjwsghbQkMcGPAgAEIIfjiyx8oK6/B2dGGfdtmMn9GXzZsOUNZeQ1mKiW9ugbTMsgThUJBeXk5vXr1Ir+gnAVz+1NTo+X55zoz8dnOXLqajEIhx9/XhRcndad9mA9JSUl4eXmRnJzM3cQctDoD3To2Iym1gD7dgnn1pX7cTy/E2cmWzOwSQlp4c+PGDXx9fVEqlbwwpTsnj9/Gx9cZuUKGWq1l6vRedOkWhJOzDWq1jpJaLdrGjRuRyST/Ll8vJxp7OPC3Qe3QGwzsOR5DSmYR9raWzPxbN2JiYrh1S8pVV1hUSWNPRzxc7Wji5ciiWf2xMFcBgozsEgJ8XHj/jeGsXbuW5ORk6Yz9kEhYpwA+PzCPF+b05bN9c3BytaWRow19hoSSXiuUduvWjTt37tCuXTtsbSy4HpvG6sXPMHJwW65GpzJmaHvWvDOS9iG+BDd1p6mvlJKnsrKSHTt24GBvRYumHijkMloFStreFoHu3LydwcgBYej1Btq1a8eWLVto3bo1V96eycaJw+jU1AcXW2uUcgVu9jbs+OEmozq05uTCKXzywnCaNGnCqlWrAJj7fM//uPc7t/V7aO/L8PVypLi0iglDO/C3Ae2knJSZRXi42DEyMoz1b46isKSKJUuWcPPmTXJzc/HzdsLdxZ5zUYm0aiYFszg72LDslSGMHhBGaUUNr7zyCrt372bq1Kmc/8d0Ipo2Yf/1OwDYWVpwKyOX0Z3bABAe0JgJ3doyffp0Dh8+DDwI5LCzs8TCQoV9rSZRrdaZBDi5XMbZs2fp37+/6f7y1c5L9OjZghEjw/Fu7MgzozvQpVswu3ZeMpWp8wdvwB8I0YD/ORYvXiwiIyNFVFSUuHXrlhg1apSYMmWK6feFCxeKhQsX1rtm3Lhx4qOPPvrZOidOnChef/11kZ+fL8rLy39VPW+88YZo2bKlWLBgQb3vv/32W9GzZ89631VUVIgOHTqIxYsXi6SkJPH999+LkJAQcfDgQSGEEJcvXxatWrUSd+/eFUII8corr4gJEyYIo9H4yD717NlTfPvtt/XaCAwMFJcvXxZCCBEXFydatWolPvzwQ5GUlCQSEhLE+fPnRXFx8c/OxY/h6ekpFizbI4pLq4TRaBRGo1Fk5ZaKSa9uE0+NWCWeGrFKLPno0M9eX1WjEWqtTsQkZYnoxCxRUFoptDq9yCuuEGk5xaKwsFBoNBpRUFAgjPpCYTRqhLo6UyxbtkwEBgaaPnXjNtacEBcvXhTV1dWiuLhYJKTkicLiSqHW6ETsnUyxYIk0H0s/PCS6DF8lugxfJd5779QtN2cAACAASURBVD1RXFwsDAaDMBqNIq+gXHy85bS4euO+qFFrRWlZtYiKvi9y8kqFwSCNsaysTAghxNy5c0WPvitEj74rRE5O6SPHmJlZLHr0XSE8PT3FxYsXH1kmO69U7NhzRRQWV5rW88fQ6w2P/H7z7oti1ebjQggh8vPzhUajEXl5eSL+fp4or1Sb1iUzr1S8tPxr8d2pGJFbWC60Or0QQohLly6J1NRUUVNTI5IyC8T1+Ayh0eqF0WgUOr1B5BaVi5zCMqHR6kRJebXIL5HOgMFgEAaDQajVWnHgSIxY9eERkZ5ZJLRavcjMLhFCCLHsnwdFtwHvi0PHYn92Dxw6ESe6Dl0pug5dKZ6d8Zm4l5Rrmueamhqh1+tF1yErRdchK8WoyZ/8bD1Go1Ho9XpRVVUldDqd0OsNQq+XxlhYVPHIawwGo0hKShLbt28XycnJQqvVi6ycElFSViUMtfOm0erEvaRc8d3BGyIxJU9otDohhBDfffedGD9+vEhKzBUajU6UllaJ8rJqYTAYhcFgFOVl1SL6ZpoQQohnR68Xnp6eYvDgwT/b/45jV4uOY1eLdzccFkII0aFDBzF37lyh0+nEjbh0kXj/wV6+m5Tzs/U8Coe/iRJCCDGh3yrx/a7LjyxTWloq0rOKhEarE9U1WlFeUSM0Wp2oqtYItUZn2n/vfXBQeHp6Ck9PT9GkSROxY+9VUV5ZIwxGadxanV7o9QaRk18mvj1842f7VFGjFgdv3v3Z31999VXh6ekpnn/+eVFdo31kmYf3fmFJpWnvx8XFifLKmgf3pLxSsW3fFZGdXya0Or0or6yR5uONbaax/PDDDyIxNV8UlkhznJJRINKzi4VOpxdanV7odHpRXaMR5eXlQqPRmO4Bi3YeFq3mrxGt5q8Re6/eemQ/jx07Jvz9/YWnp6eorFQLvd5g6pvRaBTV1RqRn19u+hQWSvt17ty5wtPTU/TuukT07rpEvL90v8hILxRarV6kpxWKZe/uNf3Wu+sSERAQ8LPz+d/i5P3A3+XzZ4dMiCewFzbgN0VVVRVLly7l2LFjGAwGunbtyjvvvGOKDnsUu8X48ePp0KEDs2fPfmSd165dY/HixaSnp9O2bVu2b9/+2PVcuXKFCRMmsHXrVjp1epBvac+ePaxfv55Tp07Vays2NpYlS5Zw584dnJycmDhxIpMmTaK6upohQ4bw9NNP89JLEkVUaWkpgwcPZsaMGTz33HM/6VOvXr2YNWsWTz/9tKn+oKAgtm3bJplOkUw8a9as4fbt21hYWBAYGMi0adPo1q3bY823l5dXA2VbA2XbY13TQNnWQNkGDZRtvzdlW1ZW1n8u+AQ4lRr0u9Tby/fe71LvH4UGwa8BP8GhQ4d4//33OX36tCk686+EX2MWbkADGtCABvy++L0Ev+P3m//nQk+Avn53f5d6/yg0cPU2wAStVktmZiabN29m1KhRf0mhrwENaEADGtCA/8toeLI3wIQDBw4wePBgrK2tmTRp0v+6Ow1oQAMa0IAGPDGMyH6Xz58dDabeBvyfg5eXF01DH9PHK/qBL9WT+MU9if/R4/gFPuwT2LTt4/l4Jd144OP1JP56j+PjBfX9vH6tv+KTjOWP8ov7tdc8iY/Xk/hruox4PJ+tgu8e+Gw9iY9jK89p/7H8rexPTX8/kY9j68c7Y4lxD87Yk7Tza338nmRdfJ56zPW/+NB5CX+8dlKifl07D7fxJGN5Eh+/X7Muv5ep99D9Vr9LvQP9bv0u9f5RaDD1NuD/NLw9HXjvzeH4NnFGJoPKKg0fbz7N4eNxpjIRERG8+eabtGkTikqloKJSzdWoFJo1dcPdzZ7cvDK2//sHrK3NGT60LW6uL1NeXs758+eRWwXQu2swdjYWaHUGZr7xJQkpefX68OzwcEZsvI6bm5R7TJRMAkMW5bLFWNm2p6ZGzeEjRykvvsbU6W+CzIrz57NYsmQJR48eJaKdH1MndMOnsSPVNVqEEaytzcjJK2PbrkucOHv3p2MJCUWlVEgJdY1G7iTm8OHnp7mXksfAXq0YPbgtfk2ckcukwAmZTMbRi3dp16IxttbmxKfk88G2U7Rr0YSB3Vrg7myHTC5DrdGhYApWVhKt2PnLiWzcfo65U3rRpoW3lD/M7Me3nVdp0qSJKSXQ63MHMKD3T2/YyakFeHk0Qq3RceiAF9bW1vTt2xdLS0tkMhlFxZVYW5mj0eg4eyGBDZ+dZvb0XgwyMV8sMNU1b/Fu8grKWbtkTD0+3aLiSr7ad42v9l4zzdeLL75Iu3btcHZ2xmAwUlGlrjfHh07EEdzMg2Z+rni6N2LXLi8OHz7M4vfGE9DY2TR/IKiq0XLih3us236Ggd1bMnX0U9haS8KxwWAgObWQLV/+wOXrKfTv1ZIpz3XF2ckGGVJKDaNRkFdQwVdfKvjggw/o0aMHb73+HH5ujhiFQCGXozcaqazRYmmmxMbSnMi3PiO/tJJmzZpx6NAhzMzM6D1UEgT692nFzCk9sbezpLJSzb++vER4W1/atPRGq9MjjC9iayulCjLojSTE57Bz81muXUo2zVnnHsEMfqY9LUIaY2n5NgaDoTY5tpzMnBIOHItlSL8QvD0agUyGXm8gO7cUlUqJi5MNRYXjqKqqwsvLC61WcPbCPTZtPsOrc/vTpXMgSqUcvd7IiTO3ef+fh03tbt269ZHppvIKynFoZEVRcRVpmUWEtGyMhbkSkARktVrNsYuJfLT1NGqNHitLM9YuHkmwvxtyudS/Q2fuMPOHNYwePZo333zTRKn2MAwGI/mFFVyLSSW4qQc+jR3Jyx3Lli1b2LJlCzOf60b/bs1N5yUrt5RObf1oVEtVduT8XVoEuOPcaDoqlQozM7OftCGEICW9EA9Xe7Q6PQnJeWRml9B/50tYWlpiNBopKK6U6Pdq21n7xSnu1TLmtGvZmA//Pgq9TmJUUSqVyGRyCosr2bTtLMfP3sWnsROb14xHpVJSWanBztYCvd5AQcGDdTE3N0ej0aPR6LG2NkehkNVyLAvUah3VD+XzHD16NLNmzcLX1w+jUSCTQUWlmgtXklj1sUQh17GdH1PHdzPNWQP+WCjeeeedd/7XnWjAH4NevXpha2tL8+a/j8Prk+B/0ac1a9bg6N4RSwsVX3z8Au5u9uz+LooDR2IIb+tHz67BxCfkkJVTSnHuFfr378/YsWO5cjUFO1sLMjNL6BDuT3RMOv9Yuo/qai3zXu5Hh3A/Pv/iPAtee54zZ84wd+5c2rTwQavTk5iSTyM7S/r1aMHh07eoUUvcw6MGt2Xqc12prqrk1q1beHt7I7MchMxiENWVeez56lWM2quEtp+Il7cfDrKFUPUpU+dcoLi4GHd3dz7/5D2Onb7D2YsJdOvUDDOVgh1fX+F2fDbzZvQlPjFXGkvOZdNY8gorsLEy53ZCNk4ONpSUVTNmSHsOn77F+KcjaBXsyb3kPE6fOIROp8PDwwMfD0fe3XiEHfuj8PN24sXRXbhwPZkzUYls3x+Fva0Fgb5uWFqYU15eLuXA83Gj11PBFBZX8e4HB2nfxgd7O0sSUvJ5e/X3aDR6AnycOHLkCIWFhTh6dKRLx2YoFXLs7CzYuvMi23dfpktEU1xdbFm/+RT7DsUwc+pQmjVrxtGjRzlzIZd2Yb5YWZqxftNJ9h2KZswz4XTuGMBTHZshhODl13ZyN+44ERERzJ49m6RsC7Z8OBHHRtZcuJzIkVO3CW7mjr2dFSGtvKmp0XInIQcX2xKaNGlCu3bt0Gj0XItOJcDXBTOVgu1fX+HOvWymT+xORlYJ+4/E4OFuj7q6jHnz5lFUWo2lhQqjUaBUyknJKMTOxhI3J1u6tm/KkJ6tOXUlgY9Wv8uBAwdo3bo11rZ2DO0fSo1ax9xpfbCyMiM9sxgzMyUqpRIhBOcuJzJyRF/c3NxYvHgxR24k0sTFgdySChpZW5CQVYiTrRU5xRU421mz/dQNDAYjm9+Zw61bt/Dz82Pbl5fo0qkpixcMRqc1kJtfTlFxFQP6tqKiUs17739Pz27NsbW1IikpiVWrVtG+bScUcjlDR3XgZtR9CmoTLQe19KRLr+bUVGuxrc0JuXnzZk5dKSIru5TpE7ujVMj58rsojp+9S+vm3ri72mFjbcGqDcfo2M4Xd3d3Nm7cyN5DmYx5pgMjhrSlZQsvjp64xabPz6BUKojs3QpbWwuuXrtPeFgj5s6di0wmY+2mE2Rkl9C8mQcA95LzWbRkDwajkcF925CeVYxcLiMjPRV7e3uMRiN+jV3w9Xbi3NUkvvpoEk08Hfnim0ts/+4qDnZWPNXOn7zcHFavXo2VlRUymYyrN1LwcJNYPfIKyrG2Muf0xQSGRLYhObWAN5fvJebqPt5++206depE106hrPjkOP/eH8XA7i1p37oJFZVqElILcHe2o7G7A2u+OMV7b7zIrVu36NevHwAHT8Rx5cZ92rSQgtC+/v46G7ae4cjp23Tt2IwenQPJyspi/vz5BAUF4evjTV5BBfOWfouftxPTxnbh0JnbWFio+Ocbz5BfVI4CPVZWVmzYsIGCcgtCWnpLeR/vFzB/Rl9KSqtxbGSNSiVxfn++8yJtWnia1qV58xCsapPES4KejpoaLXq9EWtrM+RyOTqdgfv3E1m/fj2ZmZnIFFb8EJVMM39XPtl6jsSUfNIziwlq6sYH743m2Ok7rNl4nJioffVy//2WiC/5BIHsN/8EOcz4Xfr7R6HBx+8viMzMTIKCgv6rRMl/FL755hsGDhz4P2m7T48W2NlacubCPTZuOcORk7dZ+s+DyOUyJv6ts6lcWFgYN2/e5K139qBW63F2tiE9vYigQHcyMor5+tsosrNL0GgMHDoSS2ZmJnfu3MHW1haZTMaufde4FptOSVk1Wp2BYf0e0PP9bXg4GdklnDx5kq+//lpiKDHkg9wRB9krjB92l46dIvnoo3/SLLAtGIvAkMXly5eJi4tj2rRpxCfm8um/ztGne3NOnY/n6/3X6d+7Jbv3XuP8pUT+9kyHemOJiYnB2dGG8soaLt+4zzcHb+Bob41WZ2B4v1AqqzTcSchh2sJ/88orr/DKK5IpSSaDC9eTScksYsknR9HpDbg62XI5JpWi0kr6dArms68vYjQauXDhAnfu3EEGNLKz5B8fHCAptQA3VztKSqsJCnCjoKiSDz47yZ07d5g2rb4Z0cXZhtPn4/nXrkt4utujVMq5cDmJHk8FcftuFubm5lhYWLBixQqqarTIZJCRWUzP7s25GZPO2o+P06ZVY5JS8qXE07ezWLNmDYcPH+a5556j51NB2NlYcubiPd5cvo9/f3uVd/95EJlMhkatJ7SVREV36tQpzMzMuHnzJqXlNQT4uXKydo4H9G7JV3uvcfZSIna2Fhw7c4eqKg3BwcHExcXh39iZi9eTUShkfHMkGitLc9QaHTF3s2gT5EVadjHLNh5l7969fP/992zZsgVbawtqarQ8MyiM/MIK7ibkoNcbOXAslrOXEigqqSI81IezZ8/Sr18/YmJiSMsvwcbSnElrd/Pl2WicbK14a9sRgrxdTPP5xpheREVFcejQIdN348d0Qqs1sOjdPRSXVJlo/7RaPf6+LlhZqpg5cyZBQUGcO3eOD5cdoLGvM9mZRXTp9eBFTS6XY2tnxdxJnwMSnd67777LwWNxlFXUYDQKklML2LLzIgeOxZKaUYhMJiMzu5g+XZtjYWHB1q1bGTFiRO3aHcPV1Y609EJWfnCY6zfTWLryAFnZJQwdKJ2dmTNncvHiRQDOX05k3eZTFBRVYDAYqarSkJZZjLenA4XFlTg5WmNpoWLo0KFs3rwZvV5PaXkNfZ4KZvzwcFycbNmw4xxffHOZqNg0Fq7cS41Gx2uvvUZ2djaJiYkAvL/+KAVFlej0kkazukZLcFM3CosraezlQFpmMbt372bHjh089dRTfLLzPBeuJ5NbUI6Hq71EeVZWzaEztzEKQbVaS0ATZ9LS0ujZsyd6vR6tzkByWgGHT99CJpNhMBhp4uVIakaRlJDbQXID2bFjBxcuXMDf35/M3FL8mzhTo9axdIN0LkdEhvDO7IHsORrNmSuJWFlZsX//flasWMGqj49RXa0lObWA+TP7Enc3i28OSPzcdxMl2kgPN/t666LTGaisVGNmpkSnM2AwGE17Ra3Wm1g9Zs6cyaVLl2jZsiUL/vEtyz88zNlLifTsEsT5y9I8jh7WnvjEXDZtO2easwb8sWgQ/H5DaLXa/1zoL4TfYryOjo5YWFj8Br359WjT0huAS1cfmK2ibqRiNAoCm7mbuCjDw8M5ffq0qYyLsy0XLyXi4d4I51rGjOs307C0VBEaIgkM3bp1Q6VSUV5Rw87vrpquvRaTSpvm0pu8h6s9Lk62WFmqqKd4F5UgdNK/yMC8D1FXL2A0GpE57UPm9D2zZs1CoVAQHh7O1Rv3USrlBDdz5+r1VK5ev4+HWyNcnGy4cuM+LYI8640lMTERczMlmlpO1is37+PhZk9sfCZtgr1o3dyLKzdTTd2p08YqlQpcank3jUJwNS6NkCBpLMH+7pibKRncXTLR1tGWaXUGqmt0VFVr8XC1x8JchaWlCiEEm1Y+x3sLhhIbG0t4eLipPZlMhrWVORHtA9i1eSrjRnckObWAH6KSaRHkWauVkGM0GgkPD6dVCy+0OgN6vYEWwR4oFHJuxqZLlHJVahQKOTu3TOPGjRsEBwfTvn17QmrX/oeoB5zSUTeltbe1tSD6IWqth9ffxcmGqzdSuXLjwRxf/dEcu7i4kJCQgLmZEnMzFbcScjh/PRlPV3ti72Xh2MgKo1HQ2MOBsBbepmsGDRpEakYRlhYqXJwldpQrN+4TdzeTiHZ+3EvKxaGRNR5ujejYsSOWlpacPn2aUH9PYu9nU6nWcvFOKl7O9iTlFJoYFfqENqVlE7d6e0ylkhPYzJ0r11OIuyP5Vzk0siIzu4TgQA9at/Tidnw2R44cwWAwEB4ezvXLyRgMRmztrSgrrTbV1aVncxLuZPHMs1LOz6CgIFauXImdrQWtm3tJdTbzMM2Ph5s9RqPAztYSOztLbty4wbFjx2jSpAkuzrbcjJHWrqJSw8PIzCrBzEyJl6cDISEhJraj9SueZd+2mTg72qBQyE1r17q5F1E3U2lkZ0VCSj4VFRXcu3cPW1tbrt9Ow2A0MqBHS2QyGR6udny7cSq710/mtal9iLmbibu7O9bW1ty8eVNqZ/mzuDjZolQo8HBrhKWFCmdHG6KiU017ASA7OxuZTEZCqsQyEhwgnQ2NTuJhNu232DTa1J6fTp06YWZmhkIuI/ZOJkP7hVBeWYNSqSC0dq8qlXI83OwRQpCTk0NISAgWFhZ8fzIOIQQhwd4YhSAqNo3+3VoggB37ryKXyTA3N+fMmTMoFAoie7TA0kJFbn45Do2s+fiLM7XnDq7cuA9AY0/Heusil8vQaiWBV/UQBaDExaww0baFhIRgNBpJT0+nfagPOzdNoV2bJrRp6Y27i51pXera+b3RQNn2aPz5R/AzqKioYPbs2bRp04Z+/fpx7tw5goKCuHLlCiA9mHr16lXvmnXr1jF+/HjT/w0GA2vXrqVbt26EhYUxfvx47t2795Pyn332GV26dGH8+PFMnjzZRNlTh6NHj9KxY0d0Ot0j+5qens7kyZNp06YNnTt3Zs2aNSZuWpDMoVu3bmX27NmEhIQwcOBArl69+si6AHr37m36NygoiHXr1pl+Ky8vf2Q9eXl5NG/e3ESdVIfp06ezdOlSQEokvWDBAt5//30iIiJMyZf3799PZGQkrVq1YujQofzwww+AlJi6d+/ebNq0yVTfd999R0REBAUFBaax1QkJdZrKkydP8vTTTxMaGsqECRPIzc2t16dt27bRu3dvQkJCeOaZZ4iKivrZufgluLrYIZfLKCp5EChhMBiprtGiUiqwtZEEUldXV1N/5XIZcrmc7ByJ7N7JUXoDv3wlCZlMxoolI0lNTWXz5s3S/L2+k4fDp4pLq3GqfWtvGSSZptZ+dgq1Wv2gkEwFslo/OLkjMrktBqMlGnUVouZbRNWnTJ8+nVdffRVXV1eKS6qwt7NEqVRQVFpFcWlVbd9sKC6pwtxMWW8sdb50dYJBXXmNxoCTgzVOjaxN3wH1zonzQ8TzxaVVODlYE9DYmTULpYTbvl6OLFq0iOPHj0tDkcmoywpUN+6Pt56lokrDuSuJWFmaMXbsWNzd3U313o7PQiaT8cmWM6xadwxLCzOCmrpjplRgbqZEqVQQFRWF0WgkMDDQtAZNGjthplJib2eJjbUFMpmMqmoty1Yf5O9L9jJ16lSSk5MxMzOjZa2gVlxShbWVGUe+msOx3XORyaQ+H3/IL7Ju/evWvrikiuLaPePkYEPRj+bYwsLCdH5trMzrrYlGo8exkTVllTVcuJ7CmjeeJi0tjejoaDp27IhvYydWrDuCUiHH2sqc4pIq1n1+mptxGUyf2N3Eu3vo0CGsra0pKCjA2c6aogpJECsql/51tLGiSi0JGVP7d2ThF4fq7bHJE7ohl8n4/nCM6TsLc5Vpv7i62FFcUiVpx0pLa/eNEZ1Wj6WlGScPPbjOw9uBliFNCG4lCTEnT54kLCyMZW+OwMnBhuLS+vPj5GCDwWDAwkJFTY2W/Px88vMlnzRHR2vT2vn7uuDnK/nWNQ/yoGWt6bN5kDsqlYrU1FTefvttHBpZYWtjgVwu+Z25utia2sktkLhpAwPcSElJYe1aKWDh+5O3KK9U42AnUY819nTg72sO8P4nx2nRzIM2QV7I5XLs7OzIyMhg9cZjfPP9NWQyTALsjdh07Gwtyc0vM7UHmNJgKRRSuSB/yXf33NVkHOwf8NIWlVbR2MOBhIQEk3/vB5+e4H56Ef17tuTsDwkAONSeOXtbS8mkqjdy/PhxXF1dAUjLKkImk+FVa4ZWKuW4Odvy7rpDCAEW5kpkMhnvv/8+9+/fZ87U3nz42UnCWjeWhMKHfG7r9rWNtXm9dakbsxACuVyGo6M1zs42ODpao9MZqKrSIJfLUKlU2NnZ4enpSd8eLVi57ig7vr6MQi5n7bIxmKkUpj3xR8AgZL/L58+Ov6zgt2zZMpKTk9m2bRsrVqzgww8//M8X/Qjr16/n/PnzrFmzhr1799K2bVsmT55MVdWDTXvr1i3i4+PZunUry5YtY8SIERw4cKCe4LZ//34GDRqESqX6SRtGo5EZM2Zgbm7ON998w/Lly/nmm2/44osv6pX77LPP6N27N/v27SM0NJRXX331ZwXJr7/+2vTvhQsX6qVm+bl63Nzc6Ny5M/v27TOVLSkp4cKFCwwbNsz03fHjxxFCsGvXLubMmUN0dDRvvPEGEydOZP/+/fTu3Zvp06eTm5uLtbU1y5cv5+OPPyYxMZHc3FyWLVvGW2+9hYvLAzPUo+Z94cKF7N69m8rKynpMI9988w3R0dEcO3aMmzdvsmvXLi5fvoxGo/nZ+n6MhIQExo3u+Njlfwl1Qp2Pj/SA2rrtAmPGjKGyshKAKc8+9dNrAJVSwZRnuwDw7mtDSEhIYMWKFbVBAA+j7u1aJ30MuaD+nnXr1vH888//h7792oB9wY+viIyMZOjQofX6Xr8NSMsuZv8pKRjGYBSsXLmS5OTkn02UfSMuHaPBSGZ2CQuX7qG8vBylUnr4tGnhxcxJPQF4eVpvmge6k5iSh0ajp3NEAABffT6N1q1bo1AoeOmll2gf5otKKedeovSCUCfQApSUVpOTW8a61c/y5Zdf0r17dwCcHR8EdFTXaJk8919Mnb8dba0WtG/3x/M5fXjGWgR6SAEscjmjRo36mfISlAo5HUN8WLf9HMOHD2f+/PmkpaVRVFLJnKn1X0hHDAgloq0f23Y/4DcdN24cKpWKnj17/nw7tVvpXyeukZxTVO/3wZESL+vSxSM4+t08Qlo1xtnJxqQF/0l9QjB4ZHvMLVScOBRDYX6F6Te5XA4yOLxP4i8eNGgQfn5+tGnhjZXlg4CFFoEeHPlqDkqlHKVSQUpaoUlT9JMJAkrLq9n88QucPPga77w5nGu1WiKDQSqUnZ3N559/zgsvb2XKK9tN+33MsHCO1rbTplajejchh/79+5teYgf3ag1gOm/vfniY24k5XL+VzvINR+vtj4KCAvYfieH7Y3H19lZ4mC8PH9cfnx4hpHM+ekBbAMoqan5ygGo0WiIjI00vYzMmdGfs8PbY2ViSmlkMgLmZkqNfzmHJQuk+nJxaQHV1NT+GQBIOO4f5U1BcSXFZ/TJvvPEGQ4YM4dCJOOZO62PSurUI9ODVGZEAzJnW+yf1PgqlpdWUlFRTXl6DmZkSK6sH6yyXy7GwsGDZ2sNE38owjcPN2Y6O7Z+cf74Bvx3+koJfZWUl+/fv56233iI0NJSwsDDmzXu89BV10Gg0bNmyhZUrV9K+fXt8fHyYN28e1tbW9Uju5XI5S5YsoWnTpgQEBNCnTx8qKytNmsWysjLOnj1bT3h6GBcvXiQrK4sVK1YQGBhI9+7dmT179k8EvwEDBjB8+HB8fX2ZM2cOeXl5pKenP7LOOqo3R0dHXFxcsLa2fqx6hg8fzoEDB0w30EOHDtGkSRNatXoQYenq6srChQvx8/PDx8eHbdu20b9/f5577jn8/f2ZM2cOwcHB7Ny5E4AOHTowevRoFi5cyJtvvklERARDhgz5xbmfMWMGERERBAYG8sILL9TT6G3cuJGnn34ahUIy96lUKhISEkhLS/vFOh9GZGQk+w5Fk19QjtEoTJookEwXVpZm6PQGKiolDUl+fr5JUK2LgvX0aAQ8eEMeNCAEg8HI7m+jkMvl2NhID46+3Vpw5ptXeH50J7w9HBgztD0IqU0vd6kOpVKBubk5SqUShUIBCn9MTwhjMUJoUciNmFvYg7EQkIRXOzs7KSDCwZqy8hr0egNOjaxNGoLiSzghwAAAIABJREFUkiocG1mh0errjUWhkITJurf4Oi2EubmS4pIqikqrcGxkTe+ngti4caNpLUHSUtTB0d6K4tIq9AYjVpbSS41MJkMIgbm5OT4+PlhaqLC2MsfZ0cakWXV2tMHWxkK6Vm+kqKgIvV4SuOKT8pg2bxt6vYEt/77AvsMxFBZVotbqcHW2Q6PVM2WOtOeMRiN///vfOXP+Hjq9EYPBSGWVhrLyaiqr1KYo2HuJuUx5aSuRkZGsWbMGnU6HSiVFNDs6WCMEZOWUkpZRhEqlxGA08tzIBy8Gdetft/aODtY4Ovx0jm/eyiA+KZeamhqOHj0KQGW1BqdG1jjWzrGFmZLi0iopsCYplz3Hok0vMPPmzcO3sTP304swGgVV1RpcnGyZ/nx3Pt1+juzcUrS1gtLOnTsxGAwkJSVRWF6Fk61Uv2OtBqukshprc+lhPGvIU1z7cA5paWmsXr0apVKJjY25FOWpUqBUKkx7QTLp6ckvKMfRwRqlUkmjRo1o3bo1U1/uixCCW9H17ztFhRUUF1Zy5bykoTp48CCDBg0CQKOVNJx187PnwE2T7HPwRBxFJZW4urqazldxSZVp7a7dSKXfsH8yduInjJ240SQk3rqdiU6nw9XVFSEEWTmlpKQWUFGpkdwhZDJeeXs3hcWVlJRUm851QkICMTGSpnJwr1bY2VhQXnsuzM0faL1SMiUhWQhBeXm5qW9qjY7KKg16g9G01/UGI+6u9qa+A/U06k4O1rjVuoOMGdQO38ZOvDEjEqVCzt8Gt0elVJCammqyKGRklzBqSHuiolNJy5D6UVBUwdlLCTT2dMBoFKazVqeNa+LlhBCC7Lwy/Bs7YWVphpuzHee+nMe5L+cxZlB7AFavXo2fnx/fHryBQiGn51PBCCFYumgECoUcmUyGQiGJBJVVmnrrUifw1kXyGo0Cg8GIRqOnqkqDlZUZRqNAp9NRU1MjmXtr57HufJRV1ODmYkdRSSWOjR6PyvK/hQH57/L5s+PPP4JHICMjA71eT5s2bUzfhYaG/sIVP0V6ejpqtZqRI0cSFhZm+qSnp5ORkWEq5+fnh6Wlpen/FhYWDBgwgP379wNw+PBhvL296/XlYaSkpODn54ednZ3pu7CwMAoKCkxaI4DAwEDT33Uq/uLi4l81pv9UT9++fSkrK+PaNSmVxf79+38isAYHB9fTSqWkpBASElKvTGhoKCkpD3yn5s+fT0lJCXFxcfzjH//4VX10cXGhqEi6gVRVVZGZmcmsWbPqrcmpU6e4e/fxKXRSU1OpqFQTe1sKfukYHmD6rX2YL3K5jITEXNPNLioqih49epjKFBRW0LlTM3JzyygslDQfjewtKSmpwmgUREdHM3jwYJNG9vVl37HvaAx5BeWUVdTww7UUCoormTBnK8WlVRw6GUdkZCSrV6+WBCBDHiAHmTWgB10s7cM7I5crQCdpVQICAigrK+PKlSuEh/mh1xuJT8wlvK0vEW39yMkro6Cokg7t/LhzL7veWJo1a4ZGqzeZeCLC/MjJL6N1kBex8VnE3c2if48WLJo9gHnz5rFt2zZAEmIKiqU9KZNB+9Y+xNyT/MO27LmEVmdg655LHDp0iKSkJKKjo9HXOoFrNDpy8ssoKKpgWL8QFAo5cXezkctl+Pj4kJMjOZVrtXrSM4uJT8ylqb8rFZVqbsdn08jOCgsLJXfuZZOZXYKPjw8KhYITJ05wPToNM5UCXx9nLlxKRAgIbdMEmUwySWm1erJySklNTaV169YUFxdTVi498Ds9pIEID/VBLpdRWFRpMqn+eP0LiirpEOZLh4fnuK00x2q1ThKa8vPx8PBAo9Wj1upoFehBl/YB5OSX0SrQk6LSKmQyGYUl9c1ddVYCmQwqqtRU12gJD/NFqZCE1A5t/SgprSInr4yMjAx0Oh0dO3YkOiWbNn6eWFuY8VRzX7KLyghwdzIJczM+3sOYFTvq7bG3lnzH/bRCrl67z5RZW4lPyCExOQ8hBPGJOcTdzqJlsCeRkZGSX1hkJDs2n0Uul3M7JqNev29Fp+P4UEocLy8vkwY37m4m3p4OxCfm8OzTHXh6UBjJKfnIZDKu3Uwl7m4Wbdu2pW/fvmRkZFBQWPFg7Rys0euNFBRWIAR0aO9PZaWagqJKYmJiTNrbOtSotRiFQAjBvaQ8om9lENq6MaXl1QT6u2JjY0OPHj0oKipCIZejkMu5En0fIQRdwpua6vH1cpDWuqCAqqqqeme/Rq3FaDRSUanGYDRSXqEmPNTXtBcAPD09EULQzNeFguJKpi76N1qdgRq1lr3HYtj81Q/oDUbKKmo4eyUJgMuXL6PVanFytMHB3op9R2No26YJWp0erdZAh1BfZr25i+y8Uhp7OmJjY0NsbCxqtZohvVshk8mIic8kPiWXkrJq9h6L4fkF23h+wTb2Ho9Bo9Fw+vRpTp48SUFRJbfisygtryY+KZfJc//Fli8vYjQKUlLrBNDieutiNArMzBTIZLKfammRBEKZDGJiYlCpVMjlcrw9pXns0NaPhKRc7G0tyc0vJ+5uFh3a+v2kjgb8cfhL5vF7HBOXXC7/Sbk6rQNgUqXv3LkTKyureuXs7e1Nfz8s9NVh+PDhvPjii7zzzjuPFJ5+bV8B040UHpgnHjYnPy5+qR4LCwv69+/P/v37cXNzIzY21uQTU4cfj/dx+p+RkUFRURFCCAoKCnBycvpVfaxro6amBoAPPvgAf//6JoM6DdvjoH///iTlwokzd5gyoSs9ugaRm9ed++mFzJ7WC6NR8K8vJT9Fd3d3wsPD8fDw4NV5ZpibKykqriTA35UrUSk09nakY0QA1tYW2NjAMyPaseNf36FSqSgtLcXRUXoACyGwsTbHaBR8c1BKr3E/vZAd315h2riuHP++JUajsdZs5gjGYow2a0i99wGK4sO8/PIr3Iq9gKxSj5VNR+bOnYvBYODWrVsMGTKUKeO7cPzsHV6e1hthFGz76hKjh7Wna6dA/v31ZbZtnMTTw3axfft2du/eTXp2Cb7eznTv1Aw/b2fuZ0i5wvYdi+HVF/vi5d6IuPgsLCwsTCZlM6WCUf1CSUwrYPIznXC0t8LLzZ6QIC/yiio4efkezw0JR6WUs2nTJkaNGoUQgpLyGt6aO5BtX1+mtLyaXk8FkZCSR3BTN1Ytfhpzc3OsrKzo378/WeUqJj3XhYtXk5kyrgvFJVX4+0o5Ft1d7dm1J4qw1o1ZNHciV69eJTAwEEWtgGNrY4FGraNvz+ZMmtCV2FsZPBXRlFdmRxIdm853O29hby85x2/84hzjRkfQs0sQQkjRjM+P7YQQAntbSw4ci8XZ0YYvzp3j1KlTDBkyBK3WyL2UXHp3C8ZoFGzbLc1x906BHDwex1efTaOqSkNWViIRERGkZZXwVNsA9AbBqP5hJKcX4unWiNDm3iSnF9AzohnWlir2eWfz2muvYTQaKSmtomWQFzv3XGXsiHBcXWwpLK5k/sxIbK3NMRgFh0/c4sUXX+T48eMMHDiQZs11VGu0fD53FH5ujhy8epe/P9uXW6m5tPJ1RymX4WJnzarNm03WiguXJIHjH4uGS0EtQiAM0nlTKRUkp+ZTXaNj48aN6PV6Pv74Y56f8CLXLiWxfP04tm86S+yNVN7fMIH9u6+i0+l5e9UYANq1a8f27dtJSMlDrdYjl8vw9nSgeTN3tu2+zNOD2mI0Ghk5pB1nf7iHVqtlypQpHDx4kNA2TZj7Ul8Sk/Po3LEpkyZ0oaCwktnTe6NSKVj7seQ7umHDBj7//HMcHBy4FKumVbAHri52yJA0b55ujcjIKqFPt+YkJOfj5mLL999/j5+fH3K5HLVGx4VryWz5+jIDerRi1vhuTHw6gmPn7jKgR0v0BiPLly9n1apVeHl58eUnTUlJK8DVWYrUVyoUyGSSYNurSzBqtY6QFt6E+Y5kwoQJ1NTUMP3ZrhSWVJGTX0ZWXgk+Xk7cSsjG1dkOuUyGlaUZN+6k4+XlxYkTJxg2bBguTirUai0+3o6MHtoeuQzs7Sx5fdkeWjTzwNJchVwu48CBAyxbtoyUlBTJNzu9AAtzFa+M6o1SKadDiA9XY9OIS8jG19vJJMC+/PLLeAc8RYtATwSC5R8e5n56ISEtpcAQPx9Jw6fR6NDpdEyaNIn169czceJUbGws0OkMKJVyDAZJs2pXm75Ho9EhhLQun376KcXFxfx9/mCib2XQvVMgiSl5ZOWUcuV6CgWFFWxY+SxTxnXh2Ok7hPmNfOx796+FUfwldVv/Nf6Sgl+TJk1QKpXExcXRqZMUaVan4q+Dg4MDJSUlGAwGk+nr4cCNgIAAVCoV+fn5P3mz/E9o3749Tk5ObNu2jZs3b7Jy5cqfLevv78/9+/cpLy83af1u3ryJi4vLrxJmHkadL+GTCIYjRoxgxowZODg4mASeX4K/v/9P5rbOUR0kYfr1119n9OjRgORn8vXXX9cT7h4XTk5OuLi4kJOT87O+TY8DOzs7yIUatY5Zr+3kvTeHMfaZDqYEzqvWHeHKdcn/RalU4u0t+QkNGiBpNh1qzXyhIU34fNMkcnJLOXQkhsEDQxkxrB2Tnz9NWVkZFy5cQGbpx4KZ/bC3s8RgMPLSoi/rBZN8feAGKqWC119/HTc3N0nQLZkOhiwqZYvxav4VarWao0ePsmLFCmpqaggPd6NTp5289NJLFBcX8+bSvUyd0JUm3o5UVmowCsH40Z3IyStjxdrDKBQyfLydUCqVyOVylEol/k2kG3ygn+RU7unWiDnv7KaopIrWwZ7IZDLaNPfmgw8esGqYmSl55fne6A1GcvLLUMjl2FhZ8PZLA3FqZEW1WkdFtQYLpWDy5MlotVqu3LjPxm3nmDu1N2vfHY1CISXjbebnyj9eHUJVtZZVq1axYMEC7OzsSC8V+DR2onf35ggBzwxth1wmo7C4kooKNTMm9UCj0RN98ypBQUEmbWQdhg0OY1D/Nhw6FseGT0/z7lvDGBjZmiEDQpDJZOTn5/Pmm29yLy+QS9eT2fD+c/TqGkSvrkEA5OWX8eV319h3JBpXZ1sCAgIICAio3QsQVpvmxWA0MH6UNMcbvjjD7CkP/PKa+kua9CaejpLWTQbIZAQ0caZareNS9H3Wbz/Ls0PCGTuoHV1Xr67VpOi4k5DH9rWHuHozlfSsIqY+19UULSqEQAa0C/Fhx47trF27ltzcXKZNm4ZWp8fKwhG5TMbgDs0xUylxbSRdt3HWM6a+Xb582fT3hUtJrPrwCOPGdMTLw4HqGi0bPz9DeFtfPlg2Fp3eYDqnCxZIya9d3aWX3sEj23MnNp3Gvs74B7pjbWNBaLj0MiaXy3Fzc8PFKLAwU7Fx61lmvtADgCnjupraHzW0Hc8MDqOwUErvEhkZSdduBs5euMfZ83d5ff4gxo3tbAq4OXMunn0HpAjbo0ePkpKSQo8ePahTyOl0Bm7fy8bOxoItH02kuKSK+MRcAnxdUKkU2Ns1A6S6Tl9OZPnGo6g1emYu3sWKBcNwcbJl7JB2lJRVM2/JN+ypTTPy7rvv4uneCM9a14w6M6dcLqNlkCfRtzMJa9WYf747ivy8rhw+fJjhw4dz9FgMb0yPxMbKnHspeRw9d4eXxnfH3sYCmQzuJObw+ov9WD5/CKWlpdy9e5fmLVpgbq5i2riulJRW4egguUV8vOzZevvc19eXLVu2YDQaySssp5GdFVtWjONeSh7vrj/MqoUjsLEyN7l/1D1bpk2bhlyuqE3gfM7k59fM3xWl4oGQ9MzgdoAUDDht2jTMzS3QaHQYDKI2gbMcISTXAI1GR3mtBv3o0aO89tprzJs3j2b+jWnm70aNWktOfjkff34arc5AfFIui5btZdr4rowdEU5+Xv3gvd8SfwWz7O+Bvyxl28KFC7l9+zZLly5FCMGSJUuIi4tj27ZtREREUFxcTM+ePZk8eTLDhg3j7NmzfPTRRzRv3pzt27cDsGLFCo4cOcKiRYto3rw5hYWFnDx5khEjRhAQEMC6deu4evWqqfzD+Pjjj9m4cSOhoaHs2LHjZ/tpNBoZPHgwvr6+zJ07l5ycHN544w1eeOEFpk6dCkhRlbNmzeLpp582XVf30IuIiPhJnXq9nrZt27Jo0SIiIyOxtLTE0tLysevp27cvOTk5/OMf/+CZZx48NOqieB8Otrhx4wbjx49n0aJFdO7cmf3797N582aOHTuGh4cH69evZ9++fezbtw+ZTMawYcMYOnQos2bN+snYMjMz6d27NydPnjQJW1euXGHChAkmoXz79u2sW7eO119/nfbt21NWVsbFixdp27YtHTo8yFf3S2igbGugbGugbGugbPtPaKBs+/NTtu1M+unz8bfAs02v/C71/lH4y4rDixYtwsfHh3HjxvHqq68ye/bser87OjqyfPly9u7dy/Dhw4mPj+dvf/tbvTILFixgzJgxrFixggEDBjB37lzy8/Np1KjRf2x/2LBh6HS6XzTzgvR2vGHDBmpqahg5ciSvv/46I0aMqBeJ+2uhVCpZuHAh69evp3PnzqbUIo+LoUOHolAoTJnkfwlt27Zl6dKlbN26lSFDhnDixAk2bNiAh4cH8fHxbNq0iaVLl2JlZYWlpSXLli1j06ZNxMc/3o3kxxg/fjzz58/ns88+Y+DAgcyYMYPbt2+b/BUb0IAGNKABDYCGdC4/h7+sxu9R+CUt2W+N2NhYxo8fz4ULF0xcl38WvPPOO1RUVPDPf/7zf92V3wU/l2akAQ1oQAMa8Mfj99L4bU/8bdJ2/Rjjm13+z4X+P8ZfVuP3v4JOpyMzM5N169YxcODAP5XQV1VVxbVr19i3bx9jxzYQZzegAQ1oQAP+vPj/iblj06ZNdOnShZCQEGbOnGnKVvEonDx5kuHDhxMSEkK3bt1YunTpb8oM1iD4/ca4ceMGffr0oaCg4FfnDvxf47333mPSpEmMHDmyHoVWAxrQgAY0oAENeDJ8++23fPLJJ7z99tvs2rWLiooKEwf6j5Gens6cOXMYMmQIBw4c4P333+fYsWN88sknv1l//k+ZehvQAJBMvcGBsx6rbHzCetPfT+Ks/SSO1I8T4PBwcMPjBIPAjwJCnsC536vP/Me6JuvEAxeBXzuWJwmGeZJAHbehjxcQkbf/QUDErw0ieJKggycZyxPtsSdY/8cJPHg46OBJxv8kQUdefR9zXx5/aF8+xvgfHrtvp8frV+qlB/16kqCjxj0fbywZpx+M5XHaebiNJ9ljTxLc8Wv22O9l6t2S0OV3qXdS4IVfVX7EiBH07NmTl1+WgpcyMjLo06cP33//fb28tSDl/n3nnXdMJBAgBVTev3+/Hv3pf4O/VDqXx/Hh+yP9/OqwZ88e1q9fz6lTp362zKMibv8XeHh+fhxR+3vg/4dx9+vXmhcmdcPJ2RaZDMrKavhy5w9883UU/v7+vPfee0RERCBXqDAaBQqFlHx35/4o3F3s6d+tObbW5sSn5LP2i1OY5Tfj6NGjmJmZmbLcKxQSj6jBYORadBp/X7mf0FbeTB3XDZ/GjuTljmXLli18+umDqMgFs/vRu3tzzM2UCAG5+WV8vuMCJ2p5ZCMiIli8eDEyt+bIZBbExt5EqVDiH9CUmho1WWlHaOF3B5nFIFAFcu+eGSkpKVy4cIG+/Z7Bp4kTRcVV3L6bTWBTN9zd7MjJLWPbl5c4ceaOqR/Tp09n4MCBtGodgkop5S8TAqpqNBy/co+1X55l/rieDOveuvaK+gLydwdvEp+Yw7hRHfF0b4TBYEQIia6qpkaLuWoy1v+PvfcOq+Lq2v8/p3DoXVRAUERBRUSMisbYa2xJNM0S04wxXWOMaSYmJppoYk1iS+wVG9hbLGBBURABBaVJEZBezgFO278/BkaJaMqTvO/3eX/e1zUXh5k9M3vvtWbPmrXXXretLTqdDpOQiO9D91ykhZcrHdo1Qwhkcnij0YzJZEKtepu8vDzCw8PZc9yAq7Mdr73Yix4hvlhZa+rYyigrr2JTaBShYRfp2LEj69atk/NIKhQKIuLTmPJzOK8O6cqjAS1o7dkIO2vLO5VfdueFL4TAaDRjFgKDwURGZiHrt0eRfauELz4YTuuWTVAoQKt9gyVLlnCoNgyomYczy+ePw8H+3pyfZrPAaHwPo9GIWq1GV2Xk1JnrbN4RxZqfXsbGWmLYUCgUnIhMYta3e+RzP/roI1555RVsbGxQKBQUl1RiY2NJdY2BU2ev89Pqk6xb+hLuTeoWo02Xz62q1jNk1CLGP9eNcc+EYF1LrXY5Potpn4by2os9GdQvAAd7qf0N0U0KIaiuNqBUKbmZXcTy9RGoSltz4MABLC0tuV1YSRM3B4QQqFRKioorsbe3Ije/jPXbznH01DW2rZqEe5PpDV4793YZM+fvJTktHwAfL1c+ffdxWjRzxVIzDYVCwejRo3ny2Z4Me6wdjnbWKIAag4myyios1CpcHe/+KKqvlyaTlIhZCImbtrrGgNlsxsrSgrSMQmZ+ekHmNG/tH4CVRo1CqQABV1NyWbzmBLoqPd9MH4mvdx0F5Z0PiisJWXy/+DCZtZRlIV1a8tqLPfH2dqVKp0dtocLWxhKd7m0+/PBDdu/eLZ87pEdbnh/SCY/GjthYSbJRKhSAQFulJ2yXG19++aWc27Rb15bMmDoUJ0dJx8orqvnimzCaNnZk7HPdaOL2HllZWSxatIj49Dt98MHbgxjcvz0WFiqEgOKSSrbtvkjoboktKSQkhNdffx0XF1s5FZNKJeUlrakxUllZg6OjNZraZPB3G3B1OjZkQHvGPdvtgePLvwUz/85CjPLycsrLy+/Z7+DgUI+MAUCv15OUlMTHH38s7/Py8sLT05O4uLh7DL/27duj1Wo5duwY/fv3Jy8vj8jISJ577rl/rP7/lVO958+fx9/f/579p0+fJjg4+IFl/jcwdOhQduzY8b9djb+M4OBgTp/+a18290N2djb+/v5kZ2fX279jxw6GDh36j9zj76BHj9ZMmz4UF1c7Dh64zLatUTg4WDHxtb48Naoz27ZtAyR6pLSsInRVei7E3WTW4v10CvBiRL/2zFt5jFc/3sSt/FKWfP4MmzdvrjX6zKwNPYvBaEKhULBu2zlOnr1OyCM+LPzqWeZ88hQXYtN5dco6FixYwIwZM3jhhRcAeKxbK4YODCQ6NoMvvtvD5p3nadrYkU/fH0bfxyS9trW1lfL+VR9HmEvwa+2DlWU10dFRfP75h3j79ERh+zqi5jii+DUGDx7MhQsXeOONN8i/Xc7Et9dyJuoG/Xu3ITX9Nq++tZZ9h67wybShhHT2uauPeqDT6dAbTVRW1XC7RGIoUKtV9Ahqybx3RzKiZ3tik7P5ZvURFi1ahNFolPNIFhZW8OE7Q9h/NJ7klDxOnb2OhYWS1PQCXF3ssLa2ZsmSJeTn52Nro6G4RMvQ/oGYTIJdB2JRKRXoDUaSU/KIib+JpaUFr7zyCl999RXjxo1jyhsDWbZgPI3d7LGysgAhOHshlUO/JeBgb8Wkl3rz/KiuhIWFodFoOH78OFtPXMZsNtOyqURvaKFWcepKKr8eugDAmDkbGThjBVOnTsVkMlFWVkZySh77j8VjoVby85qTxCVmM+fTp1g2fxytWzbh0G8JfLv4IHq9nhkzZjBySBDWVhYsmv0sySn5TP1sGzPnhnO7oJyrybdqGSbyKC0tJScnB5VKxbZdFwh5xIdflryEde0Lf+3mM2h1NfTu4U/II5JcBg8ezFtvvUVMTAwr10dgNgucnWxZtuYks+btpWuwDwu/eoamjR1JTslj9g/72bVrF0IIdDodx08l8Vj3Vrz6wmMkp+SzYs1JCosq6RjoxZefjGTooA58v/QIMTExJCYmUllZyeffhaOr0tcm5dZJL3+DkZj4TC7G3eTbT59izZo1xMfHo1QqSbtZQNjBy3KuuPzCCl55dx37jlzhkylDCenkw6RpG+jYsSPz5s1DCIHBaJJo2PJKaeLmwE9fP4+LUx2loAW6Kj3nLqVx69YtAF566SVG9mqPUqEg7sYtzlxJR6lQYGdtSVZ+KQDz1v/G4+8tp2PHjowdO1amVNu15xIO9lbY21lSVFxJVZUeezsrFi07RnRsOhs3SmwnW7duJSomjRqDkbOX0lAoFVRVG1j0+TMs/fI5hFlgNJm5eiOX4uJiIiMjGTt2LHq9kQXfPo+dnSX+rZvyzedPceFSOstWncDe3gobaw25+WXk5eWxePHierlJS8p1rA6L4nRMGlXVevR6I0II0nOKUSqV9O/fX158166NO3O+GE11tZ7Z3+3l63n7MJnMvPFqH6ZPGcKe/ZcZOHAgmzdvZvHixbIOPdatFcMGd+Doyat8NGsHm7ZH4eJsx8QJjzF65CPyGHP9+nW02praRPqilqO3Go1Gjb29FeXlVRQWVlJYWClTpN66dUvWsQ/fG8KeA5cfOL78t2HdunX079//nm3dunX3lC0pKcFsNt9DXODi4tIg+5aXlxfLli3jo48+on379vTp04cuXbowYcKEf6z+/5WG3/3g5uaGRqP544L/IP5MwKWVlZXMn/vfBI1GI3M1/ltwcXHBysrqX73Hg/Dc890oKCgn6dotFvxwiFUrTxIZkUxJSSXjX+iBs7MzCQkJKJVKJs/cwtzlh3mssy+6Kj09HvFl+eZITl9KJS2riG9+PoyFWoWjoyMxMTEIISgu1qJSKog8n0JQQDO++mEfVdUGAtp4kHqzgBXrI7iZXUxoaChr1qzhzTffBGDMqK78FnGNz74J49SZ66xaH0nE2etUVFbTt6c0nXL8+HGJE7VMmlKztLKjhf3rPNYpm4SEa0Qc/QqFuhnUHANjPBkZGbi6ulJWVobJbOZmVjFtWrtzM6uINq2bkpldTOjuaCLPXmfM03c84pMnT6ZLly5ExqaisVDz/CfrSMuRApNjk7PpFtiC65lLqX3lAAAgAElEQVS3eX1OKOGnEpg/fz6rVq3CbDaj1dXQvasvJ04nsWXnBd74YBNf/7CfM+dTCA70ZunK4+j1esrKyhg4cCC6KgM2NhqsLNV8uXAfA3u1Zduei8xZcoj2bTxZ/MsJUtILpAS5hw+ze/duevfwIy+/DJVKye2CCq4m5/LJV7v4duFBIs5ep7hUy8vjeqBSqXjssceYMGEC87efpKSyimZuTni4OrB83znWH71EQrqUTLakooqich3jxo0jKioKR0dHFiw7xoJlRzl17gYDe7dlxfoIjAYT9rZWJN3I5dulhzh4PJEpU6agUqmY8Ew3BvRui6ODNZ9/F86lK5mcOned75cdpZ2/lCT74uWb2NvbM2LECA4ePEjXR1py5Wo29nZWJFyTjJv9h69QXlFNRmahLJc333xTXoRVXlmNQgEZWUX06eFPTHwmC1ccI6CNJ9U1Bl6btoGjEVd55513SE1NxcbGhj0HLjNmdAjHI5KY8tFWtuyIJvtWCXm3y+gR0ppVayM4ez6FUaNGMWLECHQ6HYP7BaBSKsjOLcXZwYbI8ynMWXyQ7o+0JOzgZXRVEp1ZXdLnj7/ezaIVx3Cwk55v9yaOZOYUsy3sIhFRNxg7uitl5VUUFBTQtm1bhBD8dlqaUjwZdZ3QvZewsFDx5GCJbjMpJY93Pw9l5vd7ycuT5DR48GDOxKVjZalh2qIwpi/eQ2VVDafj0ujoJ63er6zSU1Smo6CggGeeeYbS0lLSbxbS1t+D4xFJHDqWQNMmjnwxJ5yIM9cZ1C+AX9efJi0tjczMTMLDw+ndzY+fN0TwyfxwbmYXkZFVhFKhwNnBmrAjUgL71z7exJQpU+jZsydpaWl89e1eGrnaERjQjGee6kzS9TxWrolgYL8AdDo95y6k4uhgTU5ODgcPHpSffYDz8Te5mJhJ/xA/TsemoVQpOXslg6z8UqprDERFRfHEE0/g5eXFx9OGIYRg4ltrOX4qid9OXmPewoP4+7lz7kIqO8IukpqayooVKzh48KCsQ2OeluQ/b/Ehoi6m88v6SCLOJlNVZSA40EseY7799luZ5ammxojJZMZgMFFZWY2VlYXMrlTHzOTv74+Hh4esYycik9gedvG+40vdx+6/AZNQ/ivbiy++yG+//XbP9uKLL/7Hdc7Pz+fLL79k0qRJ7Ny5k2XLlhEZGcmaNWv+gR6R8IeGX1VVFZ999hldunQhODiY9957r56V+tFHHzFjxgwWLFhAly5d6Nmz5z3Z9H+PFStWMGTIEIKCghg0aNA95V944QV++OEHPvvsM4KDg+nXrx8HDx4EJM9RneXr7++Pv78/u3btkv8/f/78A8sA5ObmMmHCBIKCghg9ejTXr0vk4rGxsQQGBt7jwh0xYgRr166V6zZ//nw+/vhjgoODWbJESiS6Zs0a+vTpQ2BgIM8//zyJiYny+bt27aJfvzuZ/fV6PTNnziQ4OJjevXsTFhb2B1KQpkRXr17N5MmTCQoKYtSoUWRmZnL27FmGDBlC586d5WTVdSguLmbatGl07tyZkJAQPvjgA0pLS+XjFRUVvPPOO3To0IHBgwcTERFR754NeU337t3LsGHDaN++PX379pX7pbCwkHfffZcePXoQHBzMuHHj6vHn9u/fX/7r7+/P0qVL5XbdLZv4+Hief/55AgMD6dOnj3z9Ovj7+xMWFtag/P4q1Gol/m3csbbWEB19h1s4OjoNZ2c7nJxsSEhIYMCAAVy4cIH3XuzDR5MHIYTgo8mDsNSoibqcIZ83qGdbDEYT1tbWcp7CwLaeJCbf4lx0KgH+Hgzu2w6NhUqaysovq1efkydP4u3tjXtjB9q0bsqFSxn1jp+PScfezoqy8qoGWqMB0y0QlaC0B8xkZZxGCBNYdJJLdenShYqKCsrKqlCrlbTxa8rZqBTcmzrJDBHnL6XTro2HzPUaFBSElZUVlho1CSm30FXrsbGyIDOvGFdHG4kgvqD+M3Px4kXUajVZOcUNtiU7txSlUsGVxGwsLCwoLi7GbDZzMS4DC7WK24UVONhZ4+Zqz/nYDC5czsBkMhPY1oPzsel06dIFX19f+vbti5WVBdeSc2nn70FjNwc8mjox7pkQVEoF5y+l4+xki5WVhfw8xMTEsPOLF7G0UGMWgo6+Hg3rh0pJUFAQtra2xMfHk5QiGRsXYtLvyFKjwmQyce7iHf05deoUZrOZxm4OdO7YgsTkW2h1dz4QY+MzEUJQWqbDrZEdMTExVFRUcOLECdq39aRjoDdCCMrLdfX77FYJ7dp4oNGoCAoKkunXAtt6ojeYyMoppp2/JLfoyxkIIci7XV8udR+qKqWCNn5NuXAxvd5xrU4vnR97Z7/ZbCYyMhJ/36YkXr+Fq7Pkgdt5IEaWy9hRXRFmgVqtxsfHR/b2qtVK2rRuCoCzo42sYxdi0uW6AnTr1g2lUkmrFm7U6I1UVRmIiklHpVLySKB3g/IB6eO0Ti+1VRJX7/nEm7g62GBqgLkoJCQEBwcH9h+Ok9ufmCQZ2La2lvV0v7q6mpCQEIKCgrDUqDl/OR2FAmysNZRW6CirqEJXbaBGb0StUhL600Tmz5+PEIKXX34ZW1spZKCsrIr27Ty5cCm99plzJyX9NjvCLmJjrUGj0XDixAk6depUO50roY1PUyw1aiw1atKzCwlo2ZSYq1lcSLhJ48aNMZlM9OnTB69mLuTfLmfmRyMI2/o2K5ZMoGlTiZqwqLg+H/SJEydkHZKey/ryz8wuxtHBmsvxmfX2W9zFXV0Hvd4kh2DcjRdeeIH4+HhS0m83qGO/H1/+G+Hg4ECzZs3u2X4/zQsSS5hSqbxnFW9xcXGDDqHNmzfj7e3NpEmTaNOmDf369WPKlCmsWrXqH6v/Hxp+3377LdHR0SxbtoyNGzfKzBJ34+hRiT8xNDSUN998kzlz5nDjxo37XlOj0fD111+zb98+pk6dysKFCzl16lS9Mlu2bKF169aEhYUxcuRIPv74Y4qLi3F3d5eNhtOnT3P69Ol7pgr/qMyPP/7ISy+9RFhYGC4uLnz66aeANLXp4eEhG5kASUlJpKamMnz4cHnf5s2b8fX1JTw8nDFjxnDgwAGWLFnCBx98QFhYGK1atWLSpEky3+/vsXLlSk6cOMGPP/7IihUr2LFjxwOXdtdh9erVjBw5kl27dmFlZcUHH3zAr7/+ysKFC1mwYAFbt26t14/vvvsuKpWKTZs2sWHDBsrLy2X2DYA5c+aQmprK+vXr+fbbb1m8eHFDt5Vx+vRpPvnkE5577jn27dvH/PnzcXaWiLirq6vp3Lkzq1evZteuXbRu3Zo33niDmpoaALZv3y7/PX36dIMJqrVaLZMmTcLPz4+wsDCmTZvGokWLOHToUL1y95PfX4Wjow1qtQpbW0uK7xogi4u18mCm1Wpp3rw5w4YNw8rKgg+/C0NbpcfXuxEARaXSec09XXhnQm/OX85AqVRSUVEBgKuzHQqlgvcm9UejUfPexP58OrdhQ//27dsAeHu5olar5GvXoXkziff3eOS1e09WqEDoQNMVrIaBuRKz2QiiDJR3vLZNmzbF3d2dPQfjcHSQ2p+dK30MuLpIL+XiEi2WGjX2tZ6auuTY9taWFJXpeHlECPY2liSk5uHqJMVQCeqvEatLhn7idHKDbakrPv7ZbhQVFcljSHGpDoVCga5aj2stNV5xqVaOx3J1tmP00GBatGhBREQEly9fRmOhZsTQjjIn8tkLqTw/uisv13L9ampl6ezsjI2NDS+99BKLd0dipZFiNhs5Nrw4xsnOGgsLC9q3by+z73Tv3PKOLF/rT0p6ASqVkuK72mc0GuWPxyaN7OtR9AE0c3dGoVBwM7sYV2c7We41NTVYWKhYt+mMRHr/uxdjVZUeS40aT3dnmU4SJB0zm8xUVetluZlMktGjN9zhH3dzc6N1a4m2rI2/uySX39VNUSsXg95Ub//t27extdbgaG8jT0EXFlViMkle3cG927Hn6BXc3NzqvfwcHaxRq+8YBq7Oko4V/U7H6saRVi0ao6uSjNO6Pm3k8mDqSnsbSS/rUFSmw9XJlvLK6nvKNmnSBCEE5y+ly+1Pvp4LwIQxj1KjN2KpUfPEsGA6duxIkyZNZP0vKtUyYVQ37GwtOXTqKkqlAqUCbt4qZvbSA3w6P5zXXnuN6upqXn/9db75YhTXknO5lnwLVxc7iku0jKzV09Cd0fKYo9FoKCgowMrKSvaOAng2lujx+nRujb9PE3YcvUzokViKynS4ublRWloqx4c1aexAbFwWH3wSyoHDV3hzYl8UCoXMY12HgoICWYfq2m9ro+HgjikcC5vGuGe6oVAoOHqy/hgjPVv39r0Qop4B5+bmxqBBg9i4caM8vvxex34/vvybMKH8V7a/Ao1GQ5s2beot1sjKyiInJ4egoKB7yldXV0uc7XdBqVT+LQrW++GBizsqKyvlZcidO3cGYO7cuQwdOpT09HR8fKR5ek9PT3lpso+PD2vXruXixYvyIPN7vPzyy/JvLy8voqOjOXToUD1O3M6dO8tu07fffps1a9aQkJBAr169cHSUHoj7TUOqVKoHlhk3bpzsgXvjjTcYM2YM1dXVWFlZ8dRTT7Fnzx45kDI8PJwePXrQqFEj+fyOHTsyceJE+f/333+fF154QTYOZ82aRWRkJHv37m0wIHPz5s1MnTpVjm2YPXs2Q4YMabAtd+Pxxx+XDdjx48czdepUwsPDadOmDW3btiUkJITo6Gj69OlDdHQ0N2/eZN26dTIX8ezZs+nVqxcFBQVYW1uzZ88eVq1aRceO0lTK1KlTefXVV+97/+XLlzN27FjZm9qiRQtZL5o1a1YvBuHzzz9n7969XLlyhS5dushfNi4uLveV2969e7G0tOSLL75ApVLh6+tLcnIya9eurdc/77//viy/5cuXs3jx4nqcy38Hnp7O7Dsgrai7eyCTBjYlxcXFzF12GJNZikNKySmmY9tm2NtaUamr4ZupIzhwMpHnhkretVdffVWeHikp1bFk5W98+M4QDp+8yqdTaj9C7rOevqGF9j1CWjF6hBS/amVpUd/Laa5d6aWwQuH0M6JyKXD3S0+63qBBg6Q4sm3buJGaLxt69Uvdwba1r2M2vVKPV9mriRO9O/kybVE43QJbNPgyGDRokCyftIyChhtZi+5dW6JSCC5fvgxAys2SB5YXQhC69xJjn+zEhx9+yGeffQZAZmYRrVtJL/WKyiqsrSwY/2w39IY7BozBYGDatGmYTCbyW6RRrqvGxd4GS4sHr3EzGAzs3r2bQaNmMevDEbJXJiO7iDatmsrlOrTzZN4XTyPMb2JjI3nF7u6euuN1HxVWlmr0+juGWV2Qe2LyLe45+S4sXyBNja1Zs4ZFixbdW0A0/HvMmDEYjUYsLCwalNvdaOvvzqfThyPMbwGQkJCASq3Ex9sVIaDOMWWhlhYoRJ6/QVGxtkHdrV818fsd9XArr/Qeg7deH7b15PvPRmOpefCzfr9qKJVKYmNj0WrveGBNZqmwg50Vn384AoDB/QLYvXt3PYfB0Q3vYqFWoTcYebxPgLw/8XouibXGY8alS+h0Oqqrq/Fu5sKYl1fIdXFxsuHpp6Tx8m69vBsBvk2Z/fYwAFS13LlX03JRKpQ8/3gnrC3VPDc4GJVSWixWZzgUFlWwbacUn5qSdps2rd15fHDg/VSoHnRVeia+sxZLSwtGDAli1IhO7Fj/Bga99HFe50T5MxgzZgw1NTXs3r2b9l3/3KrufxPm/0dYNsaNG8ecOXNo27YtzZo1Y86cOYSEhODn58eVK1f48MMPWbduHU2aNKF3796sX7+ejRs30rt3b7Kzs++JAf1P8UDTNTs7G4PBIBsGAL6+vjg4OJCWdmdq4/erUtzc3B7owTp16hRjx47l0UcfJTg4mNDQUDlmow53TzGq1er7BkL+Hdxd3zojpO7aTzzxBLGxseTk5GA2m9m/f/89tGtt27at939aWlo9y12tVtO+fft6fVSHiooKioqKCAwMlPf5+PjIhuqDcLchXWdI1RHIA7i6usrtuH79OoWFhXTu3Jng4GCCg4Nl4ykrK4usrCyMRiMdOnSQz79bzg3hxo0b983vZzAYWLhwIY8//jidO3fmkUceQavVkpub+4ftqkNaWhrt27evZ8B17Njxnn6s8w6A5InYunWr7Fn8Kygr02E0mtBqa9DrjUyauJpJE1ezft1pDLUDs52d5JFJT0/HZJZWJzrYWZGRLem3f8vGuDrb0tK7Ec8NewSlUlm7ilGFSqXikaDm+LdqilkIavRGlv56nOTaKcPfLzir08Ws7GKZXB2gX882fPHhCA4fT6RGbyQ2PotBgwbJG7ot0ttR5Y3Q/gJaKd+TUqkGhSOYC8FqGMuWLaOkpISsrCyp/eVS+z1ryeeLi6VFGy5OttTojUx8Zx2DBg3igw+klYrOjjb4t2jMtEXhRF/NxNXRhuIybW1TpMYMDPFnxYoV8hdrZk79ttShU5A0fffNDwcYMGCA3JbCokqEENhYaWRPgYuTtKLQ3s6K4lItKpWSvLw8du3axezZsxFCkJFVJMlSV4Neb2LBT0dQKBRs3h4lv2T1er0c2A9grPWKmc0Nvx7LtFUIIYiJiUGr1ZKUks8r761j9ZYz1OiNfPz1bkrLdAgh1TEpJZ9Xp6zj8ccflw2g24UVsucyKSWfiVPWUVIqLYxIzSigqKRS9ii1b98eIQS/LH0JIQTdurQEYOuayTjaW2NtraFGb+T1qesxGAzMnz+fDRs2UFRSiVKlxNpKOl6hrZaNhrrVlgoFjB07Vg5BSb6eK8nFub5c6t6TN7OLmPj2Wlkutra2qFUqavRGrlzNluXS2M0elUpJz26tmfJaf2xsbGTdP757GsMGBmI03unzYlmmNnJdATkE5fiZOxkEnB0l47moVi8BklLzeXna+nphJBW6GlxrywK4Okh66fA7j9Jjjz2GQqEgOTlZ1n1XZ1uca/vgg89CWfDTEfR6I29O24hGoyEjI0P2rAqz4OulB3nh/XXsPhKHySz4vepYW1vj4uKCWi2txC8orJTb0Nq3CQ721gghmDf7aX79WXKABAUFsWbNGvR6PZeuZjHh041M+HQjc1YdkXSouBJdtZ6N+6IZ2jOAM7FpxMTEYDabZU/573X4Rno+Qoh79jdq1IgavZGc3BK5/UJATm4paRkF3EjNx1jrxa2T/YYNGzCbBYoGbCiFQlHvHmPHjmX37t1otdp6fXw36saXigY8sv9X8fTTT/P6668za9YsnnvuOWxtbVmwQEr7VVVVRXp6OgaDAYBHH32UOXPmsG3bNoYPH86MGTPo0aPH357ZaggPNPz+bIq/3y/1rwv2bAhZWVm89dZbdO/enRUrVrB7925GjRqF0WisV+5uL0PdNf8pV+fd167zytRd293dna5du7J3717Onz9PZWUlAwYMqHe+tfW9aRn+LOr6RfG7p+jP9HVD9b677+/ud61WS8uWLQkLC6u3HTlyhHbt2v1p2f7ZOv7666+EhYUxdepUNm/eTFhYGE5OTvfI9e9e/27c7QavW3H5dww/o9FMclIuVVV6gju14NatEm7dKqG1X1OKiyspK9PRvn17YmJiaNGiBUqFgq4dmqNSKkmvNfy83Z0pKK5k/LS1vDxjPWUVUrD6tWvXMBqNrNt2lkYudnTv4svV5FuYzQJHByn9RtPG9Y39Pn36kJWVRe7tcpJu5NGlUwuGD+rAR1MeZ+7CA9jaWnI1+RbV1QYyMjLkDU0wKDSAAN0G+XpeLXqgUKhA6Y7C8VumTp3KqVOn6NOnj9z+pOt59Ojeitz8MgqKpJdU184+XE26RXZOCRkZGRw5cgSj0UgLdxdMJjNX0/JQKKBLO2+KyqSpWfdGDjzRO5DPJw4mPj6ewsJCsrKyyMu/0xZJdgo+em8ILbxcMZsFLk62cjtu3rxJUEAzDEYTjRvZS31ZVEHX4BZ0CWqOSqUk/totuga3IDo6Wm6nQqGgmaczSTfy0FUZ6BTkjY2NJRWV1bTwbkRJiRa93oi9vX29aUjrWqMoIuHeDzSArv7eKBQKWbf0eiM5uaX4+TbhavItysqrqNTVoFQq6Na5pXy8efPmKJVKbheUc/FyBgH+HthYa9DrjTTzcKZxI3sUCgX2dlbEX8uhU6dO2NnZcfLkSZJv5LFk+TEUCgUpaZLBMX1mKJXaapp5OHM16RYZmUXExcUREBBAaWkp8ddy0Fio8PJ0kXWsS8fmKBQKmrhJ7Q3p5IOXlxd2dnYYjUYSk3NJup5Hl0d86rXZ1kZKQRQU4EVObikZGRk8/fTTtGvXjpSM21hbaQg/HCfLpXkzaaXi9K92kp5VyOHDh7l27RpCCF59bx3hB+NIuiF96JSW6e7oWCcfua4gxV3XrRauQ7dOPphMZi7dFW+m1xvJySu9SyZ6avRG2rfywNZKc0cvy3WofjddNn78eMrKyvDz85N1v8sjPoQ84iPrf3AHbxKTbmFna0nv3r05ePAgffr0QQjBjkOxHIq4Sk5eKZXaahztrbCxssCmNhWOpUbNzp07USgUnD59mtuFd+IrE67m4Opqx8uTV5OadpvzF9M5/FsC1dUGYmNjiYyMJCYmhmq9kez8UrLzS4mMTaNGb6Smxkj71h5YWqixsFAR0MqdzMxMVCoVYWFhlJdX0djNARubOwsbOwVJ8ndxqW909e3bl6tJt9DrTbXPZX35d33Eh9sF5ahVKvm5LC0tlT+E74ZGo0KhUMjHNBoVXl5ebNggjUF393G9e9SOL/f74Pon8f/CVG8dXn/9dU6fPk1cXBzLli2TZxFDQkJITk6mWbNmctmnnnqKvXv3EhcXR0REBF988QV2dg8OefgreOAch5eXF2q1msuXL/PYY1IixNTUVMrLy2nZsuXfumFiYiK2tra888478r6/mryxzgB60PTenylzPzz55JOsXLmSmzdvMnjw4D9cderj40NcXJy8gMFoNMrT0r+Hg4MDrq6uXLlyRfZqZmRkNJgT6D9BmzZt+Pnnn7G3t28wgNTb2xu1Wk18fDzdu3cHIC4u7oHXbN26NdHR0fcYwiAtjBk6dKjkgUJamXT3QpI6A/VBxnvLli05evRoPZldvnz5T+maTqer5wl8EIYMGUJG7bt+29YovvhyFG5uDrw3dTDaymp69fLHZDKzYvkJRo0OoEmTJri5uXFk7dvoqvVcSsjkmceDSc8u4qWnuzN2ZBc27YnGz6cxKpWSr+bO5fvvpcS/zs62mExmenVrzYYdUXw+bTitWzbmRvptWrVwY+L4x4iOyWD7yhicnJz44osvAFe27LrA7I+foF+vNqzdcpbmzVzp1d2POQsOyLExNjY2TJgwAYXTRyCqpNx6ml/Iz1xL+8ByevT7nLKiWEoqnsRbfE1qaipdu3aladOmvDkR9h2K49qNXJ4e+QgnIpPx8nShe9eW9HrUj6LiShq52pECTJ8u5Vmr0Rsxmc0s/mAU2mo9tlYaOvp7EhWfQZcAbz5+aQA7j1/m6f6dMJvNLF++HHs7R7bsusBXHz1B547NSc8spK2fB2q1iuiYdCa92IvM66PIyclh8uTJWFtZoNXpsbay4LtPn+LcpTSeH9mZEQM7kJFVxBsTetG6RWNW/nSWS5cuodFoSEzKoa2fB8cjrtHWz50mbg74+TYhOSWfXj38MJsE28OjGTM6hGPHjhEREcHQEU9iZ21JZVUNChQEt/JAY6Fm9ouSV7yluwsvDuxMRkYGvXr14t1336VVQH/MZkHv7n4sXvkbr0/ohbenK1pdDW1buzP9rUFcuZrD5AmvYDQaWb89imOnrvHy8z3YtfYNft10mj49/NAbjCRdz6N7F18SruWg1WqJj49HpVLxy/pIxozuypXELALaSKtSW/m40cjVjkau9ixecQxPdyd+/vlnVq5cSV5eHre1NQgBLbxc2Xg+hYG92jJx/GNcTb5FWz93fvx2DJZqFUajUV4cBbBl53m++uRJQh7x4edfT+Dh7kTjRvbEXsnk9Vd6U1Si5Z1XFvPkk09SVVVFZk4xvi3cGDagPSfPJvP8E13QVuk5dzGNToHeeHk48+mMtfz0008ADB3QnrjEbHLzy2jf1pOikkoeC2mFn28Tenf3o6ikkkYudqSC/FKbNK4neoORbp1a0s6vKQajifDaVbN9uvvxzkt9WL8zSn7Wr1y5Qq9OgdToDfww5QkqqmqwtdbQua035+Iz6B7Ygqau9vTr0prhw4dz6NAhBgwYwMQJRo6eTOTdyQMQZkHEmetMfWsgvR7143hEEjs3vkl2ViYuLi4899xznLmUxvB+gaTeLCC/sJwnBgYhBJSUV/Hrd+MJPxLHyIFBeDZxID09nUGDBvHr+tO0atmYLz4eyb5DcfTp6U+/Pm3ZdyiOd98YgNksSL9ZgLOzM0FBQfz4449snfcS78zdwRN9A4lLzuHouSR6PdIKs8nMS0+EkFdYjpODDSEhIYSHh5OVlcW6LWd5e1I/wra8zdadF1AplTwa0oqs7GIe7erL6Cce4YR1CCtXrsTZ2ZmPv5QW023ZcZ7Znz5FpbaaiLPX6dyxBb17+KHXm9h3OE4eY3x8fGTjzsrKAqNRGsPt7CyprjbIBpyVlQXV1dV4eXnJnuUtO8/z5SdPcu16LhcuptO9a0t6PurHJ1/ulMfjL7/88k+N2w/xD0L8AWbOnCkGDRokoqOjRUJCgnjmmWfExIkT5eMzZswQM2bMqHfO+PHjxZIlSxq8XmJiovD39xe7du0SGRkZYtmyZSI4OFiMHz/+gef37dtX7Ny5UwghxK1bt4Sfn584ceKEKCoqEjU1NUIIIfz8/ERUVNSfLiOEEFlZWcLPz09kZWXJ+3Q6nQgODhYBAQHi3Llzf9i2vXv3io4dO4p9+/aJlJQU8emnn4pu3bqJyspKIYQQO3fuFOyXvfQAACAASURBVH379pXLL168WPTs2VOcPXtWXLt2TYwfP1506NBBbl9DuLv9QggRFRUl/Pz86pW5WxYmk0mMHj1ajB07VkRHR4vMzEwRGRkpZs6cKZf/8MMPxbBhw8Tly5dFbGysGD16dL3++f09Tp06Jdq3by/Wr18vMjIyRGxsrAgPDxdCCDF79mwxZMgQkZCQIBISEsSLL75Yr00Gg0EEBgaKLVu2iKKiIqHT6e5pV0VFhejatauYOXOmSElJEXv37hVBQUFi//79ch3+jPz+CFOmTBH9+syRt+/m7hUFt8uF2WwWZrNZlJZqxc8/HRX9+swRPXv2FCdPnhR6vV4IIYTRaBK5+aViY/gF0X/CErHr8GUhhBB6g1HEXcsWL8/YIDw8PMSmTZuE2WwWJpNZGIwmYTJJ1zYYjOJsdIoY+MxCMf3LHeJGWr6o0RuEEELs3r1beHh4iF7D54lew+eJklJtg/WPuXJTeHh4iNGjR9fbf/nyZREZGSl0Op0oLi4WW7ZsEUFBQfWerTrodDWiRm8Qufml4uiJqyIzu0jo9UZxM6tIhO+PFUII8eyLy4SHh8d9+1FvMIqdx+NEz4mLRWFp5X3r2mv4PLG3tp/uB6PR2OB+k8kkqqr0QqurEUajSdTUGER1jUF+tvbt2ycGPvWD+GJuuEhNvy30BqMwGI13ZFmmFT+u/E30GvqdeO+994RW23CfFtyn/lu2bBFTpkwR6enpsiwNBpMoLK4UF2LTxbQvQsXYyatEckqeLOOKigrxzTffiJ4j5omeI+aJdz/ZIveX2WwWsfGZYuDTC8U3C/eLzOw7Y5PBYBClZToRfiBWDHpqgThyIrHhPo2T5L906dIGjxsMRhF+8LIY+MxC8evm06KmxiDMZrMQQogrV65IOvb4d6LX49+JYyevNniNispqUVhU0eAxIaTnoE4uNXqDuJ6WL97/IlR07dq19rhR5N0uu++1ww5K+vDMq8vF8OHD73ufazdyRY+n5oseT80XS9ecuG85XXWNMJlMkr7U6O9bbsaMGeKFF14QN1Kl5660TCeKS7XCaDQJg8EoDAaTqKioEkIIMXDgwPtep6i0Urzy4Xrx/Du/iNzbpXL/3g9zv98vZszcXv++JVphMpmEVqsVb7/9tpgyZYoQQogn31slNh+4KDLzSkRVrb4bDEZhMpuFyWQSFdpqsWHDBuHr6ys8PDxE7yHfie3hF4UQQpjNZmE0msTlK5li8BMLxNzv94vMrDs6tmHDBtFr6Hfydv5SmqyXJpNJ3MotEQt+OiL6DJ/X4BhTB7PZLHS6GnH7drm4fbtcFBZWyH0wZcqUejo254f99caX2fP2ysd6Pf7dA/vtP8WCqwP/le2/HX/I3DFjxgy++eYbJk+ejMlkomfPnsyaNetvG5rt2rVj6tSpzJs3j5qaGoYMGcLYsWP/0Nt0N9zd3Zk8eTIfffQRJSUlzJ079x7mhz9T5n6wtrZm0KBBREVF/SmGj+HDh5OXl8d3331HcXExAQEBrFy5ElvbhlcLTp48mby8PN544w3s7e2ZMmXKP05Zo1Qq+eWXX5g3bx5vv/02Op0ODw8PBg4cKJf55JNP+OSTTxg/fjxNmjRh5syZTJo06b7X7NWrF1999RXLly/nu+++o3Hjxrz00kuAlFfs5s2bjBs3DhcXF95//30yM+9M0ajVambMmMGPP/7IrFmzeOutt+p5fUH66l+1ahVff/01TzzxBK6urrz77rv/eILn0NDQepRthw/Hc/hwfINlU1NTGTt2LNAwZdv8X44x/5dj9+yfPn0606dPfyCdVtSlNKIuSa7Hu+m06vDE+J8e2I5z587h6ekpU7YFNgGaAGVgCTzbR9rgPOY8v79E2fbDj0fk356ekufpQZRtj797h0qoIcq2+UuPMH/pkXvOg3+Gsu1EZBInIh9MK7V9+3Z5dflfpWwLDQ19IAXZxKl3UlL9nrItNj6LXiPn33POoeOJHDqeeF/Ktq/n7+Pr+fvue8+5c+cyd+7cB+rY2q1nWbv1rFSvBnTsq+/28tV3e+97/l+lbMvOzpb15Y8o2374WdKH1JgY+ZwHUbZt3XORrXsuAv85ZdvNwrV/WD4lMVGu14Mo20a/cSfNxh9RtkVF3xtWcDed2rkCKX/e4k2nWLzp1D1l63A3ZRvAj8t+48dlv91T7tCxBA4dS7gvZdv0mdvvew+4M8b8EWWb2SxqEzi3uedYXR3uB09Pz3+Nss30LzF3/LfjIVfvffDaa6/Rtm3b+xIpP8R/L+oG84d4iId4iIf438e/Zfh9f23wv3LdD9oe/leu+z+F/1Ncvf8EKioqOH/+POfOnePzzz//367OQzzEQzzEQzzEQ/wNmMX/KXKyfwwPDb/f4c033yQhIYH3338fLy+v/+3qPMRDPMRDPMRDPMRD/GN4aPj9DnVL0R/i/zb+TlzQg2Kp7sbdsVR+Ae/+qXOuJy6Rfz8ozqkOd8c4/VG8Xh3ujteqiwv8I/yVuMCG7vNn+uzu/vo792jx6J8Lx8g4u0D+3Trwz8nlRvwdudTFK/5h3WpjFu+OpXpg+ct32vJnZA/15f939PLvtN+n25/Qy6j/TC//Toxn21Zv/alzrqXciZn9q3rp1/5PPscJd/rr77Tl37rP72Ni/wzu1ss/ivGrw90xfn9HL/9pPIzxaxgPY/we4v93qKqqosYIt0sqcHGwwc7GiqSMfBZsOkHSTSl3mnsjB8K/n9jg+WXlVVhaqqmuMXAuOg2zWdCjqy8O9lJ+x8LCApYtW0ZKSgpfzPoeby9XjEZzvTxbdZg2YysxsTdlw2/kyJF8N38B9rZ3UgjpqvQcjbzGjfQC+vfwx9+3icxcoFarefuDTcRflWJkhgxoz7hnu+Hp7oTJbMZslpK45twq4aelc3F1dWXo0KF0Cm4FqCgvK8faxoWqqipOnzlLhwBnmjXvjJRd2oRWayQtLY2VK1cSn+Zd7x5NmziQm1fG5fgsgjt4y//HXIzA29sbX19fVGorcvJKsbOxxKOpEwqF1J4N26PYvEtiGlCW7efAgQNoNBqyb5Xi3cwVhQKZs9XWVkNuXhmlpTqCAu/1wgshsamoVSoUCjCZzKTcLECtVtLc0xUL9b3pnK4kZLFxyzkmv9aXFt6NUChAq63hWvItvL0a4eRoTWFRJVfiovD09MTb2xtra1sKiyuxsrTA2ckWhQIqtTVEnL3OsEEd7rlHRUU19vZWMt2cEMhtWb/1HMdOXgXAy/kK69atk5N/K5VKdFV6VEoFyWn5LP71BMlp+aiUCp4b2ZnnRnTGycEKhUKBUqnEYDRxu7Cc6moDnu7OVNcYuJ6SDwpo08odB3srjEYTubm3WL16dT29NBhMWFqq5YTPJaU69h+KY92mMxiNZjr45fDOO+/g4+NzT1osrU7PsdPXiIpNZ/L4Xnh7OMv5RRUKBe/N2MLl+Kx7dKagsILiEi1eni7Y2VmBkNKDVFdXo1BaIJCSJVtaqtFV6cnJLaWRsx2uLrboDRI/rKVGJfWTTseJ366za8cFps8Yjn9biQPWaDQTvvsiy3+SFjxs3PomTd2d7pERSAsTyiurOHX2Ohdi03n7lb71cmxWVFSwe088azecZvDA9nz0wbB7rjH9k2080rEFfXu3wM3N7R7KrTo9TU7Nx9nBBrdG9g1y1VZV6zn221V69/SX+gYoKCznl9URnIhIYuJLvRjYPwB7ew0GgwGFQoG1tTVGk5nc/DIaN7JHCOleapWSsgopCbmDnYbc3FxWrVpFQro7Eyf0pFvnljg72WAWEndzTm6prJcdAprx7AgvunXrVsv0IpkJUsJ7fb28fiqVEltbDSqVCqVS4nhv3LgxXt7Nyc0vY33oOY6eqk8B1+0RH14b34vmXi7k5+X+a7Nrc6/+swsD6/BxuwP/ynX/p6Ca9Z8s0X2Ih/iH0K9fP+zt7e9hRflPyzaEYcOG4dvxMTr5N+N6ZgHTl4TT0tOVyaN7sP9MIlU1BnRVenaeiOPSkU0MHDiQBQsWcDlZT5fgFlhq1Pz4y3HCD8ZJudyauWBrY8n+o1dITsmnQ4A3PXv25KmnnuLI0URORSbTo7vEurJtxwUuxmQQGNiMb77dy4Vaw7Go4DzBwcFs3LgRS40FJpMZk9mMVqfH1kaDi7MtgW08OXRSSiB7LmI/+fn5+Pv7k3e7nLj4LB7r3orPpg9nU2gUFy6lUVyipY1fUxb+dJSsnGI+mfEajRo1YtOmTQx4ZCMKq0FotaXs2n0Y9Pvo1W8iFhprLMQlhD4KhaoZkacvcezYMebOnUtmdjHNPJzke/z8ywmaNHZk+OAORJ69ztwfDqCrMvDC2CEcOHCAWbNmcTZBwdhRIbg42RB1KY1NO6LoFNSc7p19KSnTkZFZxM8LpnLjxg1atGiBo4MNB45cITklj3b+HlhaWrBh6zkSk3IZOiiQb77fx6Kfj/Ht7Eky04VJqLG1tqSkTIdGo6akXIe3hwuFxVp2HIylU4AXqZmFzJn9OT///DN79+6lW/d+jB/THWcnW0J3XWDfwTh6PuqHVzMXtu44z4Klh7mZWcT4sQOIiopi6tSpRMYqeHpkZxzsrYiNz2Td1rN0CW5B+7aemM2C0S8uY9vuaE4fX4fBYCAgoB01NQYuxmbg6+OGxkLFxtAoEpNymfrmQJKu51Kpq2Hz2q/RarVoNBqupeTh5mIn5dD7IhQfL1cmjX2MgycSGP9UCKOHduLspTQyblzG19cXhULB4ROJ+LVsQhM3B1kvRw/vhJWlBS5OtiiVClasj2Rf2BpmzZrFqFGjOHIskVOnk+nRvRWgIHzfZS7GZNC1c0t8WzbGycGG6EvpqEQ6mZmZODo64uTcCJPZjEqlxGgyYWGhwtXZjtYtGuPr7ca11DyOH91PaamUxNqnhRv7DsXV08stO84zfEgQnu7OJN/Iw97OikULf8DV1ZX8/HwauTVGrzei1emxt7PiwuUMugQ152ZOMak3CyivqMbLw5n4+Hj27t1LSEgIHh5OjHq6C02aOhK28yKrfzmFvsbIk6MeISnpFrdySqgor6Z7j1YsX76cn376CbOmuUy3F3boMuu2nmP8090YNiAQezsrysqrCA/bRZs2bSQGj5tFXIhO4/HBgbT1d2fNhtOsXhfJ7dvlBAY2w87Wih6PtmbatCnExsZiZ2eHs4sbWl0NubfLcLS3QqurwaOJE/mFFTg5WHMj/TaO9tYsX76MoKAgKisrMejBrZEdrq52bN52nozMQoICvej1mB++Po3p0cOP7xcd4tiRDTRu3Bhvb2+SbuTh1sgeBzsrrlzLwd3NgWq9gZIyHc6ONtjaWPLKK68QGxvL7Nmz6derHfb21hw6Fk/n4BZcvpJJEzcHjp64yuSXe5N0PRdbW0uefuJRjEZjLaOEUjbqra016PUmOX+fSiV9gNTUGMjPz6Vdu3YsXbqUNTvTqarSM/X1gSTdyCOnlhPcv1UTFn71LEdOXmXBsqPEXQj/U5SlfwcRt7cgUPzjW6/GY/+V+v5P4WHk40P8P4EdO3b842lb7oeMjAx6BLVk+29xBPs3o7rGwFe/HMZgNDGqr0S9ZxaCojId48aNY8+ePSxcuJA+PfwwmwWR51Po08Of/IJyNBo1tjaWpGTc5vtlR/lh+VFu3LhBVVUVRqORVatP0b9vO64l3UII6N3Tn3UbzhB5+jojhnaUk6GCRNWjUCi4kS55HQuKKpj740GUSiWJ13Nxb+xI5IUUflx7kq+++oqvv/4agOAOkiduzOgQTkQmsT3sIjv3xDB/yWEizlxnUP8AQndfJCkpiaioKDZv3gwWfqC0x9k8lglju9E15HHMZjO2do0RFbOh4ktE+WcMGDCA/fv389tvv9G3p3+9e2RmF+PdzIXbBeU083QhM7uY0N3R7N+/n3bt2pGYmEjbVu5oLFTU1BjJyinm4PFE5iw6iEqlZMLT3Zg6eQDR0dEyE8PV5FvMX3KYls3dSL6Rh8ls5vGBgYTujiby7HWGDwmiuERLQUEBH3/8Mc2bN8fRwQaT2cyYKau5lV+Kq7MdVdUG/Fs2wWyW2GFfmr6erVu3cvHiRU6dOsW586kolUriE7NZ/stJDh9LoLCoAoVCwaMhrcjLL+fU6WSOHz+Ora0tKSkpBLb1xMrSgsLiSnQ6PYd+S+SbBQdqPW8Kiku1FJdq2b17N2azmWvXcyktr8LXpzHHI5LYHn6JIf3bS205d50xT4cw57OnUCgUfPvtt5jNZlq1aIy2qgb3xo5UVxuY8+Mh9AYTTw7uyJC+AWzbc5FvfzpMo0aNZLqunt1ao7FQyXoZE5/JnMUH8XR3JiVD0qXC4kpCQ0PJzMzEaDSyco2kl8dPJbF9dzTdurbk1/WRRJxJpqpKT8danTp16hShoaEEBgZyOjoFpULBuZh0Mm+VolQoibuaQ4CfBykZBUz+eDMffPCBTPHXysftHr0cOqgDGTcLOX3uBh0CvFix+hQ//vgjgwcP5sknn0QIiTP31WnruZldRNeOLThxJpkAfw8W/3KCoxHXEALS09P58ssv+e233zCZBRYWas6ducHPPx7jcsxNli46TGREMs+PkZLTD38imD179vDNN99w9OhRbK3veN83bD9HTHwmWTnFKJVKzGbBhHfWMG3aNH755Rd0Oh3dQyRqzJAuvggBGzadJSExh3Ubz3D2XArdQ1rxy+pTHD16lF9//ZVRo0ZhNgvsbC35evEBlEolVlYaTpxJxreFGykZBUz8YAMpGQVScvgjR3BycsLFRaIzO3EqiV/XRrBo6RFuZhZRUFjBo91b88vqU5yNSmHz5s1UV1ej0+mws7NCqVAQFZNOYBtPtu25yJwlh2jm7szOA7HcSC9g5MiR7N69m3379tHM04XFy47So1trjkck8cHM7WRmF+PkaCPrpZODDWq1mi5dulBSUoLRaKayshq1WoXJZMbS8k6UmNFoRqutoabGiLOzM5mZmaxatYrMnGK2hV8kIuoGY0d1lcs/O7IzSSl5rFgfwc3sYkJDQ//jMf1+MAnlv7L9t+O/vwUP8X8CLi4uf8iQ8k8hKCgISws1Ww5fwmQ206G1J2YhOJ94k6DWHnI5tUpJUFAQJ0+exNnZGX/fpuTklXAuOlX2RoE0rZKbXyafV11dja2tLZaWljRt4kgb/6akZxSgVCpwb+rErm1v09LHjYB2nvWme7p06SJTIN0uqkShUDCoVwAlZVocbaUpw8A2d+pXB622BrVaSRu/ply4mF7v2PlL6QS08SCksw++vr6cOXMGAIWmE+hjQWhBaQtKJxISYjCbTWDRSTq55jQmk4kuXbpgb29PeXl1vXvU3TM6NoN2bTzktpw4cYJOnTqhVCoJbOuJ0WTGYDRRWl4FQPTlDMxmM43dHAjw92DWrFn4+Ei0ThcupsvXPR6RhIVaRdMmjri52nH+Unq9+4wfP57S0lLUKiVJqXnoqvQ4OdhgNpm5kXFbog17tjtqlZLdyycRExPD9u3b+f/Ye+/4qMq0//99pqZMeu8QAgkJSUhIQuiIGAFFEAXEFRYbgqKCoGJZ2dVVVJS1Y0c60qR3BOkhlBQIISGd9DpJJsnU8/vjJJNE4uru8+j3t8/m83rNa2bOOfd93e2cc91XHTt2LFEDJNXS5bSOWJPnL+QhiiL9+nojkwmEBHuSkJDA0aOSujAqwh9BADsbFZfb0oilXC5AFEUEQWDjV4+zffU8tmzZwogRIzh/URonD3cN5y/mc/5iHj7ezta+RIb7ERToTkpKiqTmFATUKgW6ZgMWi0hkmC8Wi0hKWgFRYX4SA200oVBI6/Ls2bMAONjbkJNXaV2XMplASmrBLesSwNnZGbVajY+XU9tc5nH+Qr7ULncHbuRW4uHuQGp6x7hER0djY2ODSqUgv7iGAf18sVUrqappxM3ZTqJT2ZGlJygoqG19yPH2crSuGUGA4UP6cjWrlAB/V2Qygan3xjF//nzkcjkWiwVtYwvNLZLE3cFejZ2tih0H06S139+XyP5+VFQ1WPOKOzg4oNHYIIoiQb3c2bLjWb5a9Rgz/jSEiyl59A/3Q6WSExrmw/Hjx61tTBwULG0KRJG6eilNnI+XE6Ioom1s4f6JsZw/f54pU6bg6OiIj7cz3l6O+Hg7IZMJrP/uCbZueIp/vDujTT0vcOFSx73XuS/T74nHYhFRKuTsOJjWZbySL+cTHx9vzdMNEBjozvkLHfH+9HoT9nbqLjQWLFiAKIocPHgQd1cNRqOZAaG+qFUKki8XcL5t/t1d7K00AGsKTScnW8L6elvXqN5gInqAv/Ueiwz349KlSzQ2NlrbYTCYrX39pXRrGo3mlvzs5y/lW9clQGR/P5Iv5XdXvAd/EHoYvx78odizZw/jxo0jMjKSYcOG8Ze//AWQ1Lfbt2+3XldYWMjcuXOJiYkhLi6Oxx9/vNt8vKIosnPnTiZOnEhNTc1vaoOnpycAlXVNNDS14u4sOTrUaJutvwGcHWxRKpVUVlYybdo0ECA3v4qaOh1qlYJ6rY7ScukBrlLIkcsExo2JYODAgVYbn8BAVxQKOfkF1Xz1zXEAvvz2J4qKa1Eq5dw7aRAgSfsSEqRdcWgfL3w8HfH1csbLw4Gjp6/j6mJPQ1Mrbi4d+Rrb1SOnzt3AydEOhUJOTV2HM0ZwL3eenTcWlUrBG69M5i9/+YtVSoTMAyzVYD8XBEcQddTWVKFv1UrnADBRX1/P7bffTmxsLMdPXe9Co51meUUDapXCmkquqqoKGxsbnJ2dcXPRoFTIUSrkHDoupXEymy00t0gJyVdtPENra6s1h25tnc5ab/HNWmtf3Fw11LaNu4PGBpVKxdSpU0lOTgagorqRWfcOxkYt2Yj1DnBDFEXOXMrjak4ZdrZKFi1aRGZmJqtXryZuUC8ArmTetNL4+PMfMZksKBRyDu1axJefzOa7775jz549ZGdnM3ZUOIIgcPJcDtt2X7L2pbVV6ss7Hx3gL2/tJDMzE3d3d3x9nJHJJDVYTZ2O2rZxc3PVoJDLUCjk3Cyto7y8vMv6tFhE9AaTda5r65txc7Hn3KV8pk6IJSrMD6VSiYODg7VMS6vRui4dNNImoTs4O0t2bgEB0rqs7dSuDavm8NjskQiCwIbN56xl2hm50Yn9CO3jhZOjLfnF1Rw/l42ri3S/iAhs//IJ8vLyukhwggLcrWvG2ckOjb2aSXfF0NJiAGD7rkvMnTvXKiWUxgtm3peIvb0akKSVjW1r383FHm1jC15eXkyZMoXY2FiUSilnbGurkZee38TG9WeZ+kAiMYN6o1Ir8PWT+lpZKUk/o6KicHK0RS6XIZPJrOu2fbydHGwJ7ePN3Llzeffdd619CQxwRy6XsWnLOV57/Qdee+MHbuRVMnK4lHqzs92bg4MDPp5OOGjU3DEyjNyCKmtfpAET2uZWh7e3N4MGSc+B6pomFHIZer0JmUzgzjsGEBbqg42NykpjYHQgM2fO5OWXX2bixInY2ihRKuWcSM6x1mk2WzAazSTGBiMTBLy8vIiJibGm1Jw9YxgKhZx6bTPjxg6gfz8f3Nw67jFPD0freN0KAb3eeMvR9rXe0tLS5Xjnddk+zrWdnlO/JywIv8vnPx09jF8P/jBUVlayZMkSnnrqKQ4cOMDnn39ORETELdcZDAYeffRRFAoF69atY9OmTQwfPvyWPL8WiwWz2UxJSQmrV6/Gzc3t32pXZ/+m9p8D+/mx7Z1HAFi1ahXz58+nrq4Zo6nj4W42i7yyTMp7OjQhhMNbn+OeO6P54YcfbqmvqLiGM+dyAcjLq2LvvlQApk9NYN/OhXz//ffY2dkBUFHdwM3yeqpqGjGZLIxMCKFTCwFISkripZdeAuBmSQeD1BlFN2v56HMpq4hMJmP58uXk5ubyzjvvgGoI2ExA0CxAbD0EoqHziFh/qVQq7rrrLhYvXkx+YfU/HcfwMF/2b1vAl19+CcBjjz2Gh7sDggC7DqZRVSO99JQKObY2krS0pLzun9Z5a4vg+++eICsrCxcXF6vDgb+3M7OmDOZCRiFKhZxLV4oRRbh2o4IvNpzE3lbNt99+y4wZM6ivr0etapfWdtQ7+e4Yq5PDJ58fwWQys3jxYtLS0li3bh05uRUAjBzaj7uSIq3lzG3Sj/zCaq5eL2Xp0qVYLBYSYrsmp+8X4gXAh+/MYOGT0gu4nWn8tV6LwIffHqOsqoEP/zYNoEtw+S4+ep0H65dc97o5/ubyvXy/VWKkn3ridvb/sJDs7GzefPNNALLzKskrqqal1UBYH2/io3t1jJ8o8tSrmxg3blxbvulb29W+GcrLr7I6fcx9dLQ1d3t7Jh+FQs7M+wezty3bw7crZuHkaEvsgIAudb377ru8/vrr1mNZ10q5kVPBj0eusnHdGYYMCQEgpJ807qtWrSI7O5tly5ZhNlvQG4zdj4UAf3tvN5cuXeLSpUvWw76+ksPHxUuF5OZVknmtlE8/P0p+G1O3dtUcsrOzyc7OZvbs2dTUNbU5o4DfzxxLxE5E5XJ5mx0drN0gSeT/+upkDu1ZzN0TBnLkx6vWRsbEBLHinQdwcnLi4MGDZGZmWpm8McNCu9BoaTVSWdPIQ/clYGtryxdffMHGjRsBrEz1sqX3Mf3eeCwWC0qFnNdfnswvwabtntXrjb8o8fun6HEj/f8Nehi/HvxhqKysRK1Wc/vtt+Pn50dkZCQPPPDALdft3r2b1tZWVqxYQUREBCEhIfz5z3/G1tbWeo3ZbObFF1+krq6Ohx9+GFdX13+pHQCeLhocNTbUaCVVj5ujHTVaaSd6Lb+CWX9dh9FoZOvWrbi6upKTX4Gbiz2uznboDSYada0UFEtSxpPncrjv4ZU8+eIGVCoVZrPEIBYX12IymXF1scfFRWLsaut0uLjYYzKZcXay4/0PDiCTyaxMjI+nM/7ezni4OTAg1BdPLQMvlwAAIABJREFUd0eMJrPU1jodtw8LZeXKlbz99tvWPmkbmjGZzLi5dEgsTSYLokVS48x+8lt27txJbm4uK1asAOMNAETti9D4DliqcHXzQG3jJEkCAWwmotFo2LhxI9u2bbuFRvt/b09H9AYTl9OLeGz+d6xYsQK9Xo/BYMDf1xmTyUKjrtXaLk8PByuDtfLdhygsLMTDwwNBEFg4/w7uSorEZDLj7+9iLVNb24Srs2T/9NjTq7l27RrJycmsX78egL69PHnxnR1cuyFJzwSZZHdXU68jI7uMG4VV7Ny5k/Pnz7fNjeTt3C6xUinlPPHoaARB8lw8cOQqDz/xDV9//TVarZaPPvqIwps1WCwiyRfyePShEYDk0Whnq8JoMtPY1NFHrVaLk6Ntm1e1BTcXe+rrJUnIW+/vRSYTEEWR6AEBTJo0iffee886/w72atQqhVWy6upsR22djsamVp5/czt/XvgdJpOJjz/+2EpPbaPssi7bx/fnwon6eklCXXyz07p0ltbl1cwSCopqMJnM3DYyjCcXrCMpKckqjSutrKe+oYXVW8+hVMoJDnSnuU1yJwhQVqklOzubAwcOWOlVVDZY10y9thmj0UxBUbWVCXhx6RZeeuklBEFg586d2NmoUKsULHnrB3YelNJ4vvvZIcm29vwNaup0eHk4olKpePHFF1m7di3GNk/fzsxIQUEVNrYqDAYT507nYDKZWb58OZMnT6Zv375W7/L28QKoqZM2JgaDiSadpF3orII1G83SmLl2DYVU3baheenVLSQlJZGUlMTatWsxGMzI29TuOw5IGz13V411vKS5tUcQBKsJxvmUPEwmM+99cICpD37K0wvXoVIpaGrq0HYIgoBCoUCtVhMVFYVcLkOlUlgZM1dne+RyGRp7NZt2prBu+3lu3rzJ4MGDrWrYZ1/ciMlk5uMvj/LEwrVcuFxAcUkt360/jd5gorKqwaoZAYkZ12gkZrGzZLMz2td65+e01B67W8bZ1eW3hZP6n6LHxq97/Of3oAf/MQgLCyM0NJSxY8eyZMkS9u/fb93pdkZOTg5RUVGoVLeGP2nHRx99REZGBs7Ozrc8aH4N6enp6I0mHrhzEHKZjPScEgQB4sMDScspBUBvNFFYVkdaWhqjR48mMzOTU8k3iAj1ZUh8HzKvl2KxiMQPDEIQBDzcHajTNuPoYMOoUaPQarXo9XrKK7RkXS8nPq43CXHBlJdrqa5uJCEumHptC5VVDZw+e4MxY8Zw5swZLBYLZy7mYrGIVFY3sPB1KZdmY5P0Mvd0c+Dlp8ezcOFC9u/fb+2TyWQhK7uc+EFdpUwJcb3JzCrlZkkdOp0OURSZOXMmKIIAM+gPg6hFNFxiwIBYZDI5GC+B7TQEp7cRBIHPPvusWxrt/+Nie5GZVUprq5GSsnoiIyOprKxk3rx5bNl1EZlMIHFQsLVNQf6SZLamrolHF6y25sUWRZG8/Cp27kslK7ucMSP7YzSZKa/UUlXTZO2LXCZj4MCBfPXVV8TFxSGKkvwk80Y5adeksDZxAwIRBIGM6yVYLBbcXTTExMTg7+/P8ePH0bbZGyYmSEb7coUchUJSGWbnlFv7UlNTg9lspr6+nvSrklo4MMANlVJi0uIGBiGTCWTfKO/CeNTX12NqU7dWVTcRH9ub2OhAyiq0nDp3g/MX87meU87qjWcwGo189NFHmEwmDEYzsjZnkYysUgQB4qKCSM+S+mUwmMgrqiE1NZV+/foBUFHVQFgfr27XZeewJAB1dXXo9XrKKrTWuUyIC6a8QktV27osKa1DLpdRVd1AQUEBhw4dorW1Fb3exIB+PqhVCmuInMamlm7ptKOmtslKx2y2SOFy/F3x83PBYhEJ8HVFo9Gg1WqZNm0aDg42WCwi13LKKSqppaqmkWHxfZDLZaSkFiITwNnRlgsXLrBt2zZMJhMlN2sRBKELQxbQFqrm2tUSmpr0XM8qIyIigvj4eNRqNRYRHB1sycops85bWYW2zc5SiV2b88fo0aNpapIYu2vZ5d3eY/6+zoiiiL+/GwUFBRQUFKDVanF2skWhkHPg+FWamvVYLCKT7oyWxstDGq8xw0JRKpXU1dVRXFxMeUUDWdnlDIwKoK5eep7EDeqNtqFFchaxs+HhOd+QlJTEnXfeSW1tLeWVDYiiyK5D6VgsIgkxvYiPDkIul5FxrZS46CDOnj2LKIpMmjSJ1Ixiaup0ZOWUExHmh41awYBwf348kUW/EC8ys0rJyCwhNjYWjUaDo6MjKpUcnU5vtUH+JTQ1NeHj49PlWEJsb+u6BMi4VkJCTO/uiv+vwyIKv8vnPx094Vx68IdBJpMxefJkIiMjqaqqYvXq1ezfv597772XdevWkZCQQP/+/Tl58iSNjY3cddet8bIAVq9eTXx8PBkZGcTFxf3LuXd37dpFYMRQ7hoWTlp2CclXCnl6+khCAtzx93SmsraJgjJJfVp7/QTTpk3j/PnznLxYSdKoCEKCPdn0Qwq2tkr+svAuCm/WEtLLk6AANx55YCjOzhrUajVyuRylUs6VayU8MDWR8P6+HD56hYEDg7hrfDQ2NkrMFpFDh6+QemkHoigybtw4PN0cEEURWxsVQ+NDrC/akvJ6bh/Rn683nKSi+ApffPEFGo2G6zkVmMwWqmua+NP0RHTNeiZNGMigmF7cOSaCjVuTiYkOYuaD4yksLOTuu+9GrnsZQRWHRZ5IfkEpjToRZ48JNDVVcbO0FaPqYTT2oNOZyMnJobKykrDw0Uy5J5bwMF+amvU0NekJDHBlYGQg5y/lc7OknnFjI3hwehK2trbMnz+fK3kKkkaH4+/jgq+XI3Z2ap57YixKpZyVq38i+WI+jVUXefbZZ7Gzs8PF2R6NRk1tnY5hiSEIAmzZcZHQEC+m3DOII8evsmh+ElptHS0tLcyaNYuUjGICfJwZEhNMUWktMeH+2NupSc8qwdfTmQfujiXQ1w1nZycyMjIYN24cm7adJ6SPJ6F9vbFRK3B0tGVoYogkedpzmarqBkaNCOX55/7MjRs3OH36NIJtKEm3ReDp7kB+UQ0Gg4nn59+JSqVg98F0qmubCOntwffr3sfLywu5XIZCLqeguJoh8cGEh/qybddF+gZ7MnH8QPYfyWDMyDCMBh3+/v64ubmRmnmTIH83quuayM6r5PEZwwn0c8HP2xmlUoGHqwZbWyUK402mTp2KIAgcOp5JnyAPQnp7sLFtXb7w1J0UFNfQr4/kqKJtaGbZG0vw9va2rsurmSXMmDqYiP5+HD56lagIfyZOiEalVGAyW9i9L5Xp9yUwatQozGYzCYMGIAgCsZGBtPskqVVKaup19PZ3w9fLiUAfJ1auXIlKpaKiUkvyxXyqa5p4aHoik++OYf/hDMbdEUmgvxuXUgsZnxTJkMQESkpKmDBhAgaDmUadnpgBAVTVNqJUyrlzdASZ2WU4OdgyedxABAHc3d2RyWS4uLgw8Z57sLFR4h/ghlwhI6y/D4/PvR2ZTOCjDw5QWlJHQ0MLc+ZOIjIyEkEQKClrwM3Fntr6Zq7llNErwI2JSdHY2CgQBIHbR4QR0ieIhx9+WIovWVLHN9+dJC42iNEj+zNl0iBqa3XMeXQ0of18yMurYvjQvmRnX+Oxxx7j0UcfpVevXggCBPq6Mjy+D0UltcRGBZJXVE1wkAeDY3oR0ssTk8lEWFgY7777Ln1ComnW6Zl8Tyz3T4nnjjERCAJ4ejhy9twNksYOIC2jmLG3hTNp0iT8/f1JSS+mT5AH/YI9ycmvZERCCImDgrmRX0lUuB/R/f3ZsmUzmzZtwsfHh13701CrFVRUNfLg/YO58/YBNOn0ZGWXMfnuWD5ceZjLGUWMG9OPWbNm4eYmMdEqlQKj0Yxeb0IQJJs+Z2c7K0MnkwnU1VUTFBSEnZ0d9s7+DIsP4b6Jg/jgiyPWcC6VVY3Mnj4EpUpOdU0TcZFujB8//t98q/xz/Fjx/e9S7+1e03+Xev8o9ARw7sH/M9TU1DB06FC2b9/O008/zfz585kyZQpbt27lgw8+4Mcff+xW6jdmzBjmz5+Pg4MDL7zwAhs2bPiXYvq1tLRgMENFbSNuTvZo7NRkFVSwZm8K7y+YzN++PsDeU1Jw3cn9Wlm0aBGlpaX4+wdSVdtIS4sRPx9n9HoThTdr8HJ3wK1dhSMTkMtk7Nixg+3bt7N06XsEBLhKAVUVcqtHXGlZPRcu5nPvpEE8MHMlJ3+UQrPMmjWLF5b8BWfHDilmS6uRwyevMXhgr1+UrACsWn+a8gotD01PxM/HxWoT2aTTU1xSy+efLuPTTz/tUkar1aJSqWhtbeXMmTO4uroycOBATCZTF+cBgKvXSojo78eeA2lERwbg7elEWYWW1PQiYqIDrf8D/btXu7c/alpaDazZ3BHAWV++leTkZMxmM8UlddYAzgaDieZWIxo7tRQIduMZ1GoFzz8zjm+//ZZHHnmkWzoWi0hlTSN2tpLaUABUqu6TFFVVN+LmqpFUf80GcnIr8PVxxtlJUq96ezlRXV2Nvb09JrNAVU0jjg62bSo6aWyvZZcR4OeCq7MUYLjdiP3nMJrMIEqSpTWbziCXy3hp4QSmTp3K+++/T2Bg4C1lmnR6Xv9wL+++PIU1W88xPCGEQF8XFN0Epa6t12Fnq0KvN5FXWEVM5K31FRUV8eqrr/LaX98j0N9V8jZVyq2q5+qaJjKzShk9IowH/ryS24crmDx5Mm5ubtY4bu1objFw5FQWVTWN3D02Ci93h1uuAWlderhpuHtcNEajuU16ZcHJyQ6D3oQgmNBoNLeUAzAYTeTkVeLuqsHzF+qvqW7k6y+O8cjjo3F3dwBBUofu3X2Zf7zXIRW/+147FiyQsklUVjewdfcl4gf2IjLcD73exE9nskm+nM+Cx2/H3a1dJStQUFDAM4t30tjYypNzxnDX+Cjs7NSIoojBYGLP/jRWfnmMx2aPZMzo3ri6umIymVCr1RiNZowmiWlqbjFws7QOd1cNri72WCwiqjbHlB07dvDUU0/xwkurmD51MB7ukjmExWKhrFzLd2tPcewnKYBz0tgIHB1trB66gkyBIEBphRZvD0cQpXBUSqUci0VEAPT6FhwcHHj33XdRamKYcX8Cbi4aq5OG2kbZFlj8DIePZTIwMoAP357R7ZyAZJuq0+lxc9PQ1NRqDTbdGaIoUlxax+rvz3L4p8wu5xIHBTNn5ggpHFRFOf7+/r9I63+CJen3/y71vh219Xep949CD+PXgz8MaWlpJCcnM2zYMJydnTlw4AAffvghx48f5/7777cyfnq9nvHjxxMREcG8efOwsbHhzJkz3Hfffdja2loZvylTprBjxw5ef/11Vq1aRXR09G9qh5+fX0/Ktp6Ubb+pTE/Ktp6UbdCTsu33TtlWUlLym679V9HD+HWPnly9PfjDoNFoOHfuHN988w2tra306dOHjz/++BbHDLVazddff82bb77JjBkzUKlUxMbGMnXq1FvqnDx5Mo2NjcyZM4c1a9YQGhp6yzU96EEPetCD/z78X7DH+z3QI/HrwX8d/lWbwB70oAc96MHvh99L4rc47fexxXsv+vexHfyj0OPV24Me9KAHPehBD3rwX4IeVW8PetCDHvSgBz34Pwdzj6q3W/Qwfj34r0SE3xO/6bqrJV9Yf/87DiH/jrF+4Mhfd1YoOtHhqOA39je260hHu/4wh5Df4BDR7gzxW6+/pcy/0ReviYt/U5mK3e9Zf/cZ9BuN1S9Kbft35t7rnt/Yrl2d2vVvOHf8Owb+wfG/Ticv5X9G499x1HF94LeNWe2mjjHrNeTX56bgbMe8uE3/bTRqvu+gETTst/Wl8HRHX9TP/7Z7Wb+8417+LXQ60/ijnDv+HQeiHvwx6GH8evBfh+4CPscPDeGRJ8cQ0Mud5iY9DdoWNI42uLq9xtNPP90ljzBATD8/5k8bQXiwN3KZDFEUKa1q4KVPd9NurTJmzBj+9uZsgvxdQZTCG9wsr6e6toleAW442Km5nlfBh98cI1/KlMUdd9zBpyvnY9eWm1MQBN784iB7jl/pti/PPfccixY9R05xFW5OdjhpbBGQ0ogpbwn5cesL4oc9l8jKLuehaYn4+jhjNlsQRSnkSvaNCl5feoLBgwczYcIEBM8QQE6DtgFbO1daWlrYf+Ag2rJlPD6jIz9n37592bdvHyqVitvv/Qf+vi688fIkegW4W0OgfPrNMfYf6ejT4MGDeeKJJ4iOScTb04nNOy4QFxP0i2X69u3LgQMHUKlUVFY34u3pxNdrTlJV3cijs0bg7qZBAFpajNjZtYcEesFKTxRFjCYz14oq+WrvOfoHeTE0vBd9/d3R2Ko5kZ5HL28X/D97luTkZHr37o2Xl5e1fHOLgQuphXy19iRFJbUkDurN4zNHEhTgSkX5A3z77bf8eEXGnAeHc+focBzs1DTq9Dg62KJUyLBYRLLzKzl6KovEl3cSHR2NUqnEZLZgMktBnGsam6nW6vB01uDuZI9cJqNe18K1wgreLD5K3759eeaZZwgMDMJssaCQyxAEAZPJwolz2bzz8UEemBzHn+4bjEqlwGxeyNGjR7uEwXloWiJ/mjoY27aAxakZxSx6dTOPzxpB0pgINPbP0tzcjFwux9FRyiBTW6dj79EM9HoT998di7urplOYleetdbfHdxNFEblcxt/f28PhY1JYj3FjB/CnqYl4ezlSVDiFDz74gJqaGtZveA7RIiKKInqjCZkgs4Y80Ta2UFhSg5ODLV5u82hqaqKgoAD3oBD83RypatCx4WQqz08a1e29cnRCFLNmzUKhULDw0THcPSYStUqBKIqYzSKCTArXs+tIOi6OdkS/OZGAgAAMBgNytS02SgWVDU1sOJmKjVLBhNgwgjxcULRlSXlp/X7WtJl+BQUFcWZz90yc2WKhsrqRsqoG3JztcXeei9lspqKiArWnB172Gqqaday+fJlJYf3p5+6Osi3dnc5oZNWlS7yNxPgpFAq+futP9OvtibwtuKLFInI+rYBX/rGbVr2J+TNHkfDWJHx8fDCbzRSVNLL2+7OcS8mzzoOfjzNmi6Ut+4ZISWkdn35cSlFREU888QSurlI2EJPJglwuhf7R6000NelxcrK1hkvqbKvX0mpg/OR/MO6OATw4Xbqvyyu0rNlwhiPHOsK73Hfffd2O0/8Gepw7ukdPAOce/Efi5s2bxMfHc++99+Lo6PgvlQ0KCiLlZIX1f9/+Przz6UyO7Mvgo3f2oXGwITY+mGOHMujX35f9+/dz7do1HPsMtZYZFRvCpFGRmC0iLS0GUrNL6RfkwYRh4WzcsJ6QkBA2bdpEq8FMQ0MLuw6nMSDUlyadnv4h3uw6mM77Xx+ld4Abcx4czvffbyQkJITNmzcjk8k4fTmPgpJaevm5MTiqF7uOZdDSKTG6tvAsw4YNY+HChVgEJR4uGkxmC1kFleSWVOPvKTFxp1LzeOqdLew9dZXP3lrEP/7xDz7//HNKa7y5bWQYp87kMH/OGDZtP4/GXk1GZgkhwR589s1xnBxtWfjsY2g0GrZs2cLYQesQbJLQ6erZ/sNBLC3bGRg3FT//AbjaHmxrmQ1Dxq7mypUr9O7dmy07L7Lqk9ltzFwKew6lEx/Ti9uGh5GVU0ZJWT21ZecIDQ3FxsaGkyn1RIb7EdnfD3c3Tbdlqmub+HTFQsrKyvD29ub9Tw4TGe5HS4uRh6YnYmenYt/BDC6mFjIwSopl983aU/h6qTEYDKxZs4aD2fVEBEnBjaePHkhFXROpuSVcvlFKYv8gLlwvZl9yFiFuKsLDw7Gzs6OyupHLGcUE+rkgl0lM1qRxA8nOq+Dd1+7j0LFMVqw8TFrKTpYuXUrMgECGDArmnc8OoW1oIT46CESRv67YTUm5ljHDQgnp5YGnhysFBQV4eHhwICULNyd7LueW8OnOM9w3PBJbtZLjabmE+Lrz7Gc7CfJ04YWn5zB+/Hg2bNiA2t4bNxcHlAo5G7Yno1YrGRQVxODYXowdFc713Are/+wQNWXpTJ48meDgYM5dqmV4YgiL5idxNauMnfsu0yvQneBeHvTp7cHwIf1496ODHD+ygUGDBuHm5kZzi54dB9LYsT+VJ2ePJiG2N6JFJCevkitZpQT6uVBdXU16ejr+/v5UVTdw5Hgm17LLCA/1pUnXyulzNxieGMKri+9m/ZZzfPb1MUoLz/DWW29x9913Iwgy6htbuFFUjUFvxtNNw6FTWVzPq2RAqA/e7k6cTLnBU3P+RHZ2No888ghqpYJHV24lt6KGFyaNIiW3mD0Xs7iUd5O4Pv48/c0OJsSG8cEHH3Dt2jWWLl3K9PvGUVuvY9PuC8QOCAREEAR+PHOdaXcPwtZWxfJ3/s6BAweYMmUKNU0tWEQLXx85z8KJIzBZLJTXNVKna8HfTYqteTTjBmmHdwHShiykXzjvfHmYzXsv4emmwdfTCUEQeOPj/aReK+G+Owdy6HQW8x+fweXLl5k5cyZONrY8u38vl8rKeHXUaMoaG1mbnsrnKefZn5NDPzc3JoaGUVJSwtWrV1m6dCkjhidiNJnJLaqiuKwODzcHgvxc6d/Hm4Mnr+HhqmHjt+/zySefsGnTJvx7D+aZuWNpbTXw7NyxrN9yjvMX86it1RHWz5t/fHaY4pJaXn7xccrLy6mrqyM8PBpVG5Os1bZgMJixs1OhUMhpbGyludlIc7OBoUMT+OKLL7jnnns4e74ImSDwygsTWf/9OVZ+dYzmFgML5ieRlV1OSamUp1su5v9uzN++sh8QEf7XPxN8fj9m9Y9Aj3NHD6wwGAz/r5vwh2DSpEl4+3YkTb/vwUSuZ5by7adHKS6o5sNle9m+8RxxiX1+sY7ovr6IIixf+yMNLXouX7/JxoOXUCnlzJw5kzlz5pCWloaTgw3b9l/mqw2n2XEwjUA/VyqqGpDJBfKLqnnrkwMYjGZmzpzJk08+CcD7q47y4vs7+XDtcQCUChn3ju0ao9Dd3Z0PP/yQF154ASeNLRW1jdioVSz6YAfPf7ALs8VCg66VUYNCUCrk3LhZQ1ZWFlVVVVRVVTFiaD/yC6sZktCHYyez2Lj1PPOeW8ffl+/hxOlsxowMY9mKfZjNZvbu3cuGDRtA2Q9kDrhYHmTWg4kkJoTx0Qev07f/XSCXArAKjktJSUlh3759AIwd1R9HjS3HT19n5aqfOHD0Km+u2IdMJvDnB4ZY+/Pjjz/y9ttvc+zUdeQKGWq14hfLLJw7lpSUFNasWYPFYuHYiSwMRjNREf5UVTdyLauM9z4+yBerfuJ6W+7e+ycNwsnJiaFDh/L666+z7UQGf19/hN7erhRX1dOga2XN4YtcKZCu/2pfMnuTr+Hi4kJzczOXL19m2mNf8uqyHfx0NoeaOh22Nkrc3TQ8PGMYWTnlfLHmBIU3a9m8eTPr1q1jUGQgX6w7yemUXBIHBdOqN6JtbKV3oAdfbjjFpYwiXJzsUCqVzJ8/H4CtJ9P5+/ojjIrqQ3FVPV/uS8ZksbD1RDoAhRV1vLb6IEqlkitXrrBs2TKOnMhCJsDJ5BuE9/Pl+b9tRS6XEdbXh1a9kXkvrOfsxXyef/550tLSmDhxIgAz7h/MjyeyWPDSJjZuS+FmaR3llVqGDe7LV6tPcCb5BmvWrKG4uJjW1lYsopQ68HRKLu2xINRqJc+/sZW/vr+bnPxKrl+/zpAhQxAEgdfe2skHK4/w0RdHARiaEGKle+xkFlt2XKDoZi1ffvkldXV12NjYkJxaQKveyFOvfU/+zRpMZgsl5fUsW3mQgps1XM+rID66F7m5udx2222kp6djb6PCVWPHzpRMNpxKJcDNmc8OnuVcTjEAif2CqNe1sGfPHuzt7XnooYcwmy1s2n2BIH83ruaUoW1spV7bjMFoYuu+y9jbqtm3bx8TJkwgNTWVGf/YgJuDPeX1TWw8lUofLzdeXLefLw8n3/JsaKexcv0JDpzI5PK1m9Q3tCKKUKdt5uCpa+z76Srf77vEyPgQCgsLmTBhApcvX6ZRr8db48C2zExWp6biqdHw9cWLnLt5k2MF+czavg1BEBg3bpyVzonzOSgVMp59YyvPvrGVRl0rJpOFwdG98PFwZO/xq5w6dYrCwkJyc3P58rsTtLQYmHJ3rHUetu26xPKPD3LiTDZJYyLYvOMCWVlZaDQa3n77batEV683YTZbMBrNNDW1YmOjRBAkCaAoilRVVREaGoqvry+79l7mgamDOXYii60/SHO9eXsKJ89k8+C0wdbx+umnn37xOduD3wc9jN//ccycOZPly5ezePFiBg4cyJgxYzh4UJLOJCcnExoayokTJxg/fjzR0dHo9Xpqa2tZtGgRcXFxDB48mMWLF1uTu4OU7eGpp54iKiqKpKQkfvrpJ0JDQ0lOTu5S77lz5xg/fjwxMTHMnz+fhoYGax1btmzhnnvuITo6mttuu40PPvjAGokeYMmSJbz44ousWLGC+Ph4RowYwZo1a6znb7/9dut3aGhol4T1vwaz2UxEVID1f0RUABfO5na5JuVcLt6+Lr9YR0yoPzKZwNmMAuuxs+n5yGUyhg8fTnx8PMeOHSP9WgmjE/vh4mRHRXUDgiDg5GjLuUv5gKSWSUkrICEhgcTERGQyGefSCrrQkslkxEV0ZGEQBPjkk09Yt24dZrMZWVu2kCs3StG1GLCIItV1Opwd7BBFkVVLH+Tt+ROtuV1dXFwYOawfew+mEdbPm/MX8rvQS76YT3iYL7Y2SpRKJbW1Uvo6QRULhssg6kBmj2ipIyXlFBaLGZSxYDMZlJF0ViJERUgM4dnzeR1je7kAi0WkX4gkcfs5VErFL5YJ6+tDaF9vulNUeLhL6czOX+zoT15BFYIg4Oxkh1wu59tvv2Xs2LEAnMssxGyx4GxvQ31Tyy31KeQyNBoNSqWSY8eOWY+fv5SPi7O9NYtiZFTdAAAgAElEQVRKgJ8ryZe6jmFpaSmCIJBTUAmAk8YGhUJObmEVUWF+uDrb4eRoi0wm48qVK+h0HXaR7e0aGRXM2Ni+XLhe3KVue1sVcrmc1NRUACL7+3H1eilnU3IJD/VFYy9lURBFkfLKhi5ld+/ejUKhICLUh7C+3l3GCkDXbEAmE0i53HFcrVZz8+ZN67z4eDqhsVejkMsoLK5B1yxtGJMv5+Pv798mFdKSlVPepW5nJzu8vRxvobtgwQJaWqScvyXlddbjkaG+FNysISrMD0EAOxsVNwqq8PV0wsfHh/j4eFJSUgCo10nzd/p6Af5uTng5dWQCGTcwlF0XMtHr9URHR2NjY0PG9VJGJfZjYLg/yZfzyS2qwsXJjnOX8zmXmo+vVweNY8eOobFRA1Cna+F0VgF+P6PRGe00zqUWWI9F9fcDRBp1rR3znFrQpS+VlZXYKZWktKlLTxTmE+DkhHdbVhO1XM6ro0YjiiL79u2z0lGrlFzJLkPXYkAQoKS83pr1Iyqsa+gquVxO0m3h2Noo8fBwvGX+ky/mExHmy+C43vTp04fTp08DoFTeminGYDAjtmUI6YyZM2eSkZFBbl5l2/Mlr8v58xek50t39/7/NswIv8vnPx09jN9/ATZs2ECfPn3Yvn07U6dOZdGiRRQXd7xMVq5cyVtvvcWuXbtQKpU888wzyOVy1q9fz9q1a2loaGDJkiXW69966y2KiopYu3Yty5cvZ+XKld3SXblyJe+88w6rV68mMzOTL77ocJQQRZElS5awZ88e/vrXv7Jt2za+/75rbKTDhw8DsHnzZp588kneeustcnJyAIlxbP8+derUL6bv6g719fW4unc8tF3dHairaepyzc///xxOGslOsEbb8cKu0TYD4O3tjaenJ1VVVfx1xR4amlrYvepJnpwp2R5t3nORlLRCa7na+mY8PT1xcZEYzZr6jjrb4eHa0d6HpwxBLpfz4Ycf4unpCYBCIbfSB8gvraG6vonGZj3HL97AzlbJvn37CA0NZdq0aYgWkeSL+VK5uq70aut0qFUKFjx5BzU1NdZ5QOYBlmqwnwuCI7TswGw2oW/VgiIMwXEJonYhra0dLzdPD0dkMqFLn8xmC80tBpQKebfpzeRttmo/L9OqNyKXy/jHZ4e70AApT6hMJsPeTsrz247Cwhrr7ytXrpCZmcnq1auZNDQCk8WCwWjGVq1kb/K1W9rhrJEYM6VSSVVVlfV4TZ0OVdvLLr+wGkeNDbU/mzNZm01W+7e9nZojp7KIHRDAoKhAdn37JI2NUh86M30AXz03FZkg8MK022hobuWVVfu7nF/ywG0IgsDx48cBcHPRUFOno6Zt3p5/Kolr2WWAlPKsM/LypJdwWD+fbudeaJPkGQ1m67Fjx44REBCAXC698CJCfazn9IYO84Pauma8vb0BKCzsWN+dEeTv3oVuTFQgM2fO5OhRSSrYbhco9cueWm0z7i72zLp3MBp7NYdOSfPk6emJp6cnI0aMIKOonPQiqb/VDdI94O7Y4Yjk5mDH1nMZ1nIAr72/i8amFjzdHHh46hAGDQikVqvjfFqhdf2006iurubV+8eQUVRORlFZtzQ6o51G5/Xr7myPKHakLQSsa+bkyZP4+fkxevRo5u3ZxdUqabNQpZPoLEgcSu6zC8mc/wz3h0fw2fnzbNmyxUpHY6dGEASOrHma4xsWEBrsRWVNI9qmVtycpTaOHTuW7Oxs8vPzeWbuWN758AAKuazL/AcHufPs3LGoVAreeHkyf/nLX6z3vpTS79a+iqLYhYHz8PAgKSmJdevW4eRoh0Ih73I/AtTWNaFSKXBw6D61YQ9+f/Qwfv8FCAsLY968eQQHBzNv3jwiIyO7MFmLFy8mJiaGvn37cvHiRQoLC1m2bBmhoaH069ePN954g2PHjlFVVUVTUxN79uzh1VdfJTo6mujoaJ59tnsvsRdeeIGoqCiioqKYNm2adXcOMG3aNIYOHUpAQACjRo1i9uzZVklkO/z8/Hjuuefo3bs3M2bMICgoiAsXLgBYs324urri4eGBvf1v8zhtx+8Ztrzzw/3RB4bh6+XMoje2smXvRQCmT4xnyKDgXyzTfZ3S98AwP6aPi2HgwIFcv36dFStWdHt9QVkduhYDZrOFooo6nluxg/Lych555BEeeughjp3MQqf756r9O24Lx93dndTUVJ5++mnpoLwXgmYuYv0zYOmwkxRsJyE2b0dw3Ux2dnYX9dA/Q3ioD9nZ2dbPQ1MHd3udUiFHrZYkToU3a/9pnX6+zuzftoD92xbw6KwR1uNarZalS5eydetWZt8Zz9RRUdioFOw9d43K+n/O6HeGrFO/Vn53/J9e2z6vggCjE/u2qcVAbzARHOTR5Zp2LPlmLw3NenafvUqghzMvPzjWeu75aaMZFyd5Tq5cubJjXsD6AvbzcubVt3e0NeCX2vXr/WzHhx9+SFlZGXKZjMceHM5rz939i/XI5RJD/EsBecVODXJytOWVRXexaNEiWlpafrFdDvY2zJoymFff301d2+ZGEAQUCgUeHh4s/G73LeU6/0/NLyW/sq7L+dn3D8XX0xmT2cLq7ee4nFmMm7OGIbHBneqQKpk+fTpBHi48t6ornX9lDNs3P2bzrYXmz5+PyWTi/PnzvHfneCI8PLuc33X9Gg9t28rzhw6SV1fHkwkJ5OXldbn367TN/Pn5tcx5ZQO5hVV4uGokp7O286dPnyYpKYmJEyey50Aazzwx5pZ2FJXU8tHnR9raK2P58uXk5uZ2WWO/hhkzZqDX6/nhhx9+/eI/IHWERRR+l89/OnoYv/8CREVF3fI/P79DxB8eHm79nZ2dTXV1NXFxccTExBATE8O4ceMAKC4upri4GJPJREREhLVMZGRkt3TbVYsg7QRrajqkL6mpqTz66KOMGDGCmJgYPvjgA8rLy3+xfHd1/LtwdnbuItGrrW7Exa2r2sbF9Z8zkto21aCbU8d1rk52AFRUVFBZWUnfvn154J44ln9+iOTLBVS10UxJLWDmlISOcs52VFVVUVcnvZzad+mdUV0nlR0UEYjGzgaVSoVarUahkJghD2d77kgMxcNF09YuO2q1Ohw1NtRomzGZLaSnpxMZGUlwcDC79qWibWjGZDLj5tKV3tTJcYiiyMt/287YsWNJSkpi7dq1IDiBMhyxbh4YzgAglytQ2zghyD0Q7GeDoLa2Sy6XExUuqf4690kul2Fnq8JoMnM5o5ikpCTrZ+f+tDbP4q5lPD0crN7T29c8SWFhIe+99x4KhYKjuxdjZ6vCYrGga9ZjMJh5bP53PDb/O75bfxqDUZJeadpUZhcuXMDf3YkFU0YiinD5RvdMSn1TCxaLBaPRiIeHxKQpFDIenjHUyhTkFlRRU9eE68/mzGyWaLZfZ7GIFNys4fSFXK5eL2XWgu/YuFPaCLm5uXUpW6NtRmOrIjmriL+tPczExHC8XR2k+e/rz3Of78JoNLJ8+XLWrl1LTV0T7q4aHn5Aatczr2yitl5ikNq9LdvRq1cvAK7nlHU79+3vNKWqQ31nMBi4fPkyBqOZ3YfTWLB0s/VcZzWfq4udldm3WCzdjmnRzRor3d5B7ni4O/Ddd98xZ84cAB6YGIe/tws/bVqIrllPcIAbLk52vPjODi5kFOHiLN1jzz33HBaLha1bt1Kh7biX3Ryk8zWNOjzbJHJ7LnVIcysrJWna9ImDePfLQ1TXNmExi1TVNlFTr2PmvQlWGnV1dZhMJnr37s0jn26x0ulMozu002hfv4MGBCIIAnqDqYsUsP15kZaWRkVFBSkpKaRXlDMnLg4AdzvpfF5dHWdvFrP9WiZ3r19Hk8FAQ0MDixdLIWaamvU4O9pSUlHPtdwKCktraWrW42CvtkoVW1paKCgoIC0tjc9X/URWdjkWi9hl/k0mi3VTMvupb9m5cye5ubmsXbsWi0Wku32cIAhdpLQPPvggP/zwAzqdzvp8cf3ZGnNxtsdgMNHY1Prz6nrwB6GH8fsvwK9JXjqHN9HpdAQHB7Njx44un0OHDhEeHv6rkqnOUCqVXdrQXlan0zFnzhwCAgL4+OOP2b59O3Pnzu1i4/fz8j+v438CuVzO1fQOVffV9OJbHDnihoRQXlr/86JWpF4vwWIRSYzsZT02JLKX5El76hQpKSkMGSI5L7Q/F708HBFFEQeNmvanqCBAXFQQ58+f59y5c1gsklF2Z1gsFi5cLQJg++FUZr642sooTZo0CYtFpLymEZPJTKveiCBAfHggNdpm5DIZ6dklyASB/v374+LiQmZmJpnXyzCZLGRllxM/qDcgSSWWLBxPZLgfWTnlnDmfS0FBAQUFBTz22GOg6AuYwZjWMU5xw5DJ5FhqH0GsmYRYM4mkpCTee+89TCYTqzedQRQhMb5DkhI3MAiZTCD7RjmtrUYrjYKCAhqbWq3qyc5lggIk5igvv4rHnlndhcZj87+jucVAVXUTzS1GYgcGUlJWT0lZPf36elFXp6O+oZkBAwag0Wh48MEHEQSBL/eeRSYTSM0t7XaOTWYLTU1NGI1GRo8ejVqlYNmrU/D3daG6tomyCi1VNU1kXCshIbZ3l7K+vr6IokhIm1SvVW/E082B8L4+pKQXUlJeT59AdwBCQ0O7SKwH9w9ELpORmltqvXfvGy5trl74ai8/peeRlpZGREQE9fX1XMspJzrCH39fF65eL6W8qoH4gUEIgoCXR1eP93vuuQeTycTV62Vk5ZQT/7N229upsFhE4gZ2rEFBEBg6dCgGo4mKqkYupRfRqjfS2mokONAdu7ZQMGOGhaFUSsb+AQEB/Bz12mbKKxqsdLOyy5n95LckJSVx5swZLBYLqdeKKa9uYPbza6jTtuDuouHAiUwuZEjrf9igYPQGI4GBgRw+fJjY2NguNIaF9aKkVkuFtolREdI9fTKrwHo+PT3d6sRmsUB6VgkJA3sRHxlETV0TgiCQOLA35VUNLFu2DLPZTGFhIeX1jd3S6A7p6em0trYyuG0MJ98RRWNTK97ujqRf79hkDB7Ym7JKLWVlZaSkpDB69GhkCKjkErM+slcvbjZoKW/qoKM3mxDb5uTQoUO0trbSajAyoJ8PdrYq6XkSGYTRZEYQBNKzut/UCIJAU1PrLfOfMKg3mVml3CypQ6fTIYoi9fX1GI3mW+pQqaQwO+3nVCo5AQEB0iYRbnm+WGnEBZOZVdqFYfy9YBFlv8vnPx09cfz+C5Cent7lf0ZGxi0PzHaEhYXx2Wef4eDgYFWndkZgYCAKhYLMzEwSEiSp1ZUr3ceY+yXk5eWh1Wp5/vnnrS+8ioqKXynVFe1M4S9JFv4Zdu7caWXq3DwciIgMwN3LkdnzbuPovnSi43oxeXoCW9ad4U+PjMTPz485c+bw6NxHeGLZZqrqm9h85DK3xfVl8Z9uw2A0MTSqNxF9vDGazKxbtw4fHx927dqF2WzhlafH8dO5HCYnRVN4s5bocH/2Hr3C/XfF8NgDwwHRWuauu+5i4azb8HZ3wKNNymMyi6RdL8HVyY7Ivr7Me2AEU+752CohrapvwtXRDl2rgeXP3kNzqxFnB1viIwI5eTkXZ0c7np4+ksDAQNRqNevXr7eOxcZtyfzt5clczykjPrY3UQMCUCjkbN1xAVcXezw8PFiwYAHTp09H1L6E4LgEi8MnFFz/DLnClmcWvMaVtL0IDaews4WgQC++/HIVJ06cAOD7H1K49+4YRg8PpbxCS35RNU8/PgaLRWT1prOAZBPZ7glbVOOJySjZ3t02PBSdrpX0zBJrmS/WnCC/qJomrZaHH34YQRCQy2XIZTJy8ipIiO2Nl4cDzz2VRJOulVHDQrFYLKzffI7xY/uSnJyMk5MTLXojM8bEciz1BnqjiWBvVzxcNLwxW5Juj4wKRqtrpa6ujoCAAAYNGsTmb8JRKuTY2ihRKRV8ve4Urs727NiXykdvTWf3uvm8+tYOYnrfz0MPPcTFjCLm/GkENXU6UtIKGTMsFJPZQn5RNY/PGMbYEf2prm1CNLfw/vtSXLaP59+LwWTmbGYhIb7uLLxvJLoWPVHBvgC4OtiSEBrA9u3bef3118nMzGTC7RJTaGer4vT5G4xM7MvTj40hM7uM/n29+eTtGezan8rTazJxdHRkxw5JDbxxazKvvzyZwYN689m3x/D1ccbT3YHLGUU88fAoamp12FmieOWVV3B2dqZVbyE4yIO/LZ6IUiHHbLHQ0mrk7ZfvpaRCi7+PMwaDgbNnzzJ06FCefFRPQVE1Tzws2bZeySwhJNiTfYfTWfTUnQwaGMTSZTsZNWoUQ4YM4dChQ4wafTu6Fj0PTYonsM25ymy2EBXmS0RfH6ZNGERDUyvz5s3Dy8uLNWvWcCpiAIvX7MXDUcODwwfyxaFzhPt7MrJ/LwBWPzmN1zYf4rSzM/X19axdu5bZsx/mtWcncOhEJmOHhWG2WHDU2PBTcg73T4ilqqaRPn36sGTJEj766CNOvhHKa98fwtnelhkjJBqxwb7Eh3QwuAkhAWQnJlL0/7F33uFRVekf/0xJJr33HkICIRBq6L0ZEEQQpBkbIrrYUFYRdUVQLChIEVhWQUFQBFRARJBeUymhhZDeezLJZDL9/P6YZEKkiOzi7m833+eZZ2buPeU957z33nPPed/3m5fH119/zayp09Bo9QyMaUteYRVtgjxwtLch2M+NHtFBTBnTnW92J+Pv78+BAwdYuXIlEomEpadOMj4ykse7dKWoro6HozpyraqS2LBw4rp0QSGT8Y/vv0elUrF9+3YemjQZnd7I8jceQqs34NwYK/L8lQI0OgMzJvXlmG0q77zzDl9++SXhUQPp1jmYb7YnMPmhnlxJLya8jRcNGj0D+0bw6ZpfmTKhJw8/3I8lS5YQFRVlmdzZ2FhhMJjvuQ4OCjQavWUCZ2NjhUajITAwkEuXLgHw7bYE3nnzQdKuFpOYkk3vnmEM7BfB62/vsPTbK6/cWdDqu4Hpv8AR415AIv4VSyit+I9FXFwcFy9e5JlnnmHkyJHs37+fFStW8Msvv1BUVMSjjz7K1atXLelNJhMPP/wwCoWCOXPm4O3tTW5uLvv372fhwoUAvPbaa6SlpbFo0SLA7Oxx9uxZNm3aRM+ePUlISLih3O+//55Vq1Zx6NAhKisrGTRoEM8//zyjR4/m1KlTLF26FHt7ew4dOgRgcSb54IMPWrSlZ8+ePP/88xgMBrp168b8+fMZOXIktra2Nw3MfDO0bduWNm6PAuDt68ymnS+yY0s8XWJCCAz2oEGtw7lxu+e3GDf3c4oraunWPoC18x6+4fyVnBKG9+sOwIIFC5g5cyamxoC0QggKS2qorFET7O+Gk6MNVnIZry7+ns2fme1oRo4cyeo167C1sbqh7M+3n6K4vJa3no2lV69eFBQUALDrQDxODjZ4ONvj3OgsYRJgMBiRyaRU1zWQllNKcXoykydPZt68eZxObZ7Uxw7vyGPT+uLn43JDnTeDUqnE2toajUbDvn37+OCDD2hoaCCmi2DjKn+knofZsmULDz/8MMPGLyPQ35VFr48j+LpgzKu/OMLPB8wG95qy7RaP8N+i6fb0R/Lo9AZL8GqdzoBWa0ChkKPRqHF2dr5pnryyaoK8bu3FfTss/vRnwkK9mDyuBzq9gbLSEr744gsOXXTk6Wn9iR0chYO9AnWDFgc7G+SNAZwzcso4d7mAyWN73FCm3miksEIJAkJ8bnwBA/jll1+Ijo7Gz8/vpueXfLYPdzcHpk/oibW1HIlEwoULF4iNjbWwN/zt1bEMGxR5Q15VvRatTo+jvTXW1tY3nL+WVcqB42lMGtsdNxc7QIJEAvHx8cTFxdG3b1+WfLLqhhVHgL0HLmA0mhhzX2f0eiN5eTl8+umn7Nq1i937ThEV7otM9sdWVQxGE2VKFZuPnyXCz4NxMVE3pJkzZw7fffcdcrmcFZ/vInZQFNZWMksAZ6lUQnmVilMpmUyI7XrTemrqG/jHgUQifD0Y1/PGOsDsjPbXv/6V91ZsZ8LIztjaWHEpo5gDJ65y/5Aogv3dqFaqqVfrcHSwwdnBmpqaGnQ6HQEBAeiMRsrr69mZdoWJUVG429ohlUgQmO1LvziTwt/GPgCYzQT27DuKv7ezZXXY2BjA+c1lu7GSy3jzL7G0D3HG09OT2tpa0jOr2PpDEokp2cQO78gjD/fG39fV8hKtqteSX1jF2s/ep7S0lO3bt9/QRiEEGo0elUoLmHcL3NzskUgkln5uYu6IHdGR6ZP74OPtTHFpDZu2nOLXQ80BnKc/5MbMmTPvcKT/GJ5KfvyelPt5jy/vSbl/Flonfv/liIuLo1OnTpSUlHDw4EHc3Nx49dVXGTVq1E0naGD2ev3oo484dOgQarUaPz8/RowYYXkzUyqVvP766xw/fhxfX1/mzp3L888/z9atW+nSpcvvTvya/i9fvpyamhoGDBhA9+7d2bRp0x1P/AA2b97MmjVrqKioYPbs2XdshOzv799K2dZK2XZHeVop21op26CVsu1eU7bdyhnon8UTSU/ck3I3xGy4J+X+WWid+P2X47eTpXuBc+fOMXnyZE6dOnWDofp/Ivz9/X8/USta0YpWtOJPQevE789Fq41fK/4wmrzQIiMjKS4u5t1336V///7/LyZ9rWhFK1rRiv8N/Dc4YtwLtE78WvGHYTQaWbVqFbm5uTg6OtK3b1/mz5//7xarFa1oRSta0QoL/hti7t0LtG71tuJ/Dv7+/oRH35mdy7XUZjuX4P53aLNzotme5m7ytOn5+/ZHWYnN9kd3Yxd3V3Zhd1HPndgFXm8TeCd2ZPAbW7K7kCu09x3a38U39/MftfH7s8blbvLcK/2/Xo/vxl7vbuw17ybPH7aLu4s67sbG82767E7qub6OP2J714S7sfH7I7aE92qrNy7hqXtS7qZen9+Tcv8stK74teJ/Dra2tvSKacPMxwYQFOROVVU9O3amsO2HZEua2OEdmTa5N96eL5Kfn8/+/fsZMXoibQI9LGm0egMmk8BKLqW4vJbUtEIG9GiLi9PLCCHQ6XTUqQ0orOUorGWkZZXx6ZeH2PBB3E2kegUhBCqVivVbk0g4m81LTw0lukOAmRjdZMLVudnTODt7ArGxsRa6r3kvjWLUsI43lLr7l/N07hiIj7cT+XkTqKqqIioqCltbWzMtWpUKR0cbZI3UYuUVdSScyyYs2IsAPxdsrJ+npKSE+Ph4OnUZSNs2Xuh1BkxCYGNjRXGpko3fnmbU8I7XxX77awsZTKq/k3TyE77cClcyoLhUwovPT+fZ2a8BguxsqSU8z1NzN5GeWUqgnysvzRzWGAAahDAhk8nILahk7cZjZDWSwAwdOpRlnz6Lu5uZEstkMmEymT00C0tq2PjtaQ4cvUJ0VADvvvotPXv2RKFQIIRAIpFgMBi5fK2Y5esPczXLHFJo9JCOTB8fg5+3C3LZK0gkEqqqqnBwdKK8sg6NRo+/rysarZ7EMznIpBJ69QjFzkaBRAKVlU/w2WefcahRnQL8XFk0fxyhQc26o6rXcjIhg7VfHqVNmzasWLGC6OhopFIzXZ3BaKS+3syba6Owoqi0hp8PXKB9uC/hoV74+bxCQkICISEhePv4IMEcNw0J1Ku1HD2VzmfrjzBjej8mj4u5YVwKi6rx9HQ0ezxbyy2BmM+l5jNn3reWdM888wyjR48mKioKhUJhOV5Xr+Wl97aRllXGqr89TLeoprAmzc4JRpOJY4kZdI70x8XR7HGv1ugpr6rDzkaBi5MNKrUOdd3DuLu7o1KpuHKtmp/2nmfS+Bi6RgdZ2EhKy5VUVtUT6O+Gra01hQUTSU5OJiwsjIiIKJCY4wQ6Otjg5GSLBFDWNnDsZDphoZ74+7libzfHElhbb4SCEiUSICTA7DVt9prFfJ1uOIR1WTg///wzCoWC2joNLs52CGFul8loQiaTUlhcw8ZvTnPgSLOX6jPPPMOUKVMIC2trCXpcVVPPq+/90KxjQzsy/cEY/HyadezTTz/FM7Qf9w2MxNFeQWGpEkd7G9xd7BEIZFIp8Wez8fZwxNv9WVQqFUlJSWz+pRRhErz01FA6dwhAgjlIukxmDnheUVXP1xulLFu2DJPJxJhRnRkysD3hbb1xcrSltKwWVxc7SkqVbNxyigOHm9vy0EMP8dRTT+Hu7oBEYmYrMX8LtFoDKpUWhUKOjY0VcrmUq1evkpWVxbp167jQyBEQO7wj0yf1xsfbieIS8/3i+v7q1evmbD3/CrSGc7k5ZAtuxnbeirvCypUrWbVqFRMmTPhT6x06dCiOjo5ERt4YlgHMHrSzZ8/mscce+1Pl+k9F586deTzuPvYfusTSVfspLKrhuVlDUdY2cPVaCf37tOWNV8eweWs88/46AycnJ2bNmkW9RodcJmXnwQtEhnlTWlGHrY01Lyzchk5vYMqYHpSU17LonbdITk5m0KBBKBRWKKzkvLNqL67Otjw9uT8z5n/N+u2n2bI7mcgwH1wc7bCSy1i3bh1ubm7cP6IHw/q3p7xCxcJle4jpGoyvlzMNGj3L/3EIR0db2oUHcf/997NhwwbcfHvTv3c4cpkUJycbvtxyki++PoFCIee+oVEcP32N9z/dS0xnT7p27UpycjI/Hcyie+dgc9BXJBw+eRVnJ1sqq1T07taGlNRcPlnzK0venU1JSQlz5sxB3aBj87Z4+vcOBwT7j1wm6WwOc54dga+3Mz/uOcvq9UeoLDlHVFQUVVVV2NrKQXeKjPRkNFoY98AozpyvpmO7WmK62IE8GKWygXPnzhEQEMCw/u05fPIqy9+dTFV1PadTsujYzg+NzsCFK4VcTi/mhaeGsn/fPvz8/Pj22285d6GAbTuTqVNpCA/zJievEhcXe+KTs3hiaj/SrpVgb2fNxHF9KSsrw97e3kK3VVSqJCuvgqen9WfvkYs0aPRMeWgyxxcAACAASURBVKAH9Wod5y8XcOn8STp06IBCoeCLr0/Qo0sI3p5OrPr8EIdPpPPE1L64ONvhaG/D7v3n2bH7DJfOHWTOnDnU1mnJK6hiw6rH8fFyxmQS7D14ET8fFxzsFTjY29C1UyBPPj4FtVrNuXPnKK2WEOjnSmV1Pa7OdjQ06Lh8rZjDJ67yzGODyC+sZte+84T42xAVFYWdnR37Dl/C38cFhUKOyST46cAF+vYIo0eXYIYPMN8Tnn/9W+KPbaNfv34A7P31AkeOX6V/n3CkUiknTqdjb6egTagnV64WU9gY5zJuSm8aGhoIDw/HaDRx8VoxXu4OKKzl3D+4I7sOprL/ZBpb96RQVlnH+tXvs27dOoYPH47BJKV9G2+MRhNpmSVk5lUSGuCOo4MNV7NK+XT9Ibp3DMLHy41Zs2axefNm7osdR9yUPmg0etxc7dm19zzeXk64uzrg4+XMF18dZ/maA+z7aS1jx45l69at/PBLGQWF1YwYGoWNworTCRmciM+ge5dg2rbxIvlsDks/+xVfDx1Hjx4lLCyM0+fziW7nj4+nE2cu5uPh5oBWZ+BiejHlVXXMmtqfoUMGkZubS0BAAOcu5vP11njU9Voi2npTWFyDk5MtBw5fZtYTg0i7Zu6zqtIE3nzzTaKiojAYTGzckYBMKiUk0J1RQ6LYfSD1Bh37cfuXDBgwgF69etE22JPFq/dxMiWL8SO7oLCWs+/oZVLTCokKN/Mrr918nMVv/YU9e/YwZMgQHpsyglFDoqiorudadhmhQZ7IZBKuZpZy5VoJbYI96N6tKyaTicTERIYMnUhFpTkAeWQ7P/YfuMBHy/aibtDx0nMjSUsvobComqqyBLy8vEhOTmbgwBEW/ZJKJWi1Bqyt5cjlMmQyKXq9EbVax+jR92E0Gnn//ffJK6giwM+FN+eOYfO2eFZ/fhh1g545fxlBWnoxhcVmHfN0rr5nz8zvC3ffk3IfCnjgnpT7Z6HV8vEuERcXx8qVK//dYgCwfft2Ro8e/e8W4/8NBg0aRFZ2Oes2HCMvv4pfDlzk+11nmDrJHJB6ysReHD6WxvYfk8nMzMTDw4OamhoCvF1ZvfkYy786zNafzyCXy9DqDPTpGkqQnxu1Kg15xdVs3bqVjRs3IoSgXq2jvkGHh6s9763eh95gZEivCKqUajRaPR3a+nL2cj7V1dV8+OGHjBgxAiHA2dGGd5b9REZOOcH+7gjMAXqTzucye/431NfXExYW1oIhwdPDgcPH0/jq29NcuFKIt6cTZeV1BPi7UlKqJDIykjNnzgDmVSGJBNRqLRqtnoWf/MSSz/bToZ0few9doHt0ENl5FRQWFhISEoJarcagNzJsYCSHjl9hzYZjDB8Uya6956moVJknpesOknq5gHnz5rFt2zY8PDzAZGY8GNQbXn42kNHjl2IlV2ElzQXb+0Gfwc8//8y2bdswmcyBm194aigujra8s/QnRgyMZOuuZBYv30uf7m34ce85MnPKefrpp3n66ac5f/48by7+kd37UgnwcyW3oBJ7e2uyc8pR1Ws5fvoaUx/qiYuTHXK5nAkTJiCXyzmdkkVNbQOBfm5s2HYKnd7IgyO7ALBoxc/M/2gnn/zjgIU2MCUlhSED2mNtJeN4QgaD+7Wjb0wb8ouqcXdzICO7jKVrDrD/yGWWLl3Khg0bmDaxJ8MHReLkYEtBUTUZ2WV8tGIfiz7eY4m51rG9P66urkyZMoWZM2fyxuIfqVE24OXhxMmkTDZti6d9Wx+27kzm6OlrODnasP/IZVxdXamvr+fs2bNcSitCLpNyPCGDqpp6BvZqy7K/H6Bn11DKKuowCUHqlQK++OILcnNzMRgMrP3iKMMGd+DQ0TS++z6J8DBvCouqKSlVMu06vuS4uDi6djXHtPtk/UGefftbsgsqKausQy6TMmlUV+rqNVQp1Xy39yx79uzB3t4eLy8vHGwV6A1GbBVWvPrhj6zceBSZTMqZi/nERAeTV1zN1Bc3kJGRwZgxY0hNTSU+KROZTIpCYcXh42l8uvpXcnIrkMtlJCRl0a9POCVltcTHx/Pggw+yZcsWMrLKGDGkA2VltWi1BgqKavj7hqMcO5lOZXU93bsEk51bwaRJk3jjjTfYvn07XSMDkMsk5BZW0aNTEJ9tOsri1b/Qp2so67edxkouQ61WWygR5729g18OXCTA343c/EqsrWQ0qHWUlNVy/FQ6Uyc291lTYPVPvzjE+q2nmP3mtyhrG5DLZTx4X6OOLW/UsXUHLAG1hRDkF1dzIjmTAT3bculaMbUqDSUVtXy64TAACms5RxKukZmZSWpqKs899xwebg64ONnx4ep9DOodQbWynuOJmUSG+7J601HUDXoKCwvp0sVc9/Yfk/n629N0jDRHNzh8LI28giq++z6J46fSmfZwc1uOHj3Kvn37sLKSIZVKUCrV6HQGpFIz84eNjRX19VoaGvQYDCZycnJYu3YtBw8eZMiAdkyd2IvDx9PY9mOyuY4fkjh+umV/NYXwuhdo5eq9OVonfv/BaKIW+j24ublhY2Nzj6W5Mwgh0Ov1/9HlCiEoLlW2OJaYkoWvjws+3k60j/AhMaWZyzgmJoZr164hlUpIPJ8LQPz5HPy8nElNKyS6vT/do4KwtpJx5pKZCq5z587I5XJcnGyxs7HiXFohJiFISs0lur35hts+zAeFtZz2bbzZtm0bBoOB8ePHI5FAg0ZPvVqHr5ez5Y3aZDLRKdKPtiGeFvq6mBjzNp5EIsHeTkGvHmF8+/lMFs0fR/sIX5LO5dChnR9WVjJkMhmpqal069aNTh0C0OmNWCusUCjkyGRSks7lYDSaUNZp8PV2wbORv3jAgAGYTCbOXyygfbgPiSk5JJ7JxtbGmvAwL2xsrLBRyC3bcgCOjo6Nv67TYcUIwAASKV7Bc5BIFGDVvgWTSPL5HNqF+XDxahFODrZ4ujuScCabxEbZOkX6k3A2m5iYGGJiYjh82PxAlMultA/34VRCJr7eLgQGuHE2NY+EM9l0aOdHpw4BnDlzhrCwMCQSCfnFNWh15q36qAg/klJziI5sGeZHLpdaeKzt7OzMgXivFnE6KZMO7fzo3yucxDM5CCEIDfLgyxWPM31iL2QyGUeOHMHX24WYriFm/TqTQ3CgO106BpJ0NgeTSeDt6URVdT1nzpyhrq6ZEkyrMyCEoKFBx6C+7TjbSFeW2NgWa2sZDg4OWFlZcfjwYTpF+lvkcnOxx9fbhZz8CoQQKGvVyGVSvv37TM6cOUNwcDAKhQLf6/S8SfetrGSUl9fRob1fi7F0cnJCIpEQfy4HiQTsbKwpqahFIpHQr1szrV4T4uLiyMrKwspKhlwm5VpOOfVqHVZy8+PGwV6B0WSiUztzf2s0Gst2X6eoAAD8fV1ITM5GIoF2Eb6YhCAwwI0unQLZsPoJnnvuOWQyWfPYR/hga2uF3mBEWWvmKU5IycbVxR5fn2ZdDgsLY8iQIagbdFxML8bJXoFMJiX+XA4JqbkYTSamPRCD3mBEpVIRGhpqCWzcVM+phEx8fVywtbUi9WIBCSnZLfqsd+/eSKVSEs5mN16b5u1hqVRC905BN/RXE6RSKTmFZi7y6Hb+JJzLbnG/AHB1tsPTrZlXvOk6y8wrJ8jfDYW1nJTUPIL83TCZTERF+HE1s4SQkBAOHjzYQrfbhHreIENicvYN4w9mTma93hwQvum3TmdECNGCr/l6uWrrNI33i+wW537bX/cSrZRtN8f//xb8GzBv3jwSExNZtWoV7dq1Y+jQoS3Of/XVV/Tr14/evXvz8cfNAT1nzJjBkiVLWqTdt28fvXv3Rq/Xk5CQQLt27Th27BijRo2ic+fOaLVa8vLymDFjBtHR0fTt25elS5e2oCobOnQo33//veV/QkICo0aNIjo6mlmzZlFdXX3b9uTn5zNjxgy6detGt27dmDRpErm5uZa2NgVTbsJvVzvbtWvH9u3bLcGiT58+jVKpZPbs2URHRzNy5EiOHj1Ku3btWrAtXLp0ibi4OKKjoxk6dCirVq2y2ODcrNz169fTqVMnamtrW8gzduxYvvzyy9u28bf4rUtTVZXZVi4o0AO5XEZVdbPDgZeXF2q1+WGiN5jlayI/H9AjjB4dg3BzsSP5Yh7bfjnL8OHDLXyVAJ9tPkZ6tpm4vbKm3kLe3vTt5mLPI488QnZ2NgsXLqRaqbYwVjSRqFdV1yOVSpn//Ci++ORRTp8+bZEN4FJaIRKJhLXrj7Bk5X6cHGyRy6RotXoUjVsySUlJDBo0CBsbG7w9zA8MuUyKXCbDxckWo9FEnUqDVSNrwj+WPkpWVhZdunQhLy+Pb39MRC6XUVlTb+kfd1d77O0VyOUyHBtZQ6ytrRkwYEBj65tvMRJ5ECABiSN2CvMDDl0K33zzjYW6r6q6Hntba6pq6pvbXlNvkc3d1Z6qajXe3t54eXlRXl4OQHQHf+RyGZPHmyfC3/2YxKnETKqq61FYy/HydKSsrMzSXw0a84RUqzPg7upAVY26BWE9gLOjrWXFJyIigto6DZXV9VQ2lulgr2DcqM4ApF4uYPOOBKaOj2Hu3LmUlZnH29fHBalUwqmkTFasO8hHCx5i//aXkEolSKUSyirrLGmb4N7IgDBycBSqeg0Ll+4x605jvf4+rkilUuRyOeXl5bi7OljkanoIuziZ7UHVGj3vffozb36wk5kzZ1raM2Fcd4ueN+l+0wq2tbUcR8fmF8mmCZavtzOPje+Fk2Oz/rg5t+yzCRMmMHr0aEJCQgDIyK0gv8R8/8krrKKuXkNogDuqei2ebg6MHhxFly5d8Pb2RiqV0qVjIHV1DchkUiqr63FxtsPBXoEEGnmoJfyw+yzPPPMMc+eagyo7O9lZ9M9KLmP/wUsWXbJu7I91Kx8jKyuLY8eOER8fT3mVCmdHGwvPcGWjjtWrddw3MJJjiRl4eHjg5NTMPDJ0UKRZxyaYdWzt+qNcyyy16FiT/ru6ulrKBHj0od7YKMw2rB7XTdpuhm0/nzXrgKu9+TqrqcfjN3rZpKdSqZTFixebmTaKqi3pPvnHAc5dykcqlfLG86Po070NtbW1fPPNN5Yymvrst6iqVt0w/o6OjigUZjtQFxc7Ghr0NDSYX8KFEDdM4CZMmEC3bt04cuKq+X5x3b3UXEfL/mrFn4/Wid9d4I033qBr1648+eSTnDhxogWlzaVLl0hLS2Pjxo0sXLiQDRs2cPToUQDGjx/PTz/91GLStmvXLu6//36LcTvAmjVrWLx4Mbt27cLKyopnn30WhULB9u3bef/999m+fTsbNtw8gGRdXR3PPfccffv25YcffmDw4MGsXbv2tu1ZuHAhrq6ubN++nR07dhAXF4dU+sdUY9WqVcTFxbF37146duzI4sWLycvLY9OmTSxZsoQ1a9a0SF9dXc2TTz7J4MGD2b17N++//z67du3iq6++umW5kyZNws/Pj71791rOp6WlkZmZyYMPPviH5DWbct/s8O2d3H979uSZLApLa8zE9h2DGTu0EydPnmzBODJjUh8iQr1uWaaxUR90Oh2FhYW4Otthb6dg35YXiB1sXnFycbajXq1l2+4UPlj1C3379m0U1yzRyYQMAErKa0k5n8viZebJQlQ7M53X1i+eplOnTgQHBwPQuWMgVnKppT3G6wjTm34tWbWP2NhYysrKCAkJYdK4HtelEbfsrvvvv/+6Fb/rIUMisQZTLRJ5iDl//XpcXFxYsGABMpmMDhG+txqZFvX9NhhBk73Q19/FAxD3cB/275jDwtfH3aa0loVeX2R0pD/frmr2CExMTETdcOMKfFaOeeKpqtdSWl6LrY01zz//PD///HOLstsEufPM44OQSCUYjCaL/EH+N9Kx1dZpAEg6m02Arytznx3R4vzfP34EMD/4hwwZcvMmNfZibW0D+w5fIiO7jJSUFMuL1aD+7W7TIbRQ9Kb71co3JzHz4X4IExxPymxRD0Dn9v4WzmGDwWBud6A7TvbmB7zRJDielIlUKsHZ0ZZZ0/oz79mRmEwmrK2t+eWXX1DYWHH5arGlzKb7kNFoIi3dvIV69ORVVq5cyeOPP95CZIlEwq695yivVN3QHHs7BSaTCa1WywMPPEBEqBehAR58t/eMJY2VXIa9rTUJ53KoqWu4QccuXjJ7nm5u1LHHp/clPMz7tt04PrYLcQ/1YmXjVu3NdLv5JQmu5ZTdcP6319hn70wmPT2d7OxsunTpQkZOWYuCHxzZmV5dQqhXa/nupxTiz2bj6urK9OnTbyvr9fj2q2dIT08nPT2dxx9/3LLCp1JpsbW1xuYmlJJgppz86KOPmDt3Ltm5FXdc371C61bvzdE68bsLODo6YmVlhZ2dHZ6enri5Nd+8ra2teeeddwgLC2PkyJH06tWLpCSzC+Lw4cNRqVSWVS+lUsnRo0cZN67lw2nu3Ll07dqV8PBwTp48SWFhIR988AEREREWjttbTfx2796Ng4MD8+fPJywsjKlTpzJw4MDbtqekpIQBAwbQpk0bQkNDeeCBB1rYjt0JJk+ezMiRIwkMDMTa2pqffvqJN998k86dO9O5c2defLGla//mzZvp27cvM2bMIDg4mF69evH888/z3Xff3bJcNzc3xo8fz65duyznd+7cSb9+/XBxuTOe2SY02Vg1wbXxbTmvoBKDwYjbdW/ZZWVl2NmZV1CsG9+S3Ro9bE0mE8XltZRXqbiQXsTTk/vR0NBgISkHuJZTziMPmFcJ3FzsLCsBTTJ8ueM0I0aMYPjw4cTFxaHTGTAYTDz58kb2HDRz09Yo1dgorLiWU8bew5c4f/48gGXFS1nbgMFgtKwiVlbXYzIJ3BuN1p96cSMjRozgww8/RKs1e33qDSYMeiNanQFlrRqZTIqjg42FhD09q5T09HSLPdHEsd0tdbi5NK/G1ddrMRiM1KnME5a4uDiLfND8koOpzHKsXm1uu8TtHwAWb9ZOkQEIIXBzsbesFLi52Ftkq6qpx83FjrKyMsrKyvD09LS012AwWlYxTiRkkJdfyZdbTqLVGSgrr8PLy8uyumZrY17pUVjLqaypx83ZzrKKC5CWWcrn3xy3PPzXrFlDZbUKd1d73Fzs0OkM6PVGcgsqm/NklPLJmv1IJBKafOaKS5WYTIKxsZ05ejKdx2dv4KkXNyKE2QvXzdWeoKCW2396vXkLrahUyQcrfyF2aEeC/N1wc7FDqzPw9NxNZntInY6MjIwWcun1Ros+mDu4RdHU1JgnyK4u9hY9b9J9g8GItbUcnc5gGUvAsmOg1xt5e8UeRs1cTUXj2FRct5qTllVKZWUlO3fubKZ3VGlavPRIJHDxahFGk4mVXx1h6osbOHbsGCqVCgcHB+KTsrC2lpv1zNWeGqXassVoMgm0jbKlp6fj5OSEs7MzI4d2QAiBWq2zcMc26Y2usT9eef1bhg8fztChQzl69CjOjrZkF1SQlGreRnd3scfL3QGZTMrAnm2ZOqYHERERyGRmE4mDu+cyfHCkmf+6cTJ6LbOMqRN74uZib5Hr+v564uE+/OXRQcx7/weKGk1LKqtaTkqH9WvHe++9Z/l//fXr7mKPq3Pz/aIJc9//nsTERIqLi5k4cSLFZbW4udpbxmLWIwNY980J8/0iuwxlbQMFBQXMmdMc9kVZq8ZgMPJbuLrYo9MZmDn7S0aOHMnIkSPZtGkTJpNAIgGNRo9arcPe3rpxPCWYGl8aFQo5a9as4bXXXmPHjh2WOn67kv7b/mrFn4/Wid+/GCEhIS1IzT09PamsND8cbGxsGDVqlGXisnfvXgICAoiOjm5RRpNdEUBWVhahoaEtthy6du1KeXk5KtWNb7bZ2dlERUVZtmfAbG92O0ydOpU33niDGTNmsH79eotx8h/B9TLn5+djMBiIimomMe/UqVOL9Onp6fz666907drV8nnjjTcoKCi4ZbkA48aN4+zZsxQWFmIymdizZ88NE+ffg0QiwcfbucWxnt1DKSlVUlJaS1p6CTHdQy3nkpKSCA8Px2QSxESbV8x6dQmluFxJxwh/UtMKSb1aSJCvK1aNE4/U1FQMBgPKugb0BhNWchkSCfToGExqmnnlIDLMGyEElTVqcnJyyMnJoayszByKQS6lWqkmp6AKIcz2YDKZlAtXigDz1qNEIrG8VBgMJtKulRDTLQQAk0mg0xuwt1dw+WoRBUXV5OTk0KlTJ1JSUkg+l4O1lczi4CEExHQJRiaT4uRoQ3Gp0rJykpycTGRkJDKZlGtZZcR0C6FX91AaNDquZZah0ejQaM32csGB7vTq1YuSkhLy8/OB5oeL0DWFy5FQlrcSIXQI1Vpqamo4fPiwpb8uXi2iYzs/lHUNlFfW0bNriEW2C1cK6dk1lKSkJJKSkhg8eHCL9vfrFUZxqRKl0rw1H9HWm8tXi7hwuYBu3bqRmZmJEIIAXxcU1ma7xItXi+gRHUzqleZYYvcNjOTp6QPJyzNPDFQqFReuFBLVzo8+MWFculrE5fRi2of7WvRJpzNgb6dAqVQSHBxMcamSpLM5gHnF1mA0UVhcg5+PM1KphLxGe66OHTvi4NC8BaiwliORSHBztbe8HFhZyejZLZTLV4vIyatEpVKh1+vp3bt3C7mqauopLlUSEuhulsurpZ5XV1djNBopq2jW8ybd1+uNeHo4cjmtyPIwb8ojhGDH/nMcOHUVo9FE7IBIhBCcSMm0pOvWIRBfX19Wr17N/v37LbaKzk62Zu9xCcR0Cqayph6ZVMqJ5Ex0OgMDBw5Ep9Mxfvx4ks/k0KGdL+kZpcR0D8VoNFFQWIVEIsHD3cEiW1hYGEqlkpkzZ/LolL7k5FZQq9IQ0z2k+ZruEUp1tbk/LlwpIicnh4kTJzJixAgkEgmBvm7kFVWh1Rno1SWEkAAz89BfP/geZV0DmzZt4sqVKwgheOq5L9n58znS0kvo16ctxaVKjEYT1lYyevYIbdFn8fHxCCGY8kAMf313B8mpefTuZm5LSqO9JsDY4Z2Y//woFi5cCJhX/Ht2NsuferWQnp1DiOnUfL8AqKlt4JEHexIQEMC4ceNIS0vjQlohHSN8yS+qRqczIJfJaBPogUwmtei2+VpshsFgIiu7nN+iZ482XE4roqCw2nJPqqmpQa83YtV4vzCrpARraxkSiQS93oiNjRWOjjbMmTOHHTt2tLgmY7qFtqyje+gNOnavYEJyTz7/39Eax+9fjOu3bAGLEX4THnzwQWbNmsWCBQvYtWvXTScttra2lt9/NL52U3yy3x67HaZNm8aAAQM4dOgQhw8fZuXKlXzxxRd069at8Y3O1CL9zZwsrncuuROZ1Wo1Y8eO5Zlnnrltut86rfj6+tKzZ092795N586dUalUDB8+/Hfrux5Hjx6lX7/+zHhsAEkp2bw9byxOTnasXGs2fv52ewLvvPEgPboEM2NGPBUVFbi4uJBfXM2z0wcQ7O/Gw6O6kVdcjaebDUkXcmkT4I63hyNVNfWMHTsWHx8fJBIJdjbW9OgYxKdfHWb5mxNxc7HjWHImcpmU+/pHUlFdz7PTBlByZTK1tbW88soryGRS6lQa3n75ftZtPkFFZR0e7o6oG3R0jw4idkgUbm5u6PV6oqKiKKy1YvaMIfj7uRIZ4UtVdT0hQe5YyaVIpVLyCqoI9HdlxqT3GT16NMuWLUPqYH7ZkEqlODna8t7rD9KurQ+XrhZx//BO7Np3nk6RfmxacYrjx4/j7OxMSZmS/Ycv8dzMofTv3ZZfj1zhgdjOuLs7IgGeiuuPl4cjSqWSoUOHsnbtWl54bgoSqSca2WNIbR4h9/Je9EZ7iku0VBXvwsVrBvIGA5cuXWLIkCHIZVKW/f1Xlr87hbdfHsOvx64wZVwMY0d25nRyFg/c15m2oZ4s/Nv3LFmyBF9fX9Z8HMD3u1PIK6hi1PCOZGaXEzusI/HJWQzsE0FltYrL6UWoVCr+/ve/o9Vq6dO9DTKphPLKOl54Ygg2NlYcT8xg84onuJBWROzgKDZ/n4C2+oLFgzg1w4TeYGJA73A+XXsAeztrnn50IAVF1bQN9eKdV8fSo0swEozMmDGDVZ8f5cDRKzz16ACcHW0Zc180MpmUIf3bYTIJrK1kZOaUY29j5MyZMyQlJVHT4Iyzky1VNfX0iwmjU3s/8gqrWPrOJJwcbVnx+SHahnpRWVlJSEgI3bp1o16XgcFoYmDvcAwGI9//fJY5s4aTdDaH7p2DeHvuGE7EZ/DD+lScnZ2RSqUUFlZzKiGDF54djknAnr3n6dMzDE9PR1LO5rBlw9O8MHcLj7zzjsVeb2JsV+QyKZ3b+xMS4I5eb+THX1MBGD0oitdmjiAzM5OamhqCgoLIyq+gfRtv1A06PnrtQVRqLY4OCnp2DuFkcibhIV787fnRjat1agYNGkTKuVzqVBpkcilDBranTqXB1dUeIQS9erRhyfJfiB3ekVdfvI+cnByeeeYZ3v34JxzsbXj1xVi8PR159cVYapRqBvaLAAE7fz6Hv58rsx9fxvjx45FKpZy9nE+Ajytvzo7lRHIGsx8ZiF5v5PTZbIb1bY9MJmXz5s2MGTMGgDmzR/D97jPkFVQyakQn8vKr6NY5mF8OXOS+YVFUVqnwcHcgAyzb6RIJREb4ENMlmMlje6A3GNm537wSPm/2fdw/tCPbfzqDUmleDUxJSWF23EB0egMnEjNY8NIY9AYjJeW1PPaQ2flFAoQFefDC7KcZNGgQL7zwAh/8/RRKlYa/PjOCw6fTGda/HdPH9+TytWKejRuIvZ01nTp1QghBbGws1Wp73FztOZ2USUS4D+Pu74qToy1tw7wZ2C+C19/eYblXvvLKKyQmJqLTGTCZrHFxsUMqlaLTGXBwsEGj0aNQyLG3V1Bfr+XVV1/FxsaGw4cP4+hgwzfbE3hn/oNcSS8mMSWbPjFtGNA3gvnvNNfRtJvSij8RkLzmUAAAIABJREFUohV3hccff1wsW7asxbEVK1aIRx55pMWx1157Tbz22mstjo0YMUKsW7dOtG/fXuTn51uOx8fHi4iIiBZpjx49Kjp37iyUSqXl2JYtW0S/fv0s/4cMGSJ27NghhBDi66+/FkOGDBFGo9Fy/uWXXxZDhgy547Y99dRTYtGiRUIIIT766CPx5JNPWs5ptVrRs2dPsWLFCsuxiIgIER8fb/lfV1cnOnToIBISEizHTp8+3SLdkiVLxKRJk24rx2/LbcIPP/wgRo0aJebNmyfmzZt3x+1qQlhYmHjtrW3iWmap0OkMQgghDhy+LAbFfmj5/LT3nKW9GRkZYs2aNeJaTpkwGIzCYDQKo9EoNFq90Or0QlnXIIpKa4QQQtSrtcJkMgmTySRqa2tFUWmNUNY1CI1WL/KKqoQQQoyfvU689eluYTSaRFJqTos8NTU1Yum6A2LqXz4XCWezRYNGJ5R1DaJGWW9JYzKZRF5enhBCiJdeekkMn7BUnEk1/zcYjEJvMAqj0SSKS2vEzr3nRF5BpdDpDKK4uFhUV1fftE9MJpMwGIyipLRGnEzMENl55aJBoxVCCFFUVCS++uorcTGtUGi0elGn0ghlrVrodAaRm18pFn38k3h1wXaRkV0mTCaTUKlUN5SfkZEhhDDrakREhIiIiBAdOnQQu3dvF5WVlUKn0wmTySRmvPyV6D/uIzH12X9Y2t/QoBP1aq3Q6vQiPatUvPz2d6Jnz55CCCHWrVsnausaLP2i1emFRqMXBoNR5OZXip2N47jgg1231Ykr14rFQ7P+LoQQolpZf8t0tXUNIiO7TDRodKJGqRZJZ7NFVm6Z0OkMQqsz1yuEWUcHjvlIDBzzkZg+6x8iK6e8xfjV1jaI/YcviYlPrBETJ068ZX16vUHo9GYd3X/k0i3HzmQyCZ3OnLZGqRY7954TIyYtE0dPpwudziBMJpMQQoiKigqxfPlycS2zVGh1elFb23DLuic/uuaW5xo0OvHEvE2iz8Mfiz4PfyxWbzkmhBBCqVQKrVYrSktLRdL5HHHwVJqoUtYL43XXTL1aa5azVn3L8rOyzX1qMBqFwWAU5RV1orRMKTRavSgqrrllvuv7o6amXpxMyBDZueVC3aC9ZXqDwSxXg0YnNFq9OH+lQDzx2iaLjhkMBqFSaSzlahp1Uq9v1LE9Z4UQQjz82Brh5+d3y3pOJF4T/cYvEf3GL7mtjtWrtUKj1YusvHJRWX3jtXQzrN541HK9aLR6oTeYx9xoNInS8lqxYcMGIYT5frFh0/GbllGjrBfvfrhLDLrvAzHovg+En5+fWLduncjKyrKUZTSaLL/Vaq0oK6u16PxvceZ8rhg4+kOxeOkeyz0oN79SLFqyWwwc/aHl89BDD91RG+8GD574yz35/H9H64rfXcLPz4/U1FRKS0uxsbHB2dn59zM1Yty4cSxfvpzu3bsTEBBw27T9+/fHz8+PefPm8dJLL1FcXMzKlSt54oknbpp+7NixLF26lMWLFzNt2jSSkpI4fvx4i62k32Lx4sUMHjyYoKAgSkpKuHr1KoMGDQLMoUy++uorDhw4QGhoKJ9//vnvhlVxcHBgzJgxvPfeeyxatAiATz8100U1rUZOnz6drVu38re//Y1p06ZhbW1NWloaeXl5v7sKeN9997Fw4ULy8vL4/PM/Tp3T0NBAfFIW8UlZt0yzZPk+lizf14KyauPh+lumvx53QtlWUl7LgVNXb5qnibLtlXe235CvCb+lbHtp/re3TNuEf56yrfS2aeOTs26op4myLdQeTCVwYMv1OfTA6wR2upGyLb+omlcWbLtlXQUFBfj7m8NcfL2r5rZyffLZfgDWrWjWq1tRtvV/6OMW//8VlG35hdU8/tzNbXIBMs6csrTl98ZlUaOH751Str35/o/Ncl2X5/u9d2Zf1SQX3J6ybdOPiWz6MfG/irLteh37vTo+WbXf8rspz+2o1MY8vtry+19F2bb5h8Rbps9OWMYbb7wBwNkrPnz59ck7qmfBggUsWLDgtpRtTV7hcHPKtl8OXOSXAxdvmb8pQsG9wH+DI8a9QKuN313iiSeeoKamhmHDhjF+/Pg/lHfcuHHo9fo7sk2TSqWsXr2ahoYGJk6cyLx58xg/fjxPPvnkTdM7OTmxatUqjh8/zrhx4/j11195+umnb1uHwWDgrbfeYtSoUbz88suMGTOGqVOnAuZgx4899hhvvvkmcXFxtGvXroXt3q0wf/58/P39mT59OnPnzrXI22T/6Ovry9dff01hYSFTp05l4sSJrF+/Hl9f398t29bWlpEjR+Lh4XFP6X5a0YpWtKIVrfhvg0SIP2hE1op/GqmpqcTFxXHixIlbhL3478O5c+eYPHkyp06dwt3d/Z8ub+bMmURGRvLyy3f2hnw9rl/FaEUrWtGKVvx7UVhY+PuJ7gJjjz9/T8rdPeA/g7XrbtG61fsnQq/XU1paysqVKxk9evR/9aTv/PnzlJaWEhkZSXFxMe+++y79+/f/pyd9dXV1JCQkcPr0af72t7/9i6RtRSta0YpWtOJ/A60Tvz8RZ86c4bHHHqN9+/YtYjf9N8JoNLJq1Spyc3NxdHSkb9++zJ8//58u9y9/+QsXL17k5Zdf/sOxBlvRila0ohX/O2i18bs5Wrd6W/E/B39/fwIH39kWcf6R64zV+9zaWPt65JxuNtYOGPrKHeUpOPSJ5XeTU8DtcL0DRZMzyO+hhUPI3RjR34FcN8gW8/t5spJudAb5PQR2bzYoDxp0Z2OZd7R5LO9mXO7WueP3cH1/NRnE/26ec83jcjeOOuHRd1bP9c5NQQN/v5/zjjX38d3IdSf6Ai115nZOFNfjeieKO3HuyD15XVv+4NjD3Tlq3M21fCf1tHCguQsdu51zx/W43rnjj4zlvdrqHXXsztr6R7F34PLfT/QfjNaJXyv+5+Dv70/IsLk8+3B/YvtF4mCvoKhMiUwmxdfDicqaer7bd5YB3cLo1qHlqqIQgpLyWrb9fIbte8/y6VsTiW7vb2EWKCipZtmSRWzbtg03Nze+23mA8GBPZI18lgajiSPJ13j38/10ax/Is5P6EervjkHfTAdWVKLik8/2ExjgyvSJvfH3dcFoMmEyCUwmgUajRyY1YGNjg1qtxiis8HBz4LtdyYQEuhPdIQAhzLJaW8luysn58vytGI0m3nptbIvI+hWVKtauP0qdSsPMxwYQHOiKEMLCYCAEKJVq9EYTLs62FJcq2fjtaeRyKa+/NPqm/f2PzcfZuC3e8n/a+J5MG98TZyfbG9Ka6pYisZuOkHhQXV3N1m+3snzFCl6YFcmz0y5b0k38S0dmzZpF9+7d8fDwwGQSCGH+XMosYdnGQ1zNbkl/Jc//kUWLFtGvXz+srKwwGI0YjIKr2aUs/fowXy165KbyGwwGC7NIRZWK2roG/H1d0Wj1HD2ZzmfrjzBjej8mPxiDySQoLCxg/fr1HEpujk8WOyyKWY8PwtXZDiHMjC8SiYR6tZZDB/cRGhpKp06dbkqVaDIJxj/yGU8/NoBhgzugsJYjhKC6uhqDwYCrmzvllXUorK1wc7EDiQSDwcjVjFISzmQxqE87ggPdKC0pZv369WRkZPD2go8JCnLH0BhcXC6XIgSUlClZv/EEBw5fJsDflXdeH0poaGiL2KBCgFanRy6XUVGtYvu+s0ikUsYO7oi3mx11dXXY2dlhb2+Pql7Dsr8f4NCJq8yKG8ADsV0aeWsFQpi9/MvLy1i7di0ZGRksW77Goo/lVSo+WPkL5RV1rPv4Eays5Ax56BNGDY1i8v3tCAwMxGAwoLCxQdooX3GZko07EujXI4zwUC98PJ04nnANF2c72od5YWVlRW1tLWot+Hg63dDXGq0ejdZAg0aHQVuLl5cXcrncMi7K2ga+3p7Ajt0pPDm9P726hxLk54aVlczCWatUKlm5ciVtomO5b2AkjvYKyqvqkUjMzBwqtZazl/Jp0OgZ2LMtzo7m60Cj0SCTW2Ell2ESgpy8Cj5YtY+XZg6jfVsfpFIJGq2B9d+eZPEbZvo1uVzOJ2t/ZOywjlhbyS36cvpMFm8v34NcJmPGw33o3NaBwMBAVCoVxWVaOkb6U1yqZNPW00yf1Bsfbyc0Gj3CJLCzs0YAUglUVVVRVVVFeHgEMpmU+notanVL6kJnZ1usrW/cPNRo9YyY/GmLY9PG92T8qC64utiTW1DJ2o3H2PqPl1onfn8yZAuauIVacVeIi4ujsLDQ4l26evVqPvzwQxYuXMjp06eZMGFCi/Rbtmzh9ddf56OPPmLDhg2kpKTQsWNHC+WYVqtl/vz5fPLJJ7z77rvmwKW/47k6b948Dhw48IcDGd8NftvefyeGDh1KYGAgoaGhv5/4OixdupS33pjH/QOjeP/zXzl5NosJw7pgZ2PNCx9sIyO/ghcfGYwQgoO/7mXRokU88MAD/LD/PCu/PEJWXgUvPD6Ebh0CiGzry+adSWzZlYytjRXt2ngTG3sfV65c4amnnqJv7+7o9AYy8isoKlfi4+5IaIAH0W39eHRMDPEXcgn2cyMpMYGgoCCWL1/OkUQz88IrfxnJ5u3xJKZkU1VdT/twH1IvFeDv64qtrYJvvvkGFxcXPD09qKvT0D7cl5KyWk6nZNGxnR8anZ6iUiUuTnYYDCamTJnM4sWLWbt2LY5uXVizNM7Mk2ol49fDl/Fwd6RereX+kdEMHxzJwaNpODuYsLGxQS6Xs3PveVIvFdCjawi2tla8v2wvBUXVzHl2BMVlSjpE+KFSafnyyy/Iy8tDrVbj4+NLWkYxKY3UWJPGdmfmtP4cPJlGWIgXP/5yjrBgd6ZMmcKPP/7IQ1PfB10CSSeXk3HtEpOnvYBWo8LargM9ujiC0RwyZs+RUIKCgujevTtGk8BoNPL9gVTat/GhWlnPlNE9+PnYJRq05tBDtgorvlnzNnq9HhcXF2QyOUaj4MyVfMqrVTwzqR9PvL2Zz3+MZ/PPyZw6n83QnhEWJpYVK1Zw+pyKPj3a4OXhxKrPD7Fz73kmPxjDgN5tGdK/PWUVdeTmV7J61Se8/fbb1NZpuZpRSv/ebXlr7lgU1nI2fneaiDBvM1VcdT1l5XX07tUFW1tb9u7dy4Wr9US28yUvv5InZm+gU4cACgqrqaxSMeuJwcQnZfHFpuM01GURHR2NnZ0dX2w+QY8uIbg42XLgWBrf/3yWyHBfbBRWDOwdTvL5XN5duofziTtZsGABEyZMYP/BSxw9cZX+fcKRSOCnfamknM2hT8+2DOgbQXGpktdfGY2tjRXffPMNvr6+ODo6ojeY6dPKqlTIZTI27kzguemD6BThxycbDnJ4zybGjh2LlZUVVTVqikpqGD+qK21DvRjQO5zS8jqOnLxKZLgvRpOJMxfyCA7wYODAgTz00EMorOWs+/o4Zy7k0T+mLSMGRdK7WyhpGSUE+LqSlVvOW3PGsHLlSn799VdiY2ORSCSUVtSirG3Ax8uZ3l1CSUnNY8+hC3SK9Ke2TkNEG2+yszLw9PQkJSWFdu3CEAKeW/Ad9nYKAnxdWfvNcdZsOcGeIxfp1jGQIH9PS0D+zJwKXFzssFHI6dY5mDqVlh5dQohPyaZb52CkEglFJTXYKKQoFAoGDRpERKgXi1fvIz27nGF9I1BYy5n99laOJWYwfmQXotv7I5VKeftvb1FQUECPHj2QSaW8v2ovmTnlDOnbnjHDO+Hp7simHQl8/X0Cwf5u3D+sE1euXDFP4N9+mykPxSKVSsnMrSC3sBJPdydCAtyJaOPNhatFDOkTwZqVS1i+fDknT57kqaceRQiByQTDBkWyeVs8KpWGoAA3HOwVSCQS4hMz8fKw49q1a0RFRaHXG5FKJRgMJgstYBN0OgMSiQSZTMpLL73EF198wZgxY5DJ5fz06wUaNPoW1/6qDUdY/80J7O0UvPDUUPbv28ejjz569w+C22BTzj4Ekn/5Jy4k9p7I+2ehNZzLvxhGo5EHHniA0aNvvvrh4+PDq6++yq5du/jqq6+QyWT/x955h0dZbW3/98xMJj2kk0KAUBIgQAgQpAtBikpHVNCIgiAqKIgiHsUOKlhogsihiyI1FGnSCSUJJYWEVEhPSG+TTN/fH08yISLq0eP7vuc73Nf1XMnM7LJ2X8/ea6+bF154oUl8Ozs7pk+fTocOHX41jT8Dvf5ugvn/H9C+fft/OY69vT3jhgSz+sdznLuawcCe7UhML6CmVkdoUCt+OpvIzmPXaO7mhFarZeLEicTFxfHV+pMkpORz6HQi+36Oo3uXlqzcfJr1Oy5w8epN3vliP5paPWVlZQwcOJBRo0ZxPCoFpVLJrE938eKinVTW6FAqFPQMakl6Tgm+zZ2JvHaTyZMns379eiZNmsTla5kMG9yJU5HJ7Nx3hd0Hr7J01THOR6XTPbgVq/55khs3bqDT6Rg6dCi1dQbs7NTYWKv44KuDDB3YkR/3X2bxiiO0a+2JWQjSM4uZOHEixcXFFBcXM3/Ow0iSRG5eOSfPJrP4i0N88uUhWrZwo7xCQ53WQF2dHqVSSZcuXVi3bh19QtvQuaMvJ87eICu7lMB2zdkRcZlzF9PoE9oGSYK1m8/w4YcfMnv2bMaOHYsQgo7tG130TBobyo4DV7heT0P11bfHSUpKYuLEiUycOBEMCYiKlwntcJThD2xDod3K0+FTwFyKpA61pHPy5EnUajVxcXGolAqi4jNZtvUUO49exbWZPQaDiXEPNVIVDuvXAVdXV3x9fVGr1eQWVXAtOZe+wf78c89FDAYTg0MDKKuspayylufH9aGguBKj0cjBgwdZunQpJrMZlVLBuah0BvUL5Gp8NqvWn6JLxxYU3K7kanw2Wp2RHTt2sHHjRiY/1ksu8/he5OaXkX6riJKSGlRKBZGX0tHpjLT2c8NsNuPi4sLSpUtZ/c9TVFbW0bqlO6383Ajq4MP+w7FMeuwBTpy5wTsf7+XM+VSaN29Ofn4+FRUVDO7fAbWVknNR6Xi4OXDwWDxLvz6Gdz2NXEVlLVm5ZezYsYPs7GyMRiPfbjzLkEGdOHH6Bjv2XCY0pDXrNp3j7PkUqmu0PDamB82cbOnfvz9LlizB1dWVXUevobZSYRaCs5fT0RmMONrboNUbMZnMnLmczqRJk9DpdPz000842FtzM6uE8zHp9OvVjrVbzvLcq5twcrQhKTWf6hodSSkF6HQ6KioqkCSJHyJi+H5vNN/tjmLH/ssyc5CAMxdT5boc14uT55NZt24d/fr1QwhBys3bWKlUFBZVsePAFZn5RqPl5PkUDAYTer0RK5WCWbNmAdCzZ0+uJGShUEgUllTxzpcHqKyuw1qtIj2rmJs5pby48EeUSiWVlZVcu3aNaXM2U1urJyOzmLJyDY+P6cGcd36kVQtXamq0JKXk8/RL69FqtcTExCBJEjq9icjLGXh5OJKaWYymTk/f7m2IT85j3/F4rNUqVm45zZYtW+jevTsmkwlJkggN9mfjjxe5HJeJUqngRGQy6384T/S1TF586wd0eiPvvPMO9vb2hIeHo1IpMZvNzHr/R+Z8tJtqjZZqjY4+If7oDUYWLNnHoUOHuHnzJi+99BI/7I5CrVbh5GjDqXPJ7Iy4TOtW7vx0NIHikmrqtAbeWRTB6dOnKS0tZd26db+6o3cnbGys0Gh07Nq1C5VKhZ2dHXV1BsaMaByDDWP/6OlEsnLLWLP5DBmZxb/rbuz/F6xdu5b+/fsTHBzMSy+9ZKFy/TUYjUZWrFjBoEGD6Ny5M8OHD+f8+T/me/GP4L7i92/G7NmzeeaZZ+558SAsLIyBAwfSsmVLOnTowCuvvEJmZiZlZWWATF/z/vvvM2HChD9063flypXs3buXvXv3EhgYSGBgIAB79uwhLCyMiIgIwsLCCAsLA2Qe3ZkzZxISEkL//v356KOP0GobnbmuXbuWESNGEBwczLBhw9iyZYvltwULFhAdHc2qVasIDAy0pLly5UrCw8NZv349ffr0oXfv3uzcuZOKigpeeuklQkJCeOKJJ+7i4d2yZQtDhgwhODiYCRMmWHhn75T/0KFDhIWFERoayttvv21RYBt2HhUKBStWrCA8PPx366oBwcHBWKtVXIrPBKBrgC8X428RfT2L4EDZ1cul+Eys1SoeeeQRRo8eTZs2bXj75RE0d5fb5HZxFZIkkZ7ZeJwohOBWbglubm4UFhZiY2ODtZWK6+n5aOr0mIUgPi3fEra4vIbuHVqQkVvCli1bmDx5Mi1btuSpx3rRob0X0Vcym8idW1CBQiGhNxho27Yt58+fx2w2czkuEyuVkqKSapwcbPFwcyTqWibRsZmYzQKVUkELb2fGjx/Pzp07GTp0KIHtvCgpraZDgDd9QtuycfVztGvjiclkxs7OGhtrFQP7BRAdHc3777/Pk08+iXdzZzoFenMtPhtbWzWVVXUARF29ha+XM5IkEf54b65evcrOnTsJCwtDZzBajtS8PZvJsl29BYBKqeDHb6bTrl07Ro0axYABAxC6c03KLHTn8Pb2w97RD6GPavJbaGgoaWlpSJJETqHsxPlSXCY+ns2IT8mztGVDG2u1Wk6dOoVaraayRktReTUms5ku7X3ktg/wAaCZgw3dO7SguZsjSqWSwYMHc/jwYR4e0pnElHwuxmTQKdAHhUKi/wNtEUKQmtHUufXp06fxbu6Mt6cTHdp7EXMti1Z+bgzsG0Bicj5xibn4eDlTVq7h8uXLmEwmQkNlxVanl3mPnxzfi7JyDRdjMur7Q329qRQEBwdz5swZnJ2dsbWxukuumNhMeVdHCCrq2wnA2dkZa2trvJs70SFATjP6yk28vZzxcHcg+vItHB1ssLVVk3gjn+rqaoKDg7GxsWH7oSsyHaOAiuo6ohPk8SKEwMnBBh8PJ7p27cqpU6fIysrCWq3C1saKvPwKi0wAXTr6EnX1FpdjMwkOaoGVlRV2dnZIkkRKRiNPuMksUCoUWFk1mip0bOdF1FU5nd69e6NQyIqRc73ZwKWrt1AqFfTo0tISp7mHE9dTC9BoZLtQtVpNVGwWAOsWTybiG1nxGBDazhLH3laNUqnEysqKM2fOMGxQJ2xtrDgflY6Lsz3ezZ3xcHOgS0dfVCoFUVdvYa1WYWVlRUFBAZIk4exki4erA3HJebT2dSUjq5iuHXxxdbZj+MCOSJJEVH2deHl5WY6T/bydcbCzxrX+yDslvSl3enW1Fl9fX3kes7YGID2rGE2tHrNZEBOfhaKeKrTLHWNgzpw5CCE4Wu9MWaVSWPpUQmIeD/T0t4z99m2b06tXL06cOMHp06dRKu+tKqhUMmevXm8E5Lk5ISGBS1dv0rWjTFDwy7HfgKhrtyz9/u+AWUh/y/OvYvfu3XzzzTe89957bN++nerq6t90Rfbuu+9y4sQJFi1axJEjR/j444/x8PD4K1XRBPcVv/9FaLVa9u7dS5s2bXBxcflTaUydOpWHH36Yhx9+mMjISCIjIy2/lZSUcODAAVavXs3GjRvR6/VMmzYNf39/du/ezerVq4mPj2fp0qWWOGq1mo8//piDBw8yd+5cvvrqK86cOQPA22+/TUhICFOnTiUyMpJduxqZJRITE8nKymLbtm1MnTqVDz74gDfeeIORI0eya9culEolS5YssYTftWsX3333He+//z4HDx5k7NixzJgxg4KCAkuY0tJSDhw4wJo1a1ixYgXHjh2z5Lly5Uq8vLzw8vLiueeeY+XKP+5XydPTU06/Ql4I3J3tKa3QUFqhwc3Zvslvn3/+OWazmX379uHv5876z8Jxdbaz2PMoFBJtWrrz89ZXOL39Nbp1bEFxcbGFFN3BzprSilo5rCQR0MoDrb7x+BHgudEPcOHCBV5//XUAnp3cD5VKaZEBoE0rdyaM6g7AvJeGs3DhQn7++WcAyipqkSSJWq3eYh9VVqHBZDKjqdVx/NwNIo7EYjQaSUpKYtOmTVhZKXFzdUChkFi78QzbdkTxxPhQmXDdWoVKpcTX25lHH30UOzs7FixYUF9eBZMn9sbB3ppjpxLlvMo1KJXy4rzwk/1Mnz6dpKQkeUdbkrCzlZ123ylbdl45Hy87xNuf7eO7775DpVLh7u4OyvoFWxWA5HkNyWU9AHaqZNCdvKsdG3hRa7X6Ju2m1RstbQnQNdAXg8FgGR9GowkhoKpGK7d/ZS3u9eFbNJfNLuxt5WOvxYsXs337djoFeGNjo6a0XIO1WsWYEd3oVK8s/pK3vahIfiFo6eeGSqXkQkwGK749Qc9urejWxY9Zzw9GoZAoKq3m9u3bVFRUWPolyMdnwZ1bcOjnBBzsbeT+UC6XrZmTHVZWVjg5OaFQKNDU6Skt11jkcnSwwWSS+bVVSiXHTida0m0wKfGrl6usXGNhXnB1daCVnxsKhURtrZ6y+vwa5Coqq5GLKsHhc0mUVWhwc7Hn2g35hW7us2EoFAouXbrEk08+CYCNtRUNRuQNR4RuLg5yvhUaC++whZO7PnCrFq6MHibzSbs0a7SVVKmUlNW3ccOcmZNfjlKpQKVUWH5zd21kKrKzVVvK0oDE9AI0dXqOnUvmH5/vp7i0moDWnowc3BmA16YNQZIk7O3tmTt3Lq/OGMLbiyNISitEXa+Iurk44ObigK2NmrIKDbOfD6O0tJT09HRLPm4u9py+lMayDafo3tmPnl1acmDdi5jNckEb+quzszP5+fmYzYLAdl4c3jYb6/pdtqEDO+HczA6lQuLhwUG4uTqgUqks7aLVGfBwdcTZyRalQqKZoy32dvKYc68fc3379iU8PJw5c+Yw56WhlJbVIEmSpU+tWneS2IQcHB3kvvbtsmfYtGkTP/zwg6Uv3wsNc6HZLPDw8GDYsGF89913lJVrLGP+zrF/J8rKa2nevPlvpv9X8H9F8fvuu+947rnnGDp0KB07dmTx4sVcunSJ1NTUu8KmpKRyQTVCAAAgAElEQVSwb98+Vq1aRb9+/WjRogWhoaEEBAT8O6oEuK/4/a/g8uXLhISE0K1bN06dOsW3337bxHj6X4G9vT02NjbY2Njg4eHR5K1Ap9OxaNEiOnToQPv27Tl06BDOzs68+eabtGnThq5du/LWW2+xa9cuGu74PPfcc/Ts2RM/Pz8efvhhxo0bx5EjRwBwdHS0vJ17eHjg6upqycva2pqFCxfSpk0bnn/+eaysrPD39+eRRx6hbdu2PP3001y+fNkSfs2aNbzzzjsMGDAAPz8/wsPDCQkJ4cCBA5Ywer2eRYsWERgYSJ8+fRgxYoRlV1C205LfNB0dHS0L2l/FL686Xbki73LcuHGDuR/vQqVSMDKsS2N4IDu/jGff2MKStceQFBLNmze3UNQ1QCFJvDdzBI521twuqZa/rG/yyNibFuN2gJj6HY07kZ1XxtGT8gJ+KjKZpUuXkpGRQWpqKp0C7s12YjKZqarW8sSYnlhbWzNp0iSSk+UberW1OgDyCio4fjqJ7368hLV145GOpJAoLy9n3rx5TSYoXy9nPl1+hOLSmrvyy8gs4sqVK7z33nvs2rULKyslv3Z7LDEln6OnE0m/VUR2djZ6vV6+8GA9QA5gvIUoHYOoqL8ZaNUN1APvWc5fYmjfQFr7uHFiw2wWPD+U5q6Olrb8JUS9hA2/NCxkDWHfe+89nJycKC6twc+n8QVt2lP9eH/pAZpE/gU+emssAJ8uHMcrM4YAEkI0KkEtfRvH0J2yKZQS1tZWHDwa1yS9rkEt2LZuOgCPPvooAHV1vzDjEDD24W4AJKXk/2o73SlvQDt54V31+WQenyDvvtT+Mk1g7EOyIlZTq6e4XgkUArbuk6nC+oW0AeCVV17hhx9+uKtMv6yj4KAW2Nmqm9BPCiGwUin58I3R7Dp49Vfj/RYC2shl8fZsxrFtr2BvZ/2r4RLTCtAbjBSX13A9rYAriTlUa7Q8PSaUFycPoHe31kCjW6oDx+J5e+4j+Ho1UnOKOwQb2Ls9/Xu347nnnmtKaSkguIMvMyb141piLnmFFcxbtBtnp0ZlVqFQoFKp8Pb2JjmjkLzCCl5Z+KNFObS3V3Ng00sc3zGXJ8b0tFTIl1/KN3XTs4pRWyn5af1LnPx+Du1aeVBTP7aFgGaOtqxYsYLXX3+dd955Bz9fVyIvNSqnAGMfDaFXD3/LC8OKtceZPn06Tz311B+vfLAc9e/du7c+/99vvP/E+6VVVVXk5ube9VRVVd0VVq/Xk5ycTO/evS3f+fn54evrS1xc3F3hz5w5Q8uWLTl06BAPPvggI0aMYPXq1ZaX3H8H7it+/wvo3LkzERERbNu2jXbt2vHGG29gNBr/7fm4urri5eVl+ZySkkJiYiIhISGWZ+rUqWi1Wstb3ZkzZ5g8eTJ9+/YlJCSEHTt2UFhYeK8sLGjVqpXFEFqhUODs7Ey7do1HJ66urpbjbI1GQ25uLq+88koTWaKioiw7ZQDu7u5NlEsPD4+77CLuPKb+o2goa8OOUEn9Tp9rMzvKKut3P+p3GYqLiykqKsLDw4PqGi3ZeWV4eThZJmVhFhiNZvIKK/g5MpnImAyKi4stx9o1tTrcne1ZPHskQW29iUnKoahMVvz09Yv/rbwyS/kAbqQWIIRosmNlNJqpqZHL+t3OKPbt20dGRgbDhg2jpLQGIQR29btRAK7O9iiVChwdbEjJKOTAzwnk5uYybNgwdu7ciRACvcGE0WiyvI1n55bKtkk6I0ajidIyDbdu3cJkMllka5ikbxdVWmRzdbazlMX1jhvCly/LNloNismdst0JDw8PioqKqKysBEWDAm8AUzYIeSKtrU5Acph1Vzs27DTa2aibtNvlhCyup+cz5a2tVNVoUakUDBs2jBUrVgDQvaMfowZ2xtnRFr3BhGszO8vui0ohpxmVkInBYGDp0qVs3bqVkrIabG3VuDrbYTSacHK0Zd1XslH6wD7tGT44iO5dW5KVlUW/fv0AmP/+ToxGE8Ul1ZyOTCHyUhrJqQVs2BaJwWDC1cWeVq1a4ezsTHFxsaVsViolN7OKKSispLKq1tJOyWmFrN96FiEEsbGxaLVabpdU4+Zij6uzHTq9kUce6syLz8pc2+VVtU3qrKJCPhLPyS3FaJTzr6isq29bOHU2Gb3eSFFxlaUtG8bLy0/KirexfgFybWZHWYUGtVppiS+EwMXFhZdeegmAvqHteGJsT7lM9eFKy2t45KEutGvtSXJ6ITdu3LAsmJJCws3VnjatPJjyeB8ArK1VvPnyCFRKBUIIRg2VX7zKy8sB8PN2wWQyYzSZqaiUy5uSUchz87ZQW6entk7fpF8CeLo64ORgY9mBamh/Xy9nRoZ1Zs6i3RgMBqqqqtDpdHyz6QzJaYUMfbCTpa+XlWsoLa/BZDbTNagFc9/ZwY0bN5os0KUVGmZM6s+Z6DRKymsoKK7iUmwmP+yXX2C7BPryzTffADJ7RXZuGYVFVVy7nsPew7EAHDuTxLBJyxk/7RtmzN9G3u0KDAaD5YSguKyG9KxihoavYOwLa7mckGV5sSit0NDGzw1vb282b97MuHHj8PRwYlS97d2SDx9jeFgQM6c+yLebzlKj0WE0mth3KJZ169Yxd+7c3z1ibJgLFQqJyZMns3fvXjQaDS7O9pTVn3bca+y7Otv97o7iX8HfteO3efNmhgwZctezefPmu2QoLy/HbDbfRV5w55p4J3Jzc8nJySEyMpIVK1Ywb948tm7dyoYNG/5t9XJf8ftfgI2NDa1ataJHjx589dVXJCcn/1sNNxtga9vUXUZtbS0PPPAAERERlmffvn0cO3YMNzc3cnJyePnll+nTpw9r165l7969jB8//g8ppQ1KXwMkSUKlUjX53KA01NXJC81XX33VRJZDhw4xZ86c30zzl2+Hv2Ugey/Ex8ej0xvp3bW1/Dk1j95dWxPauRVxKfKlgz7B/hQUV1JQUEBMTAyDBg3C1saKFt4uFJVW4+nhhBCCtq0bJ0WDwUhQe28KCwupq6tDq9ViMJoI6eCLv68bLy76kS7tvCmtlI9mXZzsKCypopW3vIs0aNAgcnJyaOZki1ZnJLR76yZy+/q4YDYLgoP80Gg0CCHIysoiOKgFBqMJT3dHKqvrKC6tpldIa0KDW6FUKrh2PZeO7b24ePEimZmZ+Pv7YzSZcHG2JzX9NqE95FvRfXvJirqmVodWZyQhMZfWrVujUCiYP38+ZrOgqFheoAtuNyp+vXr4cyM1H53eSK+QxhvWnTvLx2aFDXGKKi2y3YlBgwYRExNTr5Q0fauV1AMoLMhFU1MJkrrJbzExMbRv3x4hBC28ZIWxd327tW3lSXRCFrm3K/jh0GXW77mIwWDgySefRK/Xk19cSUJ6vnyDMf4WoUEtiUuV7S/7hfhjNpuprtUTFxdHUFAQFRUV1Gn1KCSJPqFtSUotYMqsjSxfewJJksjKKeV8dDpJqQUMGzaMli1bUnC7ktjruSSnFeLgYEOd1kD01Vu0a+NJx0BvbmWXANClSxeUSqVlN9vO1gpJktj30zVAVvqT0woJ7e7PsMGdmD7lQW7evImHhwdXr14lISmXoEAf+oS2pbxCw5Qn+rJp+wUkScLLs1mTOisvL0en01Fwu4rk1EJCe/jz2NgeCCH45ItDSJJEUnI+CUl5BHX0wcHBgUGD5BvuF+NuIUkS1lYqJAl6dpHHS+9gf26XVBH+5maSkpI4deoUiYmJ1NbqOXcpjWvx2ZjNgp7BrVEoJMxmQUCb5mjq9ETX23yVlJQghPx9cWkNz7yykSOnEjEYTURGp7P+h/MYTWbSM4stpyOXLl3CbDYzpH8Hix1jj64tMZnMXLx6i7zCCoQQ3C6uonOAN/b2stKh1+t5/NEeKBUK4pPzkCQI7dIKZ0c7qL/pm3LzNnFxcWg0GgYNGiT3RYWEh5sj5RUaCm5XUlqusdjQ5uSVk5EpK+4+Pj4IIeSxWFaDjY0VZrOcR3z9paZbufK8NX/GUAICAigqKsLJyYmewa2IvyGHadVCfun183GlTmugvLIWG2sVPp7OpKWlcezYMbRaLVqdgc4B3iBJVFTV0qtraxwdbJAkiYSUPG7mlBAdHU1OTg6PP/44z8/exP7DsegNRqIv3+JKbCYqpRIhBFqtHq1OtjFtUGAHDRpk2Qn8NchmEwJbWyv8/PzYunUrkiTVlyX3N8d+rxD/Jrbd/ymYMmUKJ06cuOuZMmXKX05bCIHBYODTTz8lODiYoUOHMnPmzCamVX8V95k7/g9ACPGr/rv+KFQqFTqd7nfDdejQgTNnzuDt7Y1arb7r98TEROzt7Zk9u5Hf8Jf+lVQq1V/ecnZzc8PDw4OCggIGDx78p9NRqVSkpKT8ywweNTU17D0Rx8zH+1NSoeHs5XQ+mjUSg9FETGI2D/fvxMRhIcQkZtOtWzciIiLYsGEDRzZ1R6czoKnV88y4B7iakM2c58JwsrfBWq1i0uhQFAqJjh07smjRIlq3bs3TT4cjgDqtnrefH469rZruHVsQfT2L7h1aEJ2YTVivAG7cuIGtrS179+5l9Jhx/HQsnrGPhNCjWytiE7KpqKyjX692XEvIZtbzg7GyUrBhwwY2bNiArY0Vmlo9tjZWfPb2OC5eucmTo3syamhXcvLLmfnMQNq39mTD2mji4+Nxdnbmp2PXGTWiKx4ejgS298LeXk3vnm0oLavB2dkeCVnR9vLyIjY2FldXVy5EpdMx0AezEMydOZSgjj4cPXGdAX0COHn2BlXVWl54diA1Jc/TvXt3Ro0aBci+4dr5e1JXp+eHiBhmPD2AVi3ciLp2i8A2zQkK6kR8fDwtW8r2fZLrTmpLN1Fe44aPxzNsXbOU2lpPkmI34O4yFM/W8/D3f4YTJ06wbNkyjCYzfbq25t0XRzCkdwdSbhXSyteNiBPxPNizHS8+OYA3Pt/LI31a88ILL3Dw4EFGjxmDazM7LsTd4tkxvbFWqzh7JZ0dS57FtZk9MYnZDA5tzw/fb2PSpEmAfClBbzAyoHd7ln1zHOdmtkyeEErMtUxCuvhhMguMRpPFzc6qf8q2sT/sieajt8YycnhXNm+/gNFkZkDv9hQVV5FfWI6nuyO3b9+mW7dutOnUFUcHW3khtVHj6+2MTm+kuYcTnQK9CXuwA5u2ncfNsZQxY8Zw8eJFsvOM6A0mBvZuj9FoYvOOi4x/tDvXrufQpYMPLz37IOejM9j57VVcXFxQKpVMmzKA46cSeeXFh5AkiQtR6bT0c2VgvwB277vCpMdCqa7R8fPPP+Pp6cmNGzd4MLQDNbU67G3V7PhyKg62asY9FEwzBxt+OpOITm8kIiKCt956C4CcvHLc3RwIbOfF+eh0ZoQPYERYkGyLplRgb6sm9eZtnnvuOVq1aoUQgsnjelGj0SFJEsMHBwGC9T+cJ6CNJxLg7GSLf0t3pk2bxoEDBxg5ciSBbZuTX1SBn48LIV38MBpNxCXl0q61B/a2akI6+6EzyEe2ADdu3GDiwyFk5ZXS0seVOc8OxsXZDoUkEXnlJhIwK/xBzp07x+zZs/Hx8eGfX7Wknb8nIDCZBCv/eZL33hiFk4MNQkD7Np588OZo4mKsmDJlCmazGZVKSd/ubbienMe44d2QJIkbGQUEd/Dl5fAHMRpN+Ho1492Fn9OlSxeeeOIJTGZBXmEZzz7ehzHDg9EbjDzYpz2Pp/fA18uZMcODUSgkFixYQE1NDd999x2TJodjMJhZtvAxzGbZv6YwC05dSqWyqo7P/zEedycJk8lEixYtyCyuQ6s1UFWtJbSHPw/270BSSj5zXhqKk4Nsa/nhP8bQrbMXCQkJTJs2Da3WgI2NFQqFhI2NFXZ2aioqauv9Z0JdnQFbWzUZGRkYDAa+/PJLrNUq9t9hqtAw9rNyy0hOL+ThsM608/fg1ZfX8fjjj/+pNeD3IP4m5g4nJyecnO72A/lrcHFxQaFQUFpaStu2bS3fl5WVNTnRaoCbmxtqtboJp7y/v/8fOnn7wxD38Zfw9NNPixUrVlg+5+XliaSkJLFw4UIxbtw4kZSUJNLS0iy/L1++XFy+fFnk5uaK+Ph4MXv2bDFo0CBRXV1tCZOWliaSkpLEuHHjxMKFC0VSUpLIy8u7pwxff/21GDlypMjNzRWlpaVCCCF2794tBg8e3CRcdXW1GDx4sHj55ZdFfHy8yMzMFMePHxefffaZEEKIxMREERgYKPbs2SMyMzPFmjVrREhIiHj66actafzjH/8Qzz33nCgsLBQVFRVCCCFWrFjRJIwQQgwePFjs3r3b8vnSpUsiICDA8nnLli0iNDRU7N69W2RlZYn4+HixZs0aERUVdU/5f5nPlClTxIIFC0RFRYUwGo33rJ9fwsfHR/QN/1JsPRAtSsprhFZnEDdzi0VWfpnQ6Q0iv7hS/HP3BXE5MUuUlJQInU4nqqqqhBBC6A1GUVBUKZZvPCkGPP6FuJVTIowmkzCbzUIIIW7mFIuXXnpJ+Pj4iMcff/yeMixef0zMXbpHpGYVCaPRJIQQwmg0ihs3bojPVhwWA0cuEQeOxgohhDCZzMJgMAqDwSjKKzWiqLhKVFZWCp1O96tpm0wmUVenF5panTAaTUKvNwqdzmBprw0bNoiBD38mVqw9LjS1OmE2m4XZbBYmk1nk5JaKj5YcEPPf3Skys4p/ty5z88vFR58fFD/ujRH5heXCYDAKk8n0q2GvJmSJ/mOWiNWbTosajdaSZ1VVlYiJiRHPP/+8MJVNF2ZTpTCZjCI3N1csXrxYBAQEWJ5vvp4vhBBi5syZ9yi7WcQl54pn/7FV9J70ufhwzWEhhBBjZ38rBgwYIE6fPi1qa2uFyWQSBqNRaHUGEZuSK55Z+J0YM2edJY3xr60XSzefELdu3RJ6vV7odHJd5hWUi/RbRaJOqxcVlbVi3+FYMfSxr8QbH+wSlVW1wmSS+8HevXvFwJFLLM8nyw6JikqNpcwGg1EYjSZRVV0n9u3bJ+Lj43+9zuKyxOPPrhFCCKHRaO9Z5rzC8nu2UWVVrdDpDRa5wsPDRVrGbaHTG+7ZVkIIMWf+9/f87U5ExWeK9OxiodXpRWVlpcjJybHIVV2jFR9+cVAMGve5iDh87Z5pnDp1SoSHh4vi0mpLfywqqRKvvbdD9B+zRCxa/pMw1su6asNJkZGRcc/+/0dhMsn5NIy/Xw9jEkaj0SJTeaVGrPznSTFx2jf3jFNXVyc+/PBD8V1E4/xSUakRQgih1elFcWm1iI7LvGd8s9ksjCaTyMgqFpt2XBRV1XWW/IUQ4otvjgkfHx/h4+MjWrZsKaLjMi1zkNlsFnq9Ufx06roIe2qZePnd7ffMp7SsRiz+8ieRnVsq9AajqK6pExWVtUKvNwq93iCMRqMoKiq6Z/ySkmpRVFQlioqqREmJ3G6VlZWirq5OREdHi2mvbRb9xyxp8qzedFoUFlUKnd4gUm/eFq+9t0P4+PjcM4+/igePz/tbnn8VY8eObaInZGdni4CAAJGSknJX2FOnTomAgABRUFBg+W7r1q1i+PDhf64SfgX3mTv+IsLDw+nVq5dll2zBggUWw9YG+Pr6cvKkfCPx3Xff5ezZs5SUlODi4kKPHj149dVXmzghDgsLu2unbdy4cXz66ae/KkNRURGvvfYaCQkJaLVaUlJS2LNnD6tWrbLk24C8vDw+++wzLly4gNFopGXLlowfP55nn30WkN25bNq0CZ1Ox4gRI3B1dSUuLo6tW7cCkJ6ezvz580lNTcXT05OTJ0+ycuVKoqOjLWEayjBr1iyLA+uoqCieeeYZUlJSLGF+/PFHNm3aRE5ODs7OzoSEhDBv3jxat279q/L/Mp/Lly+zcOFCsrOz6d69e5P8fwv3KdvuU7bdp2y7T9n2e7hP2fafT9k28MQbf0u6Z4cs/f1Ad2DXrl0sXryYJUuW0KJFCxYvXgzILs3i4+OZP38+mzdvpnnz5hiNRkaPHo2Pjw9vvvkmxcXFvPnmm0ydOrXJRai/gvuK33381+HOLfT7uI/7uI/7+N/F36X49T8+/29JN/KhJb8f6BdYu3YtW7dupbq6mr59+/LRRx/h7u5u2RQ5ceIELVrIfg9zcnJ4//33uXz5Mm5ubkycOJEZM2ZYLrP9VdxX/O7jvw73Fb/7uI/7uI//O/hvUPz+L+H+5Y77uI/7uI/7uI/7+P8Of9fljv903Ff87uO/Eq36/zH7m6zIRtuYP2NL5j3ij9mSFRxptCX7I/ZXd9pe/RmbnT9jf/R32QXeaeP2Z+r4z9gF+vf+g3Zhlxptqf5Vm7U/U1/tu7zyh+KkJaz403LBn7M//CN2sU1sYv9EH+sQMOs3QjYiOXWV5f/ATrN/I2QjUpIa2X3+iL3unba6f8bG78/YHv5dce4M/z9l4+cz7I/NffnHvvj9QPfxb8X9o977+K+Dr68vT85ayQuT+tPa15XScg27j8Xi7GTHiAEdcbS3JvlmEcs2neTYVpmqLCwsjHc//oI2LdzlRCRQKhSciUljwVf7m6TfoJS8/vrrzJ07F63OAJJEctZtPv/hFMlZRXQPbMGiGY/g3kxWWkS976aYmBg2fp+GTm/klRcfomtQC3Q6A2ciU1m97hSzZoYxckQwZrOZmzdvsmzZMuzcBjF9ygBa+blhNJhRq5UolQqEgLLyGn7ce5kde2NIj13OAw88wAsvvEBw9z54eThhMplRKCRMJjPnLmfw8arDLH1rPN2D7naRYzKZWfDeLl58fjCtW7ojSaDR6EhKKaCVnxvOzWwpKashIy0Be3t7AgMDsbW1szhx1htM2NurKbhdyeHjCXRo5027Np74eDXjxIkTmM1munbvg7eHE5o6PSqlRPKtIr7acpKUW0U8+mAQD/fvRBs/d6wUcvl1Oh2hoaEIYUKvLeDAvq2sWr2RgtsSr776qsWRcANKS0tlXliFCoHsyDTl5m2WbzhFys1Gvt3RQ7sS1jeQtn5OuLi4kJeXh4dnc4pLq9FqDfh6u6DXGykr12Bnp8almR0mk0ClUlBQkM+GDRs4GSX70Wzh68Jn70/A9w7Wj/jrubzypsxuYa4+wKZNm/D396/3VQkgqNMaMBpN2NqqKSysJDY+m9GPhtzVLkLILjWMRhOSQkJTq+PMhVS+3nCaaU/144kxd3Oh5hWU4+HuSG2dHmGW2SFKSmtwd3VAoVQwZKy8GLtZXWThwoV06tQJa2trix/Nqhotr3y6i5TMIh4dGMQjAzrRNcAXK1VTGyRNnR6d3oCzo219HxJNuHcbUFtbS01NDcnJZfx0MJbHJvaiW7dWFhaV27crKSvT4Ofniq2tmtzcbD7++GOsra359NMvcKrn6m1wL5KfX87Wbec5cTLJkofZcIRDhw6hVqs5HZXGkL4dLPWnqdNz4nwyrVu4061Ti1+tY6PRTElZDYnJ+QS0bY5XcycKbley5ceLKJUK/jHnEc6dO8eTTz7JvHnzeOXVV1HWu+mqqtHy2ge7LH1MqZD4YN4oeof4Y22tQpIkjhw5Qq/eAywUdQVFldzMLqH/HRzCDaioqMDZ2ZkJEyYw/uk3GT6oE4521nJfXn+K2jo9c54Po3vnllhZKdHpdNTW1uLi4sKsN7aRkPTrR6sjHurMjCkDcXN1oLa2lvnz51NZWcnGjZssc4oQwuJL0WQyodHoLQ6jGxQ/lUrFR2t28UjfjjjY2ZCceZsvvpfnvgY4O9oye+IAerV3b0I08O9En2ML/pZ0Lw779YuW/ym478D5/yACAwOJior6/YD/wwgLC2PPnj3/o3lGRUURGBj4m2HCw8P/Ja7erl278tkbY4iKzWTKm1tZv+siL04awIRhwSxZd5xp/9hGflEFy9+ZiIeHB127dmXDhg0YjWZqtXrOXk5HIUnUafX06dbGwhZxJ/r168e0adMwmczEpuUx5eNt5BVXsnreY3Rp682a1x8DoLRSQ1puMRUVFcTFxZGTk8OXnz7Jss+exGQyM2veNt7/ZD+9evqzfOkkHh3elbz8cq5evcr333/P8uXL+eTd8URfucXqf57CxkZeRPYevMq2nZdwdXHg+Wf6M2F0D0Cm+EtNTSUrrxQhBGUVGt7+4gBXEnN4sFd73nvlEf7x+X5eXPgDl2JvMW/ePMaOHUtxcTFl5Ro++/Ax/Fu5s2NvDJ9+eQi1WkVo99bsPxzLMy+sZ+2GM/Tt2xetVouNjQ2Hfk7ganwWdnZqnBxt2LYzioNH45nxzEAkhcTm7RdISkrCysqK1NRUbuWWYDYLzl1JZ+o7cjus+MdEXJvZ0TOoJZFXM5i3ZA/Dhw8nJyeHnj17IszVoP2ZmzdWMvax11jx+ZO4u0oIzbeYi/rKT2k4AIWFhRw+fBijyUxdnZ5ribnk365k2XsTcXVubEdrtYqr17OJiIgA4MiRI7w4fxtODra0aeXBmo2nKS6twdfbhZKyGiSFgvRbRZjNgu+//54333yT0Y90w9bGiq8/fwpfHxdS0go5cCQWs1nQtXMLHujpj62NFT/++CPNmjXj+PHjGI0mNBod5RW12NmqsVarOHw0gYOH4xj5cDdMJjPjJ61i7ty5mM1mIiIieH/Jfuq0epkeT5g5eS6ZXiH+fPzWGB4b2QOzWTBrwQ+8++676PV6TCYTZy+msXr9aZwcbHB0sGb7nhis1SqsrJRNaIft7e2xs7NDrVYjhODy9SxOx6Tj5GDDPz+YjGszO0KDWnLuSgYZOSUcO3aML7/8ErPZzOWELPnFQpKIT87jwtVbSBLoDUbORqc16WMjRoxgypQp2Ntbs/iTx3FxsUehkDh44BqVFbV4ejoRFOTLtq0XePaZb3njjTdwcXFh9erV1Nbp2b33skUp/fn4dX46HMeC+SPpFSrTyFlbq/jmm284f/48CoWCsD6BGE1mdHojF67eQqFQ0Kd7Gyqqa2W5rslyzZs3DyEEdXV6ajRaoq/dYiiBRsQAACAASURBVMjADmRkFjH1lc0crKdye3nqYGKvy6xDEyZMYO7cuSBg046LnLmUipODDd98MtnSx6Y92Y9e3VpzNjqNTz75BIDhw4fj6GDDl+tOsO6H8zT3cKJP9zZcT8lj9NTVjJ66mn/+EMnWPVF89NFHADz77LOMfKgLS7/5meff3Cb35fcnsuKjJ7BWq6ip1VFcWo1SqSQzM/M358X+vdvx5qsjsLa24kZqAYWFhSxfvrye591IeXktZrP8olhXp6eiQoPBYKZZM1tUv1D4Fy5cyOiBnflk83Ge/VCe+75+4zHc7qCqe2/acDr5e/HCCy/8plx/BUJIf8vzn477it993IXc3FwCAwMttGP/mwgJCSEyMvLfmuaMGTO4kXGbNT+cIyuvjNNRqQhApzcReSWDmzmlLFp9FIPRRHh4ODNmzCAhIYE2fu5s3HuJoHbe/HwxGYVCgdlsZtxDwU3Sd3d3Z8WKFdjY2JBbVEFhWTUZeaV8sOEoeqOJT194FAmJT7Ycx93Zgdlf7mHOnDn06tWLlStXYmWlxLmZHR9/doD0m0Vci8vm629PEtjei5S0QhISc6mrq2Pt2rUyS4jWwLebzvLQoE6cPJvMjojL9Altyz+3nOPshRTq6gyEdJF38Brc73TvLDtLPnjqOmei0nh98R5qanUM7NUeBzs18cn5zFu0h+3bt1t4oE+dlcuckJTLmvWnOXIikeLSaiRJom+vthQWVXHmfCpHjx7F39+f2NhYPv/6GDbWVmg0OtJu3mbEkCB2RFzm7IU0nBxtOHYqiaqqKvLz81m5ciU9glpSpakjK7+Mm7mlfPzNUQwGE+MeCuaD1YfZfvgqN27epqamhrCwMDQaDWAAUU2gz16Uuq106T4dtdoMohbMJWAuQbKfhhCC559/nkceeYTVW87wyddH6d3dn407L6A3mBg7rJulDXf+dJUtu6Po0UNWmA8cOECHdl6orZSci0pn+OAg2rb2YO2Ws3QK8CEjs4iXFnxPdl4Zbdq0YePGjUx+rBcPDeqEk6MtpyNTeGHOVr5Y+TOZ2SVIksSUSX15aFAnXFxc6N+/P87Ozhw+lsCipQfqd1z03EgpYNhDQez/KZbUtEIUComycg1PPfUU+/bt4+WXX8bBwQaVUsG5qHRq6wy4uzny1drj9Arxp6ikGrMQxN/IZf369WRlZWE0Gvlm4xkeerAjJ88ls3P/FR4b3YPIqHSS6/NowMmTJ0lNTZWZKGrquJqcy1vL95OaWYRKqWD8kGDeX3OY7UeuUlunp6SkhC+++ILTp0/TPciPC1czsLWxYv5nEby1dB8ms5mqGi0De7WnuKzG0scyMjKIj48n6lIGSqUCa7WK06dvsGL5MTIzS1CplERHZdC3f3tu367k0qVLTJ8+Hb1ez7NT19Ex0JtTp2+wa3cM3YJbsnNXNJHnU3nyCZkf9dXZw4iJieHkyZNIkkRaZjESMn3cW0si0GoNxN3IY9ADARSX1jBv0W62b9/O+PHjkSSJtxdH4OJsT7cgP7JyS+nQ3ovsvDIiDsVSW2egvFJjYbOZP1++UPDluhOs//EC7yw9QHJ6ISqVgrHD5T42YnAQW3Zd4sNlh9i3b5+lvjW1OvYeiWXLrkvsOHAFhULCtZlMfVZWUcumnZdY+905y5w4fPhw1n53jvMxGdzKLmHxqiMyK1AzO5o52bF8/Uli4rJITk4mJOTu3eI7MXlib2pr9Xz59TEys0vIy8ujsLCQ2tpaNBo9JpOZ8vJa6upkZ84mk0Cj0WEymZtwfNvb2/P000+zelckZ2NvkpFXyofr5fl0/ODGuTK4vQ97T8c34XC/j/8Z3Ff8/kbo9XcTnd9HI/5I/ajV6t/livxXERoayqW4W5bPHdp6oVIqcHayxcPVAQCzEMTEZ9GrVy9CQ0NJS0vDWq3iwdB2RJyM58Cp61irVZRVaggObLwlLEmwatUqTp8+jVqtplLTyCVsFoLopCw8XBwpqqjm6eGyUrHm9YkEBQVhMpno0aNH/Ru1zBDSgP59ZGqylLTG40iQaflsrFWo1Uo6tPci+sotoq/cxNvLGQ83B7Jzy2jmZEtsQrYlTnBwMFYqJQaDyXJEYzYLLl67iRCCLoFNbz2Hh4eTkJCAVz1B/bW4xrSir9xCCEFgey8UCol2bTzp1asXtra2nDp1CpVKQYf2XjLd1s1ivJvLckVdvUWnQJ8mSkZwcDDWahU6fSNFoFkIohOyfrWO9Xq9zNcqGsML3TkklR/uHs3vKIEK1A+Qn59PixYtsLGxIeraLaLjMjGZzAQF+BATn0nXjk3LrVIp6NSpk+Vzl46+JKbkczEmg3ZtPAGIS8xBCGFZ9HV6Iw888ACnT5/G28vZQrt3MSrDkk5VtVamJ2vvRZcgX65evUp1dTXW1tbo9SauxWXLu1cS1Gh02NqoCQzw4mY9Xdn3G1+gR48edO7cmYceesgiV2Z2Cc0cbYm9nk1MbKasrFXVolIq2L52OlevXqVVq1ZYW1vj7elU318yESaBna2a7XtiuJkl047d2S69e/dGoVA0aZeKmjqZliuoZZM6e/jhh4mPj6dfv34oFAqcHGy5nlqAplaP2SwoKdPg4mSHEIJ1i59i0bxRBAQENNZx/QuKj68LMdE3kSQICPSSafn83AgObsm69dOYNWsWbdu2JT09nZdffIhOnXzpFtwST08nvL2dcXd3JDrmJp06+jBsaGcCA7x5//33GTduHJIkkV9UQVFpDULIfT8mPhPXZnaYTGa6BPpY5AkJCeH27dvk17dvCx8XzkdlWPrx3JkPcTOzCO/mzpY43t7eSJJE1LXGOebk+RQkSaJ3PaWh2kqJztCUClOSJJyd7GjuITNCXLoqU+Q193Bi3/oX2bFmOh+/MRp/v0bOV7Va3SQfs1mmijObzSSm5HM8UrbNq6io+E3GJZVKQccAb9JvFXHizA3L97a2tndRf+r1RpRKhaWPSJJk4esFeRzb2NhwISGzUS4hiErMolv7xrqNTc0nrGd73N3d7ynXX8XfxdX7n47/GsWvurqa2bNn07VrV4YPH87Zs2ebHKnu2bOHsLCwJnFWrlxJeHi45bPJZGLZsmUMHDiQkJAQwsPDmzgkbgi/bt06+vfvT3h4ONOmTWPp0qbOHo8ePUrv3r0xGAz3lLegoIBnnnmG4OBgJkyYQGpqKgDXrl2jS5cuFlLzBowaNYpNmzYB8kK9dOlSXn/9dbp160ZYWBhHjx5tEj4yMpJRo0bRuXNnhg0bxsGDBy2/DRkyxPI3MDCwyTFqVVUVs2fPJjg4mEceeYTo6GgAbt++TceOHcnIyGiSz8yZM1m0aBEgO7eeP38+n332GQ888AALFsj2F/v372fYsGF07tyZ0aNHc+HCBUv8Xx71CiH46quvCA0NpXfv3qxbt+6edXgveHp6WsjZAdzuIA53v4PMvbRCg6enJ56enpZJ02wSbIq4RGl9fJNZNIn/3Lg+KJVKyxu50dh0stXU6VEoJDycHUjLKUFTp6O8upYZM2ag1+uZMGECNtZWKJSNk8uwIUEEdfRBkiSUiqaTjpOTEyqVEl9vF1QqJaXlGurqZIVx+4YXeGpibyRJ4ufTjZO5p6dnvexN+TcbuEfvrAMPDw+GDRvGtm3b6Fa/KN9pH7Ry7UmMRpme6ueI11i3YgqbNm3C3t6e4uJimjnJx0BqtYrjZ2R7KzdXB8rKNVirVTjWU0TdKdediwhAWaXmV+vY3t4eb29vMN9B8m6WFRc3N8/G76yHIClsSUpKsuRRWqHBZJJ3n9xcHCirqMXNpeklkWaOtk34pt1cHCgt11BarkFtpaLwdiVTJ/cDQEJiRFgQHdt707x5cwvxvLdXMxQKyUJS3wCj0YyVSomnh5Ml7KlTpxj2UBA9Q1ojSRJqKyVt/D3qy+NAZj237zfrTyFJEunp6WzevJlhgzrRrbMfT014QG7rMzcs3Kq1WgOLlh3inU/3MX36dEt5xo/qjkqlRKVSMHJEVwCcHG3Q1NOl3dkuLi4uTdqle8cW9Ogo9wUPFwdLuKMXbvDyyy+zdu1ai7+x0C6tqNE00kneyi2lpLyGao2Os9Fp2NmqOXToEIGBgSgUCroG+1FdXYdSqaCsTIOzsx0O9bLotAYkSWL/vqvMnDkTlUpFQEAATk4yL+2Bg7F06SLb57m52lNWpkGtVvHiC2F8tHgf3bt3t/BHO9hZU6dtfLFqaP+qGi3u9WXy8PDA1taW8+fP89qLQ0nLuI1SqSCvoAKAR4d2JSjQhx37r2CtVqGut11soN8svWOOySkoB8C9/sXy0tVbTHykO21a3q30NIy/hjmqoqqWOR/sZMmao9jZqlm35GnatGljCX9nPgD2dmqUSgXL1jc6vxdC3LVm3IkxD3dDoZD4cU9T3lwnJyesrKwsNn3Q2A8UCgk7OzWSJKHTNa5lljFW2VSu0spa3O8Yx++s/YkqjZa4uDju438W/zWK3+LFi8nIyGDLli18+umnLF++/Pcj/QKrVq3i3LlzfPnll0RERNC9e3emTZtWf9wk4/r16yQnJ7Np0yYWL17MuHHjOHjwIOY7Ftn9+/fz6KOPYmVl9Zt5Pfvss0RERODq6srbb78NyG+gPj4+HD582BI2OTmZjIwMRo4cafnu+++/p23btuzZs4eJEycyb948cnJkG5T8/HxefPFFhg0bxoEDB3jmmWd48803iY+PB2Dnzp2Wv5GRkUydOtWS7rp16xgyZAj79u2jW7duvP766xgMBpo3b07fvn2bHFuUl5cTGRnJmDFjLN/9/PPPCCHYvn07r776KrGxsbz11ltMmTKF/fv3M2TIEGbOnHlPXsKIiAi2bt3KRx99xNatW4mLi+P69eu/0Wr/Gn551anBbqhhMvvomyO/Ekb+262DLxOGBjN79mxLPHtbNSP7deLs17M4+/UsOraWd6Kqa3Us/eEUq/deICSgBc7OztjY2NC5c2cqKmst8f18XXl5RhhfrTom5/UHyqCtn4QXffET+w7FArBry4ukpqaSmprK8OHDf7cOgjv48vPW2URHR6NSqZgyZQrWatVddTR2ZAhKpTyNzH1rO58tO8z06dMti9+IMHmh3fLjRcora5vU6b+CX9bxzp07USqVMnG50NwVftny75gx5xqS5zUkx9cR5kpqamp+M/E7xera0Zftq563fH7sscfuirZo+SGcm8mXVwb0bseTY0Mxm82o1bIy80t0DWrB4d1z6BrUApXq7ql3+fLlnD6bzIcLx1m+O/Kz3LfNJkH2/2PvzMNruvb//zpDTuZZSCJzEBEiIokh5iFCEUNLlVBDKaVFVW+1va1q0eqAqrbauubSUgQ1T0VDIkJEJCETMs/JyXDG/ftjJzuC9uq9t9/7u/d6P895npyTtddea+211v6sz/S+WwrAkkXiOu/fvz/JycnodAYuXclm/xHxWQ/u6y9dX1VVx9HTN7idVURCQoJ0gOnXSzxMRY/vzp6DVxr6//efS0sHaz5cEMWeE9carmn6X3ZeGRs3buSNN96Q6pLJwbWVrVTmTl4ZNbVaDEYjeoNARz9XTE1NOXr0KEeOHBH9y1LypPKN88hgMJKalg/A2TOp0mG0pqaGL78SBZyUm7ns+kE8yFtYqKQxPnX6Jl+sncyuXbseyVHeiMa+CA2rrJGj2dfXF3dXez5cd6RZ+XEju/LuqgNoG7Tmf2RWr9l4mtSMQv72yWQuXLjQ7H8PHnzqNHqy7pRwOekOi5f/REmZuhm37eEtczm2/WWObX+Zuc/3w8bKDI1GL+0Dfw/urR14fqJ4gGnsy+NApVJiYaGiqqruoTb/Fu6fLzOjetDayZaJEyc+9j3/KMRglH/95z8d/xOCn1qtJiYmhrfeeougoCC6dOkiOt/+AWg0GjZu3MhHH31ESEgInp6eLFiwAEtLS86cOSOVk8vlvP/++7Rp0wZfX18GDRqEWq2WNIuVlZWcPXu2mTD0KEycOJEBAwbg7e3N7NmzSUpKor5eNBuOHj2amJimSNL9+/cTHh7eTGXevn17Zs+ejY+PD7Nnz6ZTp07s2rULgO+//56AgADmzZuHt7c3kyZNIiIigs2bNwNIxNEODg44OTlhadl0Shs6dCijRo3Cy8uLV155hcLCQu7cEU1/o0aN4uDBg9Km//PPP+Ph4SGdskEUoF5//XW8vb3x9PRky5YtREZGMnHiRHx8fHjllVdo3749O3bseOS47Nixg+joaCIjI2nbti3Lly//w4JEUVERDnbNNXuP+tvBzoLi4mKKioqkqLMfPpvOua0L2LpyMgBurezwdnPEyd6KrgEe2FlbcOnSJdauFdNt+Hm2Qi6TozJRMvfTn8gvrWyIEBQ32H2/XGfMm3/jnXfeQSaTSUTyBr14UAjwd8XWxpyP3h+HIAg8NaQTEQM7Eh4eTk5ODrW1tej1BnLzy9HrDTjaW2LXECl8/cY9bmUUojcYqanVEBERQUREhEQp2BhxeH9/5XIZpRU13MwsZOprWyktLSUvLw8LCwsuXc7EaBQkzZjKRMGL0/oik4FObyD5Zh5HTiRLWthhw4YRPb47BoORsrIa7BvGvKy8Bgc7CzRaPdXqJlN4o+ZL/oBW08HWgrIG7UHXAA/sbCz49FMxcvqZZ55BpuoG5mORtUoBRVsAXls0lV2bohDKZ4PCHfQixWDjPRztLFEo5NhYmVFaUSPe475nn5pRyIzFW9HrRXPckSNHKC1X42hvKbX9+s1c5ry+A0EQuHg5k5mLthF/NZuMjAzJzyu/oFIas9RbBcyYu4nUW+KhRqc3UFRcJR0qtFotuXkVaHV6BEHgyPFk0hvK5uWXY29niVar58VXNqPT6Vi1ahV79uzBxESBqUpBesOznji2uySM84BVqqJC1FbZ21qi1xtwaWXH5HE9AFj/8SSebggC+mnLHCY90w0QD3AAZioTnuoTwLaD8fyScBuAkoomYdqlhQ0ymYxly5axcKGYyqWmVovdfQ799g3jbGNlRmpGAc+/tpXTp09TVVWFlZUVcZcyUKmU6PUGHBwsqaioRacziBGlRgGtVo9aXU96ejoymQy1Wk15RQ16vQF7eyvUalG7qFAocGst7mMjR3RBpVIil8slTWRIJ098PFrg5mLP2V0LCWjrIrWrtLwGmQyee+45DAYDHh4evLxkJ5k5Jej1BlxdRLOulZUZ33w2mRVvjUYQBAb0ak94eLjU1/u11K2dxWtKysTxqlbX89dPDjBwwmpGj24S9EGM5m0cK4DSsqYx1uuNpGYUipruBixatoepr25h6qtbyC2oQC6XY25mwpkfF3Lmx4VE9gsgPDwcOzs7HoUAf1dsrM0RBIGP3nuakzGLGDJA3GMUCgV6vb7ZHtu4Pi0sVFRW1knuIo2Q1phtcw26g42FpAVs7WTLxMgQlm8+0ez9+a+GEdmf8vlPx/+E4Hf37l30ej2BgYHSb0FBQb9zxcO4c+cO9fX1PP3003Tp0kX63LlzR9KkAXh7ezfziTAzM2Po0KGSoHb48GHc3NyateVRuN/vpdHHraysDICoqCgSExPJzc3FaDRy6NChhwTJB+sPDAwkK0v0BcnMzKRz5+YBCUFBQWRmZv7dcbi/XY0vrMZ2DR48mMrKSslZNyYm5qF2tW/fvpnZ4I+2JSsrq1nfbGxsmvEcPw7i4+Pp1tlL+p6aKb4wK6vrKG7YZGUyCOnoSVxcHPHx8RiNRrQ6A5v2xjLljS0cPncDrc6AVmdg74lrlFXW8NPxq0T/ZTMRERFERUWh1WrJK6nkTOJtJi7dSkp2PkFt3aisqcfBxhJLMxUanZ57RRXSuN68eRMbazMsLE2xsFBxPvYWU1/cyNovTyCTybiadJdfL94mMTGRiIgIqqurqdfo0WoNpN4qIDTYm25dvckvrKS4VE1YV2+KiqtQNkT1ZWdn8+uvv6LTGzAxUUjpN2Qy6NHFB5lMxvW0XLRaPT7uLXBxccFgMDB69GjiErIB6B7mC4BCqUCpUCCTyUi/VSCd+g0GA4Ig0Lt3b15fuoeb6fmEBnvRLbh5u1LS8pppCpKSktBo9ZJm8f7ncC1NNC/X1GrR6w28//77nDp1ips3byLoroPmOEJpFDKTQATDPZKvX6Gy4g4y094gVCDUHSI4OJiMjAzq6+sJC/IitLMnCoWc5LQ8QgI9SbrZZMLWavXk5JaRkiKap9VqNddv5hLg50qPUF+p7aFBnshkMhwcrDAzVdLJ342YmBj8/f3JL6wk/krTmGm1enLzKzBrSN+RfquA6zdyCQ4OxsrKikWLFjFlYk+2bP9V9Peys2BQ/w7k5VdwK6OQsBAfUlLzyM4p5dq1awQEBODr60tlVb3UrqKSKlQmCqldzi2btG0gCnEGg4GikmrSbhcSG5/B0VM3KCmtZsbLm8m+I0Z7z3h5MweOihaAixcvYjQasbMxJyHlLptj4ujR2RuDwcjlG+KhL6p/J96YEcH8+fP5+uuvOXbsGFqtHjMzE+xtzLEwVyGTiabf0ooaFHI5iSl3KauooXv37iiVSkaPHs3ly1n4d3DlVnoBIaE+GAxGcu+VIZPJcGxhRUpKLkajgK+vLwaDgZYtW2I0CqSl5RMa4k3PHmLqk9S0PNq3dyE1LZ8XXtzISy9vYdq0aWzduhVBEEi8cRejUaCwpIqpr23BzcVObJdCzvW0PHqHtMHd3R2NRkNOTg5FJdWi0HWrgF5hvhQWVzFl7t+Y/spmEq7mkHq7gAtx4rosKipCEATCgpr2mIHh7cUDwn3+eCAKco2CkiAI3Mkro6KqTpwzweIYJ9znnyuXy/D1dJKu0Wq1eLR2ILeggtyCCk6cu0lNrQajUWD2ku+Z+uoWzsffJiMjo9m+ez/Ox97i+TkbuZ1VRNzlLGbM28SFS019qaura1bewkKM8H6U0Ne4juvr6+nRsan/MhmEdfDg6i1Rm2tmaiL1+Qn+7/E/kcD5cSaXXC5/qFzjaR/EPFMgapwsLJqn77C1bdpcH3SEBVETNmvWLN59991HCkOPwv2+RY0LttFc7OLiQlhYGAcOHKBz586o1WoGDRrU7PrfWuTwzy2232uXmZkZkZGRxMTE0KpVK5KSkli9enWz6x8cn3+kLQ/27Y/WkZyczKhRo5j/fH/2HruGfxtRm6dUKugZ7EN+USULpvbHwc6Co0ePolQq2b9/P7dyingmMhhLC1Miwv3R6vSoTJT8be9FegX7MvvZ3sz74EfJ73PLli1MeX4qOQXlCAK8OSUCUxMla3ad5a2pEWx5+zkuJGVhplIS1bsjubm5fPbZZ1y/kUtrV3v2bJvDd1vPcTujmGefDiMp+S6dO7mTfqsAraaWH374ocH/SsaMyb05fvoGr7w4GEEQ+OlAAjOn9KFveDv0eiP1Gh3Ozs5UVVXh6enJL5fSGdCzPVGDA6muradPWBusLU35Je42+UVVWJiZ8MacCIxGI9999x1Go5GEqzmoa+rp39uPgsK+ZOWUYDQakcnk/Bp3G+eWNnQN9mLR3IiG3HICfbq340JcBi9E98JoFNiyK5ZxUSH06dGOQ8evs/PbmZSV3MPR0ZH+/fsTn5xDzyAfOrZxoV9oG4aE+2OqUrLvZBLPDg3mpef68MnfTrJnzx7JpQJ5Cehz0RgDMDWfSEHmcnQ6KCmTc6+0D84mAgrtr5TXlPPRRx/x888/Myd6GDq9gYtXMnn+mR6YqpSci7vN9rVT+XrbOZLT83Cws+TUqVMEBgYyZcoUrt3WoNMb6d29Lau/PsHz43sSNbQzSTfuEdDela3rplGtrmPSpEnY2tqy7puznDiTwowpvenf2w+NZii5+eV4ebRAEASOnU4h7XYBlZWVkrvCr5cyGTsqhMzsYsK7iwE9G747w0/fz8XWxoJN287T2sWOffv2sWzZMgRBYP+RJCL6+dOne1u0Wj0XEzJZMGsQ8YnZdO3swTuLhnP+4m32bkzC1tYWuVzOvbxyfo2/zcszByI0PJfQLl54eThiNAosfWMkC9/8AQsLCwoLC6U1Z2Gu4o0ZgxnetyM6nYG9p5J4NjKYec/1RaPTo1QqCQwMxMXFhUp1HY72VqjV9Xz0+ijqNFpsrc0JDfTk/OUMWrWw4dsVEzE3N6OoqIi+fftyJSGb6up6FEoF/fv7o66uw97BUhSkwnz55OOfiYjsyKJFw0hMTKRr166sXzeFixdvM2liTzFi93YBkUMC6RXejh3fx/Lu26NZtPh7Lpw7iq2tLZMmTcLbvQU6vQFba3NmPtsLMzMVQf5unLiQSmVVLX+ZMwSNRkN1dTWdOnVi3gwDZy6kkZZRyJinunD6Qhp6g4EeIb507exJabma/MJKanW1LF++nNWrV/PqzEG0cLDC290R/7bO6PVG9h8TTeQTokJ5dmRX1m89i7F8mLQ3OTvZMGFUCAq5nPEjQsSArswCnJ1sGNDTj+fH9UCplPNdXBwjR44kNjaW2ZPFsb+VWcSEqFCMRoHyylqef6Y73+w4j6WFKR4erbh48SLdu3entas9pqYmLJgzmK82nuFc7C3UNRo2bb/A0iWjiE/MRhCM2Nvb4+goBpLI5QY0Gj2WlqaYmCior9eh1xtFX1SVQtL+gXhI2rZtG3PGP0dJpZq84iqih4ZgqlLy0xnxMJGdV0pOfhmvTRxARULIH9q//wj+G1Kv/Bn4nxD8PDw8UCqVXL9+nR49RLPGgw6l9vb20mm40Rxwf+CGr68vJiYm0gb1RxASEoKjoyNbtmwhMTGRjz7653n+Ro0axYYNG8jJyWHIkCGYmZk1+3+jv14jrl+/TnBwMAA+Pj4PhdBfvXpVchhu9D00PuD8/zgYPXo0s2fPxt7entDQ0GYmiUfBx8fnoWdx9epVunfv/sjyXl5eJCUlSYE4VVVVfzc/1YMoKxM1CGGdPBk1KJCyilq++v4cdjYWvDErAisLU4pKq1HI5VRWVeQZcAAAIABJREFUVnLv3j2mT5/OX9//BCtzU8ZFBiM0aKpir2VRWlGDpYUpnq4OTSY2YNmyZQwfPY4u7Vqz9a8TSc0u5KVP9nAzpxALcxWzR4czYbD4TBqF17179xJzXEMHPxc++3ACs6b2o7ZOy9nzaazfcJp+vf2Y9+JAzM2dkcvlbNu2jeu3zXhhch883B3Q6QwolXKejhJfGoVFVSTduMeQgR1RKpV07txZ9ItrgIOdJS9P6Y8gCJyNu82yz0XftLAgL2ysRCF96dKlLF26VLqmuKSaZ8eGiQmca7XcziwkalgXJk8Ip7yiRvLLAng6qqv0t06vJ3pcD/ILK1m/8QzzXhCfoUsrWwICApr5HoYH+xIe7Iu6VsO8D36ktKKGcZHBKBVyXp8xmNdnXJXKCkJLMBuMnE58+NFnbNq0C5CxY69AHX9j5cqVGNHx7LPPsmzZMoYOHYpcIeas69LRg7TMQua/9yPVNfV4tnbE0tKUURFBTBvfU7rH6NGjGY1oosvKKWHO1H6ScOvfzoWaWg1yuZwWDtaYmCjYt28fMT+LAVlzF+1gxTtjGDq4U7N5uGDOYPILK5k3d4bkV9u3wfeuhaMYBFBXr2PG1L6YmCjIyCxiaEQnJo7vTm2tmqqqKiwtLRk1tDOCIJpB5XI5QZ08OHshnXUbT/PWwqfo070dA3qJmvbS0lK2b9/OsBHP8tL0/qjVGoyCID2Xg8eSeCoiEE83R5RKOZ07d2bGjCZfx87tWtO5nRj9XF5bS2lFDeMjg1Eo5FgoVM0Cwcoqajhw8jp9wtrQuSFi2iiIwmO3IC86tnORzMDOzs589lkTu0R1dT1Go8CIkeL6KCtVYzAKvDJ/CKWlahQKBTt27ODEiRPMn/8qbdu0QhAENBo9Xp5OjHgqiA9XHUKhkOPh4YjivjxzRqORn08nMyYyCDNTE8JDfKit0xGbmMXnm8/QvYs3tg0JpxtdPJ4Z2ZVnRnalsqqOk7+k4temFZvWThXH7Ph1oiI7I5flgwC7d+/Gy8uLeS+/LM2hKnU9C9/bLQX5WFua4mhvxdsvPwU8BdAQ0KNkTrT4fikorqK0TM3iF4dgY2VGnUaLhbnoo/j++++L86XhXbRo5mAUCrk4l5f+SG2dlgUzBvLViucwUYoJ3Rv31DcWNAmalpam0t/nL95m1dojTBrXndYudtTX17NgwQIqKyvZuPFvUiAHgLm5CnPz3/aXXLZsGSrXzrw1VdxPU7MLmfvxHsnUazAKvPLZXuaMDWfDhg2/Wc8T/Dn4n2HueP3117lx4wYffPABgiDw/vvvc/36dbZs2UK3bt0oKyujf//+TJ8+naioKM6ePcvatWvx9/dn69atAKxcuZIjR46wZMkS/P39KSkp4eTJk4wePRpfX18+//xz4uLipPL344svvuDLL78kKCiIbdu2/W5b/fz8pHaBmFdv4MCBnDx5Ejc3MWqtrq6O8PBwtFot3377bTNBKTo6muTkZF588UUiIiI4duwYa9eu5ciRI7i7u5Obm8uQIUOYNWsWw4cP58KFC6xYsYIdO3bQuXNn9Ho9wcHBLFmyhIiICCmkf8CAAcydO5cxY8b8ZltBNPnm5+ezdOlSxo4dK/3eGMW7cmVT1vMrV64QHR3NkiVL6NmzJzExMXz77bccO3YMFxcXLl26xOTJkyUhfM+ePSxfvpwVK1bg4+PD2rVrOXfuHNOmTWPevMejbmrduvUTyrYnlG2Pdc0TyrYnlG3whLLtz6Zsy819NJPIP4ugQ2//KfVefWrZn1Lv/xX+J3z8AJYsWYKnpyeTJk1i0aJFDwkJDg4OrFixgn379jFq1ChSU1OlqK5GLF68mPHjx7Ny5UqGDh3K/PnzKSoq+k2n2fsRFRWFTqd7LDPv48Dc3JyIiAhatGjRTOhqxIQJE0hLS2PUqFHs3LmTjz/+GHd3MQVD69at+eKLLzh27BgjRoxg8+bNLF++XPK1UyqVvP7666xbt46ePXvy7bff/qG2jRw5EoVC8XejRwGCg4P54IMP2LRpEyNGjODEiROsX7/+NzWFY8aM4bnnnmPJkiVMnDiRDh06NAseeYIneIIneIIneILfxv+Mxu9ReJS26s9CUlIS0dHRnD9/Hmtr639JnS+88AL+/v5SBF0joqOjCQsLe2wN2L8a7777LtXV1Xzyyf+f5NutW7f++4We4Ame4Ame4P8Ef5bGr/PBP0fjd234E43fE/wOdDod9+7d4/PPP2fYsGH/EqGvurqaEydOEBsbyzPPPPMvaOW/BjU1NVy+fJn9+/fz7LPP/rub8wRP8ARP8AT/w3jC1fto/E8Ed/w7ceXKFaZMmUL79u0lBot/FnPmzCE5OZmFCxdK5tv/H7Bs2TJ+/vlnxo8fT2ho6L+7OU/wBE/wBE/wBE/wAP6nTb1P8L+J1q1b067j4znRpyc3OdG7DXg8Z+V7p5pM3P+Ig//jOJLf70TeauSix7pHYczH0t//SBBBqxGPeZ8DTfd5nCCK+wMo/pEx/kcCNf6hgJA/6Hj/jzz7xwmggOZBFP9IcEd7v8cMokhrCqJ4nMCL+4Mu/pGAiH8kIMRx3OPNy9Ifmubl4wSE3B8M0jLq8e5RtL/pHv9IEEXrQY83/3NP3LfHPMZ97r+H87DH60vBz019+UeCO/5IANGfZertFPPOn1Lv9ZFL/36h/4/xROP3b8T/pY/hP4sHo2v/r/CoSOD78aiI58dBt1AfZkztg4e7I3V1IoG8paUpBYWVbN3+KydOp0hlx44dy4wZM/DybYeFmQq5XIYMkUbqlysZLN1whHqNnrEDO/PM4CBcHOcgk8mQyUSzQGFRFUqlHOdWdshkIn+vicmDS28xCQkJ+Pr6olCakXWnhJT0PAb08qeFoxUyoLKqjm27L/HD/su0bduWI0eOoFKpKCxX4+Jow7aTCfi6OBLSzh2ZTKQWMlEq+CUpEy9ne9y+eIWdO3fy2muvMXtGf3p088WphTUyucgBrGxIeVFZVcf2XRf5sYG3c+zYsSxYsAAPD0/kchl6g5ELN7K5kV1Azw5etHVrgZV5U1oIvmoSkLQ6vZQk2mgUSEy5y6ffnOROrpj0e+TgQHou2EVAQAD29vas2/kLzw0Nwd5GTKeRV1zFks8PUFFdx+xxvejeyQtzUxOKCp+hpKQEHx8fTM0sqKvXIZfJMDNVkpZZyJqNp0nLLAQgsl8Ab80bSkXFDARBwN7eHkGfDQpXtPVFHNi/lXXr/0Z+oYxX5gxg9ty/gtwedOn06PEesbGxKJVKZkf3YeiAAOwaUn3U1Gk5eT6VdZvOUq/RMXJwIAPC/fB1n469vT3rvz3N4P4d8PRwpLZWiyCApaWK/IJKtnwfi0IhY8mrT3H58gDs7e3FROQyGYJRwCgICALczCzg0y2nSMsu4qk+Abw9K7JhZJsLCHq9gZx7pbR2sadeo6Oqqh4PN4cH5thrvPfee3z99dcAuLk58O7S0Xh6OiGTQW2tFhMTMfVHxOAPcXNz4LuNF/Dy8npo/VRV1mJmrqKgoJLt2y7g6GjF0KGdcWq5gOrqakxNTZu5tVSr69mw9RwxR8TUTd27ejNrcp+GnIbifCkuLqa40ohrK1usLU1Jzyqmrl5Llw7uKJVyjEaB4lI1dRotrRxno9FoJB7h+6HTG9AZjJiplMhlMvLKKomJv8kHu+UYjUbc3Nw4dfwvD10HoNHo+O5vv7B7T/xD/wtt586XL48ht6SKmIs36NnBCz83JyzNVOj0BuRyGcLaeZSWlpKenk5gYFdsbMwRBNDpDNzKLGTrrlguxmcSOagjE5/pjnMrG+7kjGH16tUcOHCAeeN681TvDthZWdCYrlSnN5CaXcRPp5N4d2bj828uIO89eIXUWwVSnfkFlWzZ2TDHFj6FWj0HMzMzMbk6cnQGAxm5pXx76BKxN3KkenxcHZk1ojsh7d2x3TAfvV6PiYkJpaVqZDKRrcTERCGlzmlkSvk9RA4MYOLTDe0qFNt14mwTd/h/wvvvvw1PfPye4CF8/vnnREdH/7ubAcCbb74p8RT/Hn4vYfWDCAwM5P13xxB3OYsvN5zG2toMa2sztu+6yMHD1/jLa08RFtJEgl5SUsLq1auJvZaFXCYjv7gKrV7PvaJK+oW05b3ZwxgQ1paFk/px4lIaBoOBY8eOkZubS9rtQhwdrHBxtuOHvfGs/PRnBMS8fcs+OsDoiV8weuIXnD9/np07dzJu3DhefG0blVV1jI8KpYWDFYeOJfH9T3HYWJsxa0ofxg4P5quvvuLmTXHzXLP3HMWVNUT17IjeYCQm9gb7fr1BXQNXZ3Glmm8OXZJYKACyckpY/cVxvvzmNCoTBUqlAkGAoyeSsbE2Y+bUvowcJrLbWFtb4+7uTkzsDeas/YkDF1PoG+hDZGh7ziZl8N3hOAD0BiODF39NUFAQzz33HEajEYVCTsyJJH44mIBMBl06uPP50vFYN+QPM1UpuXDhgpSXbM643liYmbBq80m+2n0B5xbWfP32eDYufQ4ZMl79ZB+vr4nB0dGR7Oxsxo8fz8kLqahMFHzz/XlmvL6dvMJKVr/zDA52Fni5OfLixN7cyy+noqJCTPgMoLuGUBJF5s3PGfX0QtZ+/CxOLexA0RKhYj5CyQjQnmfbtm34+fnx9ttvM3xQJ+QyGUk3c4m9koVCLqdHVx/+8pIYvW5qquTK9TtSX2ZN7UtcQhbrvz2NjbUZ1lam4hw7ksSbi4bx0gsDSLpxj06dOmFra8uaNWu4fCMHmUxGeWUtcrmM2notny95BocG+i69wUhSeq7Eu7t+/XoWLf2Reo0eH08nvvzbGd796AAtHK2oqq5Drzew5+AV5v7le/7617+yePFioqOjMTMzYe3n0Xh5OfHjj5f49NPDmJmZYGIiCulmZias+ngCRqORmpoa9u/fT3l5DbdvF2I0ClhYmrJvbwI/H7zK638ZwXMTe/LNN2d45513cHR0xNraGrVaw8lfbiIIAhbmKtxcRCHNr00rlr85GktLU+7cK+Xbb7/FYDBQWFiIr0cLVm04wQtLduDuYk9ooCcXr2byyrLd7Dt+jZYtrElKzSUyMlI6DJapaymuquFieg4z1u8mt6wSMxMluaUi9dm3J+KJ7hvMnDlzAJGrfOy4z/lw1SEMRqOYnDxBZNQwMVHwwvR+jBjenNnJwdqC96YM4eJNkUVDpVTw642sJuYZGWw/eYWioiLy8vLo1asXArBy9WG+3nQWmRxqazV88PYYxo0OYfHLkcQcvsr0uZvYsWMHa9as4euvv2Zk347IZTKqa+u5dbeYeq2OqhoNNpZmvDU9goWf7WPoy18RFBREUFAQM2fOFPeoUnWzOg8eTeLNV4eJCboFgfLyci5fvsy+ffuQK+RsP57I9cx8Vs8bRWdfV6mfZiolBWXVJN7KpbCwsBkPuq2tBYIA5eW1VFXVo1IpsbZunj/2QfTq3obF8yKJOXKV6S9v5uDRJJYsGEa3rk1sS/dTgv6rYRRkf8rnPx1PNH7/Ami12t8l//5Pgcghq//7Bf+F92pMFv1beNxgmAfZVH4PM2fOJDW9gG82nuXzzyZx+mwqxSXVRA7uyHNTvqZDe1cmjOtG3GWRNu7s2bNYWlry9YZvMBiNRL+1lb82nLwdbCzo27UNVep6bt8toWsHD44fP85LL73E1KlTeeutd1CplJw5n8aX350BYPCAAEK6eDFmRDAnzojC2/jx46X2+ZqVY29rgV5vpLKqjlVfHAPAxdmODu1ceCG6N3t27+LKlSusWrWKYwnp/OXZ/pirlLy58TDqei0AeSWVvDy6NzGxKVzPymeon410jyPHrwMwbXJvioqrKSlV4+nuyK3bhZiZmUhj8MmHYgLyq1evsmzbOQAu3bxD13ZuuDrasOV4Al3bNWlaS6tqKS4ullIhfbLhBDHHxWTiRkFg3FNdcbS3JNC/NRcuZ/LjoStkXVzbpK2VwWfbz7DvtNg+G0szJgztSmV1PX/9Ukwu/eWb4zh27Bhz587F0tKSQb38WbPxlHSf5V8cYe+GFxk7NJjeYW1Yt/kMYUFeWCvL6dChAwBC7U4wZODnmoFM05ZOXWejMj2PUH8adCI/rqBeTWZZP+bNm8fQoUM5ezGDfj3a8fqKvdTV69j7zYtcS8kloo8/X287x48HrwCgyz0PQM7dUjZs+oUvPp7IqV9SKS5REzmoI1Nmb2TKcz3FZNcyMX1Sr169MBqNzHlpHruPJzJuSDDZeaVk55bSzrMlYwZ2Jr+kChBpvjw8PIiJieGDDz5g/pKNmCjlnLt0m37hfrzy1i5S0vIICfIiLaOANd+cBCDj8ne4uLgwZ84cdv94A2trc86eTWXD16d5bfFTXI7PpFv3NsjlMHBgALa25uzadYjhw4czZ84cpkz+jOUrxnHhQjpFhVUEdfFg9qxNTJ3eh6qqOi6cT+fDVc9QXV2NlZUV6loN731yCIVSQYd2LvTt2Zb1fzvDuKgQCoqqsLezYOar20g4tRylUsn06dP5aMNxzl/OYFi/AKwsVBgMRtKzikm4foeE63fQaPX0696OjIwMiTLSwcoCrd7Awr8dRF2vpV6n51TybQYFirzN51Ky6OnnKdF0Go1GystrGD6sM8VFVZSWqimvqCU7u5icO6X4t3fl2XHd+bghz75MJmP51KH8cPYaKhMF7k52fHkwljHhnSR6wayCMj7be44TWxPZsmULeXl5WNs4cOSEKDjZ2VrQL7wddXVaxgwP5vS5VH7cJybRP3Xwa0JDQxkyZAhHYlMZENqOoS9/RV29jkOrZ3I55Q6RPf3Jziuja3s3zl/NpLi4GIDIyEiyckroEebbrM7C4iqmTOgJMqiorCU7O1sKuNPY+TIivAMj39hIjwAvBgS34VqGSKWWkl1ISraoKf98ajeJscrUVIlcLqO6ug5BAIMB1Op6bG0tqKnRNKNevB8TxoRx+nwqP+5PAODOvTIC/FyZMDaMSw3C9qlTpx557b8CTxzZHo3/Oo1fdXU18+bNIzAwkCFDhvDLL7/g5+fHpUuXAPjpp58k1odGPKjhMhgMrF69mj59+tClSxeio6ObmTgby3/zzTf06tWL6Ohopk+fzqpVq5rVe/ToUbp3745Op/vN9ubn5zN58mQ6d+7M2LFjSU8Xs/0nJibSqVMnqqqqmpUfMWKEpLWIjo5m1apVLFq0iKCgIAYMGMDRo0eblb9x4wbR0dEEBgYyYMAA1q1bh8HQxK/o5+fH7t27iY6OplOnTuzevZt169YRFxeHn58ffn5+3Lt3Typ/8eJFhg4dSpcuXZg7d67Uvq+//vqhCOPS0lICAgIkzdSD94qNjaWuro633nqL0NBQunTpwiuvvCJx/4Jo6m009zaO15QpU+jUqRNRUVHcuHED4A8J3qGhocRfzkSplNO+nTNxlzOJv5yFi7MdLVpYE385iw7+rhIZOUDnzp0xUSq4mVmIp4sDge1cSbh5l1+vZSIIArX1WrxcHQhu70ZaWhq7du3inXfeEc3CMoi9lCHVVVJajSAIdGjvys6NM3nvzahmHMhKpZz2bZ1RKGRk3S2Rfo+7kkULB0sszFV89dVXzfqkUoon9UahDyAlR9zAAzxbPXIcGvtvbm5CaZkac3MTkm7cI+5yFvZ2lrg42+Hi4kJoaCinT5+WrgvwaoW9pTnmpia0tLNqqk8hJ2bZNK5cucKQIUOQy+Vcuo+b9OKVLInZpJGP9EHIZTJik7Kl77FJopZVJoNlc4ZxZP2LBLd3w97enq1btxIfH4+pSom1VZPmwWgUiE/K5qkBHUm5lc+J803+SY/iyBY055ApXGjRogXQnHu0vr6enj17YmZmhkqlJDk9n5pa0TUg/lo2jrYWGAxGOrV3fajelLS8++ZYFnEJmbg42/HGgqFkZhXh4myHnZ0l1dXVVFdX07lzZ0xVSnYeTsBgNGJnZU55dR1xyTl09mstjXFAG7GtI0aMICEhgQljwkjPLCI2PoMOfuK8LSlTIwgCXu4t2LXhBZa9Ls6xM2fO4OHhQUioqHG5GHubwYM74ufnwrJl+yUGmY6d3EhJyUWr1eLi4sLly5dZsDBSZCsxClhamUoUXQaDkZYtbVCpFHTu3BlLS0vKy8txaWXL/i1zCPRvTQsHK1xa2eHkaEUn/9YYBYGb6QU8PSKYuLg4xowZg0wmI79Q1NL1694Wg1GgSl3PpFFh/LBuOq/PGsz11DxcW9o+lOdTLoP1M0czMrQDiZl5eLd0kIQRn1aOdPFx5eTJk1J5pVKOn58L5uYqrl2/S5/efhw4dJW4+Ezs7S1xcbGT7jF//nwEQWDT8ebm3yBfVzLySgFwd7Kja1s3zp49iyAImJqaEhvftOYvXxH3F3MzE5ycbIhLaM7Zm5WVhVwux0ylJPl2HjV1WoyCwKUbOeIcMxqxtTKjQt20buzt7Rk2bBiHjl6jfVvnZnUumD2YzOwiLC1MKSlVN7vXr8nZtG5hSyt7KyzMTJrV+VtQKhXodIZmgpRWK3JyN2qJH75G3tCu7Ga/X7qSJc3TJ/j34L9O8Fu+fDkZGRls2bKFlStXsmbNmr9/0QNYt24d586d49NPP2Xfvn0EBwczffp0amqaHL2Tk5MlrtDly5czevRoDh482IzmLCYmhqeeeup3tVrr1q3j+eefZ9++fTg4OEhmzS5duuDq6srhw4elsqmpqWRkZDB8+HDptx07duDr68tPP/3EM888w6uvvsrdu3cBkZB92rRp9OvXjwMHDrBixQpiYmLYvHnzQ22Ijo7m8OHD9OvXj2nTptGlSxfOnz/P+fPnm22yX375JR9++CGbN28mJSVF8hcaNWoUycnJZGU1bT4HDx7Ex8cHf3//R96rY8eOrFy5kvj4eL788ku2bdtGfn4+b7zxxm+O1+LFi9Hr9fz444+89tprUq7ARpq9x0HLli0pK6vB1sYCpVJBWVkNZQ1USo4OlpSVqx8yY3h6egLQsY0z377zLLuPX+WHY4mUVNRiNAoUlan5/sgVqY29evXi8uXLFJdUI5PJaOvbUqrr0uUsNBo9MpmM9d+dwcJcxc8//4yfn0jXZWtjjlKpQCaTkXA1W7pOoZBL/byfHxpE8vZaTfMDhqHhxedg/Wht6IC+/iiVCmyszekW4sPb7+3l1u1CysrV0mbesmVLWrZsSXV1NedXv8SldS+zafGz/BwnCvMtbJvMNKt2nWbR1wd44YUXJE7nsC5e0v/LK0XtgUarJ+VW/qMfDlBa0bTOdHpxPbWws6KwrJo1288C0KdPH1QqFevXrwdg2riejBjURIlma2WOjbUZq79rrk0QhbsHYBS1Jw4OdshUPUHuACjAfDRBQUE4OIi+claWptI8ASirqMXB3pIqdT2O9lYPVVtdVS/NsdLypjnWvp0LP+5LwFSlxNzMBK1WFNYbNVhFZWq0OgNmZiYcPp9CaUUNjnaW5OSVsfTLw/x08ioymYzY2FicnZ1xcrDCz7cVWp1BEoIvXhHXYdKNe3z0xTFpjjWa1Vyc7ZDLZSiVcl6cPZD3l+2jrk6LVivOy5YtbSgrqyExMZH58+cTHR3N52uOIZPJ6BneloEDO7B/r6jFSUvNR6lUEBom0loqFAqJ4/Wrzb9w4FiSJPA72lvhaG+FpbmKTh1a49fGmRdffJGffxa1uXMmixRkrVvZoTJRIJfLKC1X8+FXx+nQ1oUpT3eXxqqkpIS0tDRqNVou3brLr2k5vDNuEOp6DZdv35MEiy9njeb7c9f4/vvvm+aHrfhcLC1Nae1qj9EocPxEMmVlNc3mfs+ePYmOjuatzUce0h61sLWkqrZe7OfBWNa9NJrbt28jk8nQ6/V8tPoIPUJ9Obx7Ph+9Jx6Kt+yMRamQS9RtjWh0VbGzNqe0YZ0AlFbW4mhniVZnwNzMhMMXmnzjxo0bhyAIXLqSJc0xgCEDAujQ3pUf9yWIbTE0P8yUVon1TxsWhrWFKYcu3uTvQS6XPVKrJwjCbwpwjfvY/esZoKy85qHD2p+FJ+lcHo3/KsFPrVYTExPDW2+9RVBQEF26dGHBgseLxGuERqNh48aNfPTRR4SEhODp6cmCBQuwtLTkzJkzUjm5XM77779PmzZt8PX1ZdCgQajVakmzWFlZydmzZ/8uU8fEiRMZMGAA3t7ezJ49m6SkJOrrxc1k9OjRxMTESGX3799PeHh4s5dX+/btmT17Nj4+PsyePZtOnTqxa9cuALZv307Pnj2ZPn06np6edOvWjXnz5vHDDz80a8P48eOJiIjA3d0dFxcXLCwsMDExwcnJCScnp2ZC1eLFiwkMDCQwMJBx48YRHy+eglu1akWPHj2atTcmJoaRI0f+5r1UKhV79uzh7bffJiQkhICAAFasWMGZM2eaCZCNyMjIIC4ujk8++YT27dvTq1cvDh06xKxZs353jP8I7t/cv9/yIunp6aSnp9OnTx8ALiXnsGrzKZ6NDGZk3ybGEJcWNowb3GRKqq+vp02bNhK3ZniPtlLZU7+kojeIAs2163f5y7t7KCgoYNq0aQBE9u/YUI9AdY3oPG2iVDDx6SYn6D179rBy5UoUCgXTIn8/dY7Ao+0dySm50n2Sku/yxmtP0bZNc+1gowZIo9Ew4YNtTFqxg5Xfn2Z4tw4PjdfJxNuk3ysmISFBOgA9N1Jsm1wuY9bE3gCUV9Q8tglG3vBC1BkMrNt5jntFFQCkpKQQGBgoaaMPnUpm7DCR19Xd1Z7gTu4UlVRTr/ltbfuDEIwVILdA3vIislbXkdksx2g0SkLsI695xF+/he6hvgA4Oljx1mvDf7Pc6IGBmKmUHD6XQnGZqK0RBEi+nU9ecSWjBogMO6GhoSQnJyMIouAQEuQpNeXUOVHLWVOrQafT07G9K6amphIvamNrJ0WHc+xoEuu+mMLBQ6+iUjXv6+nTpzlw4AA3b94kNbVJWC/IryQ29jaBZleyAAAgAElEQVQABw+KvMnvvDta+r9GI87b7DslpKQ3XdfI7ypr0OIuXXWAK1euSHzb7bxa0s67pSRM3M4ppl6jJyH5DivWH6W9jzg/9+zZw4kTJ2jZsiU37xVRWVPPV0cv8t3JeKb070q4v5fk4/rx/rNM7hfMxIkTHznenTq5c+aX1IcCFaytrVm7di2vvvoqHk72XPj0JaYPCcOthS3ThjRfc88PDuGzn35h6NChCIKAubk5r88fSmLSHWbM28SyVQcAGD8mRLomMMCNw7vnk56e3owP+UFYW5hhplLy84WbFJU3ae8mTZrEgQMHqKlp0vK7t3bgpRcGsPTDGLS633fbGdEzgMVfHWpWJ0BQ29ac+/wlunXrRr9+/X63jif4z8R/leB39+5d9Hp9M3NOo1/H4+LOnTvU19fz9NNP06VLF+lz584dSZMG4O3tjbm5ufTdzMyMoUOHSoLP4cOHcXNze6Rp6X7cb+JzcnICkEydUVFRJCYmkpubi9Fo5NChQw8Jkg/WHxgYKAlN6enpHD9+vFk/3nzzzWamW0Dye3ocPNje0tJS6fuoUaM4cEDc4DIzM0lJSXlI8Lv/Xvfu3UOn0zV7Rr6+vtjY2JCZmfnQvbOysrC1tZWI00F8Xjt37mxmvv57KCoqwsHBksqqWvR6Aw4OltjbiVqxsvIa7O0s0Wr1zJyziYiICCIiIti7dy8Almam7D2VxLZD8bz4dDiOdhbI5TJCAjw4f01s86ZNmxg4cCALFy7E3t4SQRBwsG/SjCkUcizMxUjAanU9er2RpKQk3N3dmTVrFpPHd8dgMKKu0eBgJ17n6GCJS0tbSRAzMTFBqVQik8l4cXhP5HI5FqbNNcuKhpdnefWjTTlFxVXo9QbU6nqSU3JJTS9gwtPdsLezRKcTx7O4uJiioiJatGjB3eJKbuWWsOdcEscTRJeE0qqaR9ZdXl4OgLOTLUqlnPdeHUE7b1GjVVha/bvPx9GuaayUSnGLUjcIwCUNWo20tDRsbGwkLXxxaTXOLUQfxo5+rpiqTHB1tuPMDws588NCIvsGEB4e/mghTi4epMrK8hFqv8dY2AWheBBCyRDOnj1LXl6e1Ib7n6ODnQXl5TXYWJk9pMEBsLYxk+aYo70lDg1zTK6QozSRS/PCycmJnJwcKUL1pfF9EAS4liYK5g62FpQ1kNunZhby/Jtb0el0rFq1ij179qBSKdBo9Ti3tEWj1VNdUy9p2JBB6u1Cps3fzKlTp7h16xYABQUVGI0Czs52jH06DJVK2UzoCwz0wN+/ufna29sJQRAoK2suuJuZmaDV6hk18lP0ej1Go1HyDcsrrMTBzgKdXpxPJko5peVqNFodpWU10nO9f/06O9lQUl6DwShga20uaYwy7zXtNYmJieTn5/P000+TW1ZFCxtxbG/cLUClVLL51GVMGyLnj1+7xZYzV5opASorxeei0ehxsLfkwMFEAOztm+a+ra1oUt60aRMb5j+NykSJQi5HLpcxe3hPTJUKbCxErdWFG9n88Ms1aXxv3LjB4P4dcHSwJDe/gooGs/itjCKMRgFHe0tSbxUwY564xzQe1iuq63C0bdLQh/i74dAQVHE1vSnlSa9evfDx8WHr1q3N5liAvyu2NuZsWDOF5X8dgyAI+LVxITw8nJycHEJCQhjfX9xv3910jLiGYJX7cTO7gAnvbePatWuSIsNofLRmTyZ7tCYQxOwAer2h2XoGcd1otHqq1fWPvO5fiScav0fjv0rwe5yUhHK5/KFy9wc0NG5YO3bsYN++fdLnyJEjzdgo7hf6GjFq1CiOHTuGRqMhJibmsXh5738RNar7G7UlLi4uhIWFceDAAS5duoRarWbQoEHNrv+9aNba2lpGjBjRrB8HDhzg0KFDzcqZmT2+yv1+s7WYrqRpLAcPHkxZWRlXrlwhJiaG7t2706pVcw3S/ff6oykkBUF4qL86nY7KykrJXPY4iI+PJ7SrN3q9kdT0AkK7ehMW4kNBQSUlJdWEhfqQcjOPe7nlZGdnk52dza+//opOb8DfpxWWZipkMhkmJgp6Bnojk8kwGAxU12goKKmSIk7v98/UaZtebCFdvJDLZaTfKpA2VH9/fxwdHVm4cCGLl+7hZno+tXVawoJFX6ziUjVxV7IoK6+huLSaiIgIPv74Y/R6PROWb6NOo8PZwRpLsyZfR/8G374bDb5+D6Kx/7V1WkK7eiNv6FNYiA9l5TUUFFaSn59PfHz8Qyd/T2fRPFZUoX5k3RcvXkQQBGpqNXz4l9F4uTlyPv42BoORhKSHXzaNMAoC3Tt5Sd+7dfQUA4EaNKT5JVUUlFTRtm1bKisriY2NRaPV07WTBwXFon/Y+bjblFfWsu/oNaa+uoWpr27h/OXbJCYm8uuvvz50T5mqN4LhHiXFDeMk1IAxD4xVhIaGsnfvXurr69Fo9XRs54KFuQqZDEICPSmtrEGhkHM9Ne+hev3buTabYwqlnJLSambM3URCYg5ptwq4nVmEIAiMGjUKNzc3BEHg16Qs5HIZ19JzkckgtKOnJARqdHpy8su5du0aAQEB+Pr6UlVdj6WFCjsbc1LS8jAaBUKDPJHJZDi3tEWr1ZNfVImHhwcgHpAvx4uHw/i4DGa+8B0zX/iOz9cek9b01q3ncXS0xspKNGEPHDiQZR88jUwmQ6GQUVTcNLdDw3xIScmltlbH1atXqa+vx87OjqvJd6msqiMs2JuaBgEvJT2f6zdzUSjkONhbShpxV1dXaT/IL6oi6eY9ZICXmyNJqWLfPV1FwVir0+Pk5ERUVBSpqakkZuUR6OmKpakK/9atEAQBFwfrZoKKUWhywQFx7qel5SOXy6ir03Lzpvj8wkK9xblfUMmpU6cYMGAAERERPLt8G88u38bu80nkl1Xx7PJtnEi8ha+rozRvQXRBkMlk0iG+MSdLt67e5BdWotcbUavrCQ32RqvVk5tfQXZ2No6OjqKlQKunYxtXLM1UzBzdEz+vVlxOuYtcLiPpPsFv0qRJpKSkcOXKFXGO3SogNNib87G3eH7ORmbME+dYVXU91ep6EhMTiYiIYNCgQYzsFUBJZQ3H4h+dmkujM3CvuJL6+nrq6uoaxsuAiYmC+7dflUp0R2kUlB9EU7u8mv0e1tVbmqd/NoQ/6fOfjv+qqF4PDw+USiXXr1+nR48eAFy7dq1ZGXt7e8rLyzEYDJIJ8/7ADV9f0U+lqKiIvn37/qH7h4SE4OjoyJYtW0hMTOSjjz76J3skCpMbNmwgJyeHIUOGPCSkJSUlNft+/fp1goNFk1f79u2Ji4uT/NMeF0ql8g9p0Bphbm5OZGQkMTExnD9/nrlzfz/hq7u7O0qlkqtXr9KrVy9ANOdWVVXh4+PzUHlvb28qKiq4c+eO9BJr7H9tbe0jc3o9CsnJyYwYMZLpz/fmxKkbvDxnEEajwNYdsTwzJpTe4e3YvjOWzd/OYPSoH5g4cSJxcXEcv5hGZE9/ti2Pxt7GgoqqWlo5WnM24TapWYVMGRHG+auZREVFYWZmhpeXF0XFVTi1sMbKypRZU/uSm1fOy7PF+8X8fJX27ZyZMqEnbdv6otfrmTVrFmX6EA4cTWLxvCG0dLJm4ezBqGs0dA3yxGgQWPPNSdLS0ggNDUUmk7F6dhR6vQGtTs6aOVHsj72BQi5n8mDRrOTn5oSzgzUODg4EBgaSm5tL2/YDOXoimcPHklg4bwjOrUSfwV8upNO3VzsMBoHPvzwhjW1wcDBnOnTiw12nCfNzp0ub1lzLzKOdmxPuTnYAfP/mRFbv+YXEvK5UVopCmI2NOe18WnHi3E3GDO2CTm/g7KV0VCol3YO8mDO5L68tTGh2AHo1uj/WlirkcjkTIrui0xtwsrdi+qjulFfVYWmuolXHjpw8eRJHR0eu3rhLWJAXPx66gre7IxOiQlEq5Gz+MVbSFml1BqyUMo4ePUp4eDgyyxcQ6uzR6J0xNY+mIHM5Or0pJRX23KvohbPXXEwUdRRkFbBmzRrMzMwY+8xz1Gl0fLhkNOoaDRbmKjr7u3HifCr5RaJmy8fTicXrRO2wl4cjr70yhAuXbjNjSm8Eo8CWnbGEBnsRHOTJ9h9iGTuyKzqdjvXr19OyZUuu38qjX0gbkm/l0crRmhef6YWZqZIh4f54ujpw6XoO7TyduHw5TkrlUVhShS3meLk78tnPiXTv6s1fXx3BzfR82vq05C/zInFuZUvbtu7o9Xrefvttrie1YPqMvoSE+jA4o4is7BKmTe+LIAgYjQI/7LrEU08FkZyczIULFwgPD0enM6BWa7C3t6S0NJvu3duwaPEwbGzM2fn9RVxc7Th69Chdu3YFwMnRikUvDaZfz3bIZDJupOairtHw4/4EBvTyQyaXs/LtMRw+UMvkyZNRq9WYmVvg5GBF/PU7TBwVhlIhx83Zjv492vHSxD5iIFWdjtmzZ/Pcc8/h6OhI5KAwarVatr4yHrcWtpTX1DG5XwhZRWV4t3RgbI9OTOoThEGrITIykiNHjgBw4NBVXn/tKQQB5r88BHVNPX16+2EwGFm3/gR1dXWkpaURGRnJWy8MZ9aa3ZRV16LTG6mp15KcU0idRodKqSAyxA+jUaC77wQSExMJCgqirk5L184erFv1HDZWZly5lkNIF2++332JZ8eG0TXIk3dW7GdA2EwGDx7MsWPH6NGzD3UaLTtXTKGFrSVanR7v1g6cTbiNRqfH0lyFi6MNw4cPZ/v27dKa+X73JZYuGcXN9HziErLoEepDcJAn6785xdyZA3FycmL27NlERUUhA7YfT8CxQUsa5u/+/9g77/CoyvT9f860zCST3isEAkmAJIRACB3pKIoiorKA2AErioK6ChYEsYCCKFIFVIqCIEVCryGEEEJoCYGEkN7bJNPP74+TDERwF93F7293576uXJk5c97+nnOe877Pc988dU8Ckz77kaq6RtoEeOLp4oinp6fN8LdapVU/FxcN9fUGZDIBrVaNXm+yGXAymcDBgweZM2eOrY9/2HSCd2eMlOp1KoceXdvSp0d73nx/k63uf4SRwY5/D/6rDD+tVsuIESOYPXs2s2fPRhRF5s+f3+KcqKgoRFHkyy+/ZOTIkRw8eJCTJ0/aAhC0Wi3jxo1j5syZvPnmm0RGRlJeXs7evXt54IEHaNu27T+sw8iRI/n888+Ji4v7Q4TCv4ehQ4fy3nvvkZeXx7Jly276/cKFCyxZsoQhQ4aQmJhIeno6H330ESD5D65fv5533nmHsWPHolKpuHjxInl5eUyaNOl3ywwICCA3N5crV67g5uaGm5vbbdd31KhRTJw4EaVSyeDBg//huVqtlgcffJD333+f2bNno9FoePfdd+nbt69EZvsbhIWF0a1bNxu3X2VlJcuXLwf+2OphZWUlb7+7iace70dwkAd19XqsVhj3aA+KiquZ+8l25HIZIcGeKBQKnJ2dmTNnDv6BwZjNFvw8XRAE8PZw5mDqZWYt2YnRaMFiFbmvfycEQbC1vaCohuWrjzCwXwSPPBiPIEhRkLoGA9NeHEZ1TQNXr1U0rSAqWbFiRYu66vUmRg6TfLpq6hpZuzHZRoIbHByMXC4n0Ot6oEeXdkHEhgW2WBl9c+zAFnm+9tpr6PUmevdsh6uLI42NRlQqBUqlnL692lNb28ja9cfZukPy3WpoaKC+vh5XV1c+eHwYZouVfWnZNBhMrPv7OFu+7s6OvDtxGLqH+nDhwgU2b97MqFGjcHd15KERkjEgl8v49rOJzF4kBS0F+bu3cLqXCQIOKgXPPyz5VBaW1fLmom0E+bjyxP0JhPi5S6TUhw7Rrl079u3bR2FpPcmncxnYK4KRQ2LIvFLCy+9tbOFU3irAg3ahEbaXIkE9AEE9AJm+io/mzWfVKmmr7fufSmi0Wpk7NwCxcQujRr1FQ0MD77//PhrPaO4e0ImYSCnCtqHRxPG0HBauPADA/UM788TDPW1lyuUyRgyNkbbt6w1YRZHxD/egqKSGuZ/tQC6XoXVSc+bMGZvLRnR7Ke9O7QL4+u1HqKzR8e7inXwy7QEKSqp5alQPvD20CEjbdaIo4uvlSml5HfU6A1Me74/RaEbXYMDHW9r6HtK/AzKZDEEQ2L59O2vWrCEi/HlefHENs2aNYszDCQgC6HQGft15hiFDo9DrTcz58Bc+/Wws/fr1a5qf4Ogo8S8OHtyJQYM6IggCR49k0bNXO0Y/1A2DoZFz584RHBxMgJ8bAX5uiKJIWsY1pr/3EwAXs4v5cVsaD4/sSnSHIKI7TKe+vp7t27ejcA1nxuQhaB0dyM2vQK1SMrh3JEP6RNoCT9xcNOzZs6fFnDYYTajcnZELMrRqBxRyGaE+UlDOpKFSQAgaNS4u1ymNPD20mEwWamsbbbx9tbWNfPdDEr80+S0CuLi4EOrngeIGX+fJI3pwX4+Otu8qpYL7e3XCYrEgCAInTpwgKqozrzw3BEEQMBhMyGQyps/6kROpObi6ahgxNIbPZj9MXl4uU6dOZevWrXyw+EdG9OmIr4ezbQ6pVUp84pzpFxfGtsPnqKjRIQhCC469I8ez+fiLXxk3JoHJT/SX5tj8Hezef56e3cOIaOfVgnXhpdF9eWm0dI2lXSqgtb/UPm83LT+8c/2avt4Hatt8c3eXtp4NBtNNfpFhYWEt+vjI8Ww+Xvgr4x5KYPLjTfVasNNG5QISY8Kdwn/DtuydwH+dZFtNTQ1vvvkmhw4dwtfXl7fffptnnnmmhULGjh07+OSTT6iqqmL48OHSqsHp06xZswaQtlqXLFnCxo0bKS0txdPTk+7duzN9+nQ8PT1ZuHAhJ06csJ1/I5qVJD744IOb6E1+i98qd/yeCsWMGTM4fvw4+/fvb/FAb6ZFKS4uZu/evXh4ePD6668zfPhw2zmZmZnMmzePU6dOIQgCbdq0Yfz48bZt6FuphzQ2NjJ16lSSk5NpaGhg7969FBQU3KTcsWnTJhYtWtSCh0kURQYOHEhcXNxN9Da3Kkun0zF79mwSExOxWCz06dOHWbNm2SIpf6vcUVhYyPTp00lLSyM0NJQpU6bw8ssv/yHlDrtkm12yzS7ZZpds+2ewS7b950u2tf/p/TuSb9aDb9+RfP8q/Fet+IHkkPvll1/+w3Puvvtu7r777t/9XSaTMXnyZCZPnnzL31944fdvGpWVlajVaoYNG/a75zTjt/JnQUFBt5REq6io4L777rulP59Go+Gzzz676XgzwsPDbatit1OH5jx/yxN3q7qNGjWKUaNGtThmNBqpr6+/pX/jrcpycnLiww8/5MMPP7xl/X4r1RYQEHCTwX2joWuHHXbYYYcdwH+HQ94dwH/dit+t8Fdo4ppMJkpKSnj33Xfx8vJizpw5/3KedXV1JCcn8/LLL7Nz506Cg4Nb/D5+/Hji4+P/oSH6V6K8vJw1a9awY8cOEhMT/5CM2l+JwMDA/+sq2GGHHXbY0YQ7tuL34x1a8RttX/GzAzh16hSPPfYYERERzJ49+9+S55QpUzh79iyvvPLKTUbf/4/o1asXPj4+zJs37/9bo88OO+yww47/Ddh9/G6N/4kVPzvsuBH2FT877LDDjv9/cKdW/MI2fHBH8s0e8/c7ku9fBfuKnx3/c9BoNDw4di5PP9aHkBBPKit1/LQllY2bT9rOGTaoE2MfTsDPR4vZbEahUNCgt1BWUYe7myOuzpom7UoRhVxGUVkt2/Zk0NBopGeUI7GxsTg5OWEyWygtr0WvNxHo747eYOLgsSy+XHGAzp2CeHXyEHy9XbBYLFitVurq6jicnMeXKw7w4tMDGNQvEgeVAlGE4tIaln93hN0HL3A5dQFjxozh73//u00e60Y0NBrZfeA8J9JyeOmZQXh7apuoOqxNv5vYfyST1sGexHS6eTW5UW9k2EOfY63eytq1a230OYIgYDCacVApePDxryhr0gFNiAvl6fF9aRXsgWi12LSTrVaRguIqvl2XhJOjA6PuicXP1xWdzkDOtXI83LQE+UtRgM0ckaIoBVhVVOkoKqnGw02Lj7czRqPEt6lRqyguLiQ1NfUmJRuDwYzRZEalUrQsI8CNkuIiKioqbknqLooiogjb92Xw0eJE7hsczfC7OhLR1gelUkljYyNqlQFkDqScOMDK5Z9z4WIORSXw4pMik595AJnbR4iGY7wyYyPPP/88wSGtKCqpYVviGbp1bk10xyBp/I9mcSIth4mP9KJVsAcV5WXodDoCAwMxmEQOHs1i8fIDDOofybOP9bVJW9XV69m0LY2V3x8l+9QCZsyYwdNPP42Dg4ONf69Rb2Tv4Yt8/GUiAPcNjeHZCX3ROknRuGlpaXzxxRd89vli3F0kLlK9wURNnR4fT2e2HTjL3CWJPD+uH/3iw/D11CKXyxFFEYtFRKGQeFAzMgtZvPYQA3q0p1/39ri7aDCZrRgNOtzc3Gwr/g2NRhYu3ceOvVIE6iP3d2PYgI4E+LnZeOBACihraGjAxdWNopIaVm9I4lDSJSY+0pMBvSPw8tDS0GjAbBFxc9EA0lwuKyvDy8sHpVKOKILRaMZotuCoVoIgIABX8sr56tuDrF/6MkOGDGH8+PE36bU343haDtM++In7BkfTO1pLly5dUKvVWEURAaiuaSQ1/Srt2/ri5+uCXm9CFEXUDkrKK3Ws/2EFx44d48033ySmc2fkTbyxhaU1vP3pL2RekbgitY4OPDmmJ91iWuHn5YRarUYUJaUel6bxLiqt4ciJbOKiW+Hn7YIgCNTV62nQG3HTynF3d+fBBx9k1PjpDL+rI27O0nhaLLfWz22Ozr9wqYpl3x4mL7+SYYM68bcxCQT6u2GxWrFaJTqfgsIqNqxbxiOPPEJoaKhtnMxmCzqd8ZbcfU5OKioqSm0Sn4IgI7+oitUbkth9sKUsXEJcKE+Pk+4XJcW/L99ox52BfNasWbP+rythx/9/GD9+PAUFBXTv3p3w8HDi4+P/YdTsPztn4cKFLFq06KZgkP8LxMTEMHH8UBL3neOzRYkUFFbz/LMDqKltJPNSMb17hPHW6yPY8FMKoa2cKSsrw9PTk+zcUiLa+pKdW8baTSdwcVbj5a7lxVkbyCuo4rnH+iMIUF6cQ1RUFIIgMG/RLvp0b4evtwuLlu1jy850Hh7Zja6dWzHuoR4omhQW9PpGZDIZ69at467+vekdH0bvhDCOn7zC8u+OUFhcTY9ubenboz15+RV4u5lZtGgRarUamUxG4oHztGnlhSjCxq2prP0xmbEPxnPPoGgcNUpWb0iiTYgbarWaqqoqissaaBvqg8FoxtPDiVXfH2X52iOUlNXSuVMwaRnXOHL8Ej9+Nxc/Pz/S0tJIPl1CRJgfcrlEDbJhy0kaGo2Eh/ky//0x7Dt0keAADxxUcpuxUFmtQ6czMHJ4LN3jWrN07REWrzhAcUktD90Xh8FgAtGEo6MjFouFcxcLcdaqUTkoSD55hR7d2lJaXsf8r3czbEAnDAYzl3PLOHwwkUcffRSNRkP6+XzSMq4RFuqDQiHDYraScbGATdvTeOjeOPQGEy+88QPpJ7bw6KOPkpqaioubFx9/ncjxUznERYcgkwnkXqugrLKeoymXiYsOoX9Ce3KuZOPtLSlWyOUGMKZy6dw36K3dGHl3IKlpl4jq4EF8/y/AfB5kbgwe+igLFy5k5Y85mM0WJj3Wj7p6PW99+DNJJ68w7qEE7hkUxa595/hyxX7uHtgRPz8/vvrqK35OLOTh+7vRKyGMB+6Opba2kS+XHyDnajldO7ciNf0qZ87l0y3alQ8++ACFQoHBYMJitSKTy5AJAlmXS0g6eYXwMF9mv3E/OXnl/Lj9FP5eCsLCwrj//vuRyQQ+X7WfkopaOrUPxEGl5GphJWWV9RxJvUyAjysJMaGkn05l4cKFdO/eHUdHDQ2NRi7llFFQUs1z4/sR6OvGnK9+ZdfhC4S38SUowAtBEPjpp59QO/ng7elMr4QwLmQVUVBUjaeHlvzCKhK6tkEQBC5kFeHp4YRKpUKtVrNmYzLnMwuZ+uxgesWH4e/jysIV+zmYlMmwAVFUVUmE2WvXriY2NtZGHTJr/jYaGox0aO/fRO0ksOXX0wQHelBbp+ehe+NI3LWL4cOH07p1a1zdPDEYzZRX1uGkccBitSKXyaipa2Tb3gyiIwPp0NYTR0dH1Go1R5OzOXgsk/gurWnT2pu0jDxyrpYTEuSB1knNJ4t2cfzkFV6c8hC+vr706tULi0UyxNMvFNA+1IdhfTuybV8GjXoT/j6u3NUznE2/nqZtoIbCwkJ8fHxwUCn4cvVB0s8X0Kd7GOFtfVn87UFWbEji58R02rTyIioikPXr1xMbG4ujoyODB/RAADKvlHA5r4JgfzfMFitHUy8z9+tEvNy1zP/kA+bNm8f27dsZPOQ+Hh3dncrqemZMvZvvNhznROoVKqt0RLT3Y/6XuykuqeHlF8ahUCj46quv6Nixs82Y1GhUGI2WFgTMrq4a5HI5K1euICEhgeXLl7MvuYLcvAqmPjuYi5eKKSiS5BbDw3yZ/94YEg+c57OvdpN+YsttBUP+GXx+9jAg/Nv/XurU947U96/Cf5Vyhx13BkeOHCE2NhaA5ORkwsPD/3AeTzzxBAsXLvznJ/4F6NevH1dyyvhm5SHyrlXy656zbNp6ikcfigfgkdHd2X/oInU6Pc7Oztx7770kJibSKTyQTTtPE9MhiJT0q7w8ayN6g5keXdrw64FzpKTnIggCISEh7N69G4BWQR6olHIOJ2fTv1c4pzLymL9kD/GxoVjMFvYeviCx8p85w4oVKxg6dCjzl+whumMQR05k89aHP3PgWBbfrDnMwaQs6ur13NU7gilTplBYWEh2tqSXeiVXkoIqr6yjT0IYJ07lcK2gUjJo8iooq6hHpVKxcuVK5HI5QQHuLPh6Dx0jAkhKucy365LIuFDA2QsFCIKAq4uGQf0icRfxQO8AACAASURBVHNzY9u2bdx7771UVUvSUL/13xwzsisXLxWTV1iJq4uGmpoaSkpKEASBj79MpF0bX4rLajAYLWzfnUFxaS1dYkIoKqnB3dUJFxcXtm3bxtKlS/H2cubdT7chEwQ6R4VQVl6Hv68rA/tGciGriFXrjhEa4kVMTAz19fWYTCZeems9cxf+SkFxFWazFbPVSod2/nSJlspwdlJzNb+SDRs2sGbNGuLj4/l6zSF+PXCetLPXUDsoaWg02lQkQJJnUypkNhLyffv2IdbMQFDfRb/4Cl55Vs7d93+ISiVD0NyDWDcXLPkgD2Dr1q0sXbqUvIJKauoasVpFjCYz2TmlnDqT1zQuMrbuSic8zA+1Ws2qVat44IEHSDuTx4Kv9xDdIQiLxcrTU9ewY3cGy9Ye4dCxS8Q16fFOmTKF8vJyAJ6ZtpbKqgZy88qpqNIRH9taGpf7unLhUhHPvraWHzadIC8vj/r6egRB4PNv97NpdzqfLN/Hum2pyGWCtErWBFEUcdQoeeKJJ9iyZQtqtRqjyYKTowMWq8iHX/6KTBAoKqvlRPpVUjPy2LJbIlMvLi7mpZde4qW31iGTCcgEgYmPSIT6B49l0SHcn/p6PeczC5n8+ncYDAaqq6vR6XQMH9CR9VtOknWlhNAQL1577ydS0nIZ2CeSrMvF+Hi78PW3B5k5c6ZNFrCmTk9okBfzFidy6PglNGoVm3em8cWK/ezafw6ZTOBybjnPPPMMH3/8MZ06deJISjYqhZwnXlvD5l2nkcsEjCYzHdsH4O/jypbEdNq3b8/Vq1cBWLc5heVrj1KvM2AwmIho50frEC+2J2Zw6FgWwwZ14uCxLA4ePEinTp0QRZHPlu+lTmfg9Pl8NmxLRaWUc/8QabX5akElMz76mfiY1hw9etSmHiUIAtcKK1n903E2bEtFLpMRHODBtaIqCoqrefOjLVzOLbMR+Q8dOpSkU1fQOCh5fe5m3pj3MxaLldp6PX3j21FWUc+rs39i3bp1XL58mTNnzvD+vF/w8tQy4ZGe7D98kY0/n+Snraf4+ItdHDqaxZCBHamt0yOKIps2beKTTz7BYDBTX69HoZBjsVhxcLi+WejgoEChkFNT00jfvn3ZunUr7733Htt3Z7B+y0kOHb/E2FHx1+8X93XlYnYxS1Yfsl2Xdvy1sBt+dvxTeHt727bu/iycnJz+EBH0nYQoihSV1LQ4diL1Cv5+bvj5uhDR3o8TqTl06hDIqVOnqKurIydHktHauD0Vi8VKVEQAVqtISnou0RGBRIb5ERURyOlz14iJiSEpKQmANq28OZdZSFLKZTqEByCTCaSczrWthikVcqprGrBYLBw4cICQkBDyCyptmqgt6ngqB2etmto6PTExMTg5OZGWJmmMTmgiDvbydMbf1w1vTy3+vpK2b1CgO317tOfUqVMkJyfj7u7OqTN5pGXkIYoiFTeUc9/wzhSX1tA6xIvojtLq7Z49e+jZsycjhkRTWd1gI8uWNRmAUZGBJJ/KYehdHTGazLi5uXHu3DkEQSA3rxyLxUphUTUatZLYKGnLOKZjMIIgUNlEsrxnzx4OHDiAv68buXnlWK0i7q6OeHlquXK1jKjIQM6cL6B/r3COp16xkb46ODjg7SmpC5xMv4pCIcPVWcO5zEJbGUknr+s+FxYWIggCl3JLARg5NIbKah1JqVfQNpETA0RFBHI2q8imBWwymcBwBFG0gLILiHoEmSPIPMBSBPrtgACClgMHDlzPJzKQ/MIqItr52yTE/H1dsVpFOkUGEhUpzbHExERCQkLw9tTaxqWyuoHR93Vhw4pn+WHp07i7OdIxPACVSk5MTAwuLi5UVVXRNaYV3p5aAvzc8PLU2sa/eVxuhFqtRhAEsnLLbMeSTuc0kUnf0P5wqf11dXXExsaiVquRy6TtZGcnB2k7sKSGsFZe+PtIBOK9u0nk9s3td2rqT6tVpH2Yn639UZGBKBQyTqTl0KObpHl+9OhRXFxcbHVXKqRt4Ifu7cLGZc9yV+8ItE5qHFQKW5uataqLS2uIjgxE6+iAl4c0F85eLCQk0IPuXUJJO3uN5LQcunXrRkxMDGq1GpVKIY1vgxFnJwdEoLK6wXZty+Uy5HK5zcVBKk8i3FYq5fj7upF9pYTucaFczC6mQ3gA7dr4Eh8fj1arRSaTkXz6et8npUl9HBd1Pb9h/ToQGebHrFmzaNu2re2FqrpWkkk7fqopTXSzmwV079yakEAPUlNTAVCpVDjc0BarVaS8Soe7iyOiKLJ0zt+YPe2+FhrrTk3jHBTgzomTLedHcmoOHSMC6N8nHFEUW8xlo1FybZHJWurzOjgoMZstaDRK4uLi6NOnD/PmzcPFWTJOT5zKsd37msf/t/PyjkEU7szffzjshp8d/xTh4eEkJyeTn5/PhAkTbMfCw8PZtOm69E5RURETJkwgJiaGBx98kKysLNtvCxcuZPz48bbvAwYMaJH2xnLg+srikSNHGDp0KLGxscyaNQuz2cwnn3xCt27dGDhwIEePHv1TbfptSFOzkRUS7IVCIaeySoenhxOlpZKB0HxTNhjM1Nbr8XTX4uSoYmCvCOKiQ/h6zlh+2pHG3qOZKJVKKisrASSR+SodFVU6HFQKnLVqBvWVVGKyc8rwdNdiaPJday4r0N8dQRBuEkUPCfKUDMe0KyiVSpydnbl27RqfLE4kJ6+c7JxSmzH2+NheeLpradSbOJqcTbfOrejRowfffPMNABs2p6B1cmhRjoebE73i23LsxGUcVAoC/NyQyWQYDAa++OIL5n6xE6tVxGyW/AS1WukB4umuRQAi2/lzPrMIpVJpW41yc3Gkrl5PSVmdtPX9zij2bXoFHy9ndA0GyirqkMlklJaW2to/560HEARJtSA3r4KIMH98vV0Y+2A8ugYDS1cfRqlU2vSyPd21LP5oLCMGRdnGqWtMK1sZHy381daHMpnM9l+pkDOsfwe27z1LeaUOheK6X5SnuxOVVdcN4n79+oEyGsQaUEQgOE1s+kWJaDjY9NkBQZDZ2tFct8rq62PffExvMOHp7oSnu7ZF2z09tLZx8XB3on1bP2Z9tJWPF+7Cx8sFlUpBoJ87SqUSlUqFs7Mzg/t3oKZOz+mz15A3tc/P20Uqu6rly0OzH6Vcfn1uNRvfyhtk87zcnBBkAllZWTZllb9/uhWjyWLb8juWegWTycKPi5/m4Lqp9Owibd9u3boVmUzGK5MH2zSnlQq5rf1eHlqcHB147JGevPf6SARBkvq6sc9ctGpkMoEO4QHMnLcVRBHXJp/E5vo2y4m1C/UhLjqEnd+9YDM2Zr56D98teoLT5/JZ/O1BKqt1+Pr64uPjI6V1dKCyWkdsx2AG9Y5ALpNhNlts13aj3kRKSortZVUA7uodjkwm2KQ+t/6azumz15g0sR8OKgXfzB/PqlWrbPPyRuWY5nHwbjJMWwV68PyE/rwzfxt6vd4mW3b+UhHnLxW1aKeftwuJa19k//pX+PD1kSxYvo/Dhw/b8tY6ObQoKye/nPLKeup0Bg6duISjRsWOHTsIDw9HJpMxdcpgLmWXIJfLqLhhfrRp7cVLkwehUinoEhNCenq6beeiJSQlkmbI5ZLGt6TlK7BkyRJiY2P58M0HpH6ounn+/3Ze3imI4p35+0+H3fCz47bh7+9v2649cuQIR44caUGEvWjRIiZOnMjPP/+Mh4cHb7311r9c5sqVK1mwYAGff/45P/30E0899RRqtZqNGzdy1113MWPGDGk15g+j5dXbPswXgPf/fj8AA/pF3jqVLZlIQ6ORnQfOUVBczWdL9zJ2ZFc2fi3pp/5WtaQZG5c9y5svSYTTgf63XgEVb8E62rt7GKNHSNvtDk2rrwqFghdffBEXZzUNDUYaGo228+8ZFIVCIUOjVtKrexjXCqo4cOAA06dPB2BC09ZbM6I7BLJhxbPI5TLuGRLd4rfnnnuOH3/8kZOnr7Y4/tXH4/h1/UsoFDIefqAbBUVV6BpaSjg1t8XdTXqwyWQyzBYroiji7+tKSKDHTW39Zs1hGvXSmLYK9uRybikWi5Uff0nF39eV55+866YyZn38Cz9uO2U7dvZiAWaLFVcXDTNevNl/SBRF+vdsj4tWw6XcUh4a0QW1g4Lh/Tsy/sGb+T6PHTuG4LEaBHcEx7GI+qYHr1gPNM0/maQVvXLlSrKyshj3UMt8OrT3t/WXRq2kyw2rPzfWqxkC8N7Hv3A+s4hTZ/L48Rcp+Cgk+LomtVKp5MPPd2I0mqmpbbAd7xjxjyPXb3x4hYdKxpCDSs7dfTsw4X5pW66qpoEhQ4bwySeSgsObU4ZJLxYixEQGMuaeLjhr1RiMZjbtOk1eobT1OnDgQD7//HOCA9z5+5yfbyj0etlWq8jajcdZ/7PUphvdR0REmwH/8Ze7OJ9VhCjCmXP5gGTowfWXsasFlRQUV/Pi2+ttK1FfrT7E+wu207NrG6ZPGcLzj/e/ieze1VnDh9NHUlRaS0lZLcbmgIWmznnhhRds4zH/w0eY8Mh1OT6Afj3bE98llNXrpdX9L77Zw9NPP/0PqaxEEZQKOR+8eh9L1x0h51o5MpnM9kIy89NfbjIszGYrj09bzdPT17LzwDmmTx7CoUOHfreMvIIqdI1GLBYr14qqeG3OJoqLi3nyySelcQn0YN7nO23nR3cMYudPL7P403G2F8eikhqioqK4667r15q6yRXAYDC1WPGTZirU1+sBSQv91VdfJbpDEO3b+NzQ+N+tsh1/MeyGnx23DblcjqurtK3j7e2Nt7e3zdcEJG3gAQMGEBoayuTJkzlz5gx6vf5fKnPatGlERkbSt29funfvTnV1Nc8//zytW7dm0qRJlJaWkpeX94fz/e3NubpG2l55/e0NmM0WLmYVUVGps60QND8A1GoFLlo1FVU6RBFUSjnFpbVsSUznuy0p6BoMmEwmlixZAkj6up7uTni4OWIwmlm17qit7NbBnsTFtMLf15VevXrZ9EcLi6qbInClMgf0iWDma/fy675zGIxmjp7MxmQyUVNTw+rVq9myM52Kqno83Jxs0XaCINjeqs9lFnHhUhEODg7k5EhbLN3j2uCiVdvKybxcQlVNA3sPXWDV90cxGM0UFldjtVqJiopi8uTJ7Nv8Kn4+LigU0m1DoZCTlHKZymodTo4OhAR50juhHaIo2uQKv/p4HC7OGsLb+mKxWJn4wkoef3EV5ZX1HEnOxt3NCavVio+PD97e3gDk5JWjdlBitYocPZFNh/AAqmsaqalt5LOvdtO3Z3vMZjMNDZKhU1mlo7S8jt7xYVgs0mpk504hVFc3kHwqh8H9OhDoJxnZFovFNp73D4khJT2XIymXSUq9gq7ByMHkS/y8K52KKh0e7tdl3b7++mvEkjjAilj7LmBtmkguCNoXEXzPg6o7oiiiVCp55ZVXWoyLwWgm7ew1nnz5W8or6xFFOHwim4qq+hZtr6zSUa8zIIoieoOJet11Q9pglOouQ8BkMmEymbBareTlVwBStHOz8aJWK6Wy3VtK0zW/JN344G7eWtQ1GjmYks3m3Wcor9bh5qwhNzeXlJQUAC7nlaFQyDCZLVy+WgYC5BVWMv6VVazYmMSF7CJEUWTChAnExsby4pvrqKxuwFGjwmS2UKeT7gUVVfU06o2YzVZWrT+G1WrlnnvusdWnskpHg96IKIoUl9ba0ugapb5o22T4NfvFFRRVUVxaS9rZa2zeKWnsah0dSDx4gS9XHWRo/47s2HuW/Px8pk2bZpu7cVEhbNuTQYCvG0VlNVRV66Rru2n1rKCggJISKQr3nTk/8/jzK7Farbbo8lH3duGbbw9RVFyNwWhmy850li5damuHp9v1vm9+8SmvqsfT3Yk2IV688tQgDq5/xeZHCPDDl08xfpT0wuDuej1NQXE1l3JK+WLVAfYeudgiTb3OcFNZlc1tqdJhNlvJyMhgyJAhxMbG8tKMH7hytRyz2YKnuxMXLxXz1POrePL5VaxcK137Z88XUFFRwSuvSBJ6Go3StsL/24hea1M0sMUiYjKZ8PHxse32+Pq42u59N47/b+flHYN4h/7+w2E3/Oz4t+FGPxLbg6xpy/PPIiwszPbZ09OTtm3btvj+Z8oQBAE/X9cWx2JjQiguqSE9I5+LWcVEdQzi7PkCunTpglarJTQ0FKtVZPTdXZDLZWRcLEQQoGt0K85clDioRKtE7ZKenm7riytXy+gYHkCPbm05n1nI1l1n+PSr3QiCwNX8Cr5dfwyrKJKens7GjRvJz88nKMDdttU3Ykg0b7w0nDkLduDk5MD5zELq6w2kp6dTV1dH586dqavXk3GhgKAAd6pqdNTV69EbTFwrqEQQBEpLa8m4ILVl8ODBtodZh/AAWzmdOwXj4+XMuk0ptA/z5XxmoW2FZf/+/QwZMoQnX/qW2rpGm+E6beZGFq3Yz+mMa1y6XMK3649hNlm4ePEilZWSn+LnS/YikwmoVAoqq3VcK6yioKia02elKNxmDBw4kP79JRH31sHSlrbBaLKtfmTnlBLfJdRmsFy4INFDGAwGG6WMq4sGg9FMRaX0PTu3lMh2zdQSUj4BAQGIokj3zqHEdAhiS2I6JpOZDu38qdPpaWg0Sv15sYBO7f1xcrrhAaVKQBDkYEpBkPsgmovBWorY8B1ixUgw7ANRx/79+9mzZ0+Lcbl4qQi93kRBUTX5hVXIZAIn03JbjMu1a9coq6incyfJN1HtoGwRcNKvpzSn8ouqSU9PR6fTIZPJCAqQVgCDAtypqZV8MC/nlpFxoYD42NAW81yvl5z227Xyth2L6xSCxWKlrl6PrtFInU5PRqbUfq1Wa3uB8/dxlShFmgxTmSBw+Wo5BcXV1NXrOde0RalQKHjwwQcpLa+jW+dWyGQCWdnFtrHLuFCA2WwlvksoZrOViooK3N3dqa2tpaikhrKKekSrRK+jdlDa0rRrLa3K+3o6A5IRa7FY6BQRyJkL0jXYKkhaQQ4OkP5LW7MyItv5k5SURGJiIkajkahwaR7I5AI1dY0E+blTUa2zXdvNOHNGCliprZOMFrNZMvxKSmtRNEWux8eFcj6zsMn4sWA0GrFarcR3bm3LJyE2FIvFSmpGHmWV9Yybuopn3viO81lFXLt2jcuXLyOKIt9uTOKXPWdapjlz/cXWaDTT0EQhI303ojea6dTeH0eNCkGAblGtrrclsxCNWsnAgQNRqVTSuJTVYTZbuZhVTLe4UIxGMwVF1RQUVdO+nS/nLxaSca4ALy8v1Go106ZNw9HRAZ3OgCAINxl+JpMFmUxAECA9PZ1+/frZ7tPFJTXEd7neP81j+dt5acdfCzuPnx3/Nihu8BFqNg6aeeN+i2besWb83nZts09Sc5rffv9HZfweDh48SK9evXnysT6kpOYwc8a9uLg4svDrvQCs+zGZd9+6n66dW6HT6fjll19o06YNGZkFjLo7ltPnrvHoyK4E+buh0Si5e0BH3Fw0DO3Xgb1HL3Lq6DbefluS9GloNGKxiPRNaMf8JXto18aHsaO6kZKWS2xUMA4OCsxmK9HR0XTs2JFVq1YxddIYzpzLp1d8W3rGt2XDzyd5+dlBOGvVzJ6/A2etmsWLF7N06VICAwP5ZJYX5ZX1yGQC3p7OmM1WDiVlEdMxGFEUGdg3gvyiSsxmM0899RTV1dUUFFUx/uEEzpzLp0e3tgT6SUEVH787GhdnDW+8v4kz5/J5Ymw3+vXrR2lpKXWmAJy1GkRRbHoAmBEQ6BgegLeXlpT0XOrq9Tg5OeHp6Ykoiowfk0DWlRLCWvvg4KBg9L1deHBEHCfSrtCmlReV1TpkmLj33nuxWq2knyvgnWkjsFpFLmQV0yehHaXltbRt7Y2HuxPvzxjJ1fwKkpOT6dSpEwCfzBpNSVktWic1ggAWi5UrV8s4fDyLaVOGYrFY8fLQMnr0aMaNG8fRo0cZP6o7NXWNFJfVMmf6/WjUSqpKGnDRqglr7U1xaS31DUY+/fRTAJ5//nkE186IhmQahPHk5YQgb5zFqtW/cPzQp1y4sBsnnyu0ahNE//79+dvf/sblMndctBpkMgGlUkHb1t64OKsJDvCQVrkGR3HwWBZGo5GnnnqK7du3ExsVzNTJgzifWUhke38WfTSW9ZtP8PzTA3DWqrmcU8qlK6UsXnyQb775BlEU+XLOWNQOCnx9XECEmtpGklOvUFZex1fzxrLj+xdYtHw/QUFBNr+4qY8PQJAJuDlreGREHGazhfoGiUPu8VEJPHJPHI16E8uXL2fNmjWUlpYSHBxMQ6MBJ42Sd168B6tVpE98GE881IN9SVmMHh5ruy5feOEFaozBPPm33litIqvWSduh06YMoUt0CM5aBzqGB7B43t/w8PCQfC6VSn7cnsSY+7oSHOiByWRm08rJvDl7MymncxnUNxJdg4EH7onFUDsTjUaDTCbDzUVDbn45n7zzIN1iWmMwmuib0I6pTw9gcN8OmEwWQkM8eX7SUvr3749cLpc4B41mRg2Llbg5XRyJiQxiz5GLFJXW4OHmyPApU2wyn89O7IfWUYXFasXJyYETabn4VDrz8uTBuGjVVNc0cM+QaJ4eF8++ffsYPnw4U58YiNEkRf13aOeHyWxhS2I6FouVsFZezJg8lOraRsY9OorRo0fTtm1b/vZAPLX1ejQaJQ/f2xVRFMnKKcHP24Xe3doy8aEeaB0dWL9+HeHh4SQlJdErrjt6o5l5Mx6gUW/E1VlDt+hWHDl5GV8vZ5bN/RsajZrS0lL69etHbqn0MrNxy0nefv1eLmQV0a6ND416E317tmfB4t24ujoil8vx9/dn8uTJNDQY0WhUGAzSy5ggSOPs6qqhsdGIKIKzs5otW7Ywa9Ys4uPjOZ9ZSGxUCH17tOeND677c2/cmsrij8by1LjeJO4/T2zr0X/o/v1HYFfuuDXsyh123BI36gDfqHWcmprK2LFjOX/+vM3JGW7WQ87Pz2fgwIHs3buXoKAgFi5cyIkTJ1izZg0ADz30EIMGDeLZZ58F4Ny5c4waNcqWR3JyMhMmTCAzM9NWxowZMwCYO3fu75Z7OwgLC2P02Lk8NbEvrYI9USrl7D1wgfc/+sV2zmsvDeWeYTEYjUYbgXOjwUJpeR0ebk64uWgwW6wIgEqloKi0hh9+TsHdzZHHx/S8qczKah2OGhUGg5mDx7JYtGI/nTsF88z4PrRp5SX5vpnNNgLnRcv3s2HZM7g1bffciLSMPEYM68GYMWN49913cXaWVkBEERvdSkOjkYPHskg5ncvLzwzEw92pKSJPhsVisRE4f7lsP/cOjea5p+7CahWRy2Vs/TWdT5sIgMWaX1oQON+IsxcLeO+TbWxY9izrt5wkLjqEkCAPrBYzKpUKQZCi/wqLq1m9IQlvL2fuGRRNoL8bdfV6sq+U4u7uSICvRE5744uDyWyhuKRWcsr3dsHf17XJiLaidlBSUlLEyZMn6d+/v839AECvN2EyW3BwUEorWDoDrYI9MZrMlJYUs3z5cr7//nsyMs5J3G1yGSrlze+/dTo9zk7qm46LopHko9/x2JNzCQwMZN++fcyYMYPNmzfTLS6UNSvf4ZUZG3nhhRcIDm4icN4tEThHdQi0jX9yWg6PP9KTkCAPqqsq8fHxwWg00qi3SATfy/bz8ANdGTu6Ow4qKXr16rUKnnv9e6nvTi3gjTfesNHN3IhzFwuZPP07AF5/figjBkffdI7FYrUF9fyeT1pVbQOuWikK+B/5rdXUNaJRq1DdgjQYYNvuM8xbuAuQAnd6dQ+zXTvNdWhsbKSxsREXFzeKSmv4dn0SgX6uPDG2NwaDidp6PTl55Xh5ODet6olSRHpFBe4enigVckSk+S9aRYQmGhmZTEAmk/HBgh189fHTbNy4kZ49b74+rVaRX/acYeGqA+gNJp4Y05MnHr75PF2DgaQUiSPRz9cVg8GETCbDUaOiuLSWjeu/JSkpie+///6mtBcvF/Pk9LUATPpbH8Y/cOt7VvMjuai0lmtFVbQK9MDDzRGz2YKjxuGWaRr1RhxU0jy2Nt0H5DIZugbDLe8hAHM+2wHAuIcTCPR3t71A1+sMXCuoZNPG5cycOfOWafV6EzqdAU9PLbW1jVgskkFssZgwGAzIZDI0jk4UlUhjufvg+RbpE+La8Mz4PoQEeVBaUvwPOWL/FYSunXNH8s0Z98Ydyfevgt3ws+OW+D3Dr6ioiP79+7NkyRKio6PRarWoVKo/bPh99NFH7N69m/nz50ucV599RlJS0l9i+AUGBtIu+qXbOvfSmc9tn0O7T72tNDnJ822f23Z9+bbSXD654HqauH+e5nLqHzv/t2nCutxemuxT/1o5f0Vb/kwf/5mxvJZ6e35JwXGSj9hfNi5/ov2ter9yW2muHrkeDNG6xz/vs9ykG+b+XzSWbeJvbyyvnLhet9CEf54m5/j18//MuNxOf0HLPrudev22bn90XMJibu/el51+/d53+vTF20rTuXOE7fMfGcs7JdlmN/xuDbuPnx1/CP7+/kyaNIkZM2bQo0cPtm3b9qfymTRpEuHh4UyYMIHXXnvNtvJnhx122GGHHf8OiKJwR/7+02Ff8bPjfw6Bgf+Y6sIOO+yww46/Dndqxa/1mrn//KQ/gdzxM+5Ivn8V7MEddthhhx122GHHfx/sy1q3hH2r1w477LDDDjvssON/BPYVPzv+JxHe4YXbOi/z/ELb5zsV3PDbNLfjeH+j0/2fCiLofJsO3qf/teCW23GKv9Eh/s840f8ZZ/U/k+aP9vMfDQYBaNPt9sq4kvKvBUT8mTkT0f7mCOLf4mLWItvnPzOW7aJevK00lzK+sH3+U0FXfzDo6M9cL38m6KRVr9sMujl6/fq/nTlz43xp3+n2+jjr7PU+/jPBHX8mgO7fj/98f7w7AbvhZ8dfjt9G/P7VyM7OxmgUOXg4FsDTjQAAIABJREFUk6+X7KNf3wjGPpKAr68rxcU1rPnuKHv3XacfWL58OcOG3Sz79eizSykoqiYowJ3P3nsIX2+Xpl+mUVxczObNmxk8bDStgj0QRWx0CzfCahUxWyzkXX2ABQsW4OjoyBt/n4ybs6T3aTCaqW8w4OWuZf32k7QO8iKuUzACL2O1WmlsbCSvoI7VG4+TX1jFy88MJLpjEAaDmfKKOrRaNR5ujiAICEwlNzeXxMREBg97kFbBnlRU6igsrCIyIgCNWokgCOw/fJFZc7fa6ti9e3cmTZpEz9790Do6NBGxiugajew9cpFFqw5iMpl599V7SYgNxcHhVZtm5/fbagkKcOf9N0fSOtgLQcCm99toMJKVXcJ77xxEpVLx7LPPEhObgJ+PKxt+PknX2Fa2NPU6A+t/PkFYa1/C2vgQ4Pcqe/fuxWq12tLkF1bh6+1iowgpKKridMY1ggM8CG3thVLxHAqFookLUsBssVBaVotKpcTNVUNRcQ2rf0hCoZDxxivNUoSv2/pBFEUMRjM/bTvFkm+vS2YNG9CRN1++Ll0Ir0ljWzkRjMdISYdV6+FCtkBRCbz04uNMnvIKWKvAUkB6egju7hIJc4PeRF5+JS7Oany9XdDpDE28ck64uzlxNb+Cr1cfgoo2LF26lPbt29toc8wWK416I1mXS1j+/VEuZBWREBfK0+P60irYg5LiR0hNTSU+Ph5/f3/MFitFJTU2VROZTODXfWfZfySTp8dfT7NixQqWLVvGI48mMGJEZ3z93LiR3aW+3kDSsUt8s2Sf7Zi7uzuvTBnMoH6RLUioQRrL7bsziIoMJDDADbXqBaqqJLk3Ly8flEo5dfV6Tpy8QrswX/x8XCkuqWFnYgbh7f2k8fd/jePHj6PVaomI6GDTDxaRKFea5+VdPdvz1gvDbddlM6a+vYGSslo+eOPmeWmySPyUKuXLVFVVUVlZiZuHP34+rixbfZiyijr+9lACfr4uFBXXsHN3BpHhfnSJbo1W+xpWq5WGhgY0GkcUCqkt325MYv3WVMbe340Hhsfi6e5k06OGV6msrGT+/PlEdOvLsL6RODs5UFJeR0iABylnrvLSBz8il8tY8v6jRLTxRSZ79aZ7ySOTllJQXM3ST8YTEeb3m19fIzw8nPr6+hZHhw7qxIzX7iE1LZdpM9YzdHAnxj6cgJ+vK3l5D7JgwQJKS0vx8tI2EVRbUSol4mqTyYJKpcBqFW1a57fCsEHNebpQ3HSN7dl//f46adKk3037L8O+1XtLyGfNmjXr/7oSdvxvwcnJiUcffRQfHx9kMhmbNm3iueee47HHHvtLyr/nnnu4mKVhzOh4evYIY+R9Xfj+h+N89c0+GhtNvPTCEDIziygorKJrF3emTp1KdXU102ZtprSsluiOQXzw6XYyLhSgdlCyYsFjeHlquZBVxPbdGYQGu+Dp6Um3bt24kFXEOx9tJb+wirjoVnyz+jCz5+8gJ6+c3t3DuHipiGkzf6Qw9xhz5sxhwIABCILAZyv2UVZZT2SYHw4qJdW1jUSG+VNcVsvuoxfZsflbIiMjSU9P53KenpeeGcjAPhGUVdTx/qfbCfBzJapDEGUVEu9g4oHzBPm7kJeXx8iRIzlzLp/3PtqKo0bFwH6RFBXXsHb9cTpGBhDWxpeLWUUUFFVTWZxMeHg4gwcPxsvLB7lcoKS8joyLhQT4uuHj5Uz7Nr60a+3D4L6RHE7JZsP3y+jTpw+dOnVC12DirVfvxs/HlZ+2peLk5IBGrcTBQcHi5QdwdXFk6ktPcvr0aSwWC4dTqonqEEhUZCBenlo2/JzCtsQzdIttTULXtuQVVPLLr+l4ukh8YRcuXCA5rY6e3cMwmS04alRs3ZmOt5czOp2BHt3akpKWy/JvD5PQNchm+G3bdYZAf3e8PZ3RaJTM+XQH+QVVTH1uMEUlNUS09+fB8YuJjtTi6enJ6tWrWffLZXy9XRjcrwMNeiPnmhQeRg6PJbytL1mXS/hq5UEqis8SEREBghIMu8jOBb1BYOQDUziVdolO7Qrp2m41grwVqOLQ6y1kZGSQmZlJu7AwvDyduVZQycszN6BQyOnTvR0LV+xnxQ9HcHJ04MWnBjDmoYcIDAxkxYoVePq0kvpUpWDxygO4OjvyzPg+5F6r4IMZ95N44DyffbUbS8NlHn30UZRKJRezS/H1dsbVRcOpM9c4cDSTDu0D8HCT1GIS90tp0lO2MHPmTAYNGkSXLpG4ujqiUsmxWkXS0q7i4qJBq3VAq1UTFR3MunUrcXR0ZOvWrYS3b4XJaEGQCSgVck6k5nA8NYe2rb3pEh3C7gMXWLz8APNmP4efnx89evSguKQGq8VKfn4V8V3bkJaex3sfbqGh0cizT/YjL7+SX3am4+lmora2lrq6OvwDgzEYzZSU1+HspEYuCHh5amnfxpeC4mp6dWvLd5tPsHn9Mvr378/EiRPJK3dmxeeP3XJeKuRyCktqUDvI2LVrF7179+bQ0Ut4emhpbDQxbkwC3208zuJl+2loNDHp8X4olQqcnBwoKiygsLCQwMBArKJIXZ2etHPXGDm0M21bezFySAw/7UijS1QIoihxES5btpSEhAQGDBhAeKgPsxfvYv/xLEYMiAJBoLyqnh0HzvHihH5079yaM5mFKDBw4sQJAgICEAQZ0979kaycEkaPiGPYXR2xWq2czyoi40IhIYHulJeXExkZyfbt2/H0kaivWoV4MuO1e7iUXYJVFNHpjLw1/V6+X3ecr5bupyAviQ8//JBBgwahUKhQKGRYLCK1tXpMJiuOjiqbGkdjo0TA//XX11d8PX0T6N0jjLdeH8F366U8GxpNvPzcYOn+UlgNwPhHEggNvTNKHgvSj96RfF/u3PuO5PtXwe7jZ8dfDrlcjre3dwsC6H8Gi8Vi01n9V3Hu3DnSTl/l84WJREUFczw5mx83pXDtWiUbfzzBkaNZPPJwAgBTpkwhMzOT6upqMi4UsHLdMQ4lXeLeodFYrSKD+kXi6qLhQlYRk177jpU/HOPFF19EJpMhiiIWq8jV/Eo27zjNT9tOcf/dMVRW63jkgW4IgsCCJXvJK6hkyZIlVFdXI5fLWbj6AFv3ZfDJ8r0s/u4QCrkMJ40KtUrBzC+2s+Kn4yxZsoTp06czcOBAtu5Kx2yy4OKs5r1Pt5GdU4qfjytHT2TTppU3R1MuM/fzXzlw4ABBQUFUVVXh5urI1WuVRLT35+q1ClRKORu3nKS2Tk9uXjmPjr7Oi5icnExERASHky8hCAK7Dp7njbk/06g3kX6+gEG9I7h7YCdW/3ic9xbsYMuWLQDs3r2biWN74qLVcOBoJouW7uexKSuZ9dEvCILAsIEdmbNgBxaLBY1Gw9y5c9l/JBO5QoaDg4IDRzP5auVBft17jtmf7UAQBLw8nEjcf57a2loKCwuZO3cuKqUCmUxAtIrsP3yRBYt388nCXbRr60tyyhWCAz0ICfbExcWFuLg49u7di6uLhqpqHYIgUFBYRXg7PzZsTuHwsSwSurUBmjRjGxrYsmULb775JsdSrvDSW+vRNRgZc1+crX/69WgHwNOvrGH3wfO88MILpKenI6ilVeJ+CfDKSw9w971PolTUguUqWKtBPRhRvxdHR0cmTpzIsmXLkMtlnDiVQ3SHIBBhcN9I1m1JYdeBc1zNr+Srbw9SUVmPi4sL27ZtY+bMmUx4fiUz5zX16V0d+fDzHVgsViaM6cHF7GKWrD7E1fxKYmJiaGxsxGAw2KT3DidnI5cLfLPmMHkFFXh7OXM5t8yWZsOGDSQmJhIbG8vuxLNoNCry86u4fLmE16et48PZW20qPBERkjze5MmTcXNzw83VkW2JZ1A7KDlwNJPX3/2JhUv32cayc1QQOXnlFBQUoNFoKC0tpaHBiN5gxstLy9VrFUS09yMvv5INm1I4dDQLVxcNu/eeo7a2lrKyMvr06cOxlMs4KBU8M30tx05eBrDNS1cXDaIIS9YeZufOnQBUV1dzV69w27xc+P/YO+/wKqqt/3/mtJST3gskhBRCgIRAClWKEBALUryKCCIiF0QUFEHEctWreC3XgmJBpagoRYqoICgE6SlAgEAgIb33k+Qkp8/vjzmZEMB69S2/N9/nyZNkzuwze6+9Zs+atdda348OMHNBhwyNRjP3PbwOi8XCuXPnWLNmDQP7h2IyW4nt040Dh3LYsiND6tf2dI6cyCMowIPVHx2grKwMrVZLZmYmTc0GlCoFufnVbPvuFCMGRbF5VyYhwV5YrTY++uIIuQU1eHp6sn79ehQKBUaThfSzRcybNpyXP9iLxWrFz9sVZ0c1t4+NY9X6VLIulKLX65k5cyY6nQ6L1UZody9sNpFptydS16BHoRBY8vxW/vH6LnILqrl48SITJ06ke/fuADg4qHh2xUTe+/AAFZU6AO76WzKpP+WwdXsGJSX1fPjhh9TX19PS0iIXlW5uloo1OzmpMRgsdo/lz+Ouqckc+CmHre3y2ibdY3ff0bG+zJgx43ev4b8ZXVy910WX4deFPwSdTseCBQuIjY0lJSWFgwcP0qtXL06cOAHA4cOHufXWW+nbty8pKSmd6v2VlpbSq1cvSktLOXHiBMuXL6esrIxevXrJ39F+zp49e5g8eTKxsbEUFhbS1tbGc889x6BBg0hISGDevHmUl5f/XDd/EaeziuzV/ztvU6Sl5xPTOwiNRklcXByFhYUEBgay9ZN5bP1kHiHBXvSNDkahEOjXOxiL1caxjHy5/cGDB2WWDKPRIh8/cbKAQH8PAvzdCO3mTUWVjpy8Svlzi8WCIAikZXUQsBuMFjtVnZKqumb0baZO17FarUybnIRGoyQ3vxp9q/T52QulhAR7IYrSNkxEmB9JSUk4OTmRlpZGTLQ0vujIAI6eyCMwwANfb4nOq7S8gZjoIHnLNC4uDkdHRzQaFSazFbPZis0mkp5ViLe7s/QgcFRjNHeMFSQeUQ83iTXgWFqHfNJPFWKziURFBODkqEatVnfiW25n0vi5Nu39akffmGBMZis+3i6kZRRI558sxGq1UVPfQkx0EP36BHPy5Emam5txdXWlqclAtyBPbDYRN1cndE2t0hxlFhAc6IFKqeCLj+cycOBA+vbty5gxYwCJqspiseLl6SL3w81VYrf48sMH2L5uPlu2bCEnJwdBUIFKopUTHMaB+QwIWgTt/Qg+3yMIDggKF7lf48ePp7XNRLcgT8kT9O8Z+Hq7culyVafxttp14IcffuiQz+krZOqgRqVSEODnxomTkjxUKgXx8fHU1tbi4eFBUIAHRpOFY+mXieklzXVTs8TjW1Gl63S9dhaWYcOiEATw9tYSHu7PiJHRZKQXYLOJ+Pu7c+K4ZHRNmDCB5uZmDG0m7vnbIAQBhiSG8/zy2/Dzdb3uXA4ePBiVSsUpOy+tr48rR4/lSnrpIzHTpGUUdNJLLy8vWS/PXaogJMiLftHBXC6qkfWye6AnKqWCzavnyGtQQkKCZFgDR9M765goijg4qHFy6NDL1NRUAgM8JEpEHxfSMgs6yaedezn9lHTc19eXAwcOkJFVKOtybkE1SqWCi5er6BcdjMVqxWSycOJUAYmJiZSVlSEIAh5uzjy9YDzZeRXsPZxDbb0eF2cHosMDcNCoOH66EJDqqaalpeHh4YFGrUSvNxLo546vtyuCILH4fP7uHDZ98ABOThp69uyJ1WolMTERgEceSuFCTgX7Uy/Ieh0dFUDaFevYokXSVre/vz8KhWQqiCI4O0tb9y0tBjt9I9eFSqWQvvMqeV09j134r0eX4deFP4SXXnqJ4uJiPv30U1599VXee+89+bPy8nLmz59PSkoKu3btYubMmSxbtkwmPL8S8fHxPPnkkwQEBHD48GEOHz5MfHy8/PmqVatYsmQJ33zzDQEBATz77LMUFxezZs0aNm/ejKenJ/Pnz+ePlKN0sdNRKZWdF6D6ej0ajYqgIE/UajVZWVksWrSIpc9/xfOv7aKpuQ21WsnwQZF4e7qgVimob+wwHi2WDgMo7WTHQlrfIJ3T1/6gPXwir9N1i4ulh154qA8AocFe3Hmz5FlSCAJthg6jb8yYMZw/fx6FQsH40X3IK6ihtKKhQ24fHeBCbgWCIHDruFg+emMm69atQ6vVUl5ejoNGRXCgJyqVktIKacvF20sy/NraJPonVxeJsszPz0+Sl9ahEy9yfWMrXp5amloMlJQ3cMeEAfQM8ZE/v/HGG6W+KwTqrpCP1Wqjtc2EWqVk0bwx1NXVsW/fPvlzpVKBIPx8m/Z+tcPbS4vNJhnadXYZW602mlsMKBQCDhoVfr5uVFdXM3nyZAYMGEDq4YuoVEosFiuOjmr2/pgtz5FKpeTNd/fx+jvfIwgCeXl5rF+/npvH9mPGHYPQaFSolAq5H4IgcPZCKU+t3MlTK3dy/vx57rrrLqlzqgj77xDQDARBg9j2LWLbV9JxTSLV1dXSfIeG4uCgxt/HlZZWIyftRtCC+0Z2okPTaKRYzPZ2V8tn8bwxNOra0Do7yDo3NCkcpVLJunXrpLm0x2rWNeg7zbU0oE7ileMPg7t5IQgCaz/5ibKyBp5+5na+27PETosmsObDA/I4evTogZOTBqvFJnnRTFb69e7GG/+8E6VCkPu6+ZN55OfnExAQQG5uLu9/dECmWSuz66WXl9Y+Ny1oNCpcXaW+OjlJcbA3JEcS36cb76+8m6++O8Wp7FJZLy0WK/98+zuefGUny5dLbAtPPfUUvaMCUSgEWT7tMmzXv8VX6GW7nFUqRScduxpmk7Qj4ejoSE1NDfWNrR3GzRXLk7enlvyiWqbePACFIODv7y974gB6hwfwxlopXtJoMqNRK/H2kGRQ16iX17r2+9JgNLPsofEMTQoHoM1g5uyFMhY/u5lX7NSLQUFBNDc34+fnR8qYPsREB7FqdceLg0qpRKVSyrF6/eNCmDFjBqtWrcLR0VHyqIugVitxdFTT1GS4rgyuhLubFONYf5W86hv0nebxL4Uo/DU//8vRldzRhd+NlpYWvvnmGz755BPi4uIAeOSRR5g1axYAX3zxBX369GHhQilzNiwsjMzMTNavXy+T3rdDo9Hg6uoqb/9ejb///e8yt2ZpaSm7d+/mxIkTODtLnqSXXnqJd955h+bmZtzc3K5p/1vwc0Zj++GsrCx++uknJs24gVeenSpvb8y/dwRllY3XtEtJSZH/Liqrv+bzxHgpnuXk2aJOxzMzM0lISOClR2+Tr2Gx2K5pHxcdzGtL58n8qXUNenqG+tBwhaE0aUJ/4vtJ/Lo/HcvlaPplHnzgAfnN/ZfG245Na/+OzTq7E4fuNW3svw+nXSa+b3fWv3EvIMVqlpaW4uHh8bNtAYYkh6MURE6fPg3Axq8yf/F8gE0fz0WjVpKYmCgby1citk83/vX8VJwc1Ywb3Uc+HhgYyCuvvMKSJUsorZeyD9VqJbt2Z1FT1znoff+hHFQqydjasGEDer2euTNuwslJw6ebj/PAjOGdHubllTryCiQD4euNb9K7d2+GDh16hYQUgILvvt2HSgWC3RMkKNxkGSmVSlRKBZVVOly0DrKB4e/rxnefP4zVauOzr47/qnySB4bxyIrNrHld2kIbnNCT55dOBGDZsmUA1+5WiZ3/jo0J5pVnpyLaHsTRUXpAV1Y20qOHLwqFgJubE6Io8uEH+5l9/wgcHTUsX3EbkZGz5fMFQSA3v4royEC2f3uSe+8agrubE8kJPeVLLX/hKy5nrWPfvn1ER0cz8+7rhHNc1dkv18/rZAhnX6pA32rkcPpl5t0znPO5FXKTypomyqt0rH5xGoh3AJCfn09QcHd+CckJYUyZdButra2/eN7vRXu/fjxykb69grhnShKCIDBlyhT5nPe/OIzhip2Cq+dq464M1r61FHd3d958800iIyMRRZGFs0cB0NjUSk19MwXFtRQU17Jzz2kWzh6Fo6Mj3t7eTL/nRh5b9gUGo/m6fRyUFM5Lz0/BaDTy6quvdvrM1dVR9vT9x/gv2DLtoqe4Pro8fl343SgpKcFisdCnT8dDtV+/fvLf+fn5skHYjv79+5Ofn8/vRUxMjPx3Xl4eZrOZ0aNHc9ttt3HbbbcxceJEPvvsM3Q63S98y/XRvoDZrrKtPD21mEwWKioaMJvN8pt1Tl4V9y9az9ovjmC12qRt4oYWzBYbXvY38tHDozt5P6982/XylM4ZEBuCzSbi4tz5jbc9hvHepRuY9+yXTHt0La9+LL2V20QRJ0dpi+XC5SpSUlIYP348NpuNjdvSaNS1EhnuD4BGrWTerBF8/NkhRFFE19TGnv3ZrFmzBpDe/o0mC2UVDVgsVjmrs75BMn6cnDQYTRbmPLyelJQUliyRsiFb9MZOhqOXhzMNDXrcXBwpr2rk8Re3cc/Da2X6vYyMDKnvNlH2WIDkUdE6axBFkSVPb2XMmDGkpKSQkpLCzt1ZsmyvbuPspMFssTLnkQ1kZWWxe/duPv30U+rqpZgmm82Gt6eWnNxK5j6yAZtN5OCRSxhNFhSCQGJiIsuWLeOrr74iZXSMFFwPnMkuvWJMWowmC80tBnRNrfL8Ozk54eHuzPJ/bqeuoUU6R2+Qx+dj95a2o7HR/kJgkbY/sVWDrYo5cyayad1ERN2T8rkBAVIGZlVVFaIoUlXThKuLI+X2lwopozmd2YvXs2NPFiaTGVEUZb28WqaLn95CflENdQ0teHlqsdi9bqIo2jOawdfbBWcnDSufmoTFYpXH0o52XU9JSZHnsbi4DptN5OZb4vnpYA66xjYUCgUajRqLxUb//qHcd999VFZWUl9fj80mUlwq/TYYzPJYgvzd5bm8XFDDpUuXqKys5NChQ8yYNhjRJmKz2QgKbNdL6R7y9JDuywcWrCMrK4vjxyUjuM7uCdy5N4vPd6TRP6abrJd1DXpyLldx32Mb5Fiy1NRUNGopQaX9nmyXIUgvgouf2sKFC9I2aPsLqcVik3WsE+zGhVojGaMGgwFfX1883Z3l5Id2+0NAelHTOml49rVdfLYtjdLSUt58s6PcyjMP3cRPXyzmpy8W07O7D04Oap55SMpM9vbQYjBaKCwsJCsri3PnztGiN1JepZNfXtrazPJ6BODu6kRraysODg64ubnh7ubEB+/M4ofvHueH7x4nZUxf+vbphiiKxPbthsViRRAEORFKCluRvLpKpQI3Nyd8fFzw8ZF0XqFQ4OPjgoND5xdEXVOrPSyis7za19fmll/3Gv7/hA8++IBhw4YRFxfHgw8+SF1d3a+2OXfuHH369PnT4yC7DL8u/G782tven8kC2O49AGhtbUWr1bJp0yZWrVol/2zevPm63sJfQ/+4EARBkLeS2pGUGMb5C+WYTFaysrIYMWIEACaThbKKRqLC/dG3GqmsaeLshTJUSgWDEnpyS0osyx+5iY8++ghBEDCZTJ08SUkDwqhv1OPv60Z+UQ1J8T06XTcsLAybzUa/XsGcvVhOcXkDA/t0x2q1YTZb8fd2xdlJg8ksLfyhoaEolUoyThXS0mrE3c0JZycNSpUClVJJSHdvaXz2hddqtWI2m0lKSuJ8jjS+nNxKhg6KoOKKB0e3IE/O55RTWtYgl38xGAwYTRY0aiVqlRJBgITYUOp0epRKBWdzyjGZLBSV1ZOVlQVAYmIiJXaPZ3vChEIh8MqzUxAEgcsFNVy4VEFhYaH809xiwGSPFWxvA5DQPxSFQuBSXiWl5Q0YDAZaWlpobGzk3PkyNGoltXUtJA4Mw2SyEBTgIRuLVdVNxPQOwmq18v3337NkyRJm3jWEquomFILA2fMddFFJCWGczymXS3tkZWUxb948UlJSqK1vITOriKQBYZy/WC4/1Ktrm4mO7Fw+Izk5WboPLOekA6YMUPhSXlaKrrEYjPsRRWnrvmfPnri4uJCWloYgCBiMZpRKBYdO5FFb34LW2YGcy1WUVTbS3GLAyV4e5cqt9Feescu0sEb2PJ69UEZSfBhnL5Rx78K1nD9/nuLiYiorKzl9rgRRFDl1ppjzlyrssY5S6EOAv7us64WFhbLX63Ke9L0eHs6o1Urc3J3QaqVtwJIS6SFWXl7O0aNHUSqV0nH7/A+2b0O6aB1wsbe5lFcpyzA9PZ2YmBjJ+BIEamqbGTooksoqHTW1zfa56SnrpcFgoKysTNbLvlGBODtpUAgCarXqGr0sq2yktFQy8IODg9HZtyoHJ1yhl3YZGoxmWYYAI0eOpKJKh80mUlPbQuKAzhmowfZY0YT+0v1cU1PDyJEjSYgLlXU5MswXq9VGVLg/Z3PKSLKfmxAXyrFjxwgODpbiK6t13Lt0A7OWbuC+ZRswma3U1Lcw7+kvMJksJNvbgeRRHTJkCE0tBpydNJRWNFBT14zNZqNvryC5jE7ygDAEQUAQBNatW8d9cz9mzvy18s/R47lcyCnncn41wcFenMsu4765H5OSksKhQ4fIysrCbLZKL5G6VhobW2loaKWlxYggCFitNhoaWjGZOsf4Wiw2ci5Vkjiws7ySBnbcY385/ockd3z11Ve8//77PPvss3z55Zc0Nzfz6KO/XLPRZDKxfPlyOS7zz0RXOZcu/G44OTnxySefMHToUJn39uTJk+zYsYNJkybR3NzMqVOnmDp1qtxm/fr1eHl5MW7cOJqamtiwYQP33nsvbm5u5ObmcuTIEe677z75/KvPAenNcu3atUybNo2wsDApc9D+80vbkVejqakJL69wHl00nsLCGgbE90CvN6JWKVj9zr1ERQbw9qq9lJU3kHtpD0uXLsXb2xuFxodJE+K5eWwsGo2KVR/t52jaZW5JiSUk2IshieHsSz3PhHHD0Gg0KBQKXLQOmEwW3nv1bgb0C6WyWkdVTRPrNx3j/unDmHRzPOcvlnPDoDBmzZrF+fPnGXtDPCazhWm3JnDj4F6YLVb0rSYUCoHkuB4M7BuCuzMwDOtlAAAgAElEQVSsWLGCjIwMgoK6Myw5Er3eyLTJSej1RjzdnblhcBSFJXX06x1MgJ87UyeNRaVS4eLiwvmLFRQU1eLt5cKQpHByLlWgbzMxZkQMvj6uODqoyb5QRs65H1CpVPTo0YMRw5PRqJV0C/Rk6MBwggLc8XRz5vipAvIKaxg8IIywEG/eeHkpzs7OuLm58f7an4iP7S4nHdw/fSj9YrohirD641QadW14ONezfft2VCoVSodgbhzeG5VKSUSYLz5eWlxcHHn8oXGo1So2bk3DYrExamhPkpOT8fT0pLHZmeFDorBYrERHBRIc5MGUiQMpr2ikX59gXF0cWbfxKPGxIdxzzz0MHTqUrTtP0qd3EBqNiubmNtoMZm67KY7bb46nqqaJhsZWEEUGxnkTHx+PIAh8s/csfaKDmDi+P++tS6WoRDJq+vftRkSYH0OTwhEQeGb53wkLC0M0n4W2zehboao+ECe3kez6Zh/uLjb8/AJwdB2BxkGLTtfM8OHD5di4QH93Ms8UcTq7lCGJPXF3cya+b3dMZis3DIoisX8P9C0t9OvXD61Wy4K5dxDbW5Lpu2slmQYHejJ9SjKh3bwQFAJ5+dWorCWMGjWK1NRUGlo09Ar3JyjAg30HLxDk78G40X3QNbcR6O+Bj7crrXojn697maioKBobG3H3cEWrlUq3hEf40dpqpHdMECqVktZWIzU1TXz55QYeffRRvLy8MBgteHpocXbWEBzoQZvBRHOLkT7Rkty/2XuG2roWfN1bePjhhwkKCqKqugkHjYpGXSthPXzJPl/GxdxKxo3py5SJA3F0VHM5v5qEAUGEhISQm5tL0sB+WKw2Um7ozfDkSESbiLurE8dPFeDn7YqPl5aonn68/tIStFotPXv25Ovdpwnt7i0nGN0/fSixdr1UKhS4uTqBtYGtW7cydOhQdn6XRXRkAJcLqxk2KJIptw0gO6ecEUOjmHzrALKySxg3qi8KhYhOpyM+Ph6NRoXBaEGjUTF6SC8yzhQxZng0h9JyGTcihplTB+HtoSUr6zQzZ87EZrMhCAoys0vo1dOfZxZOQK1Ukl9cy7ptJ/DzcWP6xESSYkNx16pYsmQJkZGReLg54+ig5u2P91NeqePWlFjMFivJA8IYmhRBfN/uaDQaDh48yAcffIDSoR8qlYKVL0wl73IVAf7uODio+HJzGrNmDEPX1EppWQPxcd7cc889LF26lAkTbkWtViIICkwmKwqFgIuLg73PAq329emuu+6gsrKSvLw8vP0H0dTcxuwZw9DrjbS0GBk3pg9TJg7kzdX75HIujzw4gQEDBvzHz6Xr4c1Tf005l8UDhv6u81esWMGkSZO4++678fX1JTExkZdeeolx48bh7e193TavvfYagYGBhIWFUVZWxuTJk/+MrgMgiH+me6YL/2ewbNkycnJyeOGFFwAp1u7UqVN8+umnBAcHM27cOP7+979zyy23cOTIEVauXMnGjRuJi4u7poBzRkYGs2bN4ssvvyQoKAhXV1eqqqquW+R54cKFFBQU8MQTTxAaGkpFRQW7d+9m8eLFvznGz2Qy0Waw8tNPObzXXsB52mAC/N2lmK9vT/HGm98DEnPHrl27iI2NRamUtoeKSut5e82PcvB992BP1r19n1xE9kq0tZlQqZSo1UoOHc9lcGI4r6/ey7f7zvL4QyncmhKH2WyluLiQjRs3cttttxHTpy8qpQJR5LqZb+31v6SM5DqKylvZtCMds9nKWy/ehdlspc1gpr5Rj7OjGk9PLQLYC8YqOXDgAN1D+xDS3Yv6Bj1l5Q0MvMKT0I7sC2WkjEli8ODBbN269ZrPrVYb3/x4llVrU4kK8+PFZRPxdHe+5ryvdp1kQGx3QkN8UPxcCuDPoH15atEb+WzLcebfN/I3tbHZRMorG3F1ccTjOn26GjabjYqqJoIDPUjLlErAeHlqcXBQX/f83T+eY+VbUnmQBbNHMeHGPrhckSCRlZVFbMDfAEg7BTsOTubll19m9OjRMiH9oKRw1r1/F/WGm+U4P4PRQlOLAXdXJ0wmC6fOlVCva2XKhHgsFisFJXW8v/4g6ftXsWbNGiIjI38xbnPTzgwGxoYQ0s2L6qpKMjIyiI2NJTS0BzZRpKJSR0g3r2vamc1WREQ0ahU7duzgX//6F6+/toH4AaFoNKpOetnSYuDEiXw+XpNKfuEGTpw4werVqxl301TCQn2QNjhFOSa1RW8kM6uQHt198Pdzw2Y1o9Ven+XEYDSjVCioqGrkUm4lY0b1ueYc6V6Q9FsEWltN/Hgkh1VrU5kzbSg3j+57TUIQwFffnCS+X3d6/AG9bJdRRZWOnd+dYuHcG3/1/FPnSjiemc/kCfH4eLmgVCrk+zg3N5eFCxcyc8GL3DQiBjcXR9QqJelnC0EUeOSfW/Fwc+KDF6bRLaAjbtZisVBQUs+7a1M5ebYYjUbF2jfuJTjQQx6T1Sby/Z7dPPLII7S1tRHV92H8/d34csN8Xn7tW/rHhuDr6yoXcJ5+12B7AedC3nzzTbZt28alS/k4OqqvKOAMRqMZm03E0VFNvT3cwtvbhcWLF7N582aZuWP8mL5MtxeFrqjS8enGo+y7ooBz6u6l/FUI/ejVXz/pD+Ds3/5OU1PTNcfd3NyueQ6ZTCbi4uJYv349SUlJ8vHRo0czf/587rjjjmu+JzMzkyeffJIdO3bw0UcfkZaWxqeffvqn9b/L8OvCH4JOp2P58uUcOnSIwMBAlixZwsKFC9m0aRP9+/fn4MGDvPbaaxQUFBAYGMhDDz3ExIlSgPnVhp8oiixfvpwffviB5uZmNmzYQHBw8HUNP6PRyBtvvMG3334rlxoYNmwYTz75JA4ODr+p78HBwV2UbV2Ubb+7TRdlWxdl26+hi7Ltj1G2tb8M/dnoseavMfweMzjyzjvvXHP8oYcekpMa21FVVcUNN9zAd999R3h4uHx86tSpjB07Vo6JbkdbWxu33347L7zwAklJSaxatepPN/y6snq78Ifg7u7O6tWr5f/bszLbyxKMGDFCjo27Gt26dePixYvy/4Ig8PLLL19z3pXntMPBwYEnnniCJ5544j/qfxe60IUudKELfwT33nsvkyZNuub4H60scSVef/11hg0b1sk7+Gejy+PXhT+ErKwsqqqq6N27NxUVFfzzn//E19eXjz/++L+7a7+K9rjELnShC13own8//jKP34d/jcevcO7jv/nc37vVO3HiRHJzc+X/bTapyoFSqWTfvn1/yvOry+PXhT8Eq9XKO++8Q1FREa6urgwZMoQnn3zy1xt2oQtd6EIXuvB/BBqNhujoaE6cOCEbfiUlJZSVlV1T9gwk0gKDoaPUzcaNGzl79iwrV67sVMLpP0GX4deFP4QBAwbw9ddf/3d3owtd6EIXutCF6+N/CMvG9OnTeemll+jduzfdunXjpZdeIjk5maioKM6cOcPSpUtZv349/v7+hISEdGrr7e2Ns7MzUVFRf1p/ugy/LvyfxPT73+KBe4cTGuJNa6sJUQStVkNFpY4NXxzjh1Qp6ywv6y3mzZvHhAkTiIzug6NGZS+GC+cLKvn35wdoNZh4eeFtRHTz+dnrVVU34e7mhNFo5uDhS2zdkcHSR2+SqaPMZjPr1q3jueeeIzxhEd2CPHnzhTtl/lyAuvoWNu3MYNPODDlQf/To0bz8ytsEBnggIGVBGgyWjrF82TEWQf8de/bsQaPRUF3XQoCvG61tJpQKgfIqHUqlxO8qiuCguXZpMJos3Pnipyy7cxT9I4JBBLPFirOjBpW9+O1Ta3ez9qk5gBTv8vy/PiWhfw+CAz1QKhQIAlRWN7H9u1MkxvcgNqYbrfpmvv32Ww4ePMiyJ18ktLs3jbo2DAYTfj5uGIxmDh65RO7lKpYsHHdNv8rKG/D1caW+QU9zi4GQbl5oNCpEUaSsvIFV7/1IWmYBuWffZsqUKcyZM4de0TEy+4MI6FuN7Dt+kbc/T+XvU4cybULCNddp1LUy8Z53GX9jH6ZPHUS3II/rZtQajUZaW1uxiip8vFxZ8/khNmyRig3fPSmJSTf1x8tTi9Fooc1oxsdTS1VVFR4eHjg6ArY2Mk+e5+NP1pFzIZvyinoevl9k/syOa3QfqOdvf/sbjz/+OIGBgVisNopL6wgO9JTkdfQS736SSv++3XjgnhsI7e5FVWUFn3zyCR9++CER/R+RdGzlXfhcoWOV1To+2nBY1pkxg4xMmDCB8PBwnJxcEAQRlUol87O2tBjZsuUE4eH+hIf7ERTkQXZ2dqeC7u2wiSICUlbvux8fYPcPUo1DoflbWS+tVhG1Wklzi4ETmQVEhfsT4O/2i7rcajTj4uSAxWrlXH4lr315gJyiakL8PVh692gSorujVHQUZ66qqsJs0RDg7059vZ5tOzJ4cN71s3L1ej3Lli3jVHME8+8YyoQbYvBwdb5uFnB2XgV9IgI7HauubeaOme8xfkxf7p85XL6f2zPPcy9X8/SKhcTFxclrjFSMXMRRo6LVYKaqoRlvN2fctE6YLRZsNhG1EiorK8nKyiIufqg9M7ujT1VXzeOV61hUrz44aFQICikN+kJeBW99fICL+VUk9e/Bw7NHERLkKWdhC4JAQ4NUjPlKaLUa1GqVvfC1lFmt0zXi5OTE2bNn+WBTzjU80+367+mhpai0jvc3/MSmNb8tCeh/M6ZOnUpdXR3/+Mc/aG5uZsiQIXJFjLa2NgoKCjCbr8+k8legq45fF/7P4YcffuDjD15g7/5sDh65yA1DotColXy26TjZORUsXjCWnNwKysobqa86wSOPPMKOHTtQeYUR7OPOiewiQgO9KKyoZ9atyYwf3Js2owl3FydeWreXqEAX0tPTmTNnDmU1PgwfEkVRcS3P/HMHx9IuM+2OJO6ckkiAnzvbvj7Jx+sPUV1xilmzZnH69GlMiu6se3sWXh5aDh/PZc+BbKIjA3B3cyaubzfa2kwcSd1ObGwsmzZtws3Vie/2nqWwpI5eEQFoHFR8tumYNJYHx5JzqYLa+hbefWMxFRUVBAQEcO5iOcEBHhw4donPd6Rz+7j+ODlpWPzcFvIKa0iIDeHYyXy+3r6R3bt3M3LkSI5fKGLm2ARqdXpWrN2Dq5MDEcE+tLQacbaziuw/ncfp/ZInuHv37kyc9Deyc8qJjenG1m8yEUUI9HdnSGI4zc0GVqzcwbYv3mDhwoXcddddfP9jNqs/2s/NKbF4e7vw5VfpfPFVGndOTiSmVyBuro6s/fwIzz3zMBaLhX79+nEyq4jnVn6Ns5OGoYMjycuv5q1391FV08SQQZHcODKGk6eLyMn+AT8/PyIjIwkM7o7RZKWqrhlXrSNKQcDXy4XEPqGMHRyNIEDa2SI2rv+QxMRE3n77bVatPcfAuFCeeuwWPt96HKPJglqlxFmrIT2zAHdXJ15/dy97v9tAREQEvr6+NDcbuJBbQdb5Uu64dSAP3D2Md9amsv9IDqHdvOkW4IHNZqOlpYV7772XaVMTQOmCSiilJO8LJk68iZOny+nXW01inFHW4fNFo+WswtyCOvx9XfHy0PLOR/vZuTuLOycmktA/lHumDmJv6nn+/d4+stJ28uyzz9LQ0EBdkxtr370PL08tp84U8/2P54gM98fLQ8vwwVEUl9ZTWFzLjDsHsWPHDom5xMMPJycNSqWCtLR80tLy6RnuS3JyOMUl9XzzzWm8vKQivkajkVkPfc7O706RMioGjUbFlh0Z7Po+i8T4HowaFk1Orl0v/72YxsZGfHx8OJZ2GTdXR0rKGkgeGMaps8U89/LXtLaZr6vLgYGBWK022gwmvj6cjdFs4cFJQ/kh4yLvP/43XJwccNU6Ulqjw9zWQlVVFd27d0fr7MCSpV+QX1DDgvk38tEnB1n5r28oLKxl8OAItm3PIKZ3MN9++y2LFi0iMsSPEQMjEARobG5DpVBitlhpbG4jI7uYB1/czIiECI4d+pFp06bx/vvv8/0hKzu/PUXigB489fgtODtraGhspc1gxslRjShCQVEND86fhYuLC5s3b2b7aR2jBkTSajDhqnXkfEEVfXsGcKmkhg92HMXX0xUfDy1TJk+ivr6euXPn4uzsQFlZPe7uTogiXC6oxt/PnZHDe5Fz6dp1TOMm1YpMzyoiJNiLotJ6Zk5JZveBc0SF+TFhdF8uXK5k/75vaWxsJDQ0FJVKIbOvtMPZWYPBYLbX8FPY6/wJPPDAA1IlhwcmsXt/Nm32dlfq/ydfHEbr7MDDc0az9/vvmTlzJn8F3sw4+pd876KEIb+7TUJCArNnz2b+/PnccsstMu1ot27dWLhw4c8mhiQnJ/+pNfygi7mjC38A7eTd/1sxd+5cci5V8uG6nxgzIob9P+WwZUcm48f0ZfP2dA4dvcS0qcny+TNmzGDnzp2MTohk1eZDLF21i8LyegrL61AIAp5uzmw7cAaAr3/KZunSpYwaNQq9Xs/tt8Rjs4ksfWoLefnVnMoqpqS0HrVaxZHjebzzwX5OZhWzYsUKdu/ezYMPPsiYG3rj5uJE6pGLrHh5J59/lcbzr38rkd0bLfS3c/DOnTsXnU7H+YsVvLrqe4IDPSgqqaetzcT4G+1jOSaNZfH8saSnp7NhwwZsNhsD+oXQ1NJGcVk9wxMjOJ9bQYveSEJsKNv3nGbrt6foGeLLypUrqa2tBaCxpQ0PFydWfLKbS6U1PLP+e5Z99C3e7tcvW5KXl8eTL+0gtk83fjyUw7ufpPLkS9vROjsgimAyW8grqObIkSNcvnwZhULB17uz6BURiINGxfZdpxg7sjenzhTz5nv76B7shSjC+i+Okp6ejlarpaGhAQ93Z4pL6ugVFUhRSR3ubk4cPpbLh58c5KfDFzGZLAwfKm2TZGRkMHz4cA6fvIxGo2T2M59z+ORlEOB0ThnJsT2orpeYIqrqmnnrrbf4+OOPmTJlCnX1eqZNTuLA4Ry27MxE32qivErH0RN5JA4I44P1B/n+QDYbNmxg7NixtLaZZRovgGm3J7J5Vybfp2aTevQScx//jJq6ZlQqFUePHuXkyZOI9bcj6p7AP/hGHp2n5aZBX6DWaEDVmf2gnfLp3Xffpam5DUEQOHQij5FDe3HybDFvfPADSfFhXC6q4YMNP1FUWs/mzZtZu3atpGMjY3BzdSL18EUWP7mJdRuP8sKr3yAIAi16I6OG95J1v7CwkFGjRrF79xmUSiV6vZGi4jreefcHVq6U2vh4u7Dvh2y5tpnVaqW+Uc/A/qG4aB1JPXKR1Z+ksufHbF7893coFAL33jWYxfPGkJ6ejl4vlbRZ8c/ttBkt+Hq7UlRSR3REAMWl9dfV5U2bNgHwxuaDtBhM1De38tza7zFZrDw2bRQeLk5oHTUoFQoe+NcmHnvsMcLDw6mrq0OpFBg4MIzv955l+45MbrslnoYGPbdMiCM19QIGg5mGhgYee+wx9u7dy/AB4RzNKsDRQcPeoxep1elpM5g5eaGEEQkRsofcYDBQU1NDTU0N9Q16dE1tTJuSTE1tM5fzq/H2cuGpF7bz05FL1DXoCe3uTX5+PsXFxWzcuJGIbj64ODsw/bnPKKpsID4qmC37s4iP6saZvHLmv7IFo8nCmDFj6NevH42NjTjYC0Xv/ymHzdszcHVxxGSyUFJSf911bMSgKN7b8BNP/msnRaV1FJXWYTJbuX1cfxLjenA+t4J5T2xkyZIlMl2jSnWtqaDTtWE0WrDZbDg4qGhpMWIymejRoweLFy/GZLYycXxHDNuV+l9UWs976w9yubCGuXPn/txS/Z/jfwhzx/80dBl+Xfj/AtLWie3XT0SiEkvLLEClUhAdFUBaRgFpmfkEBnjg6+3CicwCYqKDOhWpjYuLw0Gt4tjZQgQBnJ3UNDS30djSRmubCaPZgkqpYPsrs3n11VcRRZF58+bRKzKAsooG9K0SPZcgQK+oQERRpEeID9u/WMAnq+/joYce4uDBgwwYMIC4PlLdwqMZHdzG6acLsdlEXF0cOX2uWB6HSqXqGEtkAEdO5OKidew0ln4xwfSKDKDduS8IAg4aFUY7xVK/3sEcP1lAelYhsdFSxtiJUwUE+bsTGBgoly3wdHXibEE5LQaT3K/j54t+kXpJpVIQHRFA2qlCALTOUq3F6tomoiMDZRmHhIRIdHUxwfTtHUx2TjlHTuTK4zh1pljmDP3i47mcPHmSCRMmUFAgzZVGoyQ6KoCjx+xtfFwluWUU4Oiopqm5TZ5HR0dHHDRqzuVWEBroRWxUMHnFtXi7OyOKIo12Q+qWEX0oKSlh9uzZhISE0Ld3ENGRAaRlFsrj6x0VQEL/HigUAsMGRdIjRKrCb7PZyMgqRKOWDIJAP3d8vV05cbKgk3z0bSZsNlvnbR7jYUTRCuoBINgLD4ttV7RSEx8fT319PatXr8bf1w2jycKx9MvE9JL0Nv10oUQBVtWZwzo1NZWQkBASB/QA4FjaZfmz9JOSjrloHdA1dVxvwoQJFBcXkzxI8ng5O2tIGNgDPz83MjIKsNlEoqICOt0vgYGBbFk7jwVzRiMIUFxa33GdU9J1oiMDZb1spytsh6+PC0dP5MnzD1yjy927d0cQBI6e65gPmyiSdr6I3qH+nL1cjlolGd5Gs5WDBw9K89vYiEKhIMFOJZaWkU9goAcBAW706hVIRmYhN42LZcuWLRiNRgoKClAoBBw1Ks7llmO2WPHzdEHrpGFUYiSiKHLzcKmw9E033cSZM2c4dOgQTyy+iaAAd6KjAnByUnPuQjkAJrOVE5kFeHpoCQzwwGq1kpwsGWixEUGcvVxOq8GEu4sDSqWCjXszsdpsxEUEYxNFTmQXkZQkFVZXKqXxRfT067SO2aw2BIVw/XVMo+LEqQL7OqahoalVvvf79Q7mxKkOeYaGhgLSmnG9YvIAKpXSTlFpQa1W23maJf2P7S2tZT+n/ydOFfwllGRd+GV0GX5d+F144oknSEtL45133qFXr16MHj36unX1rvYK9urVi23btjF9+nRiY2OZMWMG9fX17Nq1i1GjRjFo0CA+/PDDTt9x9uxZ7rrrLvr168fIkSNZt25dp8979erF1q1bmTFjBseOHZM9U78GPz8/6hv0uLs5o1IpqWvQy0Tw3l4u1DfocdCoOlX7b8+mqtPpue+WZFydHdh99IKdvByKKxr4x4e7WfrOLh544AEMBgOzZs2SOWnb4eHujIvWQeYEffypLWzccoJ58+YxfPhwHB0dCfL3QKEQqG/Qo3XWsOfLR9i7aRGCIC3A+w5ekPuk1Wo7jaW8olG+lreXCyqlApVKyRur93XKFANkg83bQ0t9o576xlaZgL6+US/LePjw4QC4a52obWrt9B0Wmw39FYbg1XB3c0KlUlLfIFX2f3TeWFr0RiqqdZ1k7OfnR2trK96eLnh7SWO6ck5ctBKP7KkzxTz94g4eeOABVCoVAwcORKNRERzkiUqlpMw+/nb+5bh+knFw/MTlTvM4IiGCAb27sea5aWzdd4qTF0pkYnt9m4ldqed4bf1+Hn74YTIyMgB4/fk7JH2xyyYts4B/vv4tBw5L9SYdHVV88O8Z9OolecvaxwxcI9d2qJRKOZbqCqmCqAOFL4LrCsAGlo6XABxGo1QqeeuttxBFESdHNTabSN0Vemu1Xv8lqLpa4qAN9HdHoRCoa+joj9Vqw2S2oFAI7D/UUbA3NDSUoKAgQrp72R/wVlrbTLz+2jQUCoFWOzuNq6s0l7W1tSxatIhlz31FaXk9giBwzx2DSOgfKl+nnY+4XS+v3OaS7ikFpfa59PZyscuqsy63t6nTdZZpra4VraOGuqZWjmUXYrPZeOa+FJn3u0ePHgBybGNDvdQ+pLsPKpWSoEAPvL1d+OyzzwDk+XF3daJO10p2XgXPf7CHH09corZRj9liZfbtyVwqrGbBggXccccdPP/884SF+vDeGzNQqZRonR0oKKyhvKKROTOHy7zXAH369MHf31/qk7uWOl0r992cjNYePlHd0EKT3oC3XT9HxEcwdOhQAgICuHTpEi16AyqVEn2rkSY7B7GnpxYnJ83Pr2ONemZOGYSL1oHvD56X7/32tWDbmr+Tn5/P5s2bO83L9dB+3NlZQ11dHfv27QMk/W/X+5/T//qGVnnsfwm6PH7XRVdyRxd+F1asWEFhYSHx8fHMnj0bpVLJK6+88pvavv/++zz99NP4+vqyaNEiHnnkETw9PVmzZg3Z2dksW7aMkSNHEhUVhV6vZ+7cuYwdO5YXX3yR8+fP8/TTTxMQEMD48eMBiR9YoVAQFxcnv/3/p/i1ezr1/YdQq5SYzFYmDI2R25y9XIFSqWDNk3ciWifj6OiI2WxGoVBiMXcERV+ZDHDhYgVOjhoeW5iCUgm33nrrNddrbTNx/6L1ODio+eDV6Tg4qBk7ojcn9//6WJRKBXffMQiAopK6X29Ax/ijekqL8bp1634XD/LV6B0pBbu/tGISSqWC1lYjeQXV8oViogL58v1LqNVq1Go18XEh13zHlZVGS8sayMuvJu90Jlarlfz8fCIjI6+dOBEm3hLPyBskJoF33rgH22t3ymPJvlxBS6uRQycvM//O4ZzPq5Svo2sx8OIaibKvJHU72dnZHDhwAM1VCS/txlFsjOTVePH173jjxTuZPXs2y5Ytu648Pvn3vdjsF/rsq+O/KDvBYQSoe4HtH4DdI6gZheAhMSq88cYbskfm6rFf+XdsTDCvPDMV0fbgL9K7DR3UsWXpqFGze+siRNsCHB0dUSqVVFbpcHZ2YMOnh9mz5yxbNj/EoOQOJoLe0UEkJydjs9lISkpi41eZsqe7sKSWuyYnkXG6CLVKiYODdJ2iKzyBPwdRBLVK+bO6HBcRRIC3G3NuHcS9NyWSU1wtf7bysx/xdHViVHwEOTnSfBkMBlxcXK7xVLf/l5wUTm5eFbt3S5R8Go2m03nHztxFiTEAACAASURBVBRK4+0ZQJvBjL7NhL7NRFg3bw4ePAhIxedrWwfw5dqObUxRhKf+uZ2lj4znmaUd97rNZkOj0ciMDyH+HoyMD+eLfSe575aOrdp2Bd2blkP/EFe6d+9OREQE6ZmFjLohmheemiTr1pnsUvx9XX9WphNT4pgxJZknVm6npq6l0/gBFqz4ktqLG7nhhht47rnnfvZ7roSDg4r77ruP1taOl8PfUia4q5Twfz26PH5d+F1wdXVFrVbj7OyMr68vXl7X8nz+HO6++26GDx9OdHQ0kydPJjMzk+eff56IiAgmTpxIWFiY7F3ZtWsXDg4OPPvss4SHh3Prrbdyzz33dPL63X777Wzbto3IyEhp++43UrZVV1fj5alF1yRlqnl7avFsfyOtb8HLQ4vRZKG5xdCpDYBoE3luzR6mPbWBbQfOYLOJiHbnyoWCKu555jNuuukmRFFErVYjCODl2RED16hrlXhQ7Vl9F3MrmbNgHcuXL7fH8Bkpr2rEZhPx8tQiilBW2UhRaR1qtQqrzcb0KYPkPun1+k5jCbqCx1MURQL93RFFkW2fLaCoqIjXXntN3h5y1UryqmvU4+WhxcvDWfayNepa7fKoZ+/evQDo9G34uHXmvVUpFLJn4no4ebYYi8VKaXk9NXXNPLziSyqrdbKMT50rISUlhcrKSkRR5PDxXOrqpTF52j0c9Q0ttOgNksyueEhUV1djMpmk7N2KBmn8gdL4hw6OZN6ckWz/OhOTycIDC9aRkpIixyzVNujRqFVs//EMn32TTnzvYBrsnqOrHRu+vr72v6Rsy3bPSwekPikUAhfzKmX2Gk8PrWxctHvWXn5nD7MXr2f24vXs2JOFxWK9zoNPBYIHqPsi1t+LbPQBYLJnlUv6tWTJEoICPHB20rDyqUlYLFaa9QZ7piUgQE5eFfcvWk9KSgpLl0q8qBVVOmksdt0cfUM0zy67DZAytU+dLWbOQklm33//PTabDR9vFzs/tJ7GxlZ0TW0EBkrXtlisnM4qJisri927d5OSksLO3VlU1zRhs4lUVTcT4Cd56Px8XVEqJJ7abRsepKioCKVSiVKp5Mevl+DspMFmsxFs1+X6hha8vbTX6PLdd98NwLuPTkXfZmLz/tPc/fxn1Da2oDeY8HZzpklvYN5rWxk87y3Gjh0LQGFhIQClZZLR2X7vl5TUYrFYiYjwZ+tXaaSkpJCSkiLHEuqa2/C+gvfZy82ZBp0eNxdHCsrqCPRx7zSLzS0GikvqsdlE9K1GvDy1XC6o4e+LPuXf7+7FbH8hPH78OJcvX+bTTz/FTetIr1A/Hlu1kxPnpZAOP08X3LSO1NnvSY1aRWlpKZWVlRw6dIgbhkZhsVh5Y/Venn1xBwBOjmqaWww/u47Nv+cGnli5nQw733j7vd++FlRU67h06RJ79uyR2/5cSEf7C1FTk4ELFy7Ixz09tNQ3Sn1u13+vq+4dLw9nuU9/CUThr/n5X44uw68L/2WIjIyU//b29sbb21smp28/Vl8vLcb5+fn07dtXNlIA+vfvT35+x5ZXcXFxJx7f34r09HQSB/bAYrGRc6mSxIFhJA8Mo6JKR01dC0kJYZzPKe+00I0cORJRFNn8YxbfHb1AaXUjza0G3LWOODtp0DpqMJotlFZLWXAKhQKdToeuqY0+vYNwdpaMI6vVRmmZtP3l5aXFZLJQVtGIi4sLJpOJzMxMsrJLARic0FO+fmL/UBQKgdq6FnmLKD09HYvFQuIA+1hyKxk6KELaSq3ScTGvirTMAsm4tD/EX3vtNSwWCyazVR7f2QtlJMf3ICE2lDM5UgX9Af1CqG/U4+/vL2955ZXV0i8sqJOhl9w75Ge3gACsFhttBjMBvu48uOxz8otqOXuhjG5BnuTkVmAwmCksLLTHUSlIP1nIuQtl9IkOYmhyhDwn/fuFSDK7wohOT08nPDwck8mCyWQl51IlQwdF0tJiYOrtA3ni6a34+blzPqec0rIGCgsL2bt3LwaDAaPJTN/IQJydNCgEAbVKRa1OjyAIBPh0zq4bOXKkPflApKauWY6Pa0dwkCc2m0hifA/Ce/hSXl6OIAgkxIViMktxlBXVOmrqmukZ6kNZZSNllY00txhwdtagUCiu8KoqEDzWIAgKxMaFYLmKI9V8ElvtzZw/f54DBw6QkpLC6XMliKLIqTPFnL9UIfWlf6g0Fj93SccqGyksLKR3796UlJSQfrIQgEGJ4dwyLpYnFk9g644MBEHgUm4lBoOZsgqpjUqlQqFQsHfvOUQRBiWH4+bmiLubE1qtAwqFwKVLUhuDwUBLSwuFhYU0txg4Y9flXhH+VNdKSTOh3aU4yPyCGuY8LBmkFy5cQBRF5ixcR2ubiZraFoYO6pj/mrqWa3T57bffRhRFPv7mOHqDkSa9gbKaRuKjunGhqIp+4R26arHaCAwMRBAEevbsiSiKHEiVjJTEhDAqK3VUVjbR2Ci9QB1IvUBhYSGFhYV4e3tjs4kYjBb6Rgbh7KRBECCxbwi1ulaUCgUuTg5U2ZOC2uHkqCY4yJOa2mZa28wkDuzQm/jYEOob9FRVNxEbG8vXX3/NnDlzCO/mg9VqIzu/kpzCKoxmC9PGDkSpUJCVV4YgQFJMCGlpaaSnpxMTE4NSqSD3chWxfbrTNyaYmtpmevbwxWyx/ew6tm3PKdnoEwTke//shTKS4jvrdzuu55lzdXVErVbamSU6zIl2/T9zobST/l/93UnxYaSnp1/3en8GBPGv+fnfjq6t3i78xxAE4ZrEiuvVJLpyy1AQBNRq9TXf0764/Fb3f3vczu/BuXPnuPXW25gzczj7UrN5eN4YRJvIhi+P8bdJCQwfEsXnm4+x4YP7mXz7JubPn8/06dM5fDqf227oQ15pNZV1zUwaGYsINDS1sv4f0/ly70la2owsuH06NpsNV1dX3vsolTunJPHVZw/y8aeHyLtcg7s9iWBocgSzZwzDYDAzZ5YUR7d69WpqzAk8MGM4o4b2QhThQm4Fs+4cjCiKuLs68c2+MwQEBJCQkIC7uzuenp48uiCFsvIGUkb3wWYT2bw9nSm3DmBA/1A+33yM55ZPZPLt78qGdeqxi4wZ1puYqEBOZ5dy47BozBYrGWeKGD8yhqkT4imr0lFdWSLLbUJyb1qNJl6dewtvfPUTYQFePHbHCPLKa4kIkmoYJkZ1Z35aGm+++SY7d+7ktX/cgdlixd3ViZtvjOXk2WL8fd1QKATUahXhPXzx1wyhZ8+e2Gw2bhkXy8EjFzGZrUydOJDUwxeJjw1h8fwxVFXrGJIUzv33DCMzoozx48fj4ODApbwqQrp5kXOxgim3D8RmE1n13g/0jw3hhqFR/D/2zjs8qmrr/5/pk8ykd9IJIdSE0HvvShVBEC6iAiqiYOGK+F6xIjZQFKUL0kEIiIC0EDokhBpIQkJ6TyZtJmUyM+f3x0kGIvGKvlfvfX93vs/Dw+TMWWfvtfc+Z9ZZe63vKi0zEODnwp0bMHv2bE6cOEGvvgMwGs18996T+Hg4YbZY6BDmx8Xr6XRpF8iWj6Zz7Hwij6+4gZOTE1KplNpaE99tO8trc4bRuUMQV25kUFpWTa+uLbiWkMVLswchQcLZs2dZv349dmoFNbUmXJ01tAj25ODxm0wa05mMbB130gqZNKYzHm4OmEwm+vfvz+jRo5G4Pg+KttRVnSP5dgLgjJOTmklPfUd28WeYq44S6HeHzz77jNWrV3PqlJixG9HWj44RgSxfdYzI9v7Mnz2Y2CvpRLb359mpvYmNT2fX6nicnZ15++23uXrHi2f/1ocBfcLo17slPx+7yeiRHbBYBPb8GI+DVo1KJWdfQgL29qJXpnlzD6qrjfTv34pWrX0oKzMwZkxHLBaBo8cSCAnxxMnJiQkTJlBXV8f1FHvuphdTZzLj6qLh5u0chg5ow9yZA7FYBFZtOkVaZjH68nK8vb0BmDCmE0q5jOJSPS2CPbkYdxd/X1d6dGlOpw6BlOj0VOprSEpKokuXLgiCwOTBHREEgeBmbnw6Zwx2KgWfbT/Jqtcn8sXL4ygorSQ9X8djPf9GeXk5jo6OlOgM5OWXsWv7HBwd7flq5VHkcilqtQK5XMaOrXN45pkLREREMGTIEE7Hp9I9IoiaGiPbPppOQUkFWjslndsGkJVfSkSYL8cuJjFo0CDeffddduzYwZDh45FI4LutZ3l17jA83R345L3Hqaispl+vllgsAqXlVeTn5+Hq6srkyZOp0FcjlUpZOmcU3/10iQs30nl8UATxSdk8NiCCVoGe2KsUTJo0iYsXL9K8eXNKdHquJ2Tz+NjOCAJU1xjJyy+nZYgXm5t4jp2Lu8sjg9qTklFEQVEFY4aKCR/7jlzjybFdGdgrjDfnDud0WAkDBw4ExCxtqVQqcggqZGg0SsxmCwqFnIqKalQqORqNivHjx5OSksKMGTNQKeXs//ma9fmxLSqWWVP7kJGtIzElnxED29Ei2IOX56xh4sSJv/s5bsMfh61Wrw2/GzNmzCAiIoJ580TizU8++YTExERrnV6j0UifPn2YOnWqNW4lLCyMTZs2WbPX9uzZw1dffcWJE/eC1aZNm0bXrl2ZO3cu27ZtY9WqVRw/ftzq9fv000+Ji4tj+/btTV7zYTF//nyUjr2YOb0vAf6uVFfXYREEtPYq8grK2bTtHDKZlIWvjKRbt25cvHixyevoKqqY//leDDVGVrz2GF5uDkgAk8mEVCpl3rx53EjxJzLcn2VLJ1NXJwbFx5xJ4uatHGY+1Qd3NzEORyKRsGXLFhYsWEBI53n4+7qw8qMncXS4Z9gWFJazLSqOfYevUp27i4sXL7J69WoeHTURb2+newTOtaZ7umyv12W+qMu0adN48cUXH9CluqaOYl0lXh6O6MqqOHjiJk893qNJb15WURnuThpkEok1a/WXuHTpEh9//DG7d+9u8vvjp2/jqLWjfRtfqqv0/PTTT5w8eZI33vyQAH9X9PoaXF2098bsbBJ1dWYG9WuNo4OdNdHlxo0b2Gm8CPBzRVdqwNvLqcn2Yk4nMuWJQSxevJjBgwfjHxCAVCISSguIsZRHzyfyxZaTfPTyKLq2D7a2YTabiYuL44t118nJK+P1uUN5dGiEuM0viMS1peUGamtNOGjV2KllD8SFAVy5mcmFy2mMHxmJq7MGhUL2YEfrERsby9SpUwGxtvSJEyd44403yE7bw6Yv7hE4z507l8DAICyCQGa2Dl8fZ2prTcScS+ar9dF0aOfPrGl9RFJrhZyoqCjmzJlDiw4v4+/ryoavZzTZjyvXM/lo2UF2bHiuyf41/GwYDLVs2XKO2bMHNnlOWXkV2XlluLtq8fJwRCIRCZxXrjvJwWM3AKgp3P2r91hNbR0yqZS8gnKu3shk9IgOTJrxLWeOvMfChQubXMu30/OZ9v5WAr1cePfZEbQJupc8UFNTw6VLl/APaI2/nxsKhYwT0bd4/8P9DOjfmkULRxNzKpEB/VtjNBrJyspi+fLlxFeE8PzjvXikb1ucHeys16s1mkhIyWPPieuMHxRBcx8tLi4u6HQ6Ll/LZ8PmM+TklTF8cDue/VufRmTZVdVGjkXfYtHfp3Hz5s0m9TfWmUjP0+HmpMFJa4fJbEaCmJWfl5fHmTNnGDxkJM71W9AWiwASyM0rY+PWh3yOlRl4/YM9JKUWMHVcV8YO74CXu0OTMdMGQy1mswVHR7smriTCZDJx5coVVm2/TVITBM7jR0bi4mxPRraObzfGsH3NvD+tVm/wis/+lOumzX31T7nuXwWb4WfD78aiRYvIy8tjyZIlqNVqrly5wosvvsjy5csJDg5m7dq1/Pzzz8yYMeMPG356vZ5BgwYxbNgwpk+fzu3bt3nrrbf48MMPGTlyZJPXfFj4+vrSIuLlhzo35doX9+SGPNzNnnP03sMmNPzh2rlz/V47IZ1/m8m+oXIHQIsOD6nL1XttBHeb/1AyaReXWT97jX7toWQK9n9q/fxX6BLa/qWHkrlz40vrZ//+rzyUTNbJz+/1rePDVRhIiRf1ad7l4c6/G3tP/6zLTXMi/hL+ne5lRz7MGMP/fpzDWs39zfOTEu9l8v/e8fqj/fIZ8XD3Zd6he/dlWJuH0OXWPV38BzxcG1nR99r4I8+YZsMerp3cn39fO/e38Ufu/atXE//JmffQoUMr6+ffs/5tht9fC9tWrw2/GzNmzGDBggUMGjQIT09Pjh8/zvTp03nrrbeQSqXMmjWL7Ozs/1UbWq2WNWvW8P777zNmzBjc3Nx46aWXrEafDTbYYIMNNtjw+2Hz+NnwXwdfX99/dxdssMEGG2yox5/l8Wv+5Z/j8bv70v9tj58tq9cGG2ywwQYbbLDhvwS2rV4bbLDBBhtssOH/P/x/wLn3Z8Bm+NnwX4k/Enj9R2RCOj1k4P3lewHuHuN+O4miaO/vS6CAxsH9/0ky/6n9+t/K/FX9+qsSQpp3/e2kgLuX7iUE/Flt/LKdP5JE8jCJB/cn3fyRe/+P6PJnydx//h9JOPsjyR1/ZP5t+Gtgi/H7C3F/1up/IprKtP0jGDhwIC+++CLjx4//F/XsX4v7s3r9fF14b9FYggLcrVQTX6+J5tBRkWrCUvkj3333HcHBwYAEk9lM0p0CbiXm0KNrC7y9HMnLL+fajSxGj+zwQFsN1SZyckv5cu0JpBIJM6f1JdDfFX09NYKTox2CxWylANl99gaf7YmhxmhCrZDz9QvjaBfkjbK+GPrmE/Gsevtl1qxZQ8uWLet5FEUahys3srhxK5sZk3tx4Oh1Tp1PZuZUsb2S4iKkUikeHh5IJBL0hlq2R12iRbAXocGeNPN25uDxGw/IODs7Y2f3IH2DIAjU1ZkpKtGTeCePQH83AvxcMZvqUCqVjcqD6Q21lFdWI5FI8PF0atyOn0ji3cDraLEImC0WKiprqNTXoJDLaObtTNy1dFycNE3q0kCtYrHU/xMEsnJ0xN/IpHNEkFVGoVDg5uZm7Vd6VgnT524ARGLh1Z9ORamQczejmED/B3URBCjW6dm+9xK7D8Q3KYNgseoiCGAymyksrqS62oidWvmALgX5eVy+fJkOHToQEBCAyWxBJpNSXlFNVZXxV+fFYDDg6+uLWiUAJi7HJ7Ju3XoSExPJzc3j5bmTee4pXySq3iAPITu7gMuXL9O+fXuCgoKxWAQkErHCxJlLKXzytVihpWeX5ix4cTgu9RQhgiBQWVlJ9IU0vt4QQ3hrX2Y80ZOQQHfUKlHPSn0tekMNbi52GAwG7O3tf5Vjc+xTK2nZ3JOZU/vSPNAdELBYLKSmphIa2pKikkrKK6oJbe4JSMTvxeWNyWRGJpOSl5fL+vXrWb16NW17vMaLzw7g0aHhSOsrglRUVvPV2miOn0pk5rQ+jB4RgZ36Hm+oVCol5nwydmoF4W38EAQQBAsymYwSnR4HrRptfWWbyspK9vx4gw1bzgLw2kvDGDVcpPPJytGxadt5qqpq+Z+/j2rUhtkiUFdn4k5aIRt3XeDSlXSmjO3CuBGRuLlo6ku13fO91NXVkV+kJ8D3wWpI+UUVuDjZY6iqxd5OaR33+1FaXoVzPc2KIAiYLQJpmcV8u+kUO9bMw8XFhQULFjBx4mTU6gflM7NK2LTtPMeib/HUk714amqvB84xmSzU1Biprr7H0yqTSdFolMhkMqRSuHjxIp6envgHBIqUUjvPW+uLN6B7p2DrWi7Iz7NWu/lXo/nyz3/7pD+Au/MejhXgPxWyxYsXL/53d+K/BXv37sXX1/d304/8VQgODmbcuHHWH/k33niDY8eOMXjw4N91nVGjRtGmTRvkcrG0UJcuXRg3blyjQuz/Tnz++ee4enfHTq1gw8oZeHs5sXNvLAcOXaNLp2AG9GlFYnIeOp2BzRsWo9FoWL16NWfjymnd0getRkmXjsEcO3mbj5cfpqq6jicndsdiEXhs2kountnGsGHDOHLkCBt33yS/oIJe3VowuG9rBvdtzc/RCez56QrDB7TFTq3EaDQhkQjWHy1XB3taB3hx4loKK+eMJ9DLhWNX73AhMZPIEF/2nL3B8n+8ip+fH1u3bqXO4oSbqxaFXGTQb9nck4KiCupMZp6a1JMjJ2/x9fpoxgzvgIuLC2fOnGFr1C26RgbRo3MImdk69v98DR9vJ0xmywMy9vb2XLhwgT2Hk2kb1gylQkaxTk96VgkvLdpOTW0dE8d0pqhEj1wupbxMh5OTE6mpqUhlavKLKvBwc0Ahl1JUoqe0vMrazonTiQT6OmJvb4/FYsFiEagzmVEp5Zw4k0h4G39uJ+eCRKz7+3N0QiNd7ty5g5OTM3UmM0qFnMvXM3F2sufYqdvkFVYwcXRnbt/J44PlBxkzvANOTk7k5uZy+mI6zQM9cHXWcDs5j+ISPZ+98zh5BeV4ezpx7NRt/Jq5WHXJysoCiZKCogp8vJzpFBEAAjw9uVcjmeaBHtipxZJjKWlF2NkpUKsUXIpPI7J9AJevZyCXS626fP7NUcxVqUyePJn4+HhSM2vIziujeYA7NbUm1mw+3eS8jBzUFm9vb1JTU3F3E3n4FHILWWknGD3cm/hrmQzsF0bbjq9B3TWEspf44aCKyZMnU1VVRY0RzsWmEtrck283nuLO3UIys3WEtfBi+XuTkEmlVNfUkZ2dibOzs2hkuznSMtiLq7eyaOblREigB99sOkVqeiGdIgLRatR8881K+vbti0QiIT2rhFqjCXs7JZ9/exQ3Fw05eaUkJOWy7N2JlOj02KmVbN68iYiICFxcXJBIJGjsVeQXVxB16CrlldU0D/SgqLgSB62a8spqlEo5a9es4dVXX6W0tJSxYx7lkSHhyGRSJBIJG7acpVNEIP16hhES7EHv7qHk5pdxOuYodnZ22NnZYTILhAR5UFZexcnzybQLa0aN0URaRhEhQR4olXI+//xzjh07Rv/+/UnP0nExLo1xj3bkb0/0IDevjKxsHUejbzF/zhAG9W+DTC4lKioKR0dHHBxEfk6pTEpCYi4zn+yDk4OaJ8Z05oeDV+jQTjR0ZFIpZ8+excfHh9TUVIICfLl1J4+Zr29m+75YDFW1tA1rxlcbojEaTbQM8UIhl1FSUsyJEyfw8fHhrU8OMKh3K6qqjZyNTSHQ142aWhN30gq4mpDNS88O5FRMDOvXr0cul1NcCpWV1Rw6coP2bf3YsPks678/TWlZFfPmDCExOQ8fbyfatPIhISGBTZs2ER7eEblchiBYUKsVCIKAySSS9stkknqC8zoKCvJo06YNK1asYMMPaVRXG5k/ewiJd/LJySsDxCouy96dyJGTt/j8m6Ncu7TPWn/9X40vLpz/U677cvcef8p1/yrYkjtssEKtVv+u2ru/BldX1z9UUeOfwWg0/kuvBzC4fxscHew4eSaJb9ad5PDxBD749CekUgnTJ/dkcP82uLi40Lt3bz799FMOHL7Opyt+xsPdkaoqI2azhcxsHTv3xpKUko9UKkFXauDJJ58kKiqKp59+mphzd1i16RQx55IRECgtq2LVplP07RHK7eQ8Ll/LwN5OSVRUFDExMUilUpbsjGZ4pzCmDexIa39PJi7ZzLtbj3HudjoAzlo7nJ2dOXDgAH//+995ZfEu3v54PxKJhGZezry/7CCV+hqaB7iTmJLPqk2nCAvxxt7enrt37xIUFMTh6ATeX3YQiUSCu6uGIydvYTDU/qqMr68vPxyI573Pf0IikeDh5sCOqFgKiipoGeJFSakBFyd7tPYqiouLSUlJQalUsuTLwwQHuHMxPg1dWRW+3s6N2snM0eHo6MiBAwcoLCyk1mji7Y9/FEtrBbizdstpOkUE4qi1o6yiqkldDh6/aZXR2iv5ftd5hg9si5uLhkp9DWaz0EjGbDaz9KufuXozC4lEwlOTejD/ucHcuJ2DXC4aUZk5uka6AHz4xSGC6nUpq6jm8dGdHpDR2Ks4cOAAq1evxkGr4p1PD9TPixP7Dl/Dz8cFB63aqktGto6IiAhSUlIIDQ3l/eUHWfzJj+QXVqCQS391XtRqNT///DOtWrVCKJ2BULEQT+8wXnk2m5G9o1EqzHTo0B2ECsAM5lQiIiLIycnB19eXBe/+wJIvDxFz/g4DeoVx+sIdACaP6wpIOHkuGaVCxiOPPMKaNWuQy+VcS8hhUJ9W6Eqr6BQeyI79cez88TIe7o6UlBowGk1MmTKFffv2sWbNGrw9ncjOKyPm/B1GDGpPWAtvfjgQz8TRnUm+W0BwoAffboxh8eLFFBYWUlVVhdkiIJVKeP29H9iyN5aINn5En03C29OJsvIqSkoNpKYXExQUxIYNG3jhhRfo2yMUQRCIry9BdvDYDc7H3UVXqqdX1xas2XSKWfO/Z+7cufTt25fKykorOXFSagFD+rZmx/44PvziEO1b+2GxCKSkFeLv78+qVatYt24dPbuGoFLJee7pfty8ncP1hGxqauvYuTeWEp0eiQSWfXWUuXPn0q1bN1avXg1ARWU1xaUGMrJLeGRQe3b+eJkAX1cKiypQyGUUFleSm5vLunXr0Gg0mM0WXJ3EGre6sirGDItg5/44Tl0Q5+mLtSfQlVWhVqt54YUXqKmp4bXnhiBBwtS564lsF8D2fbG8u+wnwlv7EXX4GqnpxSxduhQ7OzumT59OaamBqiojHTsEciLmNpu2nuNGQg4798Ry+lwyUx7vRvMgD6RSKY8//jjLly+npsaEXl+DQiHHaDQ1Iv02mSwYDLXU1ppwcXEhMzOTNWvWkJmjY8c+se9Txne1nj9xdGfrWs7I1rFz585/+bPdCuFP+vd/HDbD7y+G0WjkrbfeIjIykoEDB3Lo0CFqa2vp3LkzMTExjc597733eOGFFwBYsWIF06ZNY/Xq1XTv3p0uXbqwfHnj2IjMzEyeeeYZwsPD6dmzJ59//nmjUmoDBw5k3bp1zJw5k/DwcEaMnnih+QAAIABJREFUGEFcXJz1+z179lhL9KxYsYK9e/eyd+9ewsLCCAsLa9SP+/HGG2/wxhtvNGpnz549AAwaNMj6f1hYGCtWiKSoq1atYvjw4URERDB06FA2bdrU6JrTpk3jk08+YeHChURGRvLll1/+5hj9XoS3E+v8nr+Yaj0WG5+OxSLQMtSb9m19iY+Pp7LyXg3OK9czxaoFEiivqLIev5tehEQiYdu6WXTq1Il27do18pReik9DJpWSnlUMQPvWvlyMT8PdVYtEImHFihUkJiYikUhIySvGbLEwonMrbmYU8OSASA69+wxLnhoBQGRIMwCOHTtmvX7ctXQEQdy6S0jKBcQi6Rfj00Rd24i6Hj58mICAADzctMRerde1hbe1QsfDyIjVKgTOxorjFtkuALlMSlW1kVvJebRr144jR44QEBBAelYxZrP4w9DM25krNzIbtdPQxrFjx6iqqkJjryI9q9jaL2OdCTu1Eq1GRVFJ5QP9UqlUyKSSRro0yHRo609VtZHyiuomdSnW6REEgVahPrRq4c2KddH4+bhgEQTat/b9VV2KdZW4uWhRKOSNZO7X5eTJk/h4OTfSRaNRUV5Zjdb+ni5yuZSIiAhrGx71lR2KS/Ro7FVNzkv71uK6lEpFDxeqYUgcFonz7/Q5SH0A8PHtCBY9WEoBBREREeh0Yp3o/j1bsvXbZ+kUHkB4Wz+8PURvfIe2fkilYmWIhKRccYs3OhqZTIaXhwNms4U+3Vrg4ebAxSvp9fPvj1wm5W5GEW5ubpw8eZKTJ09ib6ekTUtvunQIonWoN0ajiazcUtq39iU9swSVUs7F+DTmzZuHTqfD2dmZujoTFkHAUGXEx9MJDzcHon6+hiAIKJVyrtzM4uKVNLp06cLJkycJCAjA3k6JQiEjM1ssRxgU4Eb71r6kZhQhlUqIre8ngMVi4fTp0yjkMsxmC7VGk6hLfBqX6td2eWU11TV1jB8/nnPnzhEaGoqPtzMLXxmJUinnx4P3ypABaOxVSCQSYq+kWY+JYyZFY6+ivKIKB40KezslF6+k076VLzK5OHe6MgPjx49n/PjxBAQEUFZRjZeHI1Hrn2f36ll4uDmQkaOjVQtvcbyupJGTX4pGo+HSpUtotVo83Rwoq6jirZdH4uHmwMDerQgN8sBsttC+dTMuXkkjNDSUS5cusXjxYvr3bUVkRABtWzejc8cg3lk0hqAAMfzhUlwabVo1w9PTUaxnHB1NXFwcTk521nAKhUJGXZ2ZpqDVasnLy2t07FJ8Gm3CmlnXcsOz76+ArVZv07AZfn8xtm3bRmhoKFFRUYwePZqFCxdiMBgYOXIk+/fvt55nMpk4ePAgY8aMsR67efMmN2/eZPPmzbz33nts2rSJffv2AeID7fnnn0elUrF7926WLFnC7t272bBhQ6P2V61axeDBg9m7dy89e/bkhRdeQK/XP9DPp59+mhEjRjBixAjOnDnDmTNn/pC+u3btsv5/5swZnn76aQCUSiXvv/8+Bw4cYP78+SxbtuwBo27r1q2EhISwb98+Jk+e/FBj9HvgWV8ztqT0XtC72WyhqtqIQi7D08ORwsLCRjJajbq+zrCMI8cTrMczMkoA+Gb9SdF4S0lh48aNPDKkPQAd2vkhkUi4mSjyVbm5aJEAAX6ih9XJyclqYLpq7Sk31ODhpCEypBmt/b1YsP4nNh67DEDnUD+kUmmjvk19rDuCIJYYc9CK3la1So6uXjexPq6U9PR0a/v36/qwMtJ6T4lEImH7qlkc2z0fdzctGVklFOv0VBpqUCgUVpkli8YhlUoY3K81UqmEL9aeaNROQxuFhYWcPSvGUHUKD7T2a9KYLoBoINXWmprsV/9eYbQO9XlAxtnJDndXB/b/fLVJXQRBjCeUyaR8/u1RjEaTNa7LzUX7gC7OjvZU6mvwb+aKVCph087zjWQaahAXFhZa58bZ0d7ar8F9WrHnpyvI5TKrLk6Odo3acHMRDb9aYx1SadNz6eaipbCwEBcXF3Eu7B5BqFgEQiVIXZC4bgIk2Gs9QeaFULUdpC4oFAprHOmA3q34+Kuf2bz7AjKplOUfTEKpkOHoYF+/zlXW+6JBFw9XLZX6Gny9xZjMd159lOM75+HuqiU9u4QzcalIJI3137DtHOu2nLYaOd98/CTurloxJrV+/U+bNo133nkHEGPvGvIw3VzEpJVP//EYEomE8opqVm6MQVdmwMvLy1oPfMsPF5BIJIx7JBKAjxc/zt6frnA3TXzJ+qWRUlhYiFQqEUv+3RaJ5nVlBsxm8SXZycEOR60ak8nEggUL6uN7oU2YzwPPCwC1nRgvV2c0N2oDxHXroFWjqV8jujIDbi4a7NXiPNipFJhMJj7++GMANPZKinV65i/exbZ9sQC8/vwQWod6W+XvZhZTV1fHtGnTiImJQSKR4OJkb43b23voKpPGdKbOZMbNRYuuzIBCoeCRRx7B3t6e77ed54f98eJcFVdib6/k2y/+RnCgO7pSA0qlHIkELl++zLRp03jttddQKGQ4O4trw2SyNIrxa4BUKm75VldXNzpeUmpApZRb17Kbi9a6lm3498Bm+P3F6Ny5M9OnTycwMJAXX3wRQRC4efMmY8eO5fjx4xgM4g1x5swZTCYTAwYMsMoKgsAHH3xAixYtGD58ONOmTWPLli0AnD17lpycHD766CNatmxJv379mDt37gOGX9++fZk0aRIhISG8+eabaDQafvzxxwf6qdFoUKvVqNVqPDw88PDw+EP6Nmwdu7q64uHhgUYjPsxnzJhB586d8ff3Z8SIEYwbN47Dhw83ku3QoQPPPvssAQEB+Pr6Wseo4cEikUg4fvy41av4sEhOTmbqxO6NjoW39ePQD/M49MM8NPYP1lltwPBBbQG4fCWDopJ7BnNGtmj4ZdV7HTZt2sTu3buZMr4rY0d0YEBvMdttymPdOLzjZeRyKZPGdaGgqAK4V/sU7u0kSCUSpBKIDPFl1dzHeHGUGGytUasa9SmijR9jR3awenfbtPQhvI1oaL48axBTJzwYUyr8Yr/iYWX692pp/dtBq7J6AVqFetOs3iC4H6s3naZSX0PctXQAdqyeZW2nW6fgRudu3rwZgFefH2KdgwbvJUDbVs2a7Nflaxl88f6kB2TE7TyBrh2DH5AREMTxrfdCfPL2BA5vf1k0CB44+56MTCYlvI1IAD59Uo+Hk6lvY+veS5yLTf2VM++dfz/+2bxYE04qvwTjJcCEUL0PZH4gcQSkCNVRYLpllWnY4tyw/SxXb2aRniWuVx9PJ37a+hIy2a/TXzT0rGGtvrvsIM+8+j1ms4WQQA86tg94QOZqQhae9d7Etz/eT7FO36j+82eLH8fJyck69005UxZ9tE+MfXXR8NTEHtY+LFq0CAAPVzGe7vBxsd7tyvXRTBzbmZBgdwBat/Th0M6XSU5OJjk52RpPll9UQVl59S+bAwn8dOImZrOZM2fOsHHjRgCOnrz14Lm/goaX0eoqI+NHRrJmS+MX54YyuIdOJmA2m4mPjwfEF0uTyUxaZjFJKWKd29KyKrp2CAKgfStfHh3cHqVSyb59+/DyEusQm80WqzF5Li6V73+4iEopb/RcKS0t5dVXX2XLjgts33UJgJYhXuzdH49SKWfNV9N5Z9FYACoqasjJyeH27dvExMSg0xkwmUTDVi6XNZkc8pv4d3jKbFu9TcJm+P3FaNgyBZDL5bi6uqLT6ejYsSNeXl4cPXoUgP379zNixIhGxd6Dg4OtQcMA4eHhpKWJLvO7d+8SHBzcKIEiMjKSoqKiRh698PBw62eZTEbbtm2t1/grERMTw5QpU+jZsyeRkZHs3LmT/Pz8Rue0bt260d+/HKOlS5eyevVq5PLfx0o0dOhQ9h28SmFRBRaLgJuLhsQ7+Tz74nfMenkTggB1JjOFRRV4enpa5SaN78K0yT0QBIHCospG13R11lBrNJGTV0pdXR2enp7ExcXRzNuZ52f044cDVxAEgX2HrvHMvI3oygxo7FX4eInG0o8//shrr4k0LptefQJnrR2lhmqKyg1MWvI9k5Zs5t2tR6ztWSwWa986hgfg7GiPTCYmh3zw5jhkMvHWlsmknLmYQkFRBRaLhcDAQAB0pQZkMin2dkrqTGau3MwiMSWfmto6og5dZd/ha03KjB4mZi7Xmcw8M28jM176jmKdnktX0/DxdMLJwY66ujqrTFpWMRp7FXn55dTVmZHLpKRlFlNTW0dGts7ahqenJ87O4lhMnbNOzIY1mTl1PgkQvQwZWSVN9uvLtScYMfkLq0xZqbjeDdVG9hy88qu6qNVyJBJJ/faV3JphKZVK6RQRSIsgz0a6+Ho7o9WorEk4v5QRs0MFPD09rS9Kvt7OqNUKzBYL67eerdfFjEolypVXVDdqo8ETolLKsViEJuelpFSPp6en9SWRuquAHCROYM4EwQASLVWGEjDXV0SwiOuy4eXgVr1x7OpsT63RRHllNTuiYq3hC3pDrdXj1qBLcX22a25BOQBmi4X0rBKKSvTEXcugY7uAB/TXlRro3bUFFouFpNQCklLyqTNZrMafRCJBLpdbn3P2agVSqZTo3a/QqoVo1NQaRe/o3Yxi/jahO55uDhQWFtKpUycARo/ogCAIDB3QBoDnZvQnJ6+Utq1EAz0ju4RnX97I0KFDWb9+Pf7+/uK2OFi9d67OGus9YzSa0NgprV67hko/kyd0QxAEPn5vAsMGtaNjRCDHf3wNY33/FEox7m327Nk899xzANjZKXnjw72ci71rbaek1GDVyd1V9N7e/2JdXSt60xr6lpNXhr29+LJXVFLJj0dvkJ2dzdChQ8nOzhaz601mnJ3srG1k5Ihb+oZqI67OGkwmE2lpaZjN5vp1JyZYgZgNfDE2lVtJuXy35SxGo6nRs68hW77Bc2o0mtBoHnw5FjPqLQ8wADSssUpDTb1eelxdHo6CyIY/BzbD7y/GL40UkYpCvAHHjBnD/v37MRgMnDhx4oEtzIa39abwsKw8/+waDyv/y7YatlweFllZWcyZM4cePXqwatUq9u7dy/jx4zGZTI3Oa4pCZMyYMURFRWEwGNi5cyd9+vT53Tqkp6dTqa/h+k1xm6d71xCMRhM5eWU083ZGKpWQfCefGwk5dOzYEa1Wy2uvvcZTU3qxces5JBIJrq6NH1xdOwdzKzEXo9HMtWvX6NevH1OmTEEikbDgnR/w8nCgtLyKVqHe5OSVcfVGFndSC7iZmIMgCIwdO5a4uDgEQWDprmikEgkXEzNxc9Sg01eTVVxOYXnj7ZEGT+feQ1dZtuoYEomE6hojz8zbyO07eRQWV3I3vYisHB3Xb4m6Dh8+nKysLIpK9HTpECjqmpJPTU0dRqMJXamB1qE+4vj8QsbeXkVEW9H7lJyST1ZuKTn5ZVy9mUWQnztSqYRWoT7cuHGDoUOHkpWVRZC/GzKZFDdXLWmZ4tabyWRBV2qgQ1t/axuDBg2if//+5BWUE+ArbqUmpeTTr0crcvPLqDTU4Oxk32S/ikr0dAwPQCqVUFBcyYQxXdCVGbgQl/qruhSV6K3bb6npRTwzbyPPzNtIanoRgiCwccc53Fy1Vl2Kiop4c95IJBIJV+uNsaZkBOGeLroyg1UmMTnPur2pr6rFw83BOhbXrl2zjleDF9ndzQFDVW2T83LjtrgurXQ5EjtQ9kIikYEsCCQOIOjJy74oUrkAUMe1a9esHnhVPR1I147BJKfm46BRk5RaQPyNLCwWgVqjibZhzdBqtfTv3x+z2UxBUQUymZTTF1MoKqmka2QQADcSc2gR7CEmN+l09OvXzzqX9vYq/H1drZ7FkCAPiksqCfR3w2g0sX7bWYYOHcquXbvIz8+nzmRGEAReWLiNQ9EJFJVUMmZYBBKJBGcnO2QyKV06BBEbG8v27dspKChAECC/sILbyeKL4+v/2MXlqxnIZFIsFoGItv7k5JUxYcIEZsyYQUVFBcY6M57uDpRXVlt16dIhEIlEgkqpoEen5sTGilutDQbQO0v2k3K3kEtxaZy9mMLtpFyeffE7KvW1CIJA5w5BvPbaa7zyyiukp4vxgj/H3OLy9UzyCsut7dxIzLF6yvt0bUFsbCz9+/e3vvgmJIkxcg0yIcEeZNRnSEe286d1qDfnz58nIyODrl27UqGvQa1SUFBUYW2jV+cQAOKuZtA1MoicnByCgoKsa8ZkspCbWwpATm4pPj7OZGWX0rKFF7cSc7lx696zrwEKhfy+36umf0f0ej0+Pj6NjnXtGMytpFzr+r9xO4eukQ964f8U2Dx+TcJG4PwfhLFjx/L111+zZcsW3N3drW+0DUhLS0Ov11tvxhs3bljjT5o3b05aWhoVFRVWr9+VK1fw8PBodPNev37d+tlisXDr1i169XqQrwlEI7W2trbRMVdXV4qKihodS05Opm3btk1e4x43270kk4SEBDQaTSM+w4et1fhbY/QwGD58OCl5cOzkLZ6d3of+fcLIL+hHWkYxc2cPxGIR2LjtHNdvZjN1YgQ3b95EEAQ2bb/AuEc7cisxl55dQ5gyoSs3b+fy7qIxODnas2HLWXx9nImKiuK9994D4MSZJCLbB9CvR0s2bDvLU0/05NmpvYk5l8zbr49CEMBQZWTp0qW0bNkSi8XCggn9OXk9lXVHYnmka2uWzxpNoKcL1+6KXpo7uUV4apQ8+uijZGVloXIO54mxXREEgaISPTKZ1Bq35+6qYcaUXsScS6aqqoqQkBBOnTrFsAFtmPuMqOuRmNu0CPbEQavGzUWLt6cTr74wlP2HrzaSmfv0ACv324X4NPx8nHF2sqdLhyCcHO3IztVhZ6fE3d0df39/kpKSeGPuCNIyi+nWKZiyMgPZuaUEB7qTnaujdUsfMnJ0VFRUMGrUKMxmMwlJefzj1UexWATKK2sY2DuM9dvOMOOJXshkMhbMGcaF+LvWfl26dInXXhjKwN5hCIKAj6cTgiDw3fazTJ3QHTcXDXNm9OdIzC2rzOXLl/nbxO5EtBU9Pz8euY5MJqWsvAr3+uQKlUqO3lBj1cVisVBTayK7Pjnhg+UHQQLvLhhNSlohIUEeqFRyDFW1Vl0kEikmkxmLRSDq0FU6hQeg1apx0Kisupy6eIerV6/yzDPPcODAAXp3a0F4Gz+8PR3JLyxnQO8wXJzsKSiqILytv3Veampq6NWrF2VlZTg5fwlSZ+pq7nAnayBYzuPkaI+nd0dQeFMh/B1H+S6uXr1Kp06dMBgM/OOVR7makEW/Hi0xmS3kF5Zz8fJdioor6d+zJf16tqS2zsxPP/1EUFAQJpOJiDZ+HD+dSN/uoZy/fJdJozszanA4t5Jz8fNxQRAEtm7dygsvvFDv4Svk7VceQRAEEu/k8tOWucjlMj756jBvvDSC5LuFTHi0I6bKJxg7diwJCQm4uLpjsQi8OXc4ew9dJf5GJkP7taGgqBwfTycqKqsJDnDD3XkQDg4O/OMf/+Dxyc8T6OdK65ZiHFyXjkGMe6QjSoWcs5dSmPm3PvTo0pzOHfy5ffs2oaGhVFfXoVbL+fTtCZyPu8sTY7owamgEt5LzaB3qTcsQL6J+SOP69etipmq2jpizyZgtFt59cywmk5m7GUV06RiEq4sGQYD5c4ZgsQwkIyODsLAw6kwWDkffxM/HmfDWvsjlMiaO6sTmPRcZ2CsMQRDjQp2dnRk7dmy9R1bg/OVURg8JZ9qEblQaagn2dyMrV8eJs0m89MxAFHIZB/dlsmrVKjQaDUnphXRqF4CfjwvnL99l8tguyKRSsnJLGT0snBZBHvzPW4tYsmQJW7ZswVDjQnJKAQ4OagRB4LMPJ9HM25lLcWkMH9yOhYt/oHvn5hgMBo4ePcqePXtwclIjl4vrWa1WUlMjxqA6OdlhMBit8ZElJYUEBgayaNEi0oo9CfR1o2+Plix8f4/1+btr/2VWLp3Cs1N7cyT6FpFBE373M/xh8f9DIsafARuB81+Ipgicf0l2PH36dC5fvsysWbN46aWXrOetWLGC9evXW2P3UlNTWbhwIf/zP//D2LFjsVgsPProowQFBTFv3jzy8vJYuHAhM2bMYObMmda29Ho9r7/+Op06dWLr1q3s27eP6OhotFrtAwTOK1eu5NChQ3z77bfY2dnh6upKcnIyo0eP5p133qFbt27s2bOHzZs3M3ToUD766KMHdDKZTHTs2JE333yToUOHYmdnR1paGuPHj2fJkiV07NiRQ4cOiUSsbdvy/fff/+pYNeDXxuhhMX/+fOKTxLdSf19X3ls0hsD7CJxXro3m4BGRwNlTE2tNUPklDIZalEo5CoWM1LRC7O2UuLpoqKrSWwPvf4m4q+k4O9kT4OeKoZ7A2dHRDovZhFwuRyYTSZrHvbeRtAIdYX4efPPCeFwd7R+4Vl5eHl5eXo2Ikn+JHfvi6BQeQICfK7qSYqRSKe7u7iKBc1Utm3dd4Pmn+j8gV1dnRkB4QMZYZ+Z8bApBAe541cdu2amVXL+VjcZehb+vCxazCaVSafUuCwKUVVTh6vzg9k5dnRlBMFu3/BpgrDNz524B7eq36+6HIAgUFBQ06ldDO/fHjzWgutqITC616nL/9v39mDhzFTvXzMZisXA3o5gAP1csZhMqlapJT3lhUQWeHo78eOQaIwe1Jy1TlJEgIJfLH8q7LggCOTk5xMXFER4eTvPmzf/p+ffPSwOBs0olbjHGxsYzbdrfAHF78sSJE2zYsIGBA/sTEOBLTk4hcXFxdOzYET8///rrmVCpFDy/YIs1NrJnlxD+/uIwnO8jcNbr9USfT+OrDSd57JFIhvdvi6+3MwqFyB1Zoa+hqsqIq7Mag8GAIAi4uLgikdTLV9XiqLXj7+/u5vzlNLp3as6saX0IDhAJnAVB4MqVK+TqlHSLDKLOZMHX2xmJBKt3TCKRiOTWUglyuYyoqCjmzJlDp/4LmTmtD0MHtEGlEjnmKvU1rFx/kiPRt5g5rQ+TH+v6y6G0wmKxYDSasQgCcrmUsvJqnBzU9UkOEtLT03lxwX4q9eJW5esvDePRegLn7NxSNm07h6HKyJK3f5uwfvPuCwzp16beWBRQyO/RopSUlFBYWoeXuyNODnbI5VJir6aTnl1C326huDjbozfU4qARjTBBEKioqCAlo5zM3BKG92+HnVphJQ0HyMjW8e2mU5w5+AkXL14kMzMTPz+RsBoJVFUZkcukKBQycvPL+X7rOY5G3+J//j6K9m3cGt1f0EDgXGc1/NzctOj1NWi1D9J3CYJAVm4pG3ec52hM4/jIhvkP8HOlsCAfPz+/3xy7P4IWn/w5BM4pr//fJnC2GX5/IR7G8NuzZw8LFy7kyJEj1rgfEA2/S5cu0bNnT7777jvMZjNTpkxh/vz51hszPT2dd955h8uXL6PRaBg/fjyvvPIKMpnM2taUKVM4f/48ly5dwtfX12rANbR9v+FXWFjIK6+8wo0bN6ipqSEpSYy3+u6771i7di01NTU88cQTFBWJVCZNGX4AW7Zs4ZtvvqG4uJg5c+Ywd+5cVq1axXfffUdtbS3Dhw/H1dWVa9euPZTh92tj9LC4v3LHb8FWss1Wsu2PythKttlKtj0MbCXblj/0js/vRYuPl/32SX8AKQsebp7+U2Hb6v0L0WDU3I9flkcrKSkhMjLyVw2a559/nueff77J7xpITf8ZXF1dWbduXZPfNfBJNcDT09OabXc/nnrqKZ566qlfbeOXOj355JM8+eSTjY7Nnj2b2bNn/+o1mhqrBvzWGNlggw022GCDDU3D5vH7D0F1dTUZGRk899xzzJs3j7Fjxzb6vsHj988Mot/Cf3oN3d/Cb43Rw6IhS88GG2ywwYZ/P/40j9/SP8nj9/f/2x4/W1bvfwjWrl3LhAkTiIiIYNSoUf/u7vxHwjZGNthggw02PCxslTuahs3jZ8N/HWwePxtssMGG/xz8WR6/0I/+HI/fnTf+b3v8bDF+NvzXYcuWLXTv3ovamjriY+/i5GxPm/b+1NbUcTr6Nqu/PEpNjchNmJD5LcOHD+fJJ5+kQ0RXXN20pKUU4BfoZs2mzcvRsXndaU4cuWmVsbOzY968eTw2/knc3B1AuEfwqtfX8u3Xxzh65AYTJnZjxMgI/Pxdm8wCbXgv0xtq+XpNNIeOitnGkqqDHDlyBIVCgV5fCxKR6NXJ0Q4vD0drhvLXa6I5ceo20yf3pG8PX3x8fLBYLAhCPdWIIGCnVljbzs0rZeOWcxyLrs/CqznEzz//jFKpRG+oRaWUARJrkXa9oZav10ZTXFLJjCm98G3mgp1ahtlsxmQy4ejoyK69cXSKDCTovszp0lI9Af7uTeprMNSSk1eG4y90+acyVUaEX+iSk1/K9zsu4OaiZeSQ9ni621NaKhIZ+/j4olDIqKmpo7raiEajIj+/nM3fn0WukDJ0SHuah3ii1aqazJpOTM1n6ZqjJKUVIpNKeOLRzkwd0wUHjVpMLxZniWKdnl374+jSIYjwtn7U1pooLqnE1VWLk4OdqJteT2FhIc2aNaPWKBBzNpmVa6N5Zc4QBvZthVwuw2IRuHk7h7eX7KO0rIqUq1+wcuVKhg0bhkqlqh8HMFTVcvJcEp98LZJ9jx4Wwey/9bWWlbty5QqjRo2yJoTEJrQn9lY3ho8YR0BAIDU1VTioEhBKZwF1+HcysGzZMiZOnNjkuJfrq3HQqJEgEmZH7dnFO++8w6hRo1i2rOkf3b0/xpOUnM+USd3x9nIkMyOd5cuXo9fr+fzLlbg4iPyddSYzRpMZuUxGXkk5UadvcjwumbmP9SEy2BUHBwfS0tLw9Q/GsT6rNLewgqXfHmHU4Hb07RKKUiFDEKC61ohEMKPX64mLi8Nk70/PDsFo7dUkpRUQEfbbL4OCIJBfVEHc1XRahfoQ6OdKXZ1I16NUyCguNbBj63qWLVtGx44dWbNhCx73ERXrq2rIIYJMAAAgAElEQVQ5eiGJL7ecJMDbla8XPS6ul/vQcE9WVRsRBHByUAOS+uxoxGzlddHEnl7L7Nmzadu2LX5+fhiqjchkEnILy5HJpPi4O1JVU4ezw4NcqACFJZWMn7kKAKVCxpfvTqJViBcymRSz2cLtlHwWvjabK1euAJCYmIpKJTIYiFx+ArW1deKz5z7cn9zRkEQyfHA761zn55ezadv5e88XYFDPxtf4l8Lm1moSssWLFy/+d3fCBhseBnv27GHOnDlMnz79f3Wd1NRUPn//BFdj03hq9gDUKgUL5n7PpbN3eGxKd0LDfDgdfRuAovI4IiIiqKmp4UJMCX0GtKa2pg6tgx0/RcXj4emAXl/LI+M6kXwrl9zsUorK41i2bBn9+vVj1crTdO/ZAjs7JYJFYPeOi4SGetNvQBv8/V0ZPLQ9K1cc5eNPXyMhIYGePXuyYfM5WrbwQqmUc+NWNhu+P0OXTsEM6NOKxOQ8ikv0fL18PjKZDLVazZzXtnL42E2mTuyGk6Mdx2Nus3NPrFWmV7cWeHs58dai1/H19WXfvn1cuVlN6zDRCLS3V3Hm3B20WjV6Qy2jR3YgMTmf4pJKvv7iFXJzc/Hy8mLu37cyqF8b7OyUmExmTpxKxLeZCwP6tOLO3UIuX81g+w+XOBO9BalUSmBgIBZBQlioN+5uWnbuieXA4Wt06RSMu7sj7398gC9WHmPJe7No3749jo6OxF3JYunnh3iyXpcT9+nyazLx17NxcbLHYhGwt1dy+kIKWq0Kg6GW0cM70DrMmy9WHeftRTPx9fWlR48epKUVoVTKUauVKJUytm45x+1bubz08jC0GhWxcWm0btWMkpJCJBIJSqUSAUhIyeOdFQfxcndk1qTeHIxJYNqYrkwYEcnRs0ncTM6lbagPJpOJm4l5BAW40TUymEp9DYs+jKKZtxPt2/qhVinY//NVTp5JomfXljg7O/PNN98QdTiHSeO7MHJoezpGBBJzNpkVq45TXWOkf+8wOoYH8uPha3SJcGbBggUi6bFZxuVrGQT6uyGXy4g5f4cbt3MIa+HFBwvHkpZZzO6f4vFxl9OiRQuKi4sZ1F1c3wVlkYx67B3KCo/w8ry38HIrIzhsIhJlJNREsWx1HefOnWPt2rXsS4Ath+LYciiO4T1bo1LIMJrMJKUXkppdTDMPZ5r5eNO7d2+efvpp9v10lZVrTpJ6t5DI8AAOHrlOWKg3Z87d4cXZA9my4wLfrIkmJ/McH374IWPHjkUqlfDZ9mjK9NW0CvBCQGD2x7tILyhl3uP9GNWrLZXVtbz83NOcP3+eGTNmoFLK+WbLaa7cyqZv1xYM79eGQF83ku4W8P3ei7QI8sDZ0Z74+HjmzZvHzJkz6dSuBUvXH2PDvosE+7rh7eHI19tP0bV9IGt/OI+Lox0ujvZYLBYsFgt7D11lxfpoqqqNTBrdmZS0IpJTC2jm44ydWsl3O89x4nQiLz//OFqtlqVLl6JWKaiqqSO3sBwHe5G70cNFQ1iQF3G3MukVGUJCah6znppMZmYmvXv3Jr+wgo3bztG3Ryiq+pq52bllODrY8f2O8wQFuDNsUFuuXbuG0WhEJpMRGBhE9KVkvv8xlvGDOmCvVvLSR7tQKuSEBXmSU1jGmVPRPPfcc2J99zPV7Dl0lZr6etEvPTOQ3p1D2H0wnq1Rl7C3U9KhjT/jx49j//79lJeXM3fuy6hUCiwWC1KpFL2+FrVagVwus1YuAfj226+sn928utO7RwsWLXjUOtdV1XXMmzOExOQ8cnLLAJj2RHcrH+2/GivOXPhTrvtSnx5/ynX/Kthi/Gz4r8OcOXO4e6cAd08HLBYLbh4OVOlruXo5na8+PUT/IW3x9rlXd/aHH37gs88+w76+FqzFIhBz/BZffXqI5R/9RIuW3ly+mMrEaT0BUKlUjBo1iqVLl+LmpkWjUXPqZCIXzqcQ1tqXjz7Yj1QqoVefMHbvuMjZ08lcv36dTZs2sXXrViY+1gWtViRXXbzkRw4fT+CDT39CKpUwfXJP5r8whNjYWD744AMEQSDlbiGtW/qgUMgxGGrRlRoayQQFurPgH7uJiYnh8ccf5+OPP6ampg6tRkV+QQUGQy15BeV89uVhQkO8iL2cxpSJ3Zg3ZyixsbF8//33CIJAWAsftBo1J88kcSH2LmqVgg8+E9sY0DuME6cSScsoZteuXcyaNYsdO3agkMtRqeScPJ3Et+tO8vOxBD785CekEgmPje6IrtRAUVERK1aswNnZmc07LtAq7J4uJTrDb8qkZZSIuhSWYzDUkl9QzqdfHSG0uRd1dSYqKms4feEOmZmZyOVyCgsL0WpVKJVy0tIK+eGHWIYOC2fXrkucOZOERCpBX1mDvUZJVFQUOp0Oi8VCTn4Z7UKbkV9cwfsrD1NnMjNuSAQj+rVl+4HLLNtwgrYtfNi3bx+bNm3Cy8OROqMZQQBjnYmUtEK8PZ0oKRHr1W7bE4u+qhaLxUJGRgbjxo3jyvVMln9zlEB/N/SGWt5Z+iPx1zP54tvjpNwtJKS5yEH4wgsvcPbsWXx8fHjlHzv/H3vvHV1F1f3/v27NTe+9h0ASSAIJIUCUDgFEUEBUVPRRsYAoiogoInZFQaWIoogQkKb0DtJ7Qg0lIUBCeu+5ye3z+2OSCQEUHj7qWs/vm/dad92ZuefMaXPP2bP32fvNe19sZP/RDAxGE04Oopbn0WFxpF0p5KW3lrNyXTI5OTlcvnyZ8ePHS8925y6JyM2phLh8SGHhFdJTF4LxAqjjpDS1tbWUlpZSUV1PRXU9rk42uDnZknq1AI2Vmje/2cCUbzeh0xs5fvw4vXr1Ii0tjbnf7+H8xTzWbjzFuk2n6d+7PVnZZXTv2oZ9B9P5fcNJcvIqWLhwIcXFxchkMmav2s/v+1P58Jdd/Lr7FCqlgvuig9l69BKXc0pwcbDhw8U7uHDhAkOHDkUQBBr0RjRWKpLWnWDrvoso5HLkMhlvfraO9btSGTHuJwpKqunWrRt6vR53d5FlpF5nJDOvnE9+3InBYOLJB7rwx/EMFm84jo1GjV6vp6ioCK1Wy7c/7eFCegH+Ps6UVdTh7+tMUIAb2/Zc4PfNp3hwQDT7j2Vw4MABHnjgAVQqFXtOXEatUvDCByuZs+IAKqWc81cKGNA9HL3BREWVlvJKLefPnyciIoLc3Fwc7DX07xXB3kPpHE2+hlwu58VJSRw8mkF0pB/vfLwOmUyGr68v8+bNIyEhgRptA9mFFfSMC+Xi1ULq6vV06RBIakY+ggDuzvZUVVWRnp5Oeno6JeV1VNWIHMXWGhUP9ovi65/2MH/JAQ4lX+PdmRupqdOhUCjo27cvIGobZTKoacxnMlmoq9Oh0ahuGzuzCY8/0rXFWK9Zl8Khoxk8MaqZc3rMmDH3PpnfAa17/G6PVsGvFf/PobZW5NntEO3PxdQ8zGYLHaLFgLanTmS2OL8RTdc8vZ04efxai/TlpbVEdPBDLpdJgZj1ej2RjXmOH7uCXm8ior0PZ05nY7EIqFQKjMaWNHU6nQ6nxmDNGVeLKa8QKbxSTl/HYhEIb+dNWFsvblbUR0eKAVBNZovEt5py+roU+HbUw51JTk7m6NGjfPnll8R2DOBSegHtQj0b8zSQcuo6ZrOFsvI6Itv7Et6uZTnRHcQyrueUEdnelzOpOVK92rX1arEAtGnThj59+kim6mPJ16TfbpdnzJgxnD9/nssZRVI5N7flz/K4udpxKaOQdm1uaMsZsS3IwMPNXsrTpUsXrl+/jldj8OH8/EpSkjPx9nbCzc2elORM2rf3JTLKj0uX8jEYDPj4+EjaGkEQeKB3JBZBICU1m+hwX9QqJXqjCaVCTkQbT/bv349er8fb0xG1WkFxaTXhbb2Ry2WcT8vDxdkWiyAQGeFLQpc2mM1mdu7cSUBAAO6udpxJzZHM1p2ixOfHxdkWKysVMkCtVtCxY0csFgs5OTnEdQxkxQ9j6RwdgMZKJbEoREX4cuJ0Sx7uwsJCAgICQC7y4KKORdAfak4gcwaFKzKZujnNTfjPg+KiXV2r48LVArQNBiyCQPLFbDw8PMTAvbm5LfJcTMvH2lrN/kPphLfzIvlUy3rZ29sjk8k4fjFbunb0fBYKuZwu4f50CPaija8rAPpGzthu3bohl8vR6Yx0ihBNtRczxCDUOoMJbb1BuldVdb1EjdhkGq+qFYUYiyCQcjEbdxc7jqdmiRSDTuJYe3l5YWdnx7uvDcbDzZ6ocF9Szl7Hx9OJK5nFdIsN5kpWCT6eTnTpFER8fLwU8NtKpeLClUK0DQaOnc0SBTYPJ8wWCx3bifXtFRdKamoqQ4cOxdXVlbTLBYS39SL51HX2HhJj5z0+PJ6Us9fpEObDgwOjsVgEMjIy6NixIxqNRuL9jW7ny7HULJIvZEuma7lchpVayeOPP87169c5deoU704YhKebSBkYHuqFlVrJiTPN4yFyROegUqmoqBCp9sS5yty8iwEwGMyNnNXNQahvhFIpv+1YJ5/Mon24z18KjH8bWinbbotWwa8V94QxY8bw1VdfMXnyZDp16kTfvn3ZuXMnAJWVlbz22mvEx8fTqVMnhg0bxpkzZyguLiYiIoJr1661uNfLL7/Mp59+Kp0vWbKE/v37ExkZycCBA9m6dWuL9Nu2baNv37506dKFadOmYTAYuBe4uNpRUV5HbU0DLm4iVZfZbGlxfnN6AIVCTmUjp2pTeplchtpKib2DNVqtlpSUFF577TX8/ETeWXd3BxLub4tarcTOzoqGej0ymYwRj3QhOEQkaI+JieHxxx8HRE7kg0czpLLNZgs6vRGFQs433+1Gp9O1qJuHuwNyuQy1WsmuPRelPIIgIJfLiAjz5uWXX2bKlCnExMTQJS6Eujo9SqUCK7WS3Xsuim2p1WFvr0GpVPDNvF0tyunXKwK5XMbTjyewfssZ1m4+jdlsob7BIFHE/bZ0HJmZmRw8eJDjx49LgmdFpbZFW+obDCiVCuztNbi7u5OYmCjFjPTwcJAWrN17L94xj6uLHbV1OpRKhdj+fY1tqdNRWl6HUqkgKsIHAE9PT9q3by/1cX29Qaqbq6sdFRVa1GolHh4OVFRoOXPmDEePHgXg26T9GE1mnh3RlS5RgZRXaXF1suX42SxGDYohOlyk5fryyy8lrVpeYRVFJTVYqZXY22mYt2gfcrkMuUzGuxMHk9ClDVevXmX16tViHVzssLPVIJPJuJhewJcfPsKejW+yfvkraLU6FAo5vt7OqFQqHBwc8PHxYUDv9nw5fyeXMgqRyWT06xGOWqXA1dmuRb8DzeMpb2QvkbuDpQyZ+0GQ+yKzfQYMZ1umuQEqpYLu0aJZztZaTXl1vfRbeXU97u7is3yzz2CHxv6/nl2GUqm4pV42NuLLjtFklq7V68V9tp3a+rL4ncdZuz+VGq2ONx7thZ2dncSO4+Jki5uL+N9Muyry3WrUSpwcrFHIZTzQuwMRoSJTT0BAAACXrhVx8VqhVJa2wYhcJqO8qp6esW1QKRVMmzZNMm22CXJn0awxuLrYUVhSDcDGnec4cyGX9yc9CMCs9x9hyZIlEgONnY0V5Y382k3fLo621NTpcHWyZefRNMqr67G1tZWYXtq19UapVFBepSUzW6TGHDoomknjBqBWK0ns057yijq2b98uMdA0ceC6OdlSXqWVnsvsggoWrBKF+p9++olNmzbh5eVFTAd/Fn01BhcnG9wa9yCWV7UcjyB/NywWC7t37wZEAbKpnBvRNL/cDo4ONrcd64pK8T9mb38r20cr/h20Cn6tuGesWLGCNm3asG7dOkaNGsWbb75Jbm4uc+bMoa6ujqSkJDZt2sSECRNQqVR4enqSkJDAxo0bpXtUVlZy+PBhHnroIQDWrFnDd999x4QJE9i2bRszZsyQ3tBBDN68efNmvv/+e+bOncuuXbv4/fff/6t6Z2Rk8PgzLfmJb16oPL0d2bjnbTIyMsjIyLgtg0iL/I3fSeteJSMjg6ioKJycnAhvXPAeGNqJ7VvPAbSYQEtKavlx8Vjy8vLYtGkTV65ckX67fKVYOlYpFVhZiQuKra0VGRkZfPHFFygUCp56tBtuLuIEnrTyKKWNQumN6BDuy6pVq1i8eDHJycnY22kICnRtzlMmakGRQUxHcXGc+ekoqRyZTEZG46K6fssZRj0cx5DE6BZltA/zwcFOg8ViQa/XM2zYMBSKv36rbx/mQ3JyMkqlkvfff58nH7upLWW3tmXVkpekPJ6eolbKx1M0zSetPtai/ZfSRQ3QN58+TnZ2NkqlkpSUlBb3a9tW5Hj9+psnmfHB8Ba/qVQqEhJEE/62/RfRNhgoLK3hyaHNptBvluwjPbOYOe+JnKNqtRqTSdTC+Ho5YWMtbhFo386bnWsmIpPJEASBi+kFZOWUERoayoMPisLDjY9hWKgXC37ezwsTk5jy/m843UR5J5fL0Wg0fDZnO0H+rsRGi+Pm5mpPt85/Tf12s9pCqHgCLCUIuh2gjr8lTXx8PPt+nMCeha9go1H9+V3/JEhEr/vFTf8NDcY71Ko5v84gpi2urOXLX/cyolc0Gw6fp1NbH9LS0iRGIrPZgp+XM7uXvcqDfSOl/Ft/Hs/eFa8zrH80uw6LexpjY2MBmDZ/C39SVYb3jeZ0Wi6rVq2Srr3/5SaUKgXyGxyweie0o2tMMHMW7ZHqMXny5NtSAjaV1dQ/ggAb953n9ZlrGThwICaTibq6OmwbnxUAezvRZH/uQh7f/bwPACu1CqPZfEc6QEGAC1cLOXRafMnesGEDr732Gr///jsWiwWlUs6QflG3zTt94gO0CXRDoVBw9uzZO85994x/Q3PWqvG7LVoFv1bcM8LDwxk3bhwhISGMGzeOqKgoVq9eTVFREXFxcYSHhxMQEEBiYiKRkeKE/PDDD7NlyxZpAty2bRsBAQHS799//z2vvvoqDz/8MAEBASQkJNC/f3+pTIPBwKeffkpYWBjdu3dn0KBBtyzkd0JiYiJb15+iorwOF1c77B2sqSwX30oVCjn2DtZcSStk3DM/kpiYSGJiIsuWLaPiBi2f8w3aP3sHawSLgEFvYvwzP5GYmMiAAQMYMmQI+/ZcwmIRWLr4IHq9EW2djro6HdY2VpiMZt55axXPPb2Q4cOH07NnTw4ePAiIC4TrDR6BHu72KOQiP+cn04djZWUlaQmee/p+fLydEASBiormt2uFQi4JGc+/ukRqy9y5cwHw9XEWzdSN7VIo5DjYa3Cwt0YQBNQqpVSOQqEgrK03giCQcbWIlb+f4Pmn70ehkGNjrcZoMnPmfA7PTfiF/v3707dvXz766CPkjXV2uaEtTXlMJjNnz+dQXl7Oxo0bSUxMRKGQ4eXliCAIlN/UlqY8L766VMrz888/Y2+nITjQDbPZIrVfoZBjb6dBrzehN5gY9Oi3dOvWjfz8fCwWi9THNjZqqqpErdWUt1aRtPQwBoOJkpIa2oR48P3337Nwoej96OFih4OdhqzccrzcHXBxsqG8SkutVsf0b7cwZOwCTGYzn3zyCXPmiHRXVdX1+Hk7ozeYuHhZDFlRW6dDEGDngUtkXCumsLBQYsKpqKyjTqsTPUiLq9mw9QyZ10s5cSqLvQdE4cViETAajTQ0NGCxWOjeOYRx/+nF2i1n0BtMVNc24OnhQHllXYt+B9BoGrUsltLmb7kbmPMAI5jSERpE7SNCrZQvNTWVMe8t51puKVdzygCoa9Dj6tjMIe3iYENZmfjbjYJJbKcAvL0cAcjJK8dkMt9Sr/p6cQzUN/A1O9uL9y4sq2HtgVSSdqTwQLf2jHxvCZGRkZSXl4v3LKzg9MUc/vPWMk5dEE3M9ToDA8bM5eGXFvLyeysbvdHBwcFB6sMbYaNRYREE2ga4E9chgHV7UgGoqanBaDRSWFJNTl4FeoMJbw+xLSOHxLJw2UEys8U2T3x/FYsWLcJoFAXWuno9ro5iO5u+K2vqcbDTUNGoASypqOXq1asUFRWxe/duVCrRg9vVyZahA0XBbMHP+0iIb4MgCEx4ewUuTrYMGzaMkpISoJmfuqxR0+fiaCPd36VxfEpLxfE+efIkHm4O5ORX4O3uQFmTtrvxpWLi832J7xTE6fM5nDp1Spr7LJbba/aaPHxvh+qa+tuOtbOzLQaDSeI+bsW/j1bBrxX3jOjo6FvOs7KyGDVqFD/88ANPPvkkCxYsICureY/HgAEDqK6u5uTJkwBs2rRJ0vbV1dVRUFBAly5d/rRMNzc3XFxcpHN3d3dpAbhblJWVUVuj42JqLh2i/VAo5FxMFReM2PgQFAo5505nU5BXyfXr17l+/TpVVVVSmuLCKuK6hrRI7+pmT9rFPPJzK1rkOXdW3LPUrXtbevYK58jhDGI7ByOXy7iSUYROZyQ3p4KUlBSysrJ49NFHG0npoVt8G6nOgf6idi4zq5SxE0QhbtasWRLB/IatZ2/JExcT1Cj4QUWFVqrXpEkiwbjZInD5ShFdOoumu7jYIORyOWdTc7icUcTY8b9I5ZhMJpauPCqW0aWNaNpWKYmLCUIul5FxRWxLfmGVVI5Op5MEgBb1im3OEx3pj7e3NwsWLOCRRx7h8ZFd+X3DqVvbckMeH29nKc/YsWMJDnDDbLFw+WoRXWKDxPSdAlEo5OL+v8sFGAxmCgsLSUlJoWvXrpw7l4PRaMbX15nYmECKiqq4eDGPtu28uHRJFNACg9x45513mD9/Pjqdjkcf6IxCLsfO1oqS8lriIgNJTW+OP1aj1ZN2tZgOHTrQo0cPzl7IpVarw8ZGTfqVQowmC0qFgvJKLXK5jJNnrnM+LR8fHx+srKzIzc2ltLyOTlEBoiexVctoW+FhornSZLZw7tw5VCoVcrmcZ0cnMOWjtXi625NxrQhHe2uKSmo4n5ZPfExLb0lvb29x/52lUZtsOI3M6v4WaWRK0RSOpUK6ptPpUCnltA/xJmlbCnqDCZ3BRGSoD7YaNTIZdOkQQEmJ6AXt79+8R3bo4E5UVmkpKq6mqLiG9IzmZ64JtbW1CIJA1/aB0rWEyCDMFgsp6eL/Ti6XoVaKAlx1dTXHjh3DYrEQ6OPCzoNp5BdVER3ui8ViwdpKBTIZldX1uLvY0bNLW2QyGS+++CI6nY5uUUHN7ZVBXIcASivqeLBXB6rrGtifImre6+vraWhowEqtxM/bmYLiKrp0CqKotAalQoFFEOgaG0xhSTXn0wooLy/HYBBDC+kNRiLbemNjraZ7xyAEQSCvuAqFXM65jJZx61JSUoiLE7XIlVVausQGEeDnitFk5vmn7icqwpf0K0VcySzBYhG3T6SmpqLT6bBSi89JakY+3aKD6BIZyLnGl4zuHYMpLK2msFA0a0dGRlJaUYuftzPF5bVcvlaM3mCia2ww70wYRJ+EdkycsZpAP1cOHjwozWNGo7kxlEtzndVqMbSL0WjmdjCZLLcd6/jOwVxKL/hTgfHvRKtzx+3RGs6lFfeE9evX4+Hhwf33Ny8ahw8fpqamhgkTJjBy5EisrKxISUlh5syZtGnThtDQUJRKJTk5OWRkZBAaGsrs2bP57LPPsLe3x2Aw8OOPPzJ69Gjc3G6N15aWlsapU6dahHNJTk4mPz//v6Khi4iIoDDXiIBA34FRVJbXcWhfGgFBbkyaNhSZTEbaxTxys8tRWOexfft2VCoVhdlKBg+LQaczEhHph5ePM8Mfi6cwr4IOUf7Mn7Udvd5E0qrPcXFxwcbGhooSJ/olRtK2nRdKlYI/dp/nldcSUamU/Lb6OB6eDtjaWrEk6TOGDh1KeHg4Z8/nYGtjRVg7LzRWKlxd7HjzVTHPzG+3cyGtgNryU/zwww+oVCo++GIjR45dZWC/DoS19cLOzgonR1veem0gKpUSnc5IaIg7hQVX2b17N507dyY7pwxBEDAazcR2CsTdzZ5HR8RTUFRFeDtvZs3ZSXFJNXO+fgN/f3+8vLyYs/APBvRuT1ioJ1Ed/LiQlseIobGoVEqST2dhEQScnGz45cePiI6O5plnnkGpssJsFggNccfNxQ57Ow2TG+s1a95Ohj3QiZrqQp5//nkSEhL49KutHE/OJLF/c1ucHW3/Ms8Xc3bQsYO/2JboANxd7Xn04S4UFFYRGeHLnoNp6A0mkhZ9gqOjIz4+Ply5UoyHhwMeHo5ERPiye/cFAgNdGTGiCwUFldx/fxharZ7Y2E6YTCY0Gg0D+3ShrFJLsJ8rhaXVeLk74NfoJBLo58KQXh0or9IyfEhvPD09uZJZSnR7f2QyqKiq5/ylfNq38yY4QHy2lUo5Bp2Z+Nhg1Go1hw4dosFgzeQJiWjr9Xh5OOLn44xcIWf+V08S6O9KYVE1S1Yc4eql7bz44osIgkBJWS3WGhWJvdpTW6ejQW/iu8X7KCyu5j+PdRdjIcpl9L0/nODgYJYuXUrXjhUgVNJg7oTKdhDl1S4cPl5At4QRhEWNpqLkJNbCKr750cigQYP4+eef8fJwx8XRls9+3oWjnTW9O4diMpuJjwygZ+dQAr1dcHN15syZM8TGxqJWq7DWqHn+6ftRq5UsWnKIy1eKqKlt4Lkx9zP8wRjS0gvpkRDM4MGDkclkxLcPpFrbwKsjezCoazhGk5kfNx2je4cgxg+/H4VcTmZBOTU553F0dKRnz54IQErqdbpEBfLMiK6YLRbqdUZiO/jTqb0f700YjFwu49ChQyxfvhxnZ2eeemQgoxJjMJkFRvTrSIi/GwvXHGZor0iu5JQSGuBOt5h29OjRA7VaTWKvDmg0SvYfu0x8p2AuphdQXdfAgB4RxEYHIFgEarV6Xnr2IXbs2EG7du0I9nPHYDTTr2sYAxPCMVvAwVbDsXNZONnb8OigGBxtNcz94h3q6uqIi4tDEGDl2hOMGBqLq7MdCoWc4EA3lEo5p8/l8M7rYj/NmzcXBwcHHB0d6Rgdhd5g4tK1Qjxf178AACAASURBVIb0jESlVPDz+mO8MaYPg3u052pOKdrqUh5//HGefvppbDRWmM1mvvxhN9U1DTg7WPOfUd0J8HFm3i/7GNo/miA/Fz75+CPq6+sxGo288MIraDQq1GolCoVcCgNlNJrQ6cRtDXK5jMcfH0VRURFXr17F1bObNNZarZ66Oj0D+3dg5EOd+XbBbimcy8TxD0gm+L8b8w/+M+FcXu31vx3OpZW5oxX3hDFjxmA2m1mxYoV07YknniA2NpbJkye3SPvBBx9QVFTEDz/8AIjmhnHjxjF69GjOnj1LUlKSlLZ3794899xzPP3007eUuW7dOubPn8/evXula/fCYXzgwAG6dk3AoG8M4OxoS0SUHwa9kZPHr9F3YBRffbyR3dtSqbZs4cSJE7e9jyAIWCwChfmV/Lr4EHt2nsfTy5Fl61/jl19+oXfv3vj6+mPQG0Emw9bGCmSgrdPzw4I/yMutYOKkwfj4OmFlpSIzM5OQkBDeeGcVpWV1fDztIQJvCHq8YNE+tu0SAzjrytf+Zb2gOc+Vq8W88kJfIsI8mk19f9KWgqJKkn49yu69l/DydGDV0nGkp6cTFhaGwWDCaLKgUspRN2oZ6rR6Fvy8DydHGwb27YCXpwMaK/WfltGU5/uf9pF8KovVS1/m888/47333vtb84htqWLvoXR6dG+Lr5fYx1lZWbeNGWaxCOTnV7B82RHGv9IfxxtMmFIaQcBsEj2F064VsWxDMl+9PZyl607QKz4Ufx9nZMgAodGpRU5ZRR2/bz5Fl05BRLX3xWAwU1GlxcnBGofGAM5arRY7OzsMBgMNOjMHjlzm+5/38/brg7mvayhKpWiyz82vZNK0VZSU1nL17Jw/ZTvYd+QyM77cBMDgfpG889rgW/vInIdQ2pfktAdZvLKOSZMmERISQmlpKUlJSVw8u5SkORb8O2t59NFH+eabb6it1/Pb7jMsXHsUhULOuEfu48EeHXBsDJ5crzOyYd1vfPDBByQkJPD+B7MIDnRDoZCz//BlPvi0eW/vWxMHMmRQR4xGMzk5zQGcZ8/5TgrgbDZbMAsCeoOJ/LJqMgvKGdK9PeU1Wuw1KkpKSjh37hwJPfpIgYoLS2rYe+wyA3u2x9XJFpmMv9wPZzSZScss4utl+/HzdOKj8Q9QWlmHu4sdgkV0jqqqqsJKY4fGSkV5ZR0pZ7OJaOtFYKNGTiaTYa1RUVRaw2+rlvLtt98SFRXFj4uXtwjgrG0wsPtYOnN+3c/wvh15YWSCFHDcZDJRVFSEILPB08NB2gvp6HD7AMyrV6/mscceu+V6g85IaWUdXm72GE1mzGYBWxs1TT1QX1+PnZ0dE95bxdlLeQD4ejqy+vsXblvO7Nmz+frrr8nIyMTW1uqW37VaPfWN3tNyuQxXVzveeOMN1qxZ0yKA85OPdcPL05HC4mqWrTjK7hsCOO/fPuVPx+f/irCP/xnmjsvT/7eZO1oFv1bcE8aMGcOFCxd4+eWXSUxMZNeuXcydO5cdO3awfv16oqKiCA0NpaqqimnTpnHffffx9ttvS/kHDBhAYWEhH374ISNHjpSur1y5kq+//ppp06bRuXNnCgoKqKuro1+/fn+b4Ofr60uHgJfvKu3FnB+k43vJExH6yl3lSbv6nXQc2nHiHdNfPTfnv0p/c562Ua/dVZ4r5+c2l9PpLss5e0M50XfOcyX1v0t/c57Q2Nfvrl6nv5WOw8Mm3FWe9MvNAWkD7590V3myD38NQJvOd1eva6ea63Uvfdwm7i7LOdlcThNzx53g37l5n6VfvzfvmD5vz2zp+F7G0nvwncsAKNzeXE5Qwt2Ny/WjX0vH/n3uXE7uvuYyQrrcXR9npjT3sX/vu6tX7v7met3Ls3w35dxYRnDXuxNask40C01nz6bfVZ7bMXfcCVdS//wl5v+KsI/+IcHv/f9twa+Vsq0V94zRo0dz+fJlFixYgIuLC7NmzcLf3x+FQsHMmTPJz8/H3t6evn373uIZNmzYMBYtWsTAgQNvuadWq2XOnDmUlpbi6+vLxIl3N4G0ohWtaEUrWtGKv0arxq8V94QxY8YQHx9/z67+H3zwAbW1tcyePfvOif9m+PremZezFa1oRSta8e/gn9L4hX/4z2j80mf8b2v8Wr16W/GvQqvVcvLkSTZu3CgFK25FK1rRila0ohX/DlpNva34V/Hxxx+zbds2Hnvssb8M29KKVrSiFa1oxf8JrfbM26LV1NuK/+fg6+uL1wOT75wQKNo2Szq+F4eIgJ53t8E752Dz5utInxfvmP5CwY/S8b1sPA/udpcbvI83m0rupZy7cYhocoaAe+uve9lEH97uLp07MpqdO4K6312fXT/2zT2XERZ+d1snLqfPk45D4u+uXpnJzWN5N44a0NJZ424cQm50BrmX50X1xd213zi1uf3tIu/uf5lxofl/2XfdrZ7ON2PviO3S8b20xX7eS3eVp/bVhdLxvTheOMy/83xRM+H/Nl/ci3OH96C7dNTZMfufM/XO+IdMvR/+b5t6WzV+rfifxu08ff8bBHg6MWV0H+LCxHhrgiDSow2e8hMllc3UX3379mX21+Nwc7UHBORyOcUlNTg72VBUXE3SiqP8cUOIgpEjRzJ27FjCwtujVikQgKLSGt79dhOXs0rw93JmzjsjJRYAaJ4kU45c4b3XxTA5coWMZ17qQ1xCKP6BbsgVcuRyGQrFDAwGA2fPnuXouVqG9I8i0M8Fnd6EVqvHxckGlUr8e1dU1aE3mHFzfo2SkhIWL16M0aYt45/uhZe7A3K5nJyCCj78ZiuXM8XAvgqFnJ3LXkVjdauAbDSZWZh0kNWbTvLE8HgeeTAWF2dbBEEMi5KXO5JPPvkEi8XC/O8mYGsjhneRyWT8uOowS9Y3h6GZ8FQv4j99CG9vb8xmM1q9gJebg/R7QUkNn/+0i/7d2tE9JgQnew3Xcsp4f+oxjh07xqRJk3jzzTfJLhCZCFRKBWazhbySKgxGM74eThhNZuQyGQ52LRciQRCoqWnAYhGwtbXCYDBhZ3dzuJt36NixI5MnT2bkI49h3UhXJgDaej17jqQzb+kBbKzVfDn1YUKDPFAq3sRisZCXV8mM6WsRBPjgw+EEBrkjkzUxb5ilYLgKxVsUFhaycuVKwsP7k5DQFgcHa+rrDVgsAnZ2VhQVVXPkyBWiO/oT2sYDtfptqU9vxhfzdzD2ifsl5pfSijq+mLcDRWVbtm3bhlqtZsexyzzYo8Mtec0WCwq5nMKyGqbO3URe4/WHH34Yudd3pKSksHjxYtLT0ykoKGDixImMe8YR5NbIrEcwceKXEmvJzejWOZgXn+pJoJ8L5ZVa1m45zepNJ29JF2zvzPyeDxPu5I5MJvIaTzm6jXhPfx5pE8Wsswf5hnkcP368RaBoEEM1ff3111y7dg21lR09ej7CqxPGEODvSm3tWPR6PTY2Ntg42FCqL+dAySG2F+2iJr2a/PXZaDNr0ag0TH9vOr9k/4BcLuf69etMnjyZixcvSuX07NmTTz/9VOImburjzEYSob59+zJr8Bu4a0SGH6NFHG+1vOWSqzebsBrx/i190MRxXVwqzjGCRUCukGM0mqmr16OSP4+zszMPP/wwl2/I98fAifjaON1yr7y455g5cybr169naGI0/e4Pp22wBw721uQWVOLpbv+nY/LCCy/gdgN3udFoprq6QTqXy2XY2lqhVMrJzs7m2LFjPPXUU7z2SA8e6B6BnY2GzPwy2gd73dLOa/ll2H/+1C3XW/HPolXw+5sQFhb2l7/v2bMHR0dHvvnmG/bu3Ut5eTkuLi507NiRGTNm4OrqyokTJ3j66ae5fPlyi7x/dr0V/zdYW6n4ftIjXM0rZdORiwgCJHZph6qRHaAJ0dHRLF68mNQL+Rw8fJmgIHfiYoIoKKzkrXdX0y2+De9MHkJNrY7kk5mAyA5SXFxMcJt2fL10L84O1ox95D5+mPE4T05ZwvczHsPF0QaLReDbZft4YUQX7OzsKC4ulqjhAFQqJRFRfqz99RjuHg70HhhJQLC42CxatIiwsDAmju3Lum1n+HD2Zj6cPJSgADcEi8DCZQeICvfjvvg2WASBF8aOxdHRkc8//5zCkjpcnGxZvj6Zp0d2o7K6nm9njOLJiYupqKrnlad7AbBlyxYaGhoYNWoURpMZi8XC8VNZvPBUD9qHeXNfl1AMBhMnTmVSq9XT975w5s+fj62tLXPmzMFsETh2Jovaeh0D72/Pf0Z2Z9Pe81RUixRdWXllbFz+Fbm5uXTv3p1Zs0QNa61Wx8qtpxg7KoE5747kWm4Z0+dsobK2ngd6dmD58uVMmzaNUaNGUVlTT4C3M+lZxSRtSmZE/47EdQjgclYxY2esQCaD+e+Owmg08tZbb/HVV1+xZfM5yspqeX5sLywWgV+XHaFr91DCwrz57JNNnDkjMq7kF67kt99+w8bGBosgUKvVUVRag95gIiTAne6xIdjbavD2cMDP25nl65PZtuZrvL29mfDKO8z6+gmJkH7NmhOo1UoGDozG2lqFxSJw7lwO0dF+7N27l8mTJ5ObW8Enn27C39+FN14fyMaNZ9iw8RTduoXy0ou9ybhSjNFo5t13pzJkyBB69+6NyWzhhcnLqKppIDTInS+nj0SwCPyw7CByuYyxo+/ny+kjyH0mjiNHjtCnTx8AzqTn8e53WwB4f+xAYiP8WbP7DA/26ECNVse8tx+h56ZZCILAtGnTEPTH0Nbm08b7KEN6Kvl8nijQC0INMmVHBHMzt/TNCGvjyefvDGfVxpN8OHsz7dt58+bLiej0Rr65gXHRRqni1wGjqdI3sOrKOYob6pjUqQfjI7tTa9RTVN9MI/fAAw+gUCgICR9LfFwwDyT6M378eJ544inGvzIVpaKenj17smLlLj4+WEj3OBPPP/88c+fOJb9fKWH27fhP0JNkJKezetZKvB/0Y+ykFxgVPQKNtYapU6fi7OzMlClT+HXFKkaNnUtFlZbwUG9+mD0WQbDw3c9bUVk5MPYJsY9TDy9EpVKxePFiDpRc40DxVZzUGl6N6I3ZYsEiE5h2ahOHiq8CYKu0ovjtRQC89dZbjHzkUZRKORmZJbRv642Lky11Wh3lVVoCfF24fK2I0CAPrl65irOz8y39LAMK6qs4VHyVUUGxrMxMwd/Wha4eAcyZM4eqqio0VipOpeZwPj2f/zyawKWMAt757HiLMdm4U+QV79evHzNmzMBstlBXp0etVmJtrcLRUUN1dTPlmiAINDQYOXnyGEqlkunTpzOsRyQfLd5Jflk1Lz2UQPtgL2Ys2s7xi9lYqZQsmPwIZVVaxk96kZ07d/7ps/N/wf8fWDb+CbQ6d/xNOHz4sPR57rnniImJaXHN29ubGTNmcObMGWbOnMn27duZPXs2vr6+Ek/l/8swGAz/epmD4sNxsrNm2qLtfLZ8D5//uoelO8RVyNPZXkr34osvcu7cOd58ZzXzF+7FoVErFODnSk5eBWvWpXDoaAZPPNpVynPy5El69OjBdysOsmnveZZuSObI6WvI5TJef7ovTvbWFJRUYxEE/jh2GaPRiEwmw9nZuQWVkV5nZMq4JPZuP8+m31LwC3BjwVeiCcrd3Z3a2lpMZgvVtQ1k51Xwn9eXoteb0OmNrFifQoPegF5voqq6gUGDBrFmzRqWL19OkL8rc3/Zx48rDgOwafc5DEYzDyd2wlqj4qHEjsz9ZR8vvfSSxG9qMplRKRV88+MfrNt6ml7d2pFXUEl2XgVvf7qeT77dxtXrJXTr1o3ExEQAvl68h8kz1/PhPLHOSoWc4QM6Su3buv8ihw8fJicnh6lTp4rlmC1YLAJLNpxg6/6LKORy0q8Vc/5KAXlFVfy45gjZ2dl8/PHHTJkyBUc7awQBJnz2G/tSrjDxi7XUavWEh3ihMxjJzCvnekEFgiDw7LPPcu7cOebP201CQlv27Utj7e8pJA6KJvt6GVVV9QwZ2onKSi2VlVpGjRqFjY0N7u7uHE65ipVKyYQZqxk/fRU6nZFzafn0uy+cID9XHn91MYtWH+Ho0aOsXbuWt6esxs3NHjs7DQcOpPPjD/uYP3c3n3y8AZlMhl5v5K03V5Kenk5kZCR1dXVYWSlJTc1l0MAo9u1LY9783eTmVvDbb8kcPXqVdm29WPjjPlatWsWZM2eora1FLpPRq3sYFVX1DOoTicUssHJDCivWp7B8bTJrNp9q5FS1sG3bNqnvjWYzFdX16PRGYiP8+Xr5PuavPkSD3sj+k1cwGs08/fTTzJ8/nyVLloDxJL16dmHSiw080KcWtdoWZ0cZMutHEKreAIy3/MesNSpee74v8z8bjVwuIz4miEA/V7bvvci6rad5YkR8i/QPBbfHxcqax3atYFryTuaePwJAkIMzn57ai6mRZxmgoqKC0tJSKiu1PDw0ll9+ETl8Hx7+NCazDZFRceTnFzJz5vvk5Jbz8ccfs2jRIkaNGkWpvozDZUc5V3mePxbsxjPRB9+HA3m020icHJ1Ynb+WlStXsmDBApKSklCrlIx4sDsKpQ2jR9yP2WJm8S/LWb0ljeVrT7Bm00ksFoEXX3xRmi8mnFjDb9dP81PGUZZdS0YlV1CmqyPM0ZMyvZYyvZZsrdiG+vp6Ro4cyf5jGSAg8dgazWbs7TS88t4qft96Bk93Rz6as42YmJjbzmmCAL9dP007B0+25V3kk9QdjDu2Ep1OR1paGuPHj+e3zadY9vtxQgPFF8iNO8+RnVdx2zGZNm0aRqORysp6jEYzWq2+kb6tWWdksQjU1enR6YyUlpaiUCh46qmn+G7tYQ6ey+Rafjlz1ogc5LFh/pTX1OPn4YSfhxPvL9rOhQsXbtuWVvxzaBX8/ia4u7tLHxsbG1QqVYtrCoWCAwcOMGHCBLp27Yqfnx9xcXG8/fbbt5gr/lucOHGCsLAwDh8+zMCBA4mJieGDDz7AZDIxa9YsunTpQr9+/Thy5EiLfEePHmXEiBFER0czcODAFiwcBoOBKVOm0LNnTzp16sSIESM4duyY9LsgCMyePZsePXoQFRVFv379WLVqVYv63Ih169bRt29f6Xzq1KlMmTKFmTNn0rVrV2nR/6s6Nd178ODBREdH89JLL1FZWXnP/dYp1IfzmQXUNTQLnZeui1qL9kGe0rUuXbqwb98+QKTZCmnUuLm62uHuJgqIySezaB/uIxGZd+zYEY1Gw/Fz18X7tfEiqp0vV3PKiAjxxGS2cCW7FKVCzro5Y1Gr1QiCgJWVFZpGc+LNaBfhg9pKyblT4j21Wi1xcXFk55YTHeEHgLeHIzbWauxsNbi72hEV7ovRZOZ6bpnkTJOfn49MJuNKVol0b0EQaa+iI3wJD/XCSq3kxBmRY7mJk9lsFqiuaaC8UsuVrBIUCjk+no5cvFzAjEkPsmnJeDzdHRgwYADdunVDLpdz/Oz1Fm2Qy2V0jgy4pW2vv/46jo6OyGQyFHIZeoNIA3XhSgEAYcEeUlqZTOScNRgMmM1m5HIZVbX1aBvH0SIIHD2XiSAIdGwnhu6Ry2SoVCqioqIICQnh7akPEhbuTUpyJikpmXh7i8weNjZqOnYMYPmKccz4cDjDhw8nMzMTKysr+nRvhwD8Z2R3VEoFKanXcXG0QRAEikpreXRILGu/f5GjR4/y5Zdf4unpINX3+LGrUv1PpmQ1jrWK+Pg2tGnTBk9PT86ePYuXlxNrf3+V9u19sbPTYHUDX29efgVyuYxTJ8VxcXFxwd5efP6eGhHPV9NH0qVjICqVghNnmvu9yXxrZdWSeaFDiBfb5r7Eb18+i5VaSV5JdYvnIfliNiNHjkQQBBYsWNBywGTOWGmcSBw4BKH2SzBn3zKmAF9MG0FosDvaegO/bTnNhh1n+eDNoXSODuDEmSx8PJ3w9vaW0se5+3G6rIBaox4AjUIpjamXjf1ty1Cp5IS18+L06dMEBLaXuGM1GjUgYDbVYTaJew/3799PQEAAzmpnQmyDseSaKC0oQe1iRdqn53jvjfdQyBQcPHRQun9DQwMKhZy4aJFHuFMHP9QqFcmpBVKaE2eyUKuUdOvWrcV80YTDxddQyhW4a+x4JCiGzf1fZlr0QJzUIjNH03wRGuTOkZPXCGmk9dNq9dQ3GNHWGxr7y5Gs3DLM5tvz4wI8ERJPJxc/urgF8m70IDw19qhUKs6ePUtsbKw0R4WF3mp6bRoTd1fRtBsUFHSLpamhQXxJvVH4uxF2dnZoNBqOXrguXbM0uhIM6hrOH9+OY+qYfgCY/mm+XuEf+vyPo1Xw+xfh5ubG/v370ev1/8j9f/nlF7799lvmzJnD2rVrGTt2LBqNht9++40+ffowdepUjEbxrTwzM5NXX32VJ598kq1btzJ16lTmzZsnqdxNJhNBQUEsXLiQjRs30q9fP8aPH095eTkA27dvZ/PmzXzzzTfs2LGDTz/99Lb8un+F3bt3IwgCq1atYuLEiXesU21tLRMmTCAhIYH169fTu3dviQbuXuDmaEt5dUttq7lxInJxaKbs8vDwoLS0FABHBxuUN5iCXVzEfVQVlXWSSa8pD8CKWf/h4LLX+fGj0azddYYzl3KxsVajUirIKaxgf/IVsvLLefLJJ6Xnwj/49v3o0rjPZtSY+wA4f/48Hh4eVFRppf1crjdQRLk62+Huao9KpeBUajaenqIwq1CI9ZcrWu4Pq6iqx9XZFjcn8R7lVeJi2TSudrZWkkDWBGtrNQ8P7kRJeS1vfvg7x09l4uTkhKura4t73Ah3F7sW5xMmTGDSpEmoVKLA+8fxyxhN4sKWdq0IgEBvF5wdrFHIZXz+xjDs7e2xtraW+rle11LbVFapxWIRcG1siwzR/G42m9m4cSMhbTxQKhUYDWYqKsQ6XrtWzOrVx5HJZCz8fi821lYEBQWRkJAg/p5dRtrVIvomhDF1XKLUXxaLQICPM2Ehnrz/9WamTJlCTEwMX80eTb1Wj0wmk8oACAhwbRwHOR98NJzp06fj6upK166ixnj5r0eRyWS0a+fFm5NudUKYO3cMmZmZPPvssxw+fJjdh9Ior9RSW6eTKL4qGvs90M+FYQOiW4wjwPHU68z4YTsTZv7OloPi3rXZbzxEiK+rlEapUODr68trr73GLT6A1sOZOHEiZcXnQLeR26FTpD8dwnx457P1ONhpyM4rZ/OuVHYduMTIIbGUV4p1bBpDAHdrO0obmrc6fBwvao7rTQY8rG/vXPLcM72QyWSUl5eRndOc19bGCmtr8f9oNov/c61WLPPrjp8zo8M7bL8gzi15a7Nxvc+TJyeOAeDkrOMoFApiYmKksFNujcKQs6NYjzpD8166G9ty43zRzsGDU8Om8tN9TwKwKec8ow8s5ru0g/TwDGVlr2fRaDRSH4QGebBxVypOjZSBcrkMeeMq3TSmTg421NTU3LYvlmWe4JNz25DJZKzPPksPz1A29h9HRUUFBw4cQKPRSBYL59vQEja1w9VZbKtarZba0gSzWdS6KpW3p8JTq8UtAOXVzc98vd7AyfRcyqrrGD/7dzYfvoggCCyZ9jh2dna3vc/fAZnwz3z+19Eq+P2LeP/999m9ezfx8fGiKvy77ygoKLglXUxMTIvPCy/cnkfxZkyePJmIiAh69uxJ165dqaqqYsKECQQFBfHyyy9TUlJCTk4OAD/99BOjR49m5MiR+Pv706dPH5555hnWrFkDgI2NDePHjyciIoLAwEBeeeUVfH19OXToEABFRUUEBwcTFxeHr68v3bp1o3///v9Vf3h4ePD2228THBxMYGDgHeu0efNm7OzsePfdd2nTpg2jR4+mZ8+e/1WZABkZGTz7wB1Cydyts/vNyW46/3LRHyLnqNnC2EcS6BEXKv2mkMuJDvPh7VkbOXnyJDqdaN7x9XP5yyK79xK1qTeax2/nnN+rezvkchkbd5yjTmu4Nc1tmvhXza5vMFDfcKtJ/tr1Ur5feoArWSWkXy2WzNZ/hhvLcLS35tlnn+Wtt97C0mjG6xkXKu2zNDcmlilkbFs4nv1Jr9MzLhSz2Yxarb6F+eV2ZY1/rAeBvq6MHj0aQRBIS0vj009EYaVLfDNv78mULNLTCgEwGE10iBS1hU2CsrZBT2lFHfOW7iexR3vUakVzW2Tw29bTfPv+KBYvXky7du2wt7emqLhZi9aE3Nxy6Xj1qhPMmDEDpVIpLeZ5eaIWe8uWs/Tv30F6mWjC+++vY9CgQbz66qu0bdsWP29nGvRGPvpma4t0KqWCj94axu9bTzf2RXPH7z5xmUNnMsnML+davlif0iotjyWKJkSNWklCx2AKCwtvWfgBZLbPERUVyYFd0/+07yNCvVApFaz7eRxKpZyJY/uxc+VEEnu1x8/bmXZtxBeRrVu3kpeXR1ZWlqThA9HsG+fhJ53f7tHs2rUrAwdESu27nlP2J7URn8embTULry1m6fVfibIXHVzce3nh0duLdOUVAHrc34PBgwezcOFCVq5c2Xj/pj4UayJX3MpJffN/LKu2jOF7FjIpeS0AA3zD8bJ2ZEf+JV44uoJAO1cGDRokpbdYBD55axhKxZ8vzX8ViGPp1eOcqcgFIKU8m+OlWdgprUhKSpJeLO9mavu7g31U1+m4dL0YncFERm4pv2xLZtmOk/h7OJOWlva3ltWKO6NV8PsXcd9993HgwAHmzp1L586d2bRpEw8++CCXLl1qkW7Dhg0tPp988sld3T80tFmocHV1pU2bNi3OQdwXA6Lws3Tp0hYC5nfffUdeXp6U55dffmHYsGHEx8cTExPDtWvXKCwUF8bExESuXLnC4MGD+fzzz0lJuWGH9l0iPDy8hYBwpzplZWXRoUMHaSEG0UTy3yIxMZG1+1Mpq9bietNbr6LRDFJR2+y1VlJSInnvVdfUYzI1m1kqGt+QnZ1sMRhM0t6ckhLRjHrpWiFj3k7iybeWsmLrSTxd45I1LgAAIABJREFU7ahvMGA0mQkP8cTJ3oZ1814gOzsbR0fRw1djo2bbsem4urc0bd3ftz0AM6eva1E3ZydbKqrEBa3pjR1g5JAYKqvrqdPqcHGykerUZCay3GRmcXG0oaJKS1mjZqFJW9b0zJRV1EnlNK0LJpOZ7LxmQcbFyYbKykppXJvucSPKbvCWDvF3xcvLi5kzZyJvVG1YqZR4ujlwaPkbJCaI4SHSrhbR79m5/L7zNIKAlHbIkCEA+Ho4cjjpDdwbNRWuTjbinrKoQIb2jmTCZ7+RlpYmjWVBfiWCIODp5YSzc1M7tTg7i+N47mwOL45djE6nk4SFOq0eVydbsnJF4cLbw5GKKi1yuYy6Oj2nL+UydupykpOTKS4Wtww0eQ03aYZv7Duz2cKypMNs3LgRi8Ui5cnNLcNkMtPQqMX09Gz0/G7MV1WlJSMjg3Xr1vHxxx/ToZ0PVY2a66Y8Lk62uDrbEhLgxjOjugOg0WiYNWsWSqWSI7+8zjNDxb1cTVrZ6/lleDd6VLs42mBrrcbX15fs7Gyys7PB9hVkykBknmnIFB74+PgyduJJZJ6XxI/CjzfffJNr164Bosextl7Pc28spayijo07zvLcG0sZ8+piJn/0u+QZOm7cOB577DGGDRtGXl0V7tbiGPbwDibQXnRgsFWqmRrTGz87R96Ivl8q47777sPRwRpBEHB392DM6Fg6dQxg8MBoFAqZ9DKlUIia0Cat5+W6K+wtOcA1hWg2t/YV54FivTgGFd7VHDx4kK5du0pzXml5Lcb6Asnq4XLDs910XFpa2mK+MAoWcrSVVBvFtv5RkM4rEeLLaq62knK9Fn9/f2prRaeVTbvO8eybSZJ2z2IRaNrW2KShq65tkPbd3g5V+nqMFjPPhSaQ6BNBlaEBuVyOm5sbOp2OWq3YJ5XVt+4tb2pHU/kGg0FqSxMUjUKpyXR74bDphdTVseV/39XBhrIbtIAbD4t7+5566h/06m019d4WrYLfvwwrKyt69erFG2+8wZYtW/D19RU3Tt+AwMDAFp8mE92d0GQqAxr3YLQ8ByStSn19Pc8//3wLAXPLli0sXrwYELVr8+fP57nnniMpKYkNGzYQFhaGySSa+vz8/Ni1axcTJ05Eq9Xy0ksv8dlnnwHNi/KNb41N+W6EtbV1i/M71akpxMGNuJc30+vXr1NTr+fs1QKiQnyw1TS/uUcEin3dtNcPICUlhd69eze2w0JmlqgBKa+oo7RMnLDj40K4lF4gCVOpqanodDpi2vuTV1xFXnEVtVo9KqWStMxilAo5ttZqxry9lGemJjF9+nRkMhlmsxldg5FxT/1AZYUoIMnlMt58fxjtO/phNJjw8HKU6nby5EmC/FxJTROF48KSagxGE4IgMOXjtZxKzSY+Jpj4mGBJOPf19UUQBEKDWk7ocdGBpKblc/laMXqDifhOQWI7Gxc6JwdrqZy2IR6YzRbKK7X4+zRrKONjgikoKMBgMGCxWOjaMahFGRaLwKkLOdJ52rUi+vbtS2JiIgcOHMBiEajV6tHpjTwzNQlrjQqz2cLJiznU64wkbUzm5Q9XUV9fT1JSEg899BAWi4AgwEsfrqSiWotMBgkdQ0RzaaA74z9Zw9Wc0hZjqWwM++LgYE18fAhFRVWUldXSJT6ES5fy0emMFBVVSVsjdDodOoOJyHbetA0SzXLhIZ6UV2mRyWRYW6uxtVbz2n/64OcnCkAAF1LF/urarfmlrHNcsOTcYbGIz3RDQwNBQUEUFVVTVFTD5cuFdI0PAaCoqKpx3ETHn86dm7WUCoUCuVzGpQxROGloEEPAxMcEUVpRx9MTl7Bj/0WMJjM7d+5k1qxZmEwmxry3jI37zwOQniWOd0SwF8WNz1xpZR2VNfUsW7aMxMRE0VmnYSWCuQAMRxGMmTz/3FBWL3kIobzxYy5myZIlDB4smqcvXyvC3k6DWq3k7MVcItp6k19URX5RFSVltcRGB1BYUs3mzZs5cuQI58+fJ6U0j1g3H+xUar46c4BBW34GxPnr2b1rKKqvJSnjtFTG0qVL+XXlMQQB/j/2zju8imrr/5855+TkpPeEdJJAQkINkIQSCE0EG02liMpVFEVF5IooNsCC6BVRsCFSrPTelI5ICwRIIA3SSe85aafu3x8TDkRA0Su/977vPd/nmSeTmb3P3rPXnpk1a6/1XW1Dwln1zSbSM4o5cjSTqqoGzAKUSkeUKlkJGTBgAAUFBVTrZauqf0QgGo2G5uKWKPOGPPRmA119u6DXy1byESNGYDCYSErJp6k6nVOnz2EwmIiNvjq347qHoDcYOX78eKvnxRX082lHYUMNzSYjaoX84eqtccLd1p6ioiLCwsIQQlBQXE1hSQ2pF2UXBwd7NfZ2NtjbqYmLDqG4rJa2AR6tPn5/C5MQ1Omb6OEZxAsn1+Os1lBUVMTAgQNJSkqyPKMyLpVcVzeuu9xGeQuzQG5u7nX+2nZ2NgghMBiuf6YD1NfX09zcTO9OV8dHkiA2KohzF6+ucHUIku+jixcv3vRarLg9sNK5/A/CxsaGgIAAmpqa/rjw34wOHTqQm5tLcHDwDc+fOXOGvn37MnLkSEB2cP7tsrS9vT3Dhg1j2LBh9OnTh9dee43Zs2fj7i4rAuXl5RbflczMzH+7TyEhIezfvx+z2WxRLpOTk2/tgq/BsGHDeH3eo0xfspma+ibeeWI4a/afxcfdiYfv7AmAg8aG8EAvnMPD6dmzp0zPMUXibHI+pRV1hLdvQ1lZHX17taNdmA/9+4ZTWVWPp4cjF4EpU6awf/9+po4fiEKScHe1Z9LIXhhNJj7+9gBRYW2ICPHhuYkJnErJZ+I9Iy3XlX2piPq6Zr7dKhOtXsooJqpzIO+/uYlhI6KZPO0OAHr06EGbNm1QqRQ4OWgI8ndn2uRBMped2UxIkBdJKfnMfPpOJAmWfXGc+++/n4ceeohzqZd5+uEE1C0O2rOevhOTycSvp7JobNKz5edzPDWxP/VFj1lkaGenpqS8jjF3dWfMXdEcOp5JfGw7vDycWPDaaDp38MdOY0N9vR3r1q1j/PjxTJ80EB8vJxzt5MACk9nMufRCfDyc6NEpiGcnJvD8c0mkpaWxbt06EhIScHKwpb5RR3yPMO4fGo3JbCbnciW+Xs7cM6ATE++N4XJBPm+//TaNjY1UVtfj6e7IPx8dzKqtJxg1uAvOjhoMBiOvfLwNO40NL/1jCL0+GM+WLVu49957+XpFewwGEyEhngQHe7D6x+Ms/OghOnUOYMuWJL7/cSo52WXY2toiSRKXLl2ib49QDEYzr0y9k9KKOhwdNHSLDODwyYt0iwrk+4/+gcFkwqirZ8GCBZw/X8Du3cncOyKaAQM6UFoygNBQbzp2CsBsloM7PvhwPJ07+6PX67G3tycrq4DAAHdOnMzmH5P6odMZCA3xIjzCl75925OWXsQTTwygpGQCo0ePJjo6GqPRxKnkPF54cjBuLRabCSNjqG9oRpIU3DmgIyAHY3Xq1AlJkvji1bG8vewnLuaX4+ZsT1m1lgBvV2q1TWhsbRgcG46NjZINGzaQkZEhL0dq7qKxvpq8yy6Iho+5mHmRtm0gLQ3s7aCtm4HKykrLvX46OZ/Es7m8M2sEW/ckM7BvB2Y9e6d8n7g7MaRfBxYvvxoEMWzYMJ6IjKVW38xn/Uey5mIyTi3+YmnVZVQ0NyKEQGcy8tVXXzF//nx2795Nn97tSE0rZPrzUxk/fhzffvMVCQPuIDm5iPj4eGa+NIcDR0p4afoyBg0axPz583FJcCY6uCsPBI9iyL4BjB0/jsqgMjp0jOTQmUM8NeZJGnK1DB06lO7du6M3GNm84wQ6bR6rNx9n2LAhTBgVS32LD+eD9/UEBF999RU2NjZs3bqVs9278UHyXmyUCh5tF0e2toJRwV1ZmnGE5yITmBzel9KmOnbt2sWWLVvIycnhkft7YTSZyS2ooF9sO2xsVDQ26fli/gQC2riw80Aqs54eyvHjx+nVqxdffvkl7+f9wrSogazPPYNA0Mc7FI3SBrVCyQc9R1HR3EBYWBjDhw9n0qRJuLv2wd3NgdMp+cTHteeh0bFs35uCj4czY+6KbiWTd999l5UrV+LqqqShQYdarcTGRtlK6VOrVTg62lJX14yrqysajYadO3cy7f67qKipp6iijtmPDMHRzpZT6QX4e7kQHe7PzPEDSUzPR6W6jWrI/wHr3G2BsOJvxyeffCImTpx43fGJEyeKjRs3ivT0dJGbmytWrVoloqKixPr164UQQhw/flyEh4dfV+9mx3/v/KxZs8SsWbNaHQsPDxfHjx8XQgiRkpIiOnXqJD7++GNx6dIlkZmZKdatWyd++OEHIYQQK1asEL179xaJiYkiMzNTTJs2TURHR4tPPvlECCHExo0bxYYNG8SlS5dEdna2mDFjhhg1apQQQgi9Xi/i4+PFa6+9JnJzc8XmzZtFnz59xMCBA3+3f3/Up9raWtG9e3fx1ltviaysLLF69WoRExPT6ndvBdOnTxdCCHH3rGVi1KsrxLHzucJoNN2w7Ny5c4UQQixdulRUVtXfsExNbYPYuiNJCCHE2Ec+E35+fmLp0qUiOztbGIxGYTKZhclkFpdLqsVjs78Tvcb9Szz4wteisqZemM1my1ZQUCDS09PFzk2nxcP3fnTL13Mho1BczC4VOr3hd8vpdDpRUFAg5syZI979dNcNy+zYnyL6jv5A9H/gQ3Eu9fINy2jrm8Tir/eL+BHvi89WHhTVtQ3CbDYLIYSoqNKKd955RwQGBopJkyaJ+sbmG/7G9gMp4oNle4QQQpSVlQmdTidKS0tFRk6paNYZLGNSWFojvtl8QhSV1Qq9wSjq6puEEELccccdws/PT/j5+YnTF/JFbmGl0OmNwmw2C8NNZCmEECaTSZSXl4u6uiah1xtFTU2DqK5qEHq9UTQ26oRW2yQMBrn+qcRsMXToUPHggw+KM2fOCIPRJIxGkzCbzcJkMgltfbPY9NNZMWjCIjH/s903bfOrL/eL7OwyYTKZLXUNBqOor28SjY06YTDIcjty5IhISysSOp1BFBfXiEuXSoUQQuj1RpGfXyH2708VObnlQq83CpNJ7ofBYBB6g0FU1TSIxLO5Ytrrq8XMtzaI8kqtZQzLKurEjDnrhJ+fn5g+fbowGo1CCCGqahuE3mAUpZVacS7jxrL+9ddfLfWEECLp9C8iPDz8uu2hB9sLs7FALFiwwCKX+BHvi0EPLBTfrj8uCkuqhcFgFAaDfD9UVtdb5tCV8lfaGPfTDyK9quyG/anX68SXF+Rn2PTp08U999wjhBBixks/ivkfbBdr120V9957r+jYsaOIjo4Vz7/wgbiUVSp0OoOoq6sTv/76qwgPDxeZuZkiuz5X/FJ+VAghxNh3J4iOcZ1EZKdIcd/o+0RWTpYwmUzCaDSKlJQU8fiMVSK670MiIiJK9LnnbTFz3vrrx/jNtZZrWbp0qRBCWM43GfRCq28WDQad0BkNoqJJK4QQYsy+pZZrGD9+/E3vOYPRJPQGo2hq1t90ni2+sF+cryq86fkdO3YIPz8/8fWPR254/tr7+lq5zJkzp9VzSqcziLKyOstWW9t40zbLa+pFs94g8kqqRH5JtWho0onGZr24dLlcnLiQJ8qqtUKn0920/r+LyFcW3pbtfzusKdtuAxYvXszJkyf59ttvWx3/9NNP2b9/P3l5eZhMJgIDAxk7diwPPSRHfP1VAucbnb9Cj/Lee+9ZjkVERPDNN99YogcTExNZuHAhFy5cQKPREB4ezpNPPkn//v1pbm7m1Vdf5cCBA9jb2zN58mT27dtHbGwszz33HHv37uWLL74gKysLpVJJ165dee211wgJkZehjh8/zrx58ygsLCQ+Pp6YmBi++eYbS4aNG/Xvj/oEcOzYMebMmUNRURFxcXH06tWLH3744U9l7rCmbLOmbLOmbLOmbPsjWFO2/e9P2dbxlduTsu3C/D+fsu3LL7/k22+/RavV0rdvX9566y2L7/21SEtL4/PPPycpKYmGhgbat2/P9OnTLewCfwesS723Ac89d+OH1zPPPMMzzzxz03pxcXE3VO5udvz3zv9WoQKuKxMTE2OJWPstNBoNH374YatjkyZNsuwPGTLkd6N4e/Xq1Yos9rf1b9S/P+oTQO/eva9jeZ88efJNy1thhRVWWPFfiv8Qs9aGDRv44osveP/99wkICODdd99lxowZrFq16rqyqamp+Pv78+ijj+Lp6cmWLVt46qmn2LRpU6uAzX8HVoufFf918Pf3/5/ughVWWGGFFS24bRa/l2+Txe+9P2fxGzVqFAMHDmTaNNk6XVBQwJAhQ9i2bRvh4eF/WP/uu+9m7NixPPLII3+pv7+F1eJnhRVWWGGFFVb838NtMmvV1dXdkETb2dn5OqodvV5Peno6r7zyiuVYYGAg/v7+nDt37g8VPyEENTU1v0vh82dhVfyssMIKK6ywwgorbhGrVq1iyZIl1x1/9tlnr3P1qq6uxmw2X+fP5+7ubuFI/T189913mEwmBg4c+O91+hpYFT8r/ivxyCMf8fjjCQQFeVi4zxwcbCkpqeXb735l3z6ZVDsjfTEzZsyw8LJdi/SsEhYs3UNGS85bW7WKJW8+SHhbz1YUBQajCWEWZGSXsnjlAfrFtqdXdAgBvm6AwGA0o8CIk5MThYWFeHn7UF6ppbnZgL+vGxrbG+fubWpq4v3332ffaZnYNcDPjbdfGUFI0NXUXFU1jXyz5hibdp4h6/Qi4uLieOWVVyx5e6+F0WimtLwWs0ng5yuno1IoJJKTk7G3tyc0NAyFQsJgMPHT/vP8a/HPlrovTbuTwQOisFXL1y2EoLGxkeLyRtxc7XF1skNnMFqyH2QXVLJm+2m6RfrTtZ0jbdu2beGkU2AyCSQJyivr2bA9ibVbT+Hj5czs54fTJSoAhULCaDRSUVGBq6srOoNMruvmao+Tgy3p2WWs3XGa154Zjo2Nkrsf+4zHH+xNz0g32rZt24oLMregkkefXWH539JOx6vtJCUl4enpSWBQcCu5gEzCrLZR0dikw2gSODnaUlpSzL59+1r5tF6BEAIhZFLe6toGdvycwtefzeKTTz6hS5cuSJIChUJCbzBiMJhkPk6VkqLSGnbtTaFDO1/ahXrj18aF1NRUQkJCsLe3R5IkDhxJ580PttE1KoCxI3sS0a4NXh5OLVyB8nxRqVQoFAqG3CsHusR0b8ukiX0J8HPDzk5NeaUWlUqJj5czRpOJ3JwcFi1axKZNmwiNmY6biz3ffzZZptxp0GGjUlBcVkdK+mU6tPMlyM+FsrIyli9fzutTvgcgMbUnK9cYSc8ooai4lGlTInh6QjqgQnJ8gbKG+/Dy8rJQNF2LnPwKjp3O5v67u2Njo7TM0/Xr1/L666/T1NR002XCksJqXNwc0NjZIEkSq1atYvbs2fTt25cff1xNcVktaRnF3DEg6rq62vpmNm9ax9y5c+nQoQPvv7GIdl2CadQ20dSgw83bGV2TgfLLlUgKBYHt26BUKUCSeS+PHDlC527xBAe6U1nVQGZWKd27BOHocIXWSKBSKpj7wTYSYpyIi4vDaDRio9ZY7qGi8jpmL9lGeq78fPH1dGbzwhv7MyeeyeWfb64DoF+v9jxwXw86dfBDpVIihKChoYFPPvmETz/9lE6VAyz1bO3UPDR7FAkP9sYrwANhMsv3rraZM+dPs3HjRsaNG0evXr2QJKmFUFq0pJKTLHO6sVFPU5OhVXCHzTs3D7r5V/xd3N+uM/9KOsxH946/abl/F7crvdqjjz7KqFGjrjv+d1rlAA4fPsyHH37IkiVLLAT/fwesBM5W/NehS5cuvPXWGBITs/nii/04OWlwctLww4/H2LHzHC/PuofYFvJcAB8fH4QQXMwto75Bx5a9yRgMJkxmwcevP4C7iz0KSeJfL4/Cw9WepqYmkpKSOHHiBCaTGRuVksycMopKa1n4xgN06xjA6m2nmPLK92zcfY6yCi22tvILYffu3Tw983ucHe0IDfbi8xUHeX3+FsrK6ziTko/RaGL3fpnxfsOGDcyaNYv7hnXFTmPDZ+9PICTIE53OyIbtSTQ06nB3tWfqYwncM1TO1+rg4EBBgZzSqaa2kUO/ZmAym1n+7RGee+l7nJ3sCPB340xKAT+uP4HBYCAiIoLQ0FB+2n+BWW9u4ExyPvfc2ZWnHhsAQHyvdtw1tAunz+ZRp22Sszy0tBUW7EVhSQ3nLxaTk1+JBMycv4kLmcXMe+EeIkJ92Lt3LyqVii1btiBJEgKBpJA4fCyTJx7ux4TRsXz14cN07RjInkOpvPz2Rpqbm/Hx8WHp0qWcTS0gLNiTwpIaHn/5e0rL65j3wj0kp8sKgYebA/5tXPHy8rJw8lVUyAS1bQM9iOsuR6J7ujvy1cKH6dpJbmfGG2v5+eefiY2NJS0trZVcyiq0lFdo0emMpGYW4eCg4dyFAh5/fhULFy5kwoQJADwz83vqtE0IISir0FJSVkezzohSKfHj+hNczC5hzZo1SJLEvn37APnFWlvbhJ3GhuqaBsortWz/KZknH+mPpJBYtfooBQUFdOzYkaSkJD5dfoCGRh0JfSKI6x6CnZ0Nl4trsNPIRLsXc0r512c/o1arUalUrRTfhkY9G7acZvqs1Tz8xDLy8ivx9nSSeeu2neGHH37g448/ZuDAgUgSvDHjHkumllfmb+ThaSvYfySde4Z0obaukaFDh7Jw4UJmzZoFdnKO28YmFWFtVfxzqlerLBCS00tgfz+zZs1izJgxbNu2jfqGZh59fgVjn/6KZp2Bskot40fGICkkMrNLOXk2F5VKwciRIy3BZ+MHvtdqmz5Rzt/t4+vKhbN5fDZ/OwAPP/wwI0aMYNGiRZw6l4eNjZLB/TtQ39DMjDfWoa1vxmw2s3brKd54fwsDBgzgs88+48cff+TyxVJevGsBkkLCy9+NQ5sS+eDpZQRF+GHfklLv2/lb2LNnD87OzowaNQqdzsDjz6/ixOls+veWeSPf+WgHWbnllgxB054YhMlk4sUXX8Te3h5btYr03DK+WP8rbTyc+PLVsbi3ZOwor6rnXEYhReW1mM1mvvzyS0uu8h5dgyzz2NlJQ0SYjyXDxrafktHr9cyaNYuHH37YMv4KhcRbm2fSfXBnPp/xDRmnsvh+/iY+m/ENM4e+TWVlJe+99x779++npqaJqqoGTCYzKpX8cdLcbKCxUY8kSTg42KLR3PgD9bcYE9aJCFcvShq0t1T+38Jtytzh7OxMQEDAdduNFD83NzcUCoWFCP8KqqqqLJy3N8KpU6d4/vnneeedd4iPj/93RuE6WBU/K247IiIifne7fPkyWq2WefPmMWDAADp37kxCQgLTpk2z3CwnTpy4jkH+947/Hp588kkyMor5atkhBg+O4sCBNDZsOMWdQzuzbt1JjhzJZNzYXpbyPXr0QKfTEeTnzqffHWLB0j2s3ZWEm4s9BqOJUUO7Mjwhig6hPqzbdQYbGxueeOIJunXrxsJl+2hqNtC5gz8r1h1Frzdx6lw+Px9OI6egki++O8zjL31rsXZs27aNDu3boLZR8suJSwzoG8GhY5n86/M9RHcOIiu3nLIKLdXV1bzxxhusWLGCh8bEMiQhEmdHO3Q6I6vWHOWTr/Yz78MdSJKcTuzhB+Tr2b9/Pz/88AMAer2RDu19OXA4nVU/HiWsrTdqGyVHjl1EqZD4atUvZGVlodFouHDhAgsW7eLE6WxeenM9tXVN3DtMTpc3/v449h1K49jJLDS2NgwbNswSeV1UWkPXyADeXrKLp99YTbPeSEyXYD799hB5hZWkXiohLi6OrVu3olAoSL9YgtpGxYX0IsLDfNi4I4lHHpRTjqVmFvHux7vwdHdEpVKxYsUKRo8eTe/uoWz46SxdIwNo1hkwGE0YDCZ0eplkNq+wiiOnsnBwcGD79u0MGDCAf0xfiSRJSJLEpHHy7z/5SD+5nYwi3l20i9Pn8vHx8eHSpUt06dLFIpfM7FL827jyzMs/8t7i3XTtGEhWThlz3t9G3uUq1q5dy65dMhVI5yh/HB00pF8swcFezVP//I65729DkiQGJ0Ti5uKAm5sb48aN49dff0Vbr6OmthEvTyeOJmax5KsD+LVxZcfPyRw+ehFnJw0/H0jFzc2NvLw8xo0bx9qtp6nTNpNbUMGE0bEcP51DQWEVdho1BqOJX45dpGMHPw4fPoxCoWhlWUtNL2L/oXRy8iqwtVUR0yOE4pIaJCRqa5v48ssv2bVrF1OnTuXxCfH4t3EloMUa/MKTQ2gf4k2gvxt19c00Nhm4dOkSa9euZcWKFUgOco7xhB7HmfGPU9zVPwV1CyEzkgPYj0doF7Jnzx5OnjzJ1KlT0elNJPSOoEfnIFRKBR3DfWULqcnM82+s5cV5G7hcVIOdnR0jRowgMDCQ6sr6VltcQgeMRhOHfz7Pa0+tYtvqEwCcO3fOQkicmlGEk4OGisp6auqa8PVxRm2jZOOOM/SLa8fpc/m8+uqrDB06lKamJj56biVhXYLQ2NuyYt5GEkbGkPJrJm8/+hm+bb04su00qxfu5IknnkChUFBTU0NYiBel5Vr6xIRhNJrR6Y0oFAqEgJNJcqo4BwdbnnnmGYYNG4YkSazbc5bIEB9+OpbO6p+SsLFRMnqQfJ8N6xtJuyBParRNbNmyhXnz5uHt7U1OfgWHjl1kwhg5BZ9CIaFWq0hryeZyLvUy06dPR6lUtlqGHDKxH+2iQ3h1xPsc35HECwlz+GH+ZnZ+vZ+8ljoGg4Hm5mZMJjNms8DGRmnJ/lRfr6OxUY9eb8RsFtjbX5+7+LcIc/Hg5Z4JPHdoK0Zh/sPy/xegVqvp0KEDJ06csBwrKCigsLDwpilHk5OTmTJlCi+//LIlLeXfCaviZ8Vtx5EjRyzbY48r0N8JAAAgAElEQVQ9RnR0dKtjvr6+vPnmm5w5c4YFCxawa9cuPvzwQ/z9/S15Uv9OxMTEcDIxB5VKQUSELycTcziZmI2vryuenk6cTMwmKsrPspTh7++PSqXCVq3i8Qf78OEroymt0OLn7UJyeiFdIvwZENee1EslDE/oiEKhYOfOnWg0Glyc7FC3PCw7hvuRmJxLl8jWUcUOdupWKZg6R/pzIaOIY4lZREXI/Ug8k4sQgpLyOu4e0pl169ah0+k4ePAgvj6ulvRRJmFGb5Bz8SaeycVsFri52uPr43JdNLO7uyPeXk50aN+GOwd3pFOUPxfSizh6MouoDnK7NTU1ciqpFishyOmXTGYzjg62tPFxpkP7Npw8nUOnSLm+VqslJycHSZJIzSrGZDbTOcIfs1mQmJxHlw7+SBLYa9Ro65vp2rUrBw8eJCYmhpQ02Up37sJloiL8OHU2F3s7NWq1EjuNmi2rpvLUowmUlpayd+9eAgMDsVWrWLv9NCazmYkjYokMa8PhxEsEtigoAF0jAwDYu3evPOb2soVVCEF4uzYolRLxce2xsVFiZ6dmyzdTWfnJJKKjo9mzZw9BQUH07NaWCxlFKBUKJEnigfu688+n70AIgZOjBucWyw/A2bNnAXh0fB8kSbYsllVouf++7syYKteJDPele5dgkpKS0Gq1nDp1CkcHWxQKCSEEdXXNDB0URXLqZRoa9ZxIyiEqwg+1Womjo6Mlh+wVXC6qtsyXzpH+GE1mdDoj7UK96dCuDU8//TRmsxlJkvDydGxV19ZWxdxXR6KQJGzVKvT6q5kZDhw4QM+ePRk/IoaKqnpWrDkKwE8HLjDnn/cSFx2CWqUkKeVqKr6DBw8iqQJBcZN0kzadkCRb0B22HDKbzZw6J98f9w3tyumUPBwdNGgbdJzPLKahUc4Bu/9oRstyufk6lwWlSsGdI3ugUEic/KU1fZVSqcTZ2dliJVPbKLlcXIOXhxPPPj4ISZKIivDF18cVLw9HDh06hBCCrKwshBBExbUjLTGLo9vPoHGwpV2XIE7vT0UIgXNLvmeNRoNKpaKgoAA7jZqoCF+8PJ0oKKrG18eFl6cNw8Feja1ato7l5Fei1Wrp1asXCoWCH3+S53HXcH+OJuegVCiIiQoEYGBMe1JzSujQ1puEhASOHz/OiBEj+PngBU62zI1rZX/sVLbl2uV0iGb8/f3x9JetTPEjY8k8lcWoZ+/k24sfszLtI6Z/Nhknd0fLtdjY2Fj80K4YimV3jKtKm5w7W0KpVODr63tjeQMapYrPBozg3cSD5Gqrb1ru74Qkbs/2Z/HQQw+xYsUK9u7dS3p6Oq+++ipxcXGEh4eTnJzMsGHDLLm6MzIymDx5MmPHjmXQoEGUl5dTXl5uyef8d8Cq+Flx2+Hl5WXZ7O3tsbGxaXVMqVRy6NAhnn32WeLi4ggICKBnz57MmjWLwMDAv70/3t7eVFXV4+Jij0qlpLqqnuoqmXjWw8OBqqoG1GoVTi0vcnt7e44fPw7AnE92om1o5vlJAwBo1hvlpUQfV7p08MfTzZHMzEyLCf/xcX2Z/f4WarXNeLg5UlXTiIdbayLcFyYPbrX85uHmSGV1A5XVDdiqVTg5aiwPWk83BzzcHfnuu+8AKCtr8f/xcUWhkEjLKGbMPd0JDfbEZDKj0xksFp42bdpY6ny45GfqapuQJInz6UXMnDaMLh0DqKpuoOqadq+wPV3L+jTxwd4Wv8PgAE9UKiWV1Q14uDtQVS2P45VItV0HUqmrb8bT7Wryd083Bx4ZFYejgy3HzuRgY2NDWVkZ3t7e9OzWlrTMYs6nF2KrVln8uuw0aiqq6nlxznrKKrT4+fm1+hIuq6qnoVHP0P6RvLFoOxVV9RZ/KgAfTycUCgVlZWUoFApmPH0HNbWNmMwCG5WSAD83HB1ssbe72s6W3WdRKpUWi7KPpxOV1Q04O2pQKCSiIvx48/2tgLy89u6rV31+srKy5H6Va+UczGYzbQM9GNSvA3MWbKW5RS6xPdpaZHj27Flee2czzk4aJEnirjs64+3pzKtvb5LHrkUu/m3kpaPfpnpsatZb5Obh5oiNSpZ7XPcQ5v5ruyWHKshK/7XYsvo5ggLdUSoVZGaVoa1vtpzT6XSo1WokhcTMt9aTnVcBwKSxfVEqJZwcNZxOzmPDjqSr8mi5JhTe3BCKliVfc0Wrw1U1jfj6uNChXRtOJskuA2azsMwrgMpqeZm+qanJkk7wCnoPjMTdS5Z1dcty/hWEhYWhUCgsvlJKpYLsvHLeXbSTrNwyklMvU1Mrj2l8bDuMRiNmsxmTSf6QcvdxobqsjqqyWsv/JqMJXZOeTn0iiIprx9y5c5EkyaIABfq7IUkSgX6yT+iOvSksXrafkGDZ0b+xUQfIy4Egz+O6+mY8XR2orJU/er3cZFn5e7vQpZ0/CoWCRYsWycq1JBEf267Vs+KK7Ktqro6Z0Wi0RKG6t5E/iHxDvenYJ5z20SG889BiFk1dRkRMGHPWy4Toc+fOpbKykj179uDqao+Hh6PlOdXcLOewVquV2NpedR/4rTyuxVu9hnKhqpRN2RduWub/Ku6//36mTJnCnDlzGDt2LA4ODixcKPvZNjU1kZOTY8kL/vPPP1NbW8vXX39NfHy8ZXvnnXf+tv5Ygzus+I+Ap6cnBw8eJD4+3uLvdivo2bMnU6bcGkP+reBaVssr+2azmfx82ZqRnF5I0oUCAn1diQzz5Y6+ESgk+QVrFmay8sspzMlhw4YNzJkzB5VSwRvT70aYheUHr23j9efv4o5+kZb/77///ht06uqubxtXMrNKLUuJV5Q60VJo866zDOrXga8XPYoAFNcolFdeYFlZWeTmVeDqJvsODYyPIOXCZbp2DrQsD90MI+/uxsQHe7Fh22keeqAXb70q53IenHD1GoYOHUpCQoLcVn7Fddfs5KDhkdFxzFqw2fJyUigUqFQq3F3tefyFVYS1lV8g1waqRHcOJK5HCFXVDTRqSyx5pAFslEoc7NQcPnkJZwcND9zVHaVSgQQ8MirWUk6hUPDxxx8T6OfGmZR8+vWWFdRrFe/DxzKx09jwVItyP2jQoFZiuFL2gyU/UVQiKwHpl0ro2bUtP6+bjsk41SIXnU5+mDc26bHTqPFr48rCtx60KM6ODhpcXeUXcVhYGC9MvYPGJj2ODhqOnszC0cGWt2ePZPqra24qky5R/vh4OTO4ZR49cG8Pyzl7OzXHTmWRk99awbp2Tg0ZGEV1TSMfLfmZ999+gMgIX1TKqzaBp556CgClQsHGr5+2+KdJkqyUKZUSPbu25ZO3xxIeMvU343nr5pHY2FgeuLcHyhaL51OP9v/DOr+lob3r/hhSz+YT1S3IcszZVZ7nBw8e5O677yY6OpqJ98uuD/cN60pVTQNNTQZq6hr5dt1x+sSEMXJ4NE8+nIlCoaB3796MnVF2TaNX2pb/6hr1FOWU8cGOlyyrBElJSdx5553yfQ9ILWaiOxKiGNwvkpy8clyc7S1+eL93XVd2ZUuzvH/x4kUmTZrE6dOniYmJ4e1XRgCtZf9HY6ZQKkCSePfhJTS0KJkLpyxlydG3+efSJ+k5rDMPPvggjY2N1NXJH4kqlRInJ1scHOTNZDLT3GzAzk59Q3lcwYjQKHr6+HP31pV/2L+/Ff9BLMVTpky54bvqtwkYnnvuuZsmgfi7YLX4WfEfgTfeeIM9e/YQGxvLxIkT+fTTTykqKrquXHR0NL169eK+++6zbKtXr/5TbZWVleHu7khtbSNGowk3d0fcrlikqhpwc3NArzdS32L1KCsrsyzFerjK5S4X1wBwKjmP85lFpGWVUFHVQGmlFg8PDy5cuPpVW1Rag6ODLZU1Dbi72FuUnecfG0Rs17bMXrAFo1FeWtu9ezeV1fV4uDng7mqPTm9E29BseUG4Otuzdusphg4dytChQ3nppZcAKCmtxWwW2GnUzHl/G3c88BETpnwFYLEWXlFeAdIvllBRWY+5JbBj884zKJUKvD2dcHd1kNutb7a8wCVJYuzoGJ56bACz39rI2WR56Xfmm2sxGk2kZxZTWdVAWIgXn3/+OYcOHQJAY6vC2VFDZcs1d+8YiJuLPbMWbOZUSj412iYMBgMzZ87EbDaz+8AFyivrLdee3aKw6HQGNu86y5bd56isrkehUODoeNVq1T7EC6VSQf+4dnwy50H5JdnS78fH9sXBTo3ZbGbmzJlER0czbfZqdHojSoWEwWiisLgGg8FEc7MBd1cH0i+V8sSMbzAajZYxKKvQ4uHmQGOzXl52L6uzyKWxZRny0+UHW8mluEUuTU0Galteni/NXY8QYDTKivgVS+y0adPIyStHW69DCEF5pZZ5/9pO106BRHcOsoxJYYlMD2FnZyfL8lIpFVX1JKXko9MbWbftNJXV9RhNZpRKBb1jwti/8Z/k5eVZ6nz20UQeavFj7RkdjI+3M/PnjpGXLZ3scHTUMGliX7KysujUqRNCyJHBarUKlUq+F1QqJQePZVJRVU9KeiHBAR6WeTlr1ixZMObyG9+EV44rrir2ycnJJJ7NwWwWbNubzGsLZGuqQiHhfo2V3KPFAmZnZ0d5+dXf9w10p1tcKNvWnMBoMOHWspzdtp283Dx8+HCEECxfvlz+KJDk5cmauqZr7jm5HVu1kuHDh1v6tWP5IapKa3HzdsbNW3bgry6rRalS4ujmQKO2mfrqBiZMmEBhYSH19bK18WJOuawMtcwhlUqJWq2iQ7hsEewU6c/3339PdbW89Ont7ijfL7WNuDvLCmtFjfxb5dX1VNQ0YDSaiI+PJzQ01GI1OvBLRivZG4xmy7XI7aosgQfVpfLHSmVxNVUlNRalDyAv9TIAfUfGMHbsWNLS0mRxmYVlBUGOEpeoqWmiuroRIeTzQCt5XIt+fm0JdnIjecJ0Lj0yk0uPzCTA0YUXusVbrOO3BbcpuON/O6yKnxX/Eejbty+HDh3ik08+oUePHmzdupV77rmH1NTUVuU2b97MmjVrWLx4MYsXL2bKlCnU1tb+qbYSExOJ6RmC0WgmI6OYmJ4hxMSGUFJSS0WFltiYEFJTiywPs8TERNq3b49ObySuW1sAOrb3Q6c3EhbsTWJKHieTc3FzsScju5Tu3buTlZWFXi8rA7ZqeSnkfEYRPbsEk5JeyCvPDGNgn3CmvbmGXxIvWa6zvr6elLRCOkb40TsmjNQMuR8x3YJb6BTM7P8lndzcXHJzc4mMjKS4tJaTZ3IB6N1TjkY2GuWlRYVColln4Oz5glacUXq9EZPJTHlFPe3CfAjwc8NgMBLezofecWGkpsvturi4IEkSPXv2ZNL4vsx6cwOnz+bRvWsQxaW1nEu5TPrFEjpHBci+bEGevPLKKxgMBsxmM/ff1R2lQkFKRiGTx/YhPNSH3YdTOdXiD6ZUKGhsbCQ0NJQ9e/bQMcIPgNjuIaRmFNE1KhC93kizzkhke1+09c2kpBUSHh6OTqfj8uXL6PRGBveRaSRefHcj/3jpG2q1TZw+X4DRZGbSzG/YdzQDSZIIDQ1lzJgxlFVo8XSXl64yL5VgMJhIzSxGpzcS2z0Evd5I/uUqioqKMJlMFBQUcOpsrty/FuOtxtbGIpfAFr+p1IyiVnJJbJGL2SxwdrajWWfA0UFeKs4rkOURGhqKo6MjdnZ2mM3CMl/c3RwsjvSSBLE95DHR603U19dblhOvyNLT3ZHUjCJq65pISStEqVBgMJjYvPMsj09fxeuvvy5HTQvB5GdWsn33OQCWrfqFx6euYPIzK7mUXUZWCz3Rjp+SGT58OAcPHiQrKwtJknj9/S28/6kcuPPi3HUsWX6AsxcKCPRzw0albDUvhekymEtvfBMaziOEDmz7WQ7pdDo6d5B9MZd9/ytHT2WhrW/GycGWTuG+2LdYlQb2CUeSJBQKBYmJiZb6d90fQ11NE7/8dJ7MC4X06NMegIwLsjKTkZHBuXPnGDp0KFt2n6Wp2UB2bjkHjqRb7rk+sWHodAaKy+oIDpZl6+fnR0NtI6knLhEZE0bvu6NpbtBxKTmfHoOiUCoVhHUO5KV7P+Dw4cMkJiaSkJBAUUkN6ReLqalrAgEVlfU8/vwqHn9+FfktsjeZzMybN4/jx49jNpsZd2cPlAoF5zIL6d2lLSaTmcRU+SPrXGYhHi4OZOSVMWLECFJTUy3Bb+5uDq1kr1Iq6NXzKjNB//79USgUFBUVUVEot33+1wzcfVywd5I/BhQKiVe+lS1NC59cet2z9wqufEhese7Z2qpalsTN1/mdXsEHSYcZtmU5d21dYdlKGrR8k55kUbCt+P8H5Zw5c+b8T3fCiv8enDx5ksLCQkaPHn3dOZVKRdu2benduzfjxo1j165dFBYWcscdd1BYWMimTZt47bXXcHV1tWw1NTVs2rTpT5nG169fz6hRd2GjVnHhQiHjxsYRGenHxo2naB/ehtGje7Jv3wWmP38nO3Zson///vTv35+8wioG945gcN8Igv3dKSytwdFBw7uf/4SLkx39Y9sR5OeGAiMDBgzA0dERtVqNq7M9mTllBPu7ExrkiUKCfrHt+X7TSQqKqwgN8kRfm0WPHj2wtbWloMRMr55htAvxZvXGROzsbJj5zJ1obFUolXJUZn1NHtu2baNPnz4s+/5X9h5K475hXenQvg3tQ73x8nBk+pQh2KiUmM2C19/bQkN1Kjt37iQ+Ph4//yCiuwRSUFhN79gwunUOZO/BdPz93Ggf6s3eQ2n4tnFl+NDu6PV6XF1dOZtSQE5+BR+/N57orkF8u/ooqRnF1NU18fjD8bQL9aaxSU9UVAe6d+/OuXPnGBjfjeS0QsJDvBl9Zzf0eiOuLvY0NOlobNIz/6WR2KnBxcWF48ePM3hgX3p2CSY2OoTDxzIZfXc0O/am0LVjIN6ejkRF+HFH/yjsWwJiVq5ciV7pwbCEKJLTCtl7JJ0J9/UkJNADF0cNGlsbvvzhF54Y2xdPdwc0Gg2+vr506RzFkP6RSJLE9xtOYjSaKa+o444BUXh5OOLm6kAbLycS+kZiY2PD4cOH+eVUGUMHdMTL0wmd3kj3LkEMG9iRvIJK2od6U1pex/HEbL5f+R79+vXj0NGL/HryEoP6dcDbywmFJFFX18TAfh1QqZQ0NunILahAKemZNm0aJSUl9O0djZ1GTU1tI+1DvenXOxyTyURC3wjCw3xYs+kURqOZmK7eBAcHExQUhH9gKL1jwvDycGLNllOytbpBR/8+4dhpbLCzU2Mym3li0ijUajVCCHpEtyXpbB7LPp2EQpLIuFSKyWTG2dmOfn3CMRrNpKYV4WBnYOLEiUyfPp3A0O4M7BOBr48Lvj6unEnJJya6Lb7esk9edn4Fv/6yj8GDBzNz5kyUTR+D8TwNTc6UNdyPnfcitm3fj4uTEm9PNbYaezRuD5GcchGVSsVrr71Gly6dOXY6m+17UwBZuYjp1hYBxEW3pV+v9nQM96W5uZmdO3fy448/EtW2P5+ufYaY+HDOHM/i4K5k6moaeWTqYOzsbVCqlAwY3gUPDw+WLFlCWloanbsPJijQnQBfN3y8XLiQWUR8XHu6dQpEoVCwY28yUx4bw4kTJwgNDcU/xIf009kMGtub7gOiOLD+BPW1jbz+zVQEsPWr/ZRdrqJdb1+eeuopXFxcOHkml5y8Crw8nGgX4k11bSMpaZcZOiCKXj1DkSQJbX0zYaFt2b59O8OHD6djO1/SckpRKCT+cV8cBqMJPy9nSqvqOXjqEqMGdaG+UU9okC+ZmZmMHj0anVFF+1AfFn2xl8LiGqprGhk+pBP+vm6Wj8XHHn0QGxsb5s+fT8nxOjz83HhywUNo7G0J6RxIfkYRs1ZOpcfgzmQn57Pmg600eVQxceJEgoODGTToDiQJ7OxsUKuVLYq3hJ2dDUqlrIQ3NOhZsuQTAIYNG8ay6bP4KT+TBoOeBoOeyubGVtukqB4kll5mx5KlN+RJ/TvwxU/HZcv/37w9fWfv29Lf/1+w5uq14v8rFi9ezMmTJ/n222//sOzTTz+NSqVi8eLFnDhxgkceeaSVLwRw0+O/hxdeeAGNXR8mP55AYKC7TOAswNHBlpKSGr797ihKpYJZL91tITzu378/rm5uXPFcMpsFFy4Ws2jlAdKzS7kroSOvPTOMOm0TTo5XozuFEBhNZoSAjOxSvt94ggWzr1d6fwttfTNlFVr8fV3R6YxczCmje+cg/vXpT4y+pzuBfi7Y2tqyefNmFi6/CMiO5B+8eT++PleJPi/llPHORzvJzqtAV7q+FaXAtTC0RAKXV2oxGkwEBXrcsNy12LU3hfc+kn0Nd617Hnv7630zG5v0NOkMliXyW4XJbKa8Qsv6bTKB86D4CKY8moCPpzMKhUR9fT2lpaX4+fmhN0JZpRZ3Vwcc7W3JyC7lu80nef/lUZjMZp6fu44lc8f+YZsPTv6StcumUFPXiLOjHZIkp2Y6ePAgnTt3JjBQJnBuajYQ4Ocm+7pJUF3TSE5eBZ4eTgT4uaK2UXH+/HmcXf3w9nLCZBKolDLFxhVo65s5fOwiX6w4hJ3xMOvWrbvxOLQQ6qpUSvYcTL0h2fBvcTG7lPah10fTmkwmdu7cyV133SVTe/zzexZ/+BAVlVocHGwRZigtqyXvchXxvdohSRK5uTKB88aNG+nQ90X+MbYPY+6WlVMh5OW/4rJaTp3Lo3OkP4G+LpSXl/P1119bCJxPpsaz+Wdv3nvvPQYNGmQhXO4V246Vn4+kvHEEzs7OZGdnExUVxfQ31nL6mgjhqY/0Z8w93bFR3ZjAeUjnF1i1+0UAln20m/UrjgAw/c2RDBvT87pxWLt2LQ0mf+4YEEV5Zb1MdKxUYBYCg96EQiHR1Gxg21bZTzcyMpIFr39Eu67BqG1tqK3QYmuvxqg34niTeZ2RkYFS7UZQgDtV1Q0UldTQsYM/ahslJpOZy0XVtA3y5OOl++gWoSI2NhaTyYRKbYutjTxPiivq+PC7A3z4wkjmLd3NjiOphAd7Mf/Ze/H3dsFkkgm+i0vrWLH6KHsOyha6YYM6Mnv6Xdf1KTlZtuB2qhyAT7An32R8zDfz1tM1IYoOsWHY2t3Yt7qsrAxPTy+LT6cktfaJlV0ZWhM4P/jgg3z00UfEr/+cy/XXpzYDOHL/U6zOPMdH946/bbl6u8y4Pbl6kxf+uVy9/2mwKn5W/H/FzRS/hx9+mNGjRxMVFYVGo+HQoUMsWLCAefPmMWbMmL9V8fP39yeiw61ZCDPSF1v2g/vOuKU6eb8utOyH9Lq1B0TO8asPqLAe0/+wfNbpRX+q/G/rtOv6/C3VuXTu46t1ut1inbNX67Tt88djlnv06niF9bzFazl19VpupY3r2vkLY/Zn67TrfmvlLyVdI5e/UOevjFn7Lrcmy4vJV2UZGvPH7WQnXm2j4PStKfuBPa5Gn4bG3tr9kn3y6v3S2eMft1QnpfJqhpZbGbNrx6tz460tR6bY77raxl+YYwGDb83ydXnfh3+qnWvbuDZzx+/hvMdBy/7Zs+m3VOdWM3dcC8Orn9w+xe+F26T4ffS/W/GzRvVa8R+BXr168d1335GXl4fJZCIwMJDZs2czZsyY/+muWWGFFVZYYcX/GVgtflb81+G3RMZWWGGFFVb8z+F2Wfy6Tr89Fr9zi6wWPyussMIKK6ywwor/LFjNWjeElc7FCiussMIKK6yw4r8EVoufFf+V8B9ya07UhXuvOlFHtnvmluqkXfrUsv9XHM/bd/5jp+iLKZ9Y9kPibjGA5MTVZY+/4kT/V4IobiWI5NoAklsJIIDWQQQdwp+9pTrpmUss+38pIORPBlHcihyhtSz/SgDNX5Gl7/Bbm//Fu67Of5v3/jggyvDy1WCov9KvvxQQ8hfmjM3bfzzOhteujnF4p1uTZeb5q7J0fOrFW6pT/8W/LPt/ZcxupZ1r2wjveIvXcuHqtfyV4I6/Egz3t8Nq8bshrIqfFf+VUCoVTB3Tl7v7ReHiaIcENDTp2XMig0U/HsLN2Z4tH04Grn94bdl0moz0IsY/1Ac/fzdMLRkSFAoJs1lw/HgCwcHBBAQEXFfXZDKze8Mpkk9lM27yAELC27ScedtSprCoGi9PJ8xmgUZjc91v5OVX0MZnOvX19eh0Opyc3bHT2Mgsv0KQerGYj78+QEZ2KbHd2vLY2D5EhHqjUskve0mSKK2ow83FnsrqBjbsSGLN1tPMnjaMQX06WHi6vt94gpdaXjAqlYqpE/tzz6BOOF9DVwNQU9fE2h1JuLnYMerObtiorlcqyitkGpSgAPcbSOMlLl68SF1dHeERHeX2kSwZIhqb9ew9nMaJ09k8NKYXAX6uONjJL3s5YbxAoZCoqNCSeqGQ9u3b4Ovnil5vwqA34uJqz/KvD7Fi5U7eeust4uLiUKttUSikVrQUV/Dygs107xRITJdg2nhORaORr9doNFNWWUdzswF/Xzd0OiMVVVocHTS4u9ojkFAqJIqKxrF8+XIOHJN/L8DfjQ/eGUsbH2dLG9U1jZw5l0dwkCeB/rIsJUnC2dkFpVKBEHI2EIPRiIODLcUltZw7X8B9w7tZxuzaOaVUKtDWN7Nq3THWbD3NhJExjBoejburPbXaJjkjh+OzFBcX8/XXXxOZkMDo/l3QqFUIIdPnKCSJ0motJ1Lz6NrOn7a+7ki80NKGifS6Cj44c4hDRTkAuNnaMbNbf0aGdMTeRk29XofhniloNBpSUlL4ck0GmdkygfM/xvbhsXF9SMssxsfLuVUmDpAVlxdffBFFG1lBSUxMZPny5aSnp1NUVMTzz9zHUw9uAYUfktMMUlLisbe3p6qqCh+fNhSX1TL+6WX06hHCkxP7ExzgLs/t7Ums2XrqBnMOQpzdmNtrCDE+AehNJmp0Tbhr7HFS25JcUcLwFsXP2dmZZ54azJ13dGpF1XQFQgj27rtASIgXgQFX7+YxB28AACAASURBVEsHN3dsVSoKa2v5Ke0i7vb29GobSBtnJ2qamiivbyDY3RWn16YjhCA/P5+3Fv+C0WjiiYfi6d4lCI3axkKjIoQgO7+CL745TPbJ1n2IDfZn0ei7cXewtxyraWpmf2Y2iw7+isnOjunTp3Pvvffi6+tPaVkdDY062gZ5olarkCQoLavj6xWH2bu/NXHzoEGDcHO7ml5OCEFl5VXF29ZWhUZjg0qlICMjg+zsbJYtW0bs4P4M6x+Jk4Mt6dllLFqxn4ycq6nvnn04gb7dQ/F0feqG8rHi9sG61GvF/2qUlpZiMBgsCchvFdPG9ue+hE4oJIlzmUX8mpyDQqGgb9dQXnt8KKWVWoZP+4Ju3bpZtrlvbASgokLLP1+6m+1bk1i29AAmkxmFQuKblUfYse0Mffr0oaysjG7dujFp+IdUltVx7mQ2umYD+7aeoWff9oyc2JeSy1WW/LmzZ89mwoQJGAwGfvk1k8+/OoBarUIIwer1J1j53RFMLez4R49fYujQoaxbtw4vLy/yCqtoajawYecZjCYzNioli+Y8gLurPQ2NOrT1zZiFnA7u4MGDAHi6O/LCm+tYsfooTzzUj7kv3sOQfpGcOJvDomX7ABh7X08iI+X8r6+//jr3Du6Mk4Mt2gY5sbzRZKauvpmq2kb+8UAvojsG8v7SPYwYMYIJEyZw9OhRqmsa0OuNeLg7UlXdQEODjr0H0zCZzSSfL7AkqTcYDKxevZpte5KRkOQPdQlOJGVjq1YRH9OO0fd0Z/3206xccwyFQsH+/ftRKBTU1DQgSRJZl8oYOCiK7OwyPvn4Z9LTinBytqOurgmVSsGaNWssbYGgWWfEbBacSsmjqVnPw/9cyb1PfE5RWS2+3i6s3HDCkhVGCEF9QzMuTvaEBnvx+YqDJKddpm2gJzW1jUiSxPHT2egNRs6dO8esWbO4765u2Gls+HThRNr4OHPsRBbLVh6moUGHm6s9gxIiMRpMFlm6uLiQfOEyb8zfwk/7z+PgoMbZyY6N25LY/lMy99zZFbNZoNU28/zzz7N8+XKEEJiFoKa2kdMp+RZZPjauD8t+PMKuA+dxctTg7urA5MmT+fDDD3nzzTcZO6gbOoOR5TtOcoWcUm80UlBWzch+nfF1d0Lb2MyePXswGo2kpaXRztmDrwc+QA8vOTjqy4TR9PMLobhRS6PRgK1KhYODA8888wz5+fksmivPwe6dAxk2sCPllVrCw3zYsU8mZ961/zx6g5EHHniAbt26sWnTJsxlfTCX9aG+6GnCfI/yz6dUeHl5IYyZoPBB8lgLSDz66KOMGiUTUqe25JeOCPNh/iujOJGUw2MvrGLF6l95YmI/RtzZ9br7315lw/fDxmI0mxmz43s+OH0YH3tHlJKEwWxqVdbb2xvfNi4s/nQPS78+iNkscys2NxuorJTTqQ0Z3JH/x955h1dRrmv/N6un90YaNQ0ISWihI11AEBQEhK2iAjasFGG71Y2igqgoKk2ki4AgTZBeA6QHSAIhpJCQnpW+evn+mGSFKLrRffY5nu/kvq65CLPmfedtM/O8T7vVVQ0tnsvN8SmMWb2ZtRcSmRnbg85+Piw9eoaxazZzMe82nX29cVQoWLhwIR988AEBAQF89cFUvv5gKlqdEYVcRvqNIkwmC2cuZtnm+cPFE2zPJUCwuwsbpz+KRCIhpaCY9ReTqNJoKaiqJtTbk/XTJrJs2TLGjh3LggULePufe/Hxdiakoy8KhYyt311k+aeHOXkqg4XzxtCrZzPjR2RkJBs2bMBgMNto2wRBaLEhVShkGAwmamq0jBw5kn379rFy5UomjujGsrXHefrNbRSVVrPyrUm4uzQLprkFFXz8zQmGDx/+e6/qfwuC9T9z/G9Hq+D334zQ0NDfPQoLC9m+fTtjx44lKiqK3r17M2fOHPLy8v6nm/6XhJOTE1evXv1Dgp+DgwMTH4jkQlouKqWC1z/7kXmf7UenN5Jyo5ARsWH4ejhRWaOhvLzcdvQfEEJebjmxfTpy5lQmP+xKQNOgRyIRuHA+i6ioID7/9Gfy8/OJiYlBpVIRHdsBR2c7LpzMQCqVsHHVcb5ceoDwyECupeTbTBF1dXVMmjSJtLQ0Vn9zmqEPRJCXX059g55B/UPZuPUCFRV16HRG1mw4Q3Z2NkuWLGHTpk10DvHj6y1n+eLbU8Sn5lGursdgNPPwyChyblcQ0zWIld+c5JlnnrHRyGGF7pHBHD6Vzp6fUhgUG8KOHxNY/OE+9vyUCojctLNmzcLBwYHp06dTV68DBBKv5nMtq5jaeh2XU/PoEOTJ4TPpONgr+elUOomJiZw5c4ZZs2bh5uqAXC7lYnw24aF+fP3NaZYsO8C5C1mYGzk/tVotY8eOZfv27QwfGE7y1dtgtZJfUEn+HTXZuWXkFVbQs1tbMrKKGTogjP3796PRaCgrK6OmRsv5czeIig7i9u1KQkL9OHQwlXlvfMe5s9dRqeR06OCDm5sbN27cwMnJiU83nGL/8StIJALL1hxDozMyuHcI6moNt25XsHDZPnp1C0YikZCcnIzFYsHN1QGlQsa5y9kM7heKr5cLF+KzCe3oy638cv7+wY/EJ+chlUr59ttvmTq5N0MfiMDJyY7T526w6J0f2Pb9Jd5bdgBBEDCZRE1d01yuXbsWPx8Xzl7IItDfnfKKOkrLaoiODGLn3gRu3ipFEGDNxjPs3r0bNzc3kpKSqK3TIZVJuJlTZpvLnQeS+Pl0Bn26d2DjzovczC1n3LhxHD16tFHLKXAwLh1/Lxeu3SqmpkFHSWUdbX09qGnQYadSMPmtTTz11FOsX78eFxcXtGYT1Xoto4JCCXZypZdPII5yJS+e24edVMapO7fIzs7mwQcf5NVXX8VgNDNlfE8Wzx3Neyt/wsXZjpzbFcSn5gOwbvt5buVVMGnSJMrLy9HpdGCpAEsFg3rX8tosLWPGTEQul4IpC8HpNTDfwVrzOikpKSxatIi1a9eSkJYHwGPje5CZXUKFuo73Fz7M63NGoDeYmDVjoJhs+y6Mbx+Bu9KOl88cIENdxsWS2+hNJuzlChtVYxOys7P5+zt7OHYyg759OlFWXseNrGJUKjkeHo7U1GoxmcwEBrjb5nL9+vVMiIygsLqGH69kcO5WHiW1dZzJzqWgqoa+bYOwImqsExMT+eqrr9i0aRMKuZSScvFdlnmzGF9vZ3bsS+DtFQf54VAKAW3cuZVXwaxZs2zt+2jcKARBYNiqDUzd9D0fnzjHwv1HifT3Y9XZi4R6e/LQQw/x0Ucfce7cOaZM7s25C1nU1+uoqdHw7aZzHD5ylXUbznLuQhZTJ/e21T1r1izS0tKQySRotUb0ehNWK9jbK2zX1NXp0GqNmEwW8vLy2LJlCxaLhdvFVZxPukVOQSXvf/UzRpOZCSOahfBDp9NJunab/Pz8+353/2G0cvXeE62C338zzp8/bztmzpxJdHR0i3N+fn74+voyf/589u/fz6ZNm5BKpcyePft/uun/UdgEkj8IhULB+fPn/1CZbt26oVTIUCpkXMsuokFrwGK1cjk9Hw8Xe8wWC5EhLVO+uLm5MWBgGD8dSiU0zI+EeJFYvHOXADLS73ApLpvwzv706t0BHx8fLBYLPXv2JCI6mMwrBQx7KJrLZ66jLq8j6WI2ZrMF/yAPpI3mzPfee4/Ro0dz+/ZtZDIJYSG+3CmqRqWU4+fryg/bXsDd3RGVSo7kro/YnTt3EASBm7llhHf0pWuYP8lXb5OQlkdkmD9hHX1RKmRcThHNczExMYDIdBEZLvbxZm4ZUqmEG7da8qreyi+nZ8+edOvWDZVKhbenE+XqOvpEt6djsCcKuZSIjr6YLRZqanW08XbBy93RVt7Jycn2d15+pdiOpBwALifl0jmsDRKJQGVlJXq9nsDAQLw8nBAEgfSsIlQqOTW1Wi6n5OLr7YLZbKFb5wDCO/py+vRp+vTpg0wmIy31NklJudjbK7kYdxM/P1c8PcV7JyTkIJdL8fFxJjlZ5AUVBIHOIX6MeaAzAJs+/hsOdgomjY6hb4yo7Rg1MILwDr64ublx/Xqzf1NOfjkXE24REdqGq5mFBAW4Y7VaKS6toWM7b7pG+HPixAlOnz6Nn68rvbq3A+Di5WxbHQlJeY1sHBJSrzQzVDSV8fVxJjzEDwd7JTW1WmpqtABUNWo2ZzwWS3Jysm29JKbloWhke/jlXCoUUgwGE5dTcm1zKZPJkEklDOzWgZgQf+Ku5ZGZV4q/tytKhYwbt0VznLODytauoKAgzBYLjnIlVXoNzgqR5eGbjHhcFSoEQSC3tgqdTkfv3r2xWCwkpuUxZmgX9h9No6KyHoVcRnlFna2/Xy6dSttAD8aNG8ekSZP4NWRg9whYNYAFlMPAmIrg8glZWVnExMQgCAJN1vquYf4YG4XNNVvOMePFDXy3Nx5nRxXPPzW4Rc09fPxJLi+izmhAJZXx1QPj+WfCSZvJ+15oei7tVHKupovpR2prtUgaeYP9fF1t/MmnT58mwM0FHydHurbxISawDZfzCmx12SsUSCXi57eJQ9tqFTdC9nYKBvbuSKe23nh5OCGViu+Iy8m5tPFx4er1O/Ts2RMQ3Ta6tPGhtLaOd0cPJe612eyfPYNwXy/MFgvRASL3tVQqRa/X4+bmRrfIIPJvV+LkpMLV1Z41Xz7B2NGiQJaQmEtEeBvbO6Znz57o9aJWXqs12NrZ5NpyL3Tr1g2pVEr+nUrbOYvVSsKVfCJDW1Np/RXQKvj9N8PLy8t22NvbI5fLW5yTSqUMGTKEgQMHEhQURFhYGHPnziUvL8/2grgXQkND2bNnD48//jiRkZHMmDEDtVrNgQMHeOCBB4iNjWXt2rUtyhQUFDBnzhyio6Pp378/S5YsEXfdjVizZg2jRo2iW7dujBgxgs2bN7cof/DgQUaNGkXXrl3p168fb731Vov23E0PVlhYaNNoAuzZs4chQ4bw448/MmTIEIYMGXJfbSouLuaJJ56ga9eujB8/HolEQnl5+R+aA29vbwCc7JRU1mhs5ytrNHi4OlBbr8PTpaWT+eTJk8WX1+UcZDIp6kYfF3cPRwwGEy+9PAKFQsbbSyby1ltvUVVVhbe3N+6eTpiMJkI6+/PTbpFQ3myyUFejxWSysHzxbgC++eYbZDIZEydOZOK47shkUq7fLGHthjMAbNhyDqlEglQqoX/fEFu77O1F08nXS6ey+oNp/PBTCrt/SkFdrcHDzQHPRl+qrz+YRk5ODl5eXgCk3yjCo8nP6jd2sPUNenx8fGzjJZdJ8XRzRKGQsuNgMlev38HP2wWj0YxcJr5KmuqUSCR88YXo6C8Igu0W6qoG278KhQylUt5oegUfH5FmzM5OjrOTHY4OSn4+nY66SuxLXb0Of19XZDIpy5cvx9fXl5s3b7Jm9Un0ehOCIKBWi6Y3Dw9RAFWrRWHJwVFFWVkZvr6iT6WAwMpNp9HpjVgsoK7RYLVaWf7mBJ6Y2JsXnxjEJxtOIJfLqaurE/mRG/QUFKmprGpAqZCxedclUq4WIAgCA2M7sf6Tv7HnUArfffcdZWWi8OTr64JEItj6vWvL8xze+2qjwCKwfecl23g3NIjXbFv7LFKphPTrd+jUwYe9B5MBGjWu8NHnR3j22Wdt68XV2b75I/yLubycnMujY2KQCAI+Pj706tXL9lt2YQXebk48+1As/SPbUa/R46BScD1fFBpfnDgAR0dHqqqqAPC0c0AulbAnJ50nQnvQYDQQ4+VPe2fRbzPY0ZWoqCjbPPr5uCKXy9i8+5JtXegNRiqr6vl49THeWrafPT8lI5FIWLZsGfPmzWvZeOVQBKk3WDXY2bsjSJzAfhogaonff/995syZQ0yXIHHO3R3pGtaG5V8f5dzlmxSX1XA+XhS4xwzr2qJqLzsHyjXieC/pM5z0yjJ+yE6n2qDj3uIMuDjbI5NJcXBQ0rN7O0wmMwd+SsXeXmnzf2t6Vprm8sRLM/n+qSlsS0hlS0Kqra6b5aJQFJeTT1lZGdHR0Tz66KNiHZ7OyGRSTl4QNxyPjonmoeFdqawW6zSazLYx9vDwQC6V4u3kSEltPU9v38O6Cwk8Fdsdg9nMw5ERHMm8SUJCAnPnzrXN//SpfWxr8PTZ67z0/DDGPNgNtboehUKGk5Mo9Pv6+tK1a1dqa5vfwU34LcFvzJgxAOw8nNLifGV1Q/M7pxF9Y9qTlZX1GyP+76PV1HtvtAZ3/MWh0+nYu3cv7du3x83N7XevXb16NW+99RZeXl688sorvPzyy7i5ubFu3TrS09NZsGABgwcPJiQkBIPBwNNPP83QoUOZP38+9fX1LFmyhOXLl9sEOIVCwXvvvYePjw/Xrl1j0aJFBAcHM2jQIMrKymy+KTExMajVatLT0/9Q3yoqKjhw4ABfffUVUqn0vto0f/58LBYLu3btoqKiwuYj90fwySe/HUXWlM7c+osv6PTp00lLzefrtWKU7j+XPsrWzRcA0DToWfX5UV6fPwaJRMLy5csB6NevHwBtAj0oLlSTFJfdos7SoipOHEhl3vuPkpubi9lsJjU1lfFjowG4kVVMRaMPUfatMiwWMYhhwthovvlarKNpN7501RHsVArmTB9ARVV9Yx+a8fI/dlKSsZVjx44hk8loF+T5K3nvl/8fPjAcqVTSYrzqNXrs7RSUVdaiVEgJbe8rBjZYmyuRSCSsXLmS0NBQyspr8fZy5rdQXa0hODiYrKwsJJJm4dHXy4XX391NeWP/m+dFxOLFi/nggw8ICwtjxt9M3LmjbnHdJ589jtVqvUsgEn9oCuZYtuYoeqOZ56cP5FJKLg8O6kxeYSWXUnJ58tFYdv+UwvKFIqfyrFmzEASB7Nwy7k53P3pIF3rHtMNqtZKUls/17BKentaPGY/mYLFY7jmoL72xDZVKzrerZyIIApMf6UX8OfE3jUbchHy+5jivvTCSnjHtOHfxJnGN2uWKRqE2L6+CpKQk23oJD/01f2/TbVd+c4o35gxn+iO9EASBp59+2nZNl/Z+mMwWNhy6TOd2vsR2DgYr6AwmAEICPcnMzLT1xWyxUKKpo7dPIN29/Jl+fAfv9BzO+7GjAOjq4cvevXsZPXo0vXv3plM7L2rrtBzZNtc2D8EBHhQUVVFQJAqTESF+GI1G1q5dK5ov69YC4v0F+ylYDZcBI4JE1HphygZFD15+9mVOnTqFSqVi4cJFlFXWIQAyuYz3Foy3zVPTfDvYKbl58yZSqRi4JJXJsGKlxqCnh08AY/Zt/NUY/hYkEgleXk5IJBIOHU7jsUebTaNNfAhNc7ngxyM4qVS8NqQfpXUN7E69hp1chqtK1Jj2bhtIfn4+paWlHDt2jEmTJqHXG5HJpFQ1bkpPXczikdExXL1eBMDkh7ojk0rIysri22/FbAC1Oj3LT4gLKbOknDbOTrw6pB/VVh2LDxxFunsTK1asYP369eIwmsw27ujDP1/Fy9OJCeNjWN+40bRaRSuHVCpl165djBs3+b7GZsSIEUybNg0Qtc+/wi+eh+T024wYMYILFy7cV/2t+K9Bq8bvL4rExESio6OJiori1KlTrF279p4RiHdj2rRpDBgwgLCwMCZOnEhSUhL//Oc/6dixI+PHj6ddu3YkJooRbj/99BOurq4sWLCA9u3bExkZyZtvvsnu3bttL6+nnnqKHj16EBgYyIMPPsiECRM4cuQIIBJ3K5VKhg4dir+/P127dmXKlCl/qI96vZ7333+fsLAwOnXq9C/bdOvWLeLj41m6dClhYWH0798fg8Fg02LdL954Q4wirNPq8bjL2djDxR51TQPOjqoWmsD+/fvTvn17vt9+kedmbcBkMrNxw1kO7ktGXVmPq5sDVqsVg97Es0+uY//+/QD8/PPP1FY34OPvxuHdzZGFUpkEJxc7qirqW7SrrKwMtVqNt5czJpMZdzcH3FzF9qmrGmjQ6LFYLDYzJmATfAuKqth3NI1tP8bz7NT+uLvao65qoKJR02QwmsjKyrJpR9s1BiVA87v4l6sr+WoBhYWFtvGyWCwYTWYqqxrwcHUQo4IbzY9NH/aaei2rV6+me/fuSKVS9v2UislkttXdFM3Zvq2XGMl4R01SUhIjRoxgxowZAPh6uXArv5ykK6Lvj7urPerqBpwcVRSVVGMymTEYDJSUlHDu3Dken94XBwclVqsV90ZN3/x5O5j1zAY2bzqP1WqloUGPt7e3TXvl6iJGKTo7qsi5XQGIUd15hZUo5DImj+2OXC61md8EQSAyIoCI0Da4u9pjMJh4cmpf1m87Zyu7aecldu1PoqamhvnzxajbktIaLBarrd8lpTUUFKpt4zl5Yk/s7OwA8PT0FNdlvV6M4MyroHN4m+YJaZwouULaYr042ittfmm/nMu6eh1vf3yArXviKSwsZM6c5gjKtfvjKK+ux2KxUl2npbhC9C3z8xQF9ac/+p4uXbrwww8/iGusvobM6nIG+LUj2MmNXSOn09ndB3OjYOhr78TDDz9MXl4e/fr1Q6WU4+XphEIhs0Votw305NTu1/BsdAlwd3WgrKyMxMREHBwcQNIY9S0NAkUfrJodAOg0aqxWA1gqEaQ+bNy4kfz8fBYvXoxCISPAz82mdfvH8v3MfHUTM1/dxMdfHwXg7eX7GTlyJGPGjGHcuHEcu53NlYoSnBVKgp1cufL4y2Q/8QbuSjtkUildPHy4detWi+ehQaOzRddqNHoSk3MpLqmhQaPHbBbHoOn5aprLxIIidiRfYf3FRF55oC+OSgXfTJtI47aAkV9uJDY2lt69e5ObK7pj1NRpqaxqsI1ZVXWDGAnd+C44diaTwsJCRowYwdq1azFbLBjv2gA7KhU81DUcQRDYcCmJer2BO3fuMGXKFAYPHgzA7r2JWCwWdHojNTUa8vIr8PFxwc3NAYPBRH29jrCwMARB4Mknn8TT0xFPT0fs7RW2cZbJWooPSqWMr7/+mjVr1gDg4dpSu+fe+L64Gzq96T/rv97q43dPtAp+f1F06dKFH3/8kW3bttGxY0fmzZuHyWT63TKdOnWy/e3h4YGHhweurq4tzjWZi2/cuEF6ejrR0dG2Y+bMmeh0OpuZ6syZM0ybNo2+ffsSHR3Nzp07KSkpASAsLIzQ0FCGDRvGwoULOXz4sM1kd79wd3e3md7up025ubm4uLgQHBxsK2Mymejfv/8fuu/Ro0fRG0zoDSa6dGyDg0qBIEDPiCAqazRIJRKuZDVTCE2fPp2MjAyupBVQcFvNjevFdOzoQ12djvRrhUR09ie2TycyM+5QWKjG2dkZQRA4c0bcPUskAueOXrXVFxPbUTTlpd5u0a6EhAS6detGWXkt17NK6Nm9Hb16tKektIbyijp0OtEXsay8OZDF398fq9VKx7ai8CsRBBRyKT0ig7ly/Q43bpWiN5joFdUWgCtXrtja1BQN2amdF2azhZAOPi3a4+/nysWLFzl69Cg6nY7qWi3uLg5kZBfTq1tbenYNtmmDVCo5JeW1vPHsMEJCQti+fTsymYxDP1/helYJfn6uYjtiRJ+3B4d1wWy20MbXlbNnz9qEBYvVyvXsEoL93bG3Ex3Ie0W3o6SsBqlUQlp6IZnZJQwaNIiEhAQiIiKQSiXExLRFo9HTp08nSkqqSb9WSFFRFZ1CfDEazZSW1hITE0NCQgJWq5XYqHb0igxGKpHQoBF9l1LSC/D1dqa0opZZi7aRcbMYvV7PzZs3MZlMbPo+Dk93R/r07EBmdgkyqZR2QZ4IgoCvtwsGg4nqWg1ms5nw8HBKSmuITxI/5rG9OtjGtUdMWwRBwGg0I5VKkMvFCMnBgwejrm5gwcsPUlJWi9VqtfnuAfi3ccNisdKjcS6b1ovVKgr2vzeXPboFc/HiRdLS0mxRqXUaPWnZRfTpEkyviCCKKmsxms3ERgRTVFFDWVU9zz77LBMmTKCyspJARxd+vn2D5SlnGHXwG0Yf2sDoQxt45OctWK1WEssL0Wq1HD58mM2bN1Ndq2XfkTRmvraZma9txmgyU1CkZuZrm6lqFAB6RbclISGBLl26oNVqwSIK5oLdY2CtBp0ouFksJjBeAcEFS8UYRowYwYgRI1i9ejUGo4nS8lriU/KwWKy08XHlTkk1d0qq6dDWi+KyGk5eENOMZGZmcvXqVc7cySXC3ZvPUy8w6sdvGb1vI29fOo4gCBjMJrKrK3nwwQdt46dUynj3rQkYjCaqazR4eTpz4JBoutXpDJjNFkpKaiguLrbNZWF1DaV19bbnUimVsnmGaM59ausP6E0mYtsFUlxcjNVqZdCgQaJQqTVw9fodIjr5UV5ZR2REACVlNfSObkdxWQ1tgzy4ePEieXl5VFZWUlBVg6ejAw4KBW52KjbPeBRXO9FUezKrpfB669YtSstqCfR3x2SyoFY3YLVCYIAHpSU19OrRnozMIiwWK6mpqZw4cYLMzEyqqjRUVWnQ6Yy26F69vvl7pFLJcXJS8eqrr7Jq1SrR17NxnYKYaapH12Cu3PjPULP9FlpNvfdGq6n3LwqVSkVwcDDBwcF07dqVXr16ceHCBQYNGvSbZWSy5ukUBMH2Qbn73N2miN69e/P222//qh4PDw8KCgp44YUXmD17Nm+++SZOTk5s2LDBtiuVyWRs2bKFhIQEzp07x/Lly9mwYQPbt29HLpe3uBdwT6G1SdPRhH/Vpibty92oqqqia9eu4kfjPlFfX8+eU1cY1ScMrd7AilfHU6fRY69SEBXqz9FL1ylq1H6Eh4czduxYtm3bZiv//XeXePvdiVzPLCYkzBez2Uq/ASFs3XKBl18bxeDB0Vy7do2CggLadvTBoDfx1e4X2bzqOLdulPDC4oe4cDydyU8NIC9b9KdasmQJ2dnZeHl5kZCUS9ylbOY+Pxyr1cqe/Uk898wDeHk6IwgQFuJHbGwszzzzDEOHDuXajSKerf5DtQAAIABJREFUmzGQDsFePDSsa2N+Oth3NI1xwyOJT83j+b8NQqF/wzYnFouV20VqHhkdzSOjozlzKYvJD3VHpzNiZyeuG18vZ06ePImzszNbt25lyrQZCAJEhvrj7ubQGOlqT1llHQ8OEtN1tA3wwKCpZtasWRiNRjzcHdm1L5G35j/E1YxCZs8cROfwNgQGuFNaVouDvZKtW7fy7rvv8vjjj/PTiasMHxCOwWjm47cfpaikmk7tvamu0ZCVU0rbQA+Onk7n5WfGodPpcHBwoLq6gT59O3EpLpu+/Ttx5vR1OnTwZtjwLgwYENq4tgzU19fj7++P2WzmlZlDsFgs5N9R89ITgzCazNjbKRg3NJJDp9N5+ckH8HR3ZOnSpbb1eCXjDpPGmRgQ24nP1hxHpZAxdUIvbmSX0LGtF0sWjKd7tyAkgoWnn36aL9ec5sSpDJ59ciAPDAxDKhHIuFHMjCl9RKFOIaOgUE1ERASbNm1qfB4E9h9ORaWUM2pYFwwGE316tSewjTv9YzuRcaOI2U8NQl38N5RKJV5eXpgtVkwmC1FdAukW7k98ah6TH+pOfmElHYK9eHhUFHKZlNVfnOeTTz7BZDIhkUp5fcoDHLhwjRE9QzFbLIQHe5NdUEHn9r5kF1bw2dwJ9ArzRyqV4urqyjV1CWfv5BLrG8TcyH6sy4jndn01t+ur0ZpN9PQOpLioiGPHjrF48WJkUgmbdl2kslHrXFpeS4CfG9Mn9iLjZjHtgzzp2NaLU0fLeeWVV9i4cSOzJxgBORrrGGQGC6XqwRiNx6hQw+2sNQR1XgPKEej1O+nUqRNTpkwh/UYRXh5OrN9+np5Rwbzw1GDcXOzR6gw8OiaGo2cymPO3gcxP+IxRo0bx5ptv8kzaSdR6LYt7DeHjpLN42NnzUrc+nCnMpY9fEAiif9umTZv46KOPmP3cZLw8nVi/4QzPzx6K1Wqlf78QukQE4OUpBiTlF1TQoUMH3nzzTYYNG0adwUiPIH/aebjxXP9eyKVSpBIJC/b/TKi3J0m37zB/6ADsnn+e/v37ExMTg8FoJijAg7jEHB7oF8rtwkrCO/qScq2AR8fEkJJeQHSXQF5+fp2tL+viEnhv7HB+fPZxZFIJUkGCu4MdORVqdEYTng72DJ8wgUWLFvH5559z9ux1Hn2kJzqdER9vZxYtGMvA/iFciMtm0MBQFv1D1PBqtVpWrFjBvn37MBhEQa/p3dLQYLCZ0x0dlahUchoa9Fy8eBE7Ozt++OEH5kybSEVVA8VlNUwb1wOlQsaPx8SNp5uLPRNHRHExJQdTXmvAx383BOvdX+dW/Lfiiy++ID4+ni1btvzudQaDgZ49e7Jq1SoGDBhwz2tCQ0PZvHkzvXuL/iZ79uxh1apVnDx50nbNjBkz6NWrFy+99BLfffcda9as4ejRoygUil/Vd+TIEd5+++0WARpPP/00BoPhnu2trKykb9++7Nmzh86dO9O3b18WLVrE2LFjAVHL9tJLL3HixAkCAgLu2b5/1abs7GzGjBnDsWPHCAoSHbp37tzJ8ePHWbVq1T3L3Av+/v4EjZzH84/0Y+yAzrg0JmXV6IwcvXyDz7aftvk5PdFLyQsvvMDChQtJvNjsqzZiVFemTe9LG393LBYLEokEQRCT6V66dJEnn3yS8PBwDhw4wLqPD/PsGw9iNJjQagycP5bOzYw7vPz2w79qW2ZmJnKlh5joWACppDkx9O2CSvILKhk8IAyDwYBer8dgMODo6GwztwqCgFQqYf7SPcQl5jB9Qi9GDu5MkL+bLYrwbtQ36Nm4M47v9yfx7utjGdI/7FfX7Ny5k3nz5rH0892MHx6Jg13zOFutUK6u40LiLSaOir7neH/wyU8ATH8slja+rgiCuAnJyi5lxaqjHNr95m+StDdpQI6fu055ZS3DBoTj4+WMRLCiVCqxWCyYTGIexcqKetLTCwkJ8cPXz8VmKrsb1dXV2NnZIZcruHsP0aDVU1hcQ1gHH7bsvcyMCb1/VRagqqYBdZUGfz8xQbS6ugF7OzluLk1BLeL4//jjj3y2+gYAgQHurFw+zWa2BzGhdXJqPiEdfQjwd0WhUGAymVps3u4eg4I7VRSVVBMc4I6Xp5PNtC65x5ymXCvgUlIOE0dH4+HuiEwqwWAwodNpuHz5MsuXL+fpBR8xfkAXlPKWCZzLq+u5lJ7HgKgOeDjfm0UjoayAnt6BrEg5y2OduuFtJ+a/q9BpkGp0ODo6NiZwvt4iUvzzJY+hUsgIaOOGo4MSqxX0BhM3szLZsmUL3333HbcT7UE1hrTcvxEdHc3ChQvZu3evrY4Xn3uQF194Hr05iOLiYr777jv8Ogxi+MAIpj63nj7d2/PGc8Px9HBCQKw/J7+cwyfT+WTJk0yePJlPP/2U/rtWo5DIeCd2qC2Bs4vy18mZAVatWsWLL96bHcZqtVJbq+V83E3CQv0I8HfBYDAgCAKOjo7U6vTcrqrGYDIRE3hvAadJA5uZmclnG1PoEtqGSQ91x9vDCYvVilwmJvS2YiX3diWrN59lx9qXbX0Z8vk3DAvtwOtD+6O8x/oBMVBv9uzZGI1GNFoTJSXVuLrY4+Hh2OgLK+FOURVbtsdx/ISYwLmJuWPo0KFs2PCtLbE4tEzg7OHhcM91WFpRi0wmxdFeyY2cUj7beIrrjQm9nRyU/P35UYR18MXFUXHf7+4/ipg5n/7ri/4EklffH8PKXxWtgt//IH5L8Pv888/p168fvr6+qNVq1q1bx9WrVzlw4ACOjo73rOuPCn719fWMGzeOiIgIZs+ejbOzM9nZ2SQlJTF//nwyMjKYOHGiLXjj8OHDrF27ls6dO7NlyxbS0tK4fPky/fr1w9XVlSNHjrBy5UpOnz6Nu7s7c+fOpaioiA8++AC1Ws2HH35IRkbG7wp+/6pNIJpdBUFg8eLFqNVq3n33XfLy8mz13g/8/f1bKdtaKdvuq0wrZVsrZRu0Urb9pynbfmvj9++iVfC7N1p9/P6CqKio4PXXX2fkyJE8//zzSCQSNmzY8JtC35+Bo6MjW7ZsQSKR8NRTTzF+/HhWrlxpS0cQERHBq6++yrJly5gwYQK3b9+2RWs1lb906RIzZ85k9OjRHDp0iC+++AJ3d9E5e+HChdjZ2TFp0iQ++uij39wx/5E2ASxbtgyARx99lA8++IBXXrm/l34rWtGKVrTi/xhagzvuiVaNXyv+z8Hfv9WnpBWtaEUr/ir4j2n8Zv+HNH5r/ndr/FqDO1rRila0ohWtaMX/d/j/IQL3P4FWwa8VrWhFK1rRilb8/4dWwe+eaBX8WvF/EpGSR+/ruiuW3ba/A4bcn0N84clmh/g/46zdofu/9lu8ldTsqO4//D4DVY79e4Eq7lPuz1ldvaPZkfyPBnf8mUCV0Ih/HXQAcCOjOfDAY/L99aVy5593vP8zffkzQRcdY+7PzzU7uXnN/JnglvsJcLg7uOHPBDb9mUCNPxMQ8kefMedVs+7rHrUvNtNi/pm+yP55f8E9pn/8sYCou+9h98r9rTHtZ81r7M8Ed0Q6TL+vMlcatt7Xda34r0Or4NeK/3Ows7OjZ98InlgwhqCOvqjLatj37Vn2rjuNRCphxhujGTQ2Gp9AdwTJZ+j1erZu3cqG8/U8N6kfD/YLx9lBhVZvxGA04+XmyOrdF9h8MIHnJvVj7OdPtUicXVuv461l+0i5JvIUf7R4Aj2j2iKTSrBarRSV1vDxR4UIgsD8+fPx8fVFAIxGs5hmQyKhrLyWrzeewWQy8+yMgbQLevWeqT+aEiqbzCLLhkIuo6ahiXv49z/2Te6+VqsVi8VK9s1S/v5WMp9++imBgYH3uJeVynoNdgoZjiolY5ZuYGJsV0a88ig+Pj7U19cjSJQ4O9shNHJJCAJUVWv4ct0pjp/OsNU1Z84cRo8eTUhoZ5QKGYJEaEw/Y6VBa+DE+eus2ngGnd7IuOGRDF28n5iYGARBYO4rW7mWLo7tyBFdmfnkgBbsJgaDCbPZglz+OiUlJWzYsIEfqqFXx0DWPDeRO5W17ItPp194W0LaeOLYSKcFwKf/WnjTaA1IpRLyC8VUGznx4vm+PTqwbNGEe5aJS8ph/vt7GDc8kv5v7CImJgaVSoXBZKJBa0AulWKnkovrwGxBqzMil0sxGs3cKqqgfkZ3wsPDcXFxwWwRkMukVKjrSb9eREgHHzEd0K8wj6SkJDH1Uv9BdzF+NI7xhRt8sfk0MqmUWVP6MbRfKM6OIq+wTqfjyLFMPv/yGCOHd2HaY7EEBXrc4x4LAJGb28XZA4VCRmlRFUf2JLGnkeKw75BwRk/qRefoIOzslVitS7BarajVaj5Zd45zl7N5akpfZk7p96vap8xZh0QisGTbNnr37o1Wq0VQ/Yy17kMSUrVs/B4ys+UUl5p4+aUneO6FhaD9AWvtYiZPnsyLL75IQEAARhM4Oih/Vb/VaqWuXoejowqBN6ipqWHlypXsaPx9U/8n6OXV9p5zWqKtRUieg7OzMyUlJbi4eePSuPYlEoEKdX0LrtpydT0ffnGEnITmOkYGd2JaaDciPLzxtnfkxO1bdPX0wVmhpN5owNPOgRq9Dpen59+z7YIgUF5Zh4uzHZVVDfxwMJnv9ye26HthfQNfXrzE/kxRmFsx5kGi2/jRxsnJlidVrdWy392FDz74AK1Wi0olR6WSI5NJbDlaLRYrer0JmUxiY7n58MMPeffdd383r2rf4Z0Z9VhvOoS3wd3LiZde0vzmtf8uhNYQhnuiNaq3FX8ZhIaG/u5RWFjI9u3bGTt2LFFRUfTu3Zs5c+b8Ycqfb775hn988wxJp6/zwqhlbP30CE/OH8vo6f2QK2TEDAjFO9Cdozsv89RTT3Ht2jWefvppVi+exLiBXfhww3E+3XaaiqoGHO0UVNaImoS5Uwby8AORuLi4UFJSwuXLl22Z7qeOF8nRJ42NoWe3tuw+lMy8JT9w8Pg1/LxdWLFiBStWrMDb25sTZzJtH3q5TMrm7+NYtupn7OwULF08gfjkXLZs2UJlZSV6vZ7UrEJqG3TU1Gu5crOImgY9UokEg9HMpat5vPHZPhZ/fYioqCiioqJ45plnbGOxfcsFLGYLFouFqqoG1OpmrUhtjZatW7cyd+5coqKieHDpN5TV1BOfXYDOaORGcTkKmZQ7lWKy6/emjqJPpyAWLFjAs88+i7OzM2azFXVVAyBSXcVdvoWLix2L3xhD7x7tbPfq168fO3bs4GJyDnqjCYvZAgJcu1GMVCKhT/f2LHxhJAAO9kqCgoLIyGgWHAH69e3EG689iIeHI5WV9Vy8nG1LlKzRGDAYDGzatIkFCxbw5APdeW/aSC7dENlT5DIpp6/dYt0xUWo7lJRJjUbHyy+/zIIFC7BaRbaChUv3sHL9CQxGE9euiw7puw4m8fTrm0lMy+fDxRMIDw8nMjKSDxc+jN5g4ustZ9iy5zJmiwW9QWS3OXFe/OgqlTJcXFyorxcZHuIzbqNSyHGwU5BbVMnF9DxkjTkiU2/e4aXPfiAsyJt+/frZOK6LSqrR6Y0kpeUxdGAYt/LKeHH+dr7dfgGzxcKS5Qd57g1Rq5KQkIC3tzcSQcBisVBaUUtcci4SiYQ+Me1487mReHk4MrRfKA1aA/PmzePJJ58kIyODoYPDGTYkgnmvPsiBQ6m8vnAHWq3IevLDj4msbeR5zcnJYcmSJbw2Yy2zJ3zOzg3n+NsLQxn/eB8A7OyVODipUKoUtufxnXfewdHRkdAOzUw+RaXVjH/yqxZHda2GT/85GbPZzPjx40UKOuUABOelaLTQoS288bwfXp4OIs+vqVFTpRzGxx9/zJYtWxg+fDjfNc7Hui3nMJnM/HAwmduNfM9OjiquZd7hww8/xMHBgUWLFvFY2+7iM375ewb89DHFmhq23rrMw8e/plRTS05dBXZSOQsWLODLL78kMDAQJwcV+39O49QFsQ0ebg6YzRZOXbiB2WLF082BZW9NJDw83NZne7mc1PJi/h53DIBYv0DevHCUz1PikAoSLFYre7Kv2Z7l5cuXYzJZMJktNiYedzcH3l5+gG93XODZ6QN4fU7Lvu+8cpXlo0cxsF1bAFKLijmbm4febObDM2c5ejMbJ6WShx56iHfeeQcQN2wmkxmdTly/tbVa6uv12NnJkUolVFVpqK3VMXjwYFasaNYU3gsqewVZVwr48p29v3tdK/5zaBX8WvGXwfnz523HzJkziY6ObnHOz88PX19f5s+fz/79+9m0aRNSqZTZs2f/ofsMGjSI3OtFfPvhAQqySzm+K579G88y6bmh6LUG7uSWcyMln5Xzd3Ds2DEmTJiAwWCga8c2fLXrPOdScthz4grTF29BozOikIkC2oQhkRgMJqxWKw888ACTJk1CozOSkJpPnx7t8fN2YerDPdmxL4GvNp7hckoey78+SlZOWSOfbAMpKSmYLRZy8is4HZdFZVUDY0dEkpZeSGz3dly/WcKazWdRq9XU1tayZcsWunXy53xqDkqFnJ8v3UAuk1DToONyej4DojtQXafh2OUblJeXU15eTnV1NQAFBZV0iw6mrLyWW9lluLs78s7fd3Pu7A3UlfUEBnuQk5PDtGnTKC8vJ7ZTMM72Kk5czUYqkfDC+h95c/sRQv1FurgQPw+eW7+XM2fO8PDDD5OamopSKcNoNHPy7HV27k2kfVtPsm+Vcae4iql3kdvPmDGDffv2MSg2hLgEkWYqv6CSzJvFaHVG0jLuMKx/GH7eLrQN9ODIkSM2DtkmTJncm/LyWjIzi5g89Uv+/tYPlFfUYTKZMZrMmEwmdDodGzdu5PkH+7LjQhpX8sWP5VdHLrLxVBJX80VKwuHdOvHZwfPs3r2bcePGIQgC9Ro9Ie192X0ohR8OpRAR2obqGg3rt18gv1DN15vPciuvglmzZvH8888DsPKbk2zbm8CarefYeSAJuUyGTm/kVJyY3Hnfz2mEhITw6aeiubd3RDCnkm9isVqp0xp49fN9VNVribuWR7+u7Wjr646DnRKNRsOECRNITU3l2Vc2Y7FY6RXdjvzCSsI6+XI18w4bv4vjXNxNxo6KpG+vDlRVVfHll18SFhbG2YSbCILAkbMZvLl8Hzq9kbTMOwzrF0ZsVDvkMimzFm1nx44dHD9+nCeeeAJnZzumT+3L6bPX2b03kTa+rjbe1rAQP+zt5NTV1dG+fXvS0tIoyC2n5E4Vx/enkBSXTWSjoH/iYCrtOvlQUVoDQFpaGt988w1bt25lxOAI23xaLFYe6BfC5+89xs61s1i1dCqL5o7G1cmOF154gfT0dC5cuIC19p8IdmMY1C+A12bB6MG3kcvqwZQJ1joABIdn2L9/P+vWrePWrVts2XWZsxdv8shDMVy/WcIPB5MJ8ndHozVQoa7Hy8ORVatWsX79erRaLc+EiNrHGqOOCn0DFquVSn0DHipHfOydCbB3ZUX6cY4dO8bAgQPZsWMHtfU6qmo0KBXNmvldB5J4++MD7NqfiEYrbgpnzWo2I+/NzuDTlAucLxJ5qg/mXCevRs2Tnbsz8cA2rFYroW5etmd5+vTpJKTlgdVKfYMegMKiKgbGduLwyXT2HEpm9JCuLfr+TWISR29mM7tXTwC2pKTi4+jIubx8vk1M5s0jR1HJZCQnJxMVFQWAVmukvl6PppHe0GLBlkS8icLNaDSzePFixo8ff08LQRNO7kth6+fHiDuW/pvX/JehNZ3LPdEq+LXiLwMvLy/bYW9vj1wub3FOKpUyZMgQBg4cSFBQEGFhYcydO5e8vDwbB/H9wGq1UlpQ2eJc0unr+AZ54OnrQkSPdiSdzrT9plKpEASRFSMrv9x23mK1En8tH4VchpebI0qFDA9XBwoLC/nyyy9JTU1FJpMQ0t4bs9nCgN4d8fJw4nJKnq0OQYA7JVVIpSLLxOnTp+nfuxPp14vw8XLC29MJPx9XZv1tAF3DA7icnGsr6+fnx6RJkxAEgdiubcktqqRft3Zk5JSgrtXwQPdOWK1W/v70SFwcmlkJnJxEM6iLsx0Rnf3x9HSitlY0zRgMJhIu5+Dm5oifnytms9mWFDyqbRvS8ooY1yOCM+k5lNc2cPFGfqO5EG4UVfD4gGji4+N56KGHkMvl3Mgqxs/HhWuZd4hPysHP15WgAHfiLt8iIqyN7eMB0K1bN5QKGQqFjGtZxahUcqpqNSSk5eHhYo/ZbOHxCT0J7+hr00Q0QSaTEBrqh52dgvjE5jFSqRRIJBL8fEV2DLVajbu7Oyq5jENJmfwWFDIZFzLFeYqOjqa0tJRLSTlEhoupgO4UVyERBM4nZLcodzkll549exIbG4tEInA5pbkt8al5SCQCtfU6DEYzAFKpBKlUisEgflDlMqlonq/X0rmtD4JEID4jHw9ne8wWCyFB3o39lREQEMCpU6ewWKyYTGa8PJ2Iu3QLPx9XvDzEnJ+Xk3PpHNqG0cO6smvXLsLCwlCpVCgVcgxGM0ajGYvFSsKVfNxdxHuMGBBGRnYJk8fEEB8fT1xcHO+//z4AAf5uxCfmANClsz95tysAiAhvw7THYtFoNFgsFnr27Gnrd0gXfzpHB3ElQSwnCAJKlZziQvGZXbp0KcePH6dz5874ebvg4yUy5Ph6u/DSzCG4ONuTcaOIfUdS6RkVjLpaQ11dXfOg689jtZpBHvMbsymAvCunT59ucTY+ORc3F3viU/IYP6ob5kYGjcTUPPx8XPHz8+P06dM4OzsT4OCGj8qpRflp7Xvxdd+pGMwmFFIZV9Siu4FSqUSn05GYlkdkeAChHX1t/S5tpIK8nJKLo4MShVxGbGzsr1oc6SmWya6u4Kuh41macJqcWjU6swl/R3F8AgMD8fPzo42PCxcSbtE+2BOA9Kxiujau08Qr+SgUMlJSUlrUfzY3j6g2fkgaTbuJd+7Q3b8NXXy9mR7dDY3BQEhICCdOnPiNMQWFQorVKrqkNOHMmTOYzeYW8/8/iVau3nujVfBrxf9a6HQ69u7dS/v27XFzc/tDZX/p+qEuF1/I7j4uuHs7U9X4f4B3330XjUb0Q7lbUAGorNEgkQjYq5p5kf39/YmLi2Pq1Klk5ZQS5O+O3mDC31f0+1NXN9A+yJOft8/l5K7XGBQbgiAI2NnZodFocHRQ8vDoKMoq6mw+Nw8/GIWXhyPqRnL7lJQUXnnlFb7//nuxXYJAaLA3HQM96Rbij71STkVNA/VaA8F+bix/ebytfT179sRoNPPpisM2qrduUcHU1emY+cxgDHojcoUoiHbu3BkfHx8AvJwdMJotdA70YdelqwCYLBYa9KLQ0jnQh4gAH9H8hijIOzqJQvMrzw1n+ZJJAOzcm0hyWj5KhQwnx2aBtClRt6ODEhcnFY4OSn4+k4G6WoO7mwMNGj0jBkbw9icH0el0LebBxcUemUyKg4MStbredt7BXmnTStXW1lJbW8uQIUMA8HT6/aCAiroGvLy8sLOz4/z586irNTYfrcgIkSUmtdG3sAnq6gZ8fHxs67Gyutl03i5Q/DDfnTpVqzOSkJDAU081B0IEervg4mCHQi7D1dGOihoNHi4O1Dbo0OgMGIxmLBYLzs7OVFVVMWNyLB7ujgiCQGGJqM31cBcFP3VVAwqFDA93R7Zu3do8xvZKmz9oU7s93Byordfh6eZIZJg/oe3FuVywYAFDhw5F2+jL2OQO4O7uSGVFPXv3JzWuIwmHDh1CEASmTp3K3ktvcSDpHT7dMpv9311m3/ZL4ly52SMIgk0D+NVXX3Ho0CHbBsPT3ZGbOWVYLBY+W3uCxR/upaKqnueeGER1jRZPj18msjeBtQYkXveeSEGJIMgpKytrcbqyqgFBENDrjYwc0hkAO5WC4lLx2ff29m5RxusuwW9LzmWWpB5CQCC5UnQX+LTXJFQqFadOneKRRx5BIgh4uDng5tJM1de0Fpv4i5vu80t424nrbHhQJ9Iry9ibLbo1mK1WHOSiibzpuQwO8GD/z2m2+9TWaW3r1NBIPWk2m1vUX97QgFImw1UlPn86owkXlYq90x/n9QH9sVcoiIuLsyXM/yVcXe1QKuVYLBYaGjWNIHKyV1dX37NPrfjroFXwa8X/OiQmJhIdHU1UVBSnTp1i7dq1NgHp/nHvbdsv85m/+eabjBo1ip07dzZdYPstKsSfx0ZGI5NKGNyjk+18SUkJq1evJj09nezccuoadCgVshZ13y5SM/O1zcyat5Wkq6JZp+njCZCTV85Px6/Zrj98PN0mdEZG+LNmzRpWrFjBk08+CUBhWTXVtVpcHO0QgHOpOej0RkwmMyfis4gK8adLly4AjBo1ipPH08m4JvqoWSxWEuNvIZdJcXVzYNE/mjmELRYLCoWCl14SI2eDPF0prKwh7kb+r8ZOEGD+lp9ITk7GYrGwe/duwjr5AbBu41ne/mA/AI890pOwTqJGIyKsDVlZWWRlZfHJJ2IEqbeHE+0CPXlr+X7KK1sKcfGpueQ2apn+KD7++GOWL1/O8uXLgfuz2EydOhWA1NTUFmViuopc0dpGn6e78Vs58R/oGwKA0dQscEWG+9O1a1dCQ0Nt5wK93SgsFwW4u4UzgJjQAAxGE1VVVchkMpYsWUJEWBsSU/N+tw1mi4XDhw/bxvheaCoiarfh7U8PkZqayuTJk9HpdNg1cjQvWzqZowffwM/XBY3WQHyjJu/qtULeeusttFotPXr04KUpXzN3ytd8ufQAE2b0ZdRE0U9O0ij81DVqmd944w2mTp1KXFycrc8V6noUchmvzRnGqvenMmxAOIIAvt7OyGVS3N3dmTBhAllZWQjeKSC4gTyCP4MO7bxwdrTDamk5Zr8cQ+tdK2ZT9iXaO3lhMJs4UChugoIdPRg1ahQrV67k4MGDDOkfRttAD5uwJ/bt12vj9zgU2rm4s/jC0d9tf2l5LfG/mv/fLdJ8XWOfNAYDtTodqy52nLfMAAAgAElEQVRe4nj2LdQaLcOHD2fBAjFYRy6X4unpiLu7KFDq9SZMJjMSiQR7+1/z7P5leCFaTb33RKvg14r/dejSpQs//vgj27Zto2PHjsybNw+TyfSH6viloOjWGAVaVVaLuqwWNy9n5rw7kalTp/LYY49RXCz6gt393s7MLeVCag4Go5kzic0mv7s/1m4u9lQ3agWLGn2a3F0dMJks3Cmp5mZumc3Hz2q1Ymdnh9FoJq+gEndXe5tJ8MatEgRBwNfbhevZpYwYMYIRI0awevVqAGrqtOiNJgQBKmoacLJXoq5pwNlRxc3bonk6ICCA/v370759ew7uT6amRoPJZKahQU9dnQ6VnZx/LNrFyk+O2Mw3ly5dEn2itmyhqkGLv7szuxu1fQAyiQQHpfjir6zT8P/YO+/wqKp1/3+mZpJMei9AAgmdxARI6CC99y6gooCACBYEjwULoOeIotIUVLogIL1ID4QSEgIkkEpCCul9kkymz/z+2GEggleO53p/59yb7/PM82Qme+1V9lprv+tt3xqtcPovKSmxmpRNZjOlZTWo64T/Xb6aQf9n26LTG7mZmGvty1tvCSlW/H1cyMwt5Xpibv142VGj1iKRiOkZGUzU3jfIycnh3XffBWD1F1MZMjjE2hdX14caIZPJbH0JqVQqfHx8WLlyJQA7Fk5mzsAuNPVw5saqhQwNfyh8gaDhnDp1Kmq1GkdHR1yc7KioVNOxQ1Pc6+v47XHD1dmekpISKisrAXBzFl6Uft7OtGvpK4zTIxrJ1MxiBgwYwMSJE62/XbmTjVwmpbZOR1WtBjdHO8pVapyUtrRt5sWsf/xMly5dKCwsZMOGDbzz8X7s6yN0rVrleo1S8wB3LBYL638432CMa+t01kPGg3laUSXMF1WNhvJKNVq9gW+//ZawsDBr+0wmM7v2xPDq69tJTy/CxcWewEAPLBYLB4/cQCqVYmNjg1wup06tI+tuMcf3xrFvczQzXu0vPIdKNQaDkWtRQtDDhx9+SGRkJBkZwhqqrtFaTZB/X/criz7Yw6IP9nDifBIarYE7qQVUVVVx6tQpBg4ciKV8LGAGfQxPhEWHxWJ4TAvl6myHxWIhpK0/cbeyKauoRaPV4+MlmFJLS0vx8HioRSzTPnxuImBCQDhH8m6TpxaE9EpdHU2aNEGv17N06VLORKeQmJJP2SPPW6szWOfJA5SWPnQfeYASjfD83GztuD19IZkvvkXmi2/hKLfBTWFHZmamNSAoJl4QvCtVglXCUamwWgZkMkFz/8CV5AHc7ezQGY2o6tfr6z278+P1G3x9+SpzDx6mUqMhMTGRuXPnYmNjg8FgoqJCTVWVUIdWa8BoFILCHhX8pFIpzs7OT+xTI/590Cj4NeI/DgqFgmbNmtGxY0dWr15Namoqly9ffuryIpEIr9+ku+jYpw3F98spK1KREp/F8Bd60nPYM4wfP57k5GT8/PywWCwEN334ItAbjbRr4YPeYCS7sAKd3kidVo+fnx9KpWB66xTazFpn9LUMSstriAgLaFB3p9Bm6HQ6zGYzvXr1Ijm9kCZ+rkSEB1JZpaawWIWToyAQPtO+CXq9kezsbLKzs7G1tcVisaBSa/FyVVJZLZgFI9o1o7y6DolYTHm1sFnfv3+fadOmkZycTEpyAUajmbTUQjR1ekJCm6LVGlCp6ngmrBmVFbWUFKsICQnh8OHD9QEhFsQiEacS0q1t79qyqVUT6aq0swqBcXFx9OzZE4CCwio6dwwksmMghcUq6jR6HJQKklML0GoN1r60bt1a8LFKzKGZryt2tnJEIugU0oziUsGna/Hy/bz45jYGDhzIxo1CzrR/rDrGkaM3SUsrRKPR07lTIGKxiLffGopUKsZoNFNUpOLcuXP07duXvXv3UqKqZeKqHey9kkhhZTUTV+3gYvJDfzy90ciMPh1p0qQJsbGx9OnTh06hzUhMyWfkoFAqq9SYTGZatvBq8CwjwgKIi4sjJiZGCLh4RnjWIweEoDcIaWXib+c+rKf+WeblCSZjQ30girerA5duCy/0iLZN8XV3QiwS8faGo9zNEzSe165dIzIykiZ+LrRs4UVBURXdI1tQWKyyakqH9GuPyWTm4PFbZGdnc+rUKbRaLVqdAXl91LhIBJ07NKO8So1ELOZ6Yg6uzvasemcsLVu2ZNy4cdbUQVk5ZXh6OJJ+t5ibCbm0a+PLkIEhmExmLl5Ko1evXkgkErRaLdWVD9N0iMQiZPVBDiajmbTbefgHCKbvqqoqa0CUySQciLLul6HTGbCRy7hxO5cbt3PxcFVSWl5DcKDgA6xWq4WIfklTRCIJ6K/yZFjAcJvevXs3fFbhgVTXaPH2dOLwrwncTsnHaDTT6ZkACotVFBYW0qdPH6qrq8lXV1GsfehX2NMrCD97Z/ZkxZNUVYDOZMTFxpaCggKhvyIRHUOaEZ+YQ1qGEDBksVjw8XICIDI8kFq1Dr3BSEzM4wLr7TKhzMnsdIYc3MKQg1sYenALJrOZW6WFDBkyhMjISCwWC7p6c+6Detq29OV2iqDN7xQagN5gtAZpPECvwABuFRRirj8U2cpk1r9BcB2RSCRW32YQtJUPNJYPfPskErFVQwxYn39cXBz/Dmj08XsyGvP4NeI/HhaLpYH24o9w4cIFunfrwfNvDyP+QipL1z2Po4s93y7bj1gixslVibObkrpaLc2bN6d79+5MmzaNm6l5zJ3QnbKqWgJ8XXl5TFewWNDojDjaKzgfd5fenYIQi8WcOHGCvLw8HJQKXF3sSU4vpLBExa6Dccx7vjejBoay71g8nu6OtGruhcUi5OsLDw8n9mY2keHNadvSB5PZzNFTiUyf0IVfzyUxtH87jux4lQtRrcjNzWXGjBkk3yuiX2fBT1CnNyJGhLODgk5tmnDtTg6zR3clPvU+ZrOZ4cOHEx8fT89ercjOLuPs6Tu8unCg4HhepGLJOyPo2bsVZrOFqko1RUVFbNiwgcGDB9O/QzA6o4klo/vwzfHLBHq6snhUb27nFtGhqTdGk5n1L4/Gc94oTp48SYsWLTAaTUilYvr1bo3ZbCEm7h5DBrRHLBaRmHSfbd+9xNjRPzN37lyee+45rly/R/vWvmj1Rr54fxw1ai12tnJC2vhx5lIqsbeycXW2w8vLy2qGFYvFuLs7cPR4Am+9MQQPD0e2bZ6Nq5sSkUgI/CgorKR9+/YEBwczduxYqrUGqjVaKmrrkIolfP3SSJbvPYuPi6DtiU7OYmK3ELKystizZw/r16/HYDSTllnMjPFdsGDhQkw6E0d0JCevHKWdgplTumGrkLFw3iZkMhnDhg3ntZl9kUnFjBn8DHKZFL3eyKFTCQD0igxi3ozebP1Rh42NkFMu/X4pAzq3wmIBX3cnVs0fiYuDLWKRiNiUXDLySpncL4w85QS6du2Kh4cH37UNIS2jiOS0QsaNCOf8pTSa+LnQPTKIJn6uaDR6nB0F/y+z2czx48fpP3AoFouF4f3a80xbP+zt5DzT1p8zl1PZe/wmowc9Q/tWvlRVlDFjxgz69+/PnaQ89h2M5/2lI0hNKyTh9n1ACPhISsrn2T5teOWllzCbzZw+fRp3L0fcvRx598spODnbExctRDIrHW1JSchl/AvCwaBfv3688sorNG3alEMnhbF5aUoPzlxKZc70Xni4CUFOnUID2Hc0nmH9O7Bu3Tr+/ve/4+zsjMjxAyyaY6hr8sjNB6ncly3bfiTm4rekpBVjZ6OnqfevjBq1hFu3bhEVFcXEUZ3o1bUld5LzCG3fhDbB3kRfvUvfHq3r52Ye8+bN4+WXX0YsFqMzavFUOFCireHl4O4saNOHe9VlqPQannFtQq1Rh7PcFq1Wy7PPPstrr72Gna1M0KI62Fr3nqljIglo4k63js0RiYV8eJs2bWLw4MEsX74cg72Cv10+TblWEJp7+wcSU3Sfu5VljAlqh0gkIqYwl/T0dNatW0dSUhKjBoVSVa3h3v0yekQG09TPhcOnEhg3NJxxQ8M4fvY2I0eO5NatW5hMJt6Y9wpOtgpm7z9IsLsbvQMDuZ6Xz+yITgCEeHvRxNkJRZs2nD9/Hq1Wi0gkws5OZtWey2QP91uTSdi7xGIRK1as4NChQ9y/fx8Xe3DzcuTTrbPY8sWv1ihepZMtnr4P85z+pdzp/wuEtL8CIsu/jTG+EY14iDVr1hAbG8v27dsb/P7NN9/QvXt3vL29qaioYNOmTdy+fZsjR46gVP7W6fvJCAoKYmr3xbywZDhNgryQyaVEHYrn769uw9Pfla1Xlz2x3PcHYrCRSxjavS1ODrZIJY8Lm0Xl1ShtxNjbC6Ycs8XC7ZR8Fn+y32rm2fbNCwQ2cbcmQc3Nr2DV35chl8t5++238fYW/N/MZsH8W1RSzbHTiew+EMcrL/Zh0qhOmEwm6yZcXadHpzegtFVgbysDRPWndwsV1RquJmaxZk80Y9pamD9/PseOHSOkQxc8PB0xGU3U1GixVypQKh8mtK2r03PuTBLvvDuDyspKFi9ezKJFi/j88AW6twogLNAXiViE/AlJpEHQ4ty6dYsWQSH4+TrDIwmcVSoN674/h1gs5p03hhIZGcm1a9eeeB+LxYK6Ts/Zy6ms2RyFVmdg5qRuzJzU7bFrt267RFGxilkv9W5g7n0U1dXVnDt3jtGjRzP44x8YFdGWid1CcXO0e+L1Go0GkUhEbm4utkp3fL2cEYlEbPrpEjt+ucbU0Z0ZOzQMNxd7pFIJy786zobPZwEw7dW1LJ03CGdH4cVfWl7LO38/SFpmMQBDnm3HuwuGPLFerV5IE0R98t/fQ01NDUaTWAhqqVRzJ6WAVkFeeHs6oarR4Opsj1gsYtJL33Hp14/p2rUr+/bte+w+JpOZI+dus2ZrFG1aeLP2o0lPrO+zVccAeG5yV7y9nDAYTNjaPgxsqqioIDU1FV9fX3x9/DEYTCgdhACCLz/Yz6mDNxgwMow3l4977N7p6enMXnoYk9nCsjeGE9LWH1dnOxCBWCRGqzOQfb+MmPgsWvgaiYiIQKvV4mxzEkvNp8Te0PD8IhF+fn6cO3eOpUuXcuDAASIiIqx5L1UqFf7+/hSV1LLzl2u8+tKzXLuRRUATN5r6u6JW6xCLRTg4CL6yKpWKqKgoRo8eTb+TX1FQp2Jx+wHMDO6GxqhHIhJTpKnmakkWJouJ/g4BODk5YTQasbFRIJVKHuvng3VbVp/AefemRUycONGa0udJMJnN3CwtwF/pzI7Um1z48B8cOXKESZMm8dY7f6dzvWb5UdSqtWz5+So/H75Op8ACFixYQNOmTZFKpSw/F8WW+Bs0c3bmw/59aevpibOtAgvCSq3QaDi+bx//+Mc/qKqqIj39HvZPSHj9IHhESOAMP/20kw8//BCNRkOI/TQ8/VzYen4pXyzZw5kD8QD0H9ORN/8+8bF7/RWIeP73fVr/FcRufTrmm39XNAp+jfi3xO8Jfh988AEXL16krKwMFxcXOnbsyMKFCwkMDPydOz0OPz+/Rsq2Rsq2pyrTSNnWSNkGjZRtfzVlW35+/lNd+88icsZfI/hd29Yo+DWiEf9R+EtNC41oRCMa0Yh/Co2C3/8sGn38GtGIRjSiEY1oxP8+NKq1nojGqN5GNKIRjWhEIxrRiP8jaNT4NeL/JPz7PaW/3tl/zS/uz/hSPU2ZR69/Gj86aOhL16LT0/kfZV5/xC+s69P5rGVffeiz1qz7H/cl5/LDvjzN9b8t82fa9Wf8AgO7PKXPXoxQz9P4kUFDX7I/064/40vW5Nmnm//3zz+c/333PzkQ5VGcG3vC+vefmWOy5U83lw3vPTKX/8Q4P41f4KM+gX9mjGed7PRUZTYNuv6X1/Ov1vFnfPya9Hm6tXw/6q8xx8L/jtQrfwUaBb9G/J+ERCJm7vjuDOvZ1sp2odboOX0tja9/uoC2PlqtdevWLFmyhO7du2Nra4dIBBUVahJu5hDc0htvbye0WgNmiwWFQkZ5WS27f1YwYcKEJxKVl1XUUFmtoZmfKxVVdRSVqnBysMXbfR4KhQKLxcJzr2/FYrHw+sy+hLbxQywWIZf9dqm+yYULF4iIiECnt1BWXotcLsHL0wmZVAyIKCuv4bvNFzkTlWwttX79eoYMGYJMJkRimkxmjp+9zar1p63XzJ/Zh0mjHnBtLrb+fvZyKqFt/XFysEX2hGjFjOwSJBIxXm7zrBR0v4XZbKGkvBpPNwfEYjG5BRXMnnma27eFpNDdOzbnk0XDrcT2FouFzNxyvtsVzZV63ttXp/cmYuUofHx8MJlM5BTWoK7TE96+CTKpRMgFV1yF3mDEz8sFg8FInc6Avm4CHh4e6PV6pFIFNjYy6up0mM0W7O1tKCpSsX3nZc6eS2bggPYsfXs40dHdmTx5MlKplA9fH0a/7q2t7VJr9Jy9lMrarRcY0qcdz4/vgouzHSLeQCwWs3T5fq7EZgIwuG87po3vgreXI3qdERuFzBoVbrG8SXl5OeXl5bi4+ODl5cSPmy+y46crDcbuuSldmTK5Sz2DxhLMZjMZGRnYKj3w9nREpzfi8Agn8wNk5Zax5sfz3KtPrSaVSnl1ck8G92iD0k7BkWMn2bFlIwaDkb+9+x4dO4Yjk0rrI1IfvrwNZgOr09dyWyWk5dCkq9EeqyW8ZRgzZ87Ez8+PqltVfPzxxxw4cIDi1O+tZXv16sX777+Pv78/IpGImlot2/bEsOfwdZo3b84nn3xCly5dkMpliBBRrq1jX8YdVt2ItuaXW9VjCOODO1CqUaOcvMBK2+fo6ITJbAYL1Kh13EnJZ9P2aIpLq9n34xycHIVEzSbT61y6dIlp04Sgg7gE2LI/nNT0YgoKCli4cCHz5s2rfyYGYmNLcHV1pbi4mPwSI95eTvh5O6Oq1vDNhp0c3LcNo74KsdQOO5d22Ll1sPa3b9++vNLiI9xtmlBrrOBM0n7enfxQkHoUMpkMg8GAVCrlxdH+DB/aD0dHR6KioggICKB58+ZUVFSQk5PD8vXXGdq3PSPWXsPd3Z2MjAxuKveSWXuL4jtqLn5SyOuvv87IkSNxdHQkKSmJFStWEBAQIOQ8BCpzjvL81OFMnToVd3d3MjMz+WL1GtJLmzdo18SJE3n11VetkcAP1q9Go0ejMWBrK8PGRmZlJjGZTPTp04eoqChhjk3pxYg+7XGwU2A2mzFbLJRU1HL6aio/7L/KN0vHE962CfB0h5A/hcYQhidC8uFv2c4b0Yj/INy5cwcXF5fHMtP/V/jyyy/54N13GN6zHSIgLbuEzLwyfD2c8XZzpFWAJ+fi7hLcxJ0daz8iPT2dtm3bcvzILY4evonJZKHfgHbcuplDVlYpTZq6Ya+0YfWqE1yLyWTBaxPZuXMnmZmZBDRvyT82nubw6UT6d2+NvZ0N52PS+XTDKTQ6A0P7tONy/D1spTru3r2Ln58fz3ZpyZDebSmrUvPRN8fp1rE5Sjsbku8W8tE3x1HayWnq60JeXh5z584l6Z4dwwZ2QF2nx83Fnl37Ysm9X05ohyb06hZManoh+QVVdH7GmbfffhuxWEx0TAa3U/NpFeRNqxbe2NrIuJ6QQ6sgL96ePxiABe/sJubiXrp160Z8fDwh7Vvx9w2nyMkrJ6ydQFl29Nxtvtp8jvIqNX0ig4mOzWD+7OfIzMykX79+aHUGlvzjAMkZRUSGBqDTG7BVyPnpSDzPtPEnO7+cl1+Yyt69ewkKCmLzuk9ABPtO3uR2WgHtW/rg5GDLgB5tuHLjHuVVajxclez68QvWrl3L7t27GT12EqFt/LlfUMXnG8/g4mRHmyBvSitqWbxyP7eS8+nRsQWuLg4sX76cQYMGUVlZh0QiRqm0QS6XsnPXVZJTCli4YCCVFbW8+GIv7mYUo9Op2LdvH59++ikjhz6LyWzBYDQRm5CDr5cznu4O9OwcxPB+HYi5mU3srWwunj1IREQEvl5OHD19mx6RQbz/5nB27ItBq9UT3MIbSX0OtzupBXi6O6DT6fD19SX6UjpurkrS0gpJrM+TB9C9WzCvLxqESqVBIpFQU6PC1tYWNzc3bG3lvLFsL26uSpr6uXI5LhMvD0fW/nCe7fuuIRaLeO3lvpw6eZKysjKWLVvGmGH9+fSH0+w/eo4d337K2HHj+PzzVRSU1fDGwlcRy+1o26olyclJLFiwgJ07d+LV14epzSaRpErl3vUMMr9K5c1Fb/LKnDmcLjrLsWsn6NSsI2PGjOHmzZvo7fpg59qB8IiBfPvNBzg5ObFv3z6ir+US2akVnZ9pRm2djmV/m4tKpcLLy4uY0nzspDJya6vo498cR7kNlwtzGBfUjgnBHXCQ2XAxP4stq1YzbNgwLBYLFVUarsbdo2ULT77fEU1gU3emjI1g4LNt8fZ0QiQSseaH8yTdOs+YMWMICwsjwOMoGdmg1VQwcqCRG4kGOgQl0Cl4O9hOBizMeWU+q1evxsvLi+FD+pCQlMe7nx0kJuY6Jw9tIKJLb+okHZDInagtuYZYoqC2IpOQkBB2797N7eoLHC3cQIW+kBHBs2kyRErwUEemvTCV8LEBhDSN5Pq1G1YBdtmyZYwbO5pPPlvHtRs5vDh9NJn37vHltydwdpAQGdEJkbGcaROe5aOPPmTVqlU4ODjwQr/XSau+hslRzRuvLGFYz/HElZ0guugALjJvZs2YK9A0njuHSqVi1qzZLFwwj7Vbovh+5wUcHJ1Z8sYsLsdmWtk/ekYG8dlHC/jll18IDw/HZLIgkYjRag3Y1bPE2NhI0emM1NXp0Wr1iMVixo8fy6VLl5g1axZjhvVn25FYYm/nYDSZ8HR1YP3Pl5gxIgJXZ3vcne1JTC9g/MgBVn7v/258v//3knr/a3h53OPppP6T0Ojj99+MVq1a/Uuf32L+/Pm0atXqd/Oc/V+Ht7e3VVv0tLC3t2fMsyFcSchCYSPnzdUHefurw2h1Bm6m5TGgS2t83B15Y3pfzp49i8Vi4datW3y9+iQnjifg5+9Cbk45LVv70CzAg+PHEoi+mMagwSFEX0jlwoULtG3blnHjxrFh50V+vZCMh5sDIpGgYVPVaMnJr2D7gVh2H42nX7dWXL58md27d2M2m3F3VeLsaMeHXx8jv6gKTzcHSspraNfSl+Kyaq4l5CASibh16xZJSUncTMhl5ZfHaR7gwZXYTDZuuciqNaeoU+vJzCplyvhIAObNm0deXh43btzg/b8f4vN1p7hwJR2jycyIQaEATBzZicJiFWaLhcSUPH744Qe2b99OREQE3+6M5tL1TErrKaiMJjMl5bUkpuSz8adL7D4ST+fQADIzM+nSpQuJiYnYKuRIJBJibmUjFotQ2Mj4est5vtt9CYBDZxLR6/VMnz7dqm358oezfL0lijXbL7D76A3EIhEmk5nQ1kI09rGoJC5dukROTg5FRUW0aCawqZyIusOFa+m8vnwfNbU6WrfwRqs3cjk+k3HzNqLX65k0aRK3bt1i7vwtKJUKbt/J45f91xk0oAN798Vy5epd5r7Sj2+/O0dhkUCxp1QqmTp1KhnZpYiA8kohH59GayAhOZ8Orf3Iza/gw9VHWb/tgjUFUUATNwCmjo3g3KVU9h6Op11rP8wWC6XltdRpDLy6dBfx8fG4ubmxe/duwsMCrHR5j2LyxEguRqfh5GTHug1nSE1NRaPRUFtbS61aR8fQpmRklVCr1tG1Y3P2HL7OL8dvkJiSx/qtF8jMLmX27NnY29szbdo01u+5ROydXMRVqTh5+PPqq6+isJHz4aYLZFVKWPf1l8Ql5dK+fXtycnKIi4tja/ZPFGgKCXd+hpytmYyZMpY+g/oQUx7HkepfSfZKJyYmhuLiYubNm4dEaodEasfksT2oVetIvJPKh598wa7DSew7Eo9WZ+D5SV1xcXEhKSmJ6upqXjy9j3eunKSzVxN+SLrO823CaefqxdKOvanQalAbDSRVlDBhwgQOHTrE559/jrOTHau/PcOFq3fp1bUlH39xFHc3Jc383VDV8wGn3S1i2bJlXLlyhT59+oDIlt5d4I3ZOoY+W4NcbgZLHUiDEYntQXeaixcvkpeXR+vWrSksViGRiCksVnH10q94eDVl44bP+fn7t7h8agMTJk5GpE1DIpEwe/ZsEhISOFO8jTJdHreqzhFbfoxnm01AZZvHNcM+ssSxnD9zgdAubbFYLNbn8tWaTZy/EEfXTs1JSk6lVesQeveMZEC/Xhz7NYp+vTuy50g8+/btIyMjgxUrVlCszaar+yhsbeyI8BnEiaKNXFT/RK7oFkvefQuTxYCvry99+/YF4MXnJ7Nj1yFOX8wgr6iO77ZfITO7lEmjHpqMp4yJ4PDhw3h4eHDr1i1UKg16vRGpVIJGY8DOTo5KpUGrNWAymTGZLKjVwuF11KhRwhz7OZqdx67z0/HrLFl9GJ3eiK+HIyevpBDeRrCG6PTGv5TerZG548loFPz+m3Hp0iXrZ+bMmYSFhVm/X7x4kYsXL1q/DxkyhCFDhjQo8ygOHjyIRqP5/9ST/1no9fo/Vc7BweGxcfsjhIaGYiOXYiOXciejALVGj9liITYpBzcnO0xmM11DAghv7U9aWhqDBw+mbdu2rN/4IiNGhdGqtQ9Xr6Tj4+NMRkYREZEtSE8tpE1bP4KCvYiIiCAzMxOFQsG1evL00QNC0BtMZOWVE9L6YToZk8mCna3cyrn7AJm5pajr9LRu4Y1ELMbB3kbI8r/yOWaMiaCysrIBDdPNxFwsFgvl5WokYhED+7bF1lbG5ZgM2rb2RS6XEBoair29PefPn7eWi72ZhVQiRmlvg4ebkg5t/LiXU4pUImb3d7O4ceMG/fr1QyQScTe7xFpOXK+xmj4mgjUfTaJbx+bE3MrC18sJHx8fOnfubKVtUlVrGN0/BLVGV3+fhxu9xQLR0dFERETQpUsXxGIRMY8QzscmZiGRiL4h70IAACAASURBVJFJJdxKfTzlQ1hYGDKpkDw2LjEHEMxRV29mYrFY6NBK4Me1kUuRyWT4+/tz/vx5HOuTKick5BJ7/R4+Ps64uzvg7GyHXC4l6sJDn6aPP/4YsVhMfnEVJeW1WCxCHXGJ2bg522E2W/D3dSGsnfAyc3MTBL47aQVIpWJaB3sTe0Pok1ZnwGAwYquQobCREtzci4CAAMxmM5WVlfj4OD+WsFkqFdOqlQ/5BVXI5VLi4rLqf5dia2tLfEI2IW38hX7Wm95GDAjl8/fH0b6+/9duZtG5c2dCQ0NRKBTEJGaz+IW+JCTcRC1yR28wYzKZUWv0yJyaUFpShKudYNI+fPgwq1evxl3uhkKi4G5KGrpSLSIXMQ5iJUfXHCLpo1tIbkNERATR0dGEh4db+9GhjR8SiZiLUWexcxZM5dduZKG0V+DsaMedO3cICQnhwoULWIDo/GxMZjN1RgN2Mjkb+o5i5fWo+vki0AaGhoYSFRWFVqvFViGnVZAXsTeyaNvKl1YtvK3XlpRVNxjL5ORkgeVH3uuxuQQgspuCxVQOsrZWVw0nJydcXey5el0w2xvqiunStRtymZSTUUlMf/VH8spsqK4qY/bs2XTu3LnBGgPIqL2Bi9wLR6kwN6pytCQnpNFvdHcA63O5dOUautocQjsEc/HiRa5evUZkWFMqqtRcT8zHx8eHxNt3H7t3U7u2+NoGIRXLyai9Ya2jJEVNenkCMpmMiooKmjRpgpenB1HnTlCavoPyzD1UF1wg5no6Hdr4WedbmyBvoqKiGvRFrzchk0nQ641IJOInJhZXKpXY2NhY59gDmC0WYu/kENkhgK6hgdxIFmgLe3cKIjEx8YnPohF/HRoFv/9meHh4WD92dnbIZDLrdy8vL7y8vKzfFQoFCoWiQZkHKC4u5uuvv2b58uV/WGdeXh6tWrXi9OnTjB49mtDQUF577TV0Oh1btmyhW7du9OjRg4MHDzYol5SUxPTp0wkJCaFv376sXbsWk+mhtmHFihX069eP0NBQhg0bxvHjxxuU37JlC3379qV9+/b06tWLNWvWNGjPA/5REHhFH9VorlmzhunTp7Np0yZ69OjB9OnTn6pNaWlpjB07lg4dOjBlyhRkMtk/fWJ8QNautLWhXPWQT7RcJfDcVtdqCfQVNujXXnsNuVzOxo0b+fV4AnPnD0AqlVCQVwnAscM3SbiVw6xX+iK3kbJ+40y2bNnCnTt3hHtWqWnd3IvWLbyRSiVUqOpwdxEcy5v5uTJygOAX5OQkmKTEYjG1dTruFwr3d6u/dvnaX6lR67gYexdbhRxnZ+cGPoRKewUikYihgzpw+tCbvDanP+8tP0hKeiE2cil+Pi7IZDIcHR0bjNcz7fytXJxuLkrcXJTcL6hkxVfHee+zQ8yaNYuSEkHg69W5BQA5BRWYTGbS7xVTVlFLRlYJn78zlg4tfa3j6+npSc+ePUnOKCQ9u4QhvduRmiEwVvz2hVFSUoKnpycuLi7WMesW3pwz2xbwxd8EhocKlZr0rIeCZ//+/UlPT2fXrl0AJKbmNfh/eWUdZrMFdxeBwWPhC89SXl6Og4MDZWVlvL5IMGffSc6jskJw4h86OAQvT0ckEjEO9WwTTk5ODB4sXKu0s0GjfXhAqaiqw9XFHlWNhktxmax6dyxRP79uXSc7917DydFWeO6VQh0lZTWUVdTioBRYHTZ9OZ0tW7ZQWVlp9bv8Lf2gk5MdUqmEB6NWUSloXGUyGTKZjNo6HW71tICHT94CYO+ROGrUWtaunEKn0GZUVNbh5eVlnfud2jWhfQsfqiorEMtsBa7V+grEMoHFZOW3h1CpVJw/f56WLVvyacjH2EvsuJImWB+ifjmPVCrllZdeYeawF4hZdYnly5dz9OhRFAoFDkqFdV7Z2cooLStD4RRc34eHgRNqtRovLy/rvDRazFTptSgkgl9ZobqGA5nJROXdw14mI9BBmMtSqZRZswSWFHc3JeWVamzkUj55ZxQFRVWIRCKa+rtZ6wkKCmLQoEHCF0lDfzYARHZg0xdL7Tegv0ZMTAzZ2dm0bNkSgJy8CgAspjrCQoR+5BdVUViiIi1L0A7369cPT0/Px/akWqOwnpUyYY5nnKrC3dOV8G7tgYd7Uq3eBUffZ/Hw8EBVK6K0tAi9tpo9B6IxW+r97Cy639y7CqXMBQepi/X7gzpsXaUE+DS30uh5eQnc0lpxC1yaDkXpGYlRV8n9jMvWvcbJQZizD9blg76YzWZEIpHVbe6369jOTo6joyPJyYJPcXnVw2d8eM1sBnZtTYeWvtxMuc+any5y8koKH6w7xoQJEx5/Fv9dsPxFn/9wNAp+/6Z49913mTNnDr6+vk9dZsOGDXzwwQds2bKFuLg45syZQ1ZWFjt27GDGjBl88MEHVFQIm1dlZSUzZ86kT58+HDlyhE8//ZTDhw+zdetW6/2cnZ1ZvXo1R48eZcaMGbz99tukpQl8m4mJiaxZs4Zly5Zx8uRJvvrqK5o2bfpP9fHOnTukpqayZcsWVq5c+YdtMplMLFiwAH9/fw4cOMCMGTMaCIVPiy+//P0oMuuart/Tzpw5g8lkoqCggMMHb3DubFKD63v2bkPniObs3HYZgHXfnGLWrFl0797des2oASHkF1dZqZosFpBJJSx/YwTRsRkA/PLLL3z++eeIRCIyskus7WjqK2zm7y0YgoO9DZ5ujqRnlWA0GnF2fsh3+QAXL6cz740dHD2ZwN/eHIqvz+PXPMDoIc/wbI+HUXiW+loLiqo4eT6JjKwS4uPjOX1aCPwY2KstAEnphZjNFtQaA1qdka+3nOfEhSSG9xOEWJFIhFQqxcPDg3dWHaZPZDCOSgVJmYUNx/jRcf+NE/aNpFyeX7ydD78WKMJcHO1oGehJaGs/zmxbwPr16xGJRFZtb7tgH1oGej5+Xyy88lxPekYE8eKLApPEpEmT8HkwLo9UO35cZ3b9LAg1bVr70r9vOzp06ICd3ZPp3IR2CxqSLmEBrNt2gZfe3s6iRULU5Csv9OKnbwXBZOW7Y5g2IRIvdwfcXJSYTGYAvt54hlmzZmFjY/PYGDwtLBZh/K7dyCI5XRjj7LwKPv7yGLdT8pkyJqL+uof3f2/WILzdHbkRf52Zk4c+8b53MoswmUykpaVx5MgRbMRy4iriqdULgmdYvzAA4sUJ5PcsJbBTc9RqtWBKhQZjawFaBIdwau/b/Lp7IRu/mP5I+5/c79YuwkF4V5ogzK5NuEqd0ciI5m0AwSdu//79APj7uPDJ0lEA2CpknL+Uhtls4V69dvmblZM5cOAAZ86cqb/7E/YNaXuw6EBkD/JevPzyywwePJjFixcjFov4Zvlkzv/yJhKJ2HpYemfBEE7uWsjGfwgBI0qlEpFIRFhYGH9rs9v6CVZ2tg6EUWcm+2I1g0f3Q/wb2kdbl1bYKAXtrVhmT1CrcCwWC7t+3vvIYD6Bwu83Y/igjgGjeuGm8CUvL4+6uoeHXLm9N1KFKzYOzXBuOhiwYDGbn/gcngYKhQw7Ozlz5syhqqrqsf/P+Xg3xy8lU1JeQ/ew5swc25VD529z7XaO9Z3yV0Bk/ms+/+loFPz+DbF7926MRiOTJ0/+p8rNmzeP8PBwwsLCGDhwIGlpabz33ns0b96cl19+GYlEYvWH27lzJ926deOll16iWbNmREZGsmDBAvbs2WO93/z58wkJCaFJkyZMmjSJ7t27W4WAwsJCPDw86NGjB35+foSHhzNq1Kh/qr1isZjly5cTFBREixYt/rBNly5doqSkhBUrVhAUFMSQIUPQaDQNNKVPg7feEui6ajU63JwevtRdHe2oUKlxVCrILxFO8Onp6ZSUlFjruJtehMViwcdPEMhGj+3IDxujKCysRK8zcuTQDTZt2mTVLPh5O9O/R2sOn7lNeaUaVyc7yqvUuLnY07ypO0N6twPAxsYGsVh4oYS09qddkA8Ad9KEF/mSzw5gtli4GJdBWUUtZrO5wQuzVq3FYrFQW6sj9W4R3/54gdT0IgY82xad3kh+YSUGg4Hq6mo8PDyYPLozc1/ozS9Hb6Kv9ymrqFRTXlmLq0vDVBcPhGs354f8t+VValyd7ayn+jtpBXjU8+O+8cYbmM1m9u3bR2lFLaMHhBKbmE2VSnBbsJgbvqQ8PDwoLS2lsrJey+lsj1ZnJL+4iqp6Hy21Rse0kZ1JySzm+cXbGThwIAMGDGDzZoHuS6sz8tzoiIfP0sUOsVhE55AAhvftwMKP9pKRkYHRaCQwMJA339qF0WjCxUWJS31/lUoFC+b3x2Kx8MlH4xCLRVYhFqBjh2Y0b+qOv48LUXveoF2wD5VV6vrAmyL2/3qLzJwyrl4VHMrbtPTlvU8PYDSa+GHnJU6cuYOfrwvFJSpq1TqMRhOHfk3ghx9+wN7eHqNRiCQ3/+YFrFLVYTSarHKUa70W02AwYDAYUNrbUFElvNQfTIkHosGdtAJ8PBxxdbajpKTEqr0V+iX4o8mNZdjayJCIxVzauogAT2FNyBT2ODs706FDB958800KtIWYMSN3kQPQI7g7JouJYl0JeZp8NJ46kpKSGDt2LFqtlhq1ELRQVqGiTq3GJHLkpUVbeWnRVlatO2Xtn1KppLi42LrGpCIxznIFTR0E4fyLnsPIeP4tkqe/jlImR4QgLC5btsxqJrx5+z75hZVW/utJYzoLJvLgerMvcPv2bYqLBa0zxhQaQoRI3h60xxA5LMJS+wUnTpwgNTWVXbt2sW1vDJUqNRNnf4dEZm/Vgn246ggzX9/K0uWC5nnWrFkUFxdTUlLCt5mLrJ9SnWDarDVWkhNdjVFrZvCY/tbaHzwXV2dhLpaVlePqbEe71k2orqmlqrIULML8EIvlDVqulDpTa6yi5oFWUepMTnQ1Jh3MnfY692oTrNaXB/1/UA+AWKLAw9OXsnKhvKpGg9FowtPTs8He98C9o17mxVy/jm1tZSiVNqhUGqKjo619cXukjsLSaiRiETmFFaz56SIvjo5EYdOYVOT/FxoFv38zFBQUsHbt2qcy8f4WQUFB1r/d3Nxo1qxZA/ORs7Oz9eWanp7O6dOnCQsLs37efffdBubZgwcPMm7cOCIjI62+ikVFRQB06yZENQ0YMIBly5YJ/jn/pMYiMDCwQcqPP2pTVlYWgYGBODg4WMvU1dXRo0ePf6reU6dOodMb0eqNtA/yxV4hRySCzu2aUq6qQyIWcyE+g6Lyalq0aEFcXJxVi+Hr54JOa6Bb92CKi1VIpRLMFgudI1qQkpyP2WzBZDJhMBjQarU8PyYSmVTCsfN3uJ2WT4CfG4mp+ZRW1DLtjS2cik5BbzBy//591q9fj9FoZPO+q7i7KrGzlXM7vQCd3kjPiGAkYjFxidncuVuAjY0NBQUF1j4906EpIpEIV9dHNnSxCA83B5JTC9DrTSQkJKBWq3nuued4YXI33v74F7w8HKisUlNYrKK0vJbbKflEhDXkPfb19RWEyrqHJqZH+wIQHOCJVmtApzPQtGlTTp8+TXh4OAF+rjzTxp+DpxPxcnfAYrEQFNBQUO/RowexsbHExMRgNluIfIRwvktYICaTmRq1TvAvMggCYXZ2NtnZ2Vy5cgWD0YS9nQ0KG2Gui0TQNaw5IpGI4EAPFiz7mfuFlWzevFlI/5KTQ2FRFWlphXTuFEjnToEUl6iYOet74m9kk5ZexKxXfiTmWgZJSUnMnz8fvV7PlfhMIR1NWTUz39qGv48z5VVqRCIRZfUBL79FYZGK1LtFBDf3pE6rR4QIf19XtHpBW2o2W2jSpAkikQgXFxeKilTWF+oDGI1m0tIK8fVxRq830rlTYP3vRjQaDR1DmpGYIqyR4OaemExmWrYQTHotm3tSUl5DRFggcXFxJCYmotPp2PTLFWa8u53Mojq+2/wzxnoN5JyPd5OZlohYrqRLeDskEgkDBw5k1qxZOEodKddVYh/ogFguJvteNiXaUkKchMOLplCDvb09NjY23Lhxw9qPmzcTMBpNRHRsS35RFflFVTQP8KBWraOquo727duTkJBAr169EAE9/AKQiMVcLcpFYzAw5tgOhh7awtBDWyhS17At9SZJSUn07NmT0aNHU1hUxfSJXfDycOTuvRJmLtzKSwu3EhN/j9x68+xnX5/g7bffZty4cYKArf+tX7ANiByxaA4AUrA0FL4fCOOl5bVIFB5cunSJquo6LsdlkF9URUFuCmKZkvv37xMXF0e3bt2o0BdZPwH27ajSF1NtLCfjdBW+HZV4eD00QycmJqLVaomsX3u3EtPo2rkNzo62XL16FYlUSesWrhQWFtGhfVCDtgUpw8itS6ZQk4HRrCdI2ZHyCzb06NWdE5o1+NoGERsbC8D9+/cpLa8hIuzhGjObDXTv2olbt9Ot8y0lo4jevXs32PtkMikGgwm5XIrJZMZstmBnJ8fOThD6HgQlPehLl5CHdYhE0Ll9MxLS8hGLQCIWI/0nMjH8aTSaep+IRpH73wzJycmUlZUxcODABr+/8MILjBkzhpUrV/5u2QeaCRBO9A+Evkd/e7CB1dXVMWLEiN8No4+Pj+e9995jyZIldOzYEXt7e1auXGnVSjg4OHD48GGuXr1KdHQ077zzDmFhYaxbt87qo/SoIPig3KP4bZ63P2rTgz48itzcXMLCwn73+iehtraWA+cTGdS1NRqdnlVvjKKmToedQs4zrfw4HZNKYVk1W4/E8ua04VRXV+Pk5MTHK53o2CmQ24n36dgpkAvnUynzrOG1RYNwcLSlqqqOocNCeXFWNw4cOIDZbOaFF2dyJ70AZwdb7GzlSKViHOwV+Hk506GlL4N6taW6VstLL71Et27dEIlEDO7Vhhq1lg8XDmXr/msUl1UzfvAzJN8tpG2QD9PrNVstWrTg5ZdfxiQLZsmiIdy9V0K3iBbMebE37m5KOj7TDLPFwuff/AoIOfy+//57RCIRsTez6NOtFX26tcRksvDttgsA7D0cz7efP8eJXa+xat0phnR5lRdeeAEQAiS6dWxOl7BA/DydkErF+Hs5sWhmX0b274BIJEJVo2Xu3Ll4eXmxbds2NoeGUamqQ2knZ/SAEG6l5DPvuV7IZcKmv3TOQAx6LadPn+bs2bMMGzacN1/qh5+nMyIxTB7eEbPZgo+HE2u2XWBon3a8Oq03CxckkpKSgpOTE5k5pbRq7kUzP1d6RwQxamAojkoFBoOR91YdRm8wsmH5ZJo3cWP79u1Mnz6d+XMNXInJ4KUXe2E2W9ix8wqdOgYSHhbAT7uu8uH7Y8jMKqGiooJDhw4RHh7OuAlTMRhNODrYMmtKD2wVckLb+JOZU0qfri1JySyiVq1l7lTBPF1cWo2trZwjJxNZvGAQKXcLSb1bSOtgbzzdBCF4zcrJtG/jS2lpKRMmTGDvvusMHRrKhPER+Pg4ExrShEVv7GT3nmt8+MEYMjKLeWVOX7TaWmxtbRGJRBiMJuITclj1wXjCOjQh9lYWk0Z1pk2wDx1DmqHR6pHJJCycv4na2lq2b9/O+IlTSc0qprZFBHcvbWf9unXMnjOH54e2pyxhH30nvc7s54dhMpl46623yM/Pp7Kskt4ePSjRlVIwIJcdP+2gU4/O9IzoQfKNZMqq8vlq3VfY2Niwfv16IBSzUcOP369nYP9dODs78ebcARQWq5gwIhxEIn7YfIkJw9rQrl07XF1duTNtEWqDntii+0wKDmFLSjzFdbX8NGgSm5PjkUuEg9Yvv/zC+++/j8VioaBIRZtgbxQ2MnYfiLNG8p48l8T7bw4HwMvDkS+++ILg4GA2b97MC0MtqOugoNSLgA5b6dr9W0qLU0lJvkHz0GsoHF6nZ88SsrKy6N+/P9PGdSH62l1atvAidMiLfPfNMjZ9t54+ET5ci71OaVUKHbuOpFtHfzZt2sShQ4e4/fMwylteJ8i3LRFuwzhZ+COqLAMVGVre/X4OfratMJj0tGvXDr1ez44dO5g1dSLFxfmcu5zCpx+8TExMDBcvRjN8SB8mjx/MvoNnmDhmEHEXx2Jra8u8efMQ18i5WnMYnVnD9YqTDPScyVHPBNqOdKe352BkYhtOnDiBnZ0dGo2GLTv2s2DOFLJy8klKyWBgjwBat27Fqo0/WPfIXQdi+XjxSL7//ntGjBiB2QwymQSNRo+trZzaWh329jbY2sqoq9OjVCqorhasL1qtlh07dvDKxKm0C/Ih5V4Rke2bYWsjo6xKzfwpvYi9nc3kIR25cvMe5ruN3On/0xBZ/qxjSSP+EGvWrCE2Ntaa3uG3WLp0KQCfffaZ9bfa2toGmhyAESNGsHLlSnr06GF1zn0UeXl59OvXj7Nnz+Lv7/+7dfft25dXX32VsWPHsmrVKmJjYxuYdh/FDz/8wLFjx6w+NBaLhaFDhxIaGtqgvQ+QmJjIhAkTuHbtGgqFgtDQUHbv3m0VyjZv3sxnn31m9ed4Uvv+qE0XLlxg0aJFREdHo1QK5q7Vq1eTkpLCxo0bn1jmSfDz86PZwMXMHd+d4T3b4VTvhF6nNXA6Jo2vfoqyJnCeEGLmrbfewmg0YjKBRCKivKyWpDt5tGzljZe3MzqdAbFYjJ2dnOIiFXv2buOrr76iQ4cOHDx4kOpaLTZyKWn3ijl/NZ2hz7ajmZ8rtWpdA5PLo9hxMJaWgZ6EtBYiIkVgTZRao9ay+YeNLFy4EL1ej1ZnQl2nRyaV4OwkJJkWAkVEHD5+iy/WCma1jISvf5cM/cTZO3z6jcC6sOnL6bRq4V1vNjNTUFDAihUr6Dl4JoN7t8PZ0RaTyWytQyQSodbonpg8GB4kba5hz/Eb1Nbp+NvcQY9ds2fPHl5//XVefnsj784bZE0QbTZbSL1XzPd7rnAtIZuxA0N56+X+lJaW4uTkRFVVFbmFdRhNZsI7NEMmFWM2W6xj9Ueo0+jR6Ywo7W0oKqpi+84rSCRiliwexoWLqYhFpdYEziu/3svYwc+gsJFhsVio0xg4ezmVdduiGDcknMkjOuHk+HjS6s27LlNYrGL6hC54ezmh1xuRy6WPJHC2UFFRgbu7+xPbOGXaBoqLVUwYH8HcOX0f+7/RaMJssWAyWTAaTdjYSDEazUgkYqQSMRKJmOVfHWPD57MB4YC4Yt0+hvRoi9LOhp/2HmLHlk0o5FJrAmepRFKfwBn279/PO++8Q1RUFD4+PqRV3+WTpM8oPVRI1aVyBjw7gLlz5+Hj7Y1KpeKTTz7h559/pkWnRajLE1CX3WTE5A94/ZVBeHs5IUJItLzt56vsOXwdKo/wySef0K1bN2QyGSazmQptHXvrEzj72jtwacIrfHY9ijfCegIWDFodBQUFuLi4/O64fbvlAqOGPIOPlxMWiwWdTseuXbt47733uB9vT+xN+Nvn/pw7d46lS5dy4MABAPr2dGb9N29QWNUTV1dXysvLUdg5YWcrx2KB1Iwi/v7lZnLSoqipLsXD3Z1Jk6fSu+9wtm9ew7Zt2xg4cCBLliwhqGULao2VXCs/wtXywyRsUlGVKOLs2bMNgnju379Pz549+eDDTxkxfACODg5ER0fTtGkzAgKaUVZWzu795zlwJp+pYyIY2T+I/Px8IiIi2HJzBdkyQaPnKvMhvHQabdu2xcXFpcFB+YsvvmD16tU4ewTx/HOjeG7qJNzd3bmXfZ9vt0UTf6dhQEqnwAIWLFhAkyZNnpjA2cPDgSdhz549LF68mBXr9jG2XygKhbBe9HoTBaUqTl1J4WxsOu+8NIDm/u7YK6TI5fIn3utfRfcJX/zxRX8Cl/f+hUmn/wfQKPj9hfgzgt+T0KpVK7Zt20ZkZOQT//9nBL/CwkJGjhzJkCFDmDp1KnK5nNTUVHJzc3nllVc4ffo0b775Jt988w1NmzZl586dHDhwgIEDB/LZZ59x/vx5CgoK6NSpE3Z2duzcuZNDhw5x+fJlxGIx48aNw8PDgyVLlpCVlcWnn35Kbm7ufyn4/VGbTCYTgwYNon379ixYsIC7d++yfPlySktL/ykHYT8/v0bKtkbKtqcq00jZ1kjZBo2UbX81ZdvvHUj/VXQfv+ovue/lfW/9Jff9n0Kjj9//Ufj4+LBjxw7y8/OZMmUK48eP58cff8THRwgq6N+/PxMnTmTx4sVMmTIFhULBgAEDrOUdHBw4fvw4zz33HCNHjiQxMZFvv/3WeopdsWIFJSUljB49ms2bNzN//h8LTX/UJolEwtq1a8n9f+ydd3hU1fb+P1OTzKT3CoSShAAJEEJvUgIoVbGgoKICgogCFqpiw04TEUSKNAGlS5OeBEISEiAESEJ6QnpPJtNnfn+cMCHCvXK5en/X7837POd5ZvacvffZ5+w5Z52113rf3FzGjBnD5s2beeONB3tQNKMZzWhGM5rRjGaPXzP+B+Hj0xxT0oxmNKMZ/y34qzx+fZ/4azx+0XuaPX7NaEYzmtGMZjSjGc34G6DZ8GtGM5rRjGY0oxn/9/BfROeybt06+vbtS2hoKDNmzKC8vPwf7puVldVEwepOkuWfhWY6l2b8TyKg46wH2i8teZXls8tTD+beL9/duLzg+PyD1ana0ljnQYLi/92ki4ca/9MPOP5djWN5kMSTJkknDxGo/zB13Mc82FhKDtw1lq4P1k96otBP284PmHRzpXH8D5N08TDJPQ8T4P8gde7ev1P9HyeDAFxTNCaEPMy8tF899YHq1MxszPz/V8fyIMkg0DQhpEX/B0tuyI1sTFSSLX2w8esXNI6/Zd8HSKCKbuzjrZMdHqiPr4Y0qhQ9THJHx/KBD1Qn2eXsA+33d8aePXtYu3YtX3zxBb6+vixdupQ5c+Y0Ucq6A71ez7Rp0wgODuaXX37h6tWrvPfee/j6+tK9e/f7tP6vo9nwa8b/PIYN7chLL/TD1cUOkQiqa9Ts2HmRn/fGA/DEE0/wyiuv0KptAHKplILKavZeTCbAy40hoW2xkcsQHs5z2QAAIABJREFUiURE3cjE29kBn0+nWxQfJP+ApNRgMlFWqyLmVi6rTpynCnjqqad455138PS8IzIvkDC/Nm8H124KMTA9w/yZMrE/LXxmUVJSwsaNGzl1Q8y0CX0Z8UgHHO0EOhGVWkfclWx6h7VBJpOw9+hlQj8ZZSEL/j2HotCf8CpbXaMmITGbwY8EExXVm59//tkyfiuZFKPJhEwiwWAyUafRYSOXYmtt1djQsj82ROMvZ/HWwkYZqjVr1jBs2DCsrKwwmc0Ul1RTW6elpZ8LGq2ec+fTMBhNjBjcERtrGWbzXIqKili6dClJuY3tLnhzBEP6t7fQuej1Rrb+cpEfd8ZY9pk3bx5Tpr2KlUxqOc86g5FatVYYi40VPxyNZUjXdngum05hYSHr168nJHwg/Xq1xcvdwUKTodHoWfn9KY6eTLa036NHD6ZNm0Z4j744OyoFAuo6DWYzKJVyCouq2bIzhpNnBU3Tdu3acezYMeRyOcUVdXi52lOv0WEllyJCoBlSqXU42FpjBmRSMVJJ04d9SVktTz7/HcOHdOS5p3ri5eGAwWhCLpNYNFVra1/l4sWLuLi4EBDYAURQVl6HXC7FrUHrds+vifxyOJHpzw9gdEQIVlaCIWo0GhGJJVRX13P0dDLrd0TzzJhwxo/siouTLSJRgzPENIfi4mKOHz+OuMCR/uPC8WjhipW1DJFY3DDHzBaviUgsukebGCA7p4wDv15m6ksDsLaWWeZnvVqHVCKhvHwiSUlJAjVTUDusJFJu11fxS/ZlJrbujo+yqVSh2WyGse9hMBiIjIwkMc3AoD5BtPN3x97OhhnzG/9jv8egQYMQuSwAaRt0mhIOHdjK6jWbKCwW8cZrjzJ9xhsgaQHqPYBgUEqlUl57tj/jIzpbiMV/fzw//HKBjXsvAoLazdy5c9mZdpV5MQLv5kCf1nzUYyg+tgIdjaThPH11OZLlNBp+MycOoE/X1ri52BJ5LpJvvllJTnYWbm5uDBk+hvRKF3J+z1fdAIfcfnw+a9t9f5PJZOj1ekCQ+Pzuu1XExsZQW1uLl5cX48aN5+mnJ2Bra41MJsFsNvPZZ5/xwQcfoFar79umWCLmhffH0y0iFO82Hui1Bi4nJ9z/4P4EiP5LMhi2bdvG5MmTLQmSS5cuteiN39GCvoPIyEiKi4vZv38/CoWCgIAA4uPj2bZtW7Ph14y/HwIDA/+t+r+nbHnttdc4efLkP6W6+SP06dWOt2cLnokjx69SW6vh6fHdmfLSADRaPV8nQ1lZGStWrKC83QB0RiNhrX1YNH4wcpmES+l53Mwv4YVHutG3vT/HElOxFQlKHC4uLmislDgqbLhxu5gjV1OY0Ksz3fx9eXfXUUqq63h35EDWTX6cLzLi+Oorwbt0PbUAg9FESHuBmqdvj7Zcu3mbwLYeLF0wjl0HLvHK5Hfo2rUrn376KY/dKqZdK3fMZjNJKbepq9fRtYMfA3q0o7KmHicHJV4eDnz11eekpqbi7u7OwsXLaOnnwpYd53l9xhDEIhFl5XWcPH2dp8d3Z9DA9uQ3qB7cGb+qw2BWTxlDRa2alm6OZBSV4+fqyO3yGgJ93Ji0aidfvzCS1KTLrF69mm+//Ral0p6snDICAzz5cfsF6lQaZr06hLDQlvTo5k/spSyGDRvG6NGjOXToEBevGQkN9uWpsd3w8oBPVx6lpKyWRXMew8VJSWJSLgeOXsHKmMy7777LqlWr+PCrXzkdncqrL/Zn2CMdMJvhVFQKZpOZIQPaM/mZPlRW1bM8AZ588klmzpzJlYzbtPRwplatxc/VETAjl0qEsfi6Mb5fCB9uP0HM5k8JCwvjiy++IDo2Cwc7BSKRiKMnruHopKRXt9a8O2s4FZUqYhOyAFAqlVRVVeFgZ4NareNyUi49w1tjMpnZuiuGerWeBXMepbZWzZXkPFZ9vZabN28SGhpKVn4ZHs52iEQiktIKqNfo6BXij0wqoayyDntba6QSMYWFhaxatYrFixezeftFjp26Tt9ebXnnjeF8t+Es4x7rjHeDzvPV5DykEgkd2nszZMgQ9u3bx+ptyXh7OPDRO6MBER8vP4xUJmbuqxH06taa0GBfikpr+HHjGt555x0A1m05x+2iKubNHE5QOy86BXmj1RlIzShCpzfQIdCbyooKsrOzGTBgALpK2PrpAWZ++RzZN27TrktLJBIxJiPkphZQWVJNUFhromIi6devH08//TQOrqPYsPYlsrJLmTVDkDSLic1AoZAT2skPG2s5m7dGE3V2IytWrCA6Opr5JVHojAbCXFvyXuij6ExG1qdFsyX9Iut7TyTAwZ2NaTEcnvcVjz32mCAJ2bqU0+dTORF5k3kzh//D+0NISAgbN24E7SbMVXPIzAth7PgPCWitZvqbe8Bci7nuW0TKyU3qLV68mFEDO/LJuuOUV6l4cVwPwju25NezyQT5eyCVinl+TA8qa+q5ZOzDk08+yY0bNyxP5E4unqwf9DiRt7M4k5+Jv4MT/bz9qdfr7jnGrPwyYq5kkZmeSmbcDoHsf9kyPvx6Kzu2/MBbb7/D5QZZxLvhp+jMwL4v0vvUcEq0mUQVCx7RW1EqLm6ubEK6v3TpEoqLi/joo89wdXUjPj6WtWu/4fnnn8NshsrKesRiEQMHDsTe3p4ZM2bc93zKrGS079GOPSuPkHElG0Qihi38c4yZ++Ivyl2tqamhpqbmnnJ7e3vs7e2blOl0OlJSUpg/f76lzM/PDx8fH65evXqP4ZeUlERISEgTjfBevXqxYsUK/iw0x/g14z+G6Ohoy/bSSy9ZZOCio6OJjIwkMjLS8n3EiBGMGDGiSZ27sX///n/4Vvmv4JmnelBaVsvN1EK+XnGc7zecIzI6jcpKFROeEozJc+fOcfz4cbJKKrhdXs3B+BtUqdTU1Gt4Zc0ezl0XHviVKjU9A1tgb2/PxIkT2bBhA95O9ny4/xSDO7TlWn4xRdW1pBeXcywpjcScAj7Yd5IAT1dmz55NQUEBly9fZsa7O5i1YCexiZkADB0QDMBTo7uRkl7Eui2RpKens3v3brZt20ZYxxbEJGZiYyXjnc/2Mf+L/YjFIgpLa3BzFkhW532+nyNHjpCRkUFMTAxLPtqHs7OScaPDqKgQZMe+XXuKH7edR63WU1OjxtnFtsn4g/08sLOxZvK3uzmfmkNxdR0Lth8j0EeQYOvq74O9wpopU6YgEolwdXXlhy1RBAd5ExOXwY8/XaB9oDdZOWVEnk9jwnjh/M6YMYP9+/czffp0omPTyS2owGQyo9HqadPKjcSkXPJuVyASifhi9XHOXkhjzZo1rF+/Hq1WyyN9heWliIEdMBiM3Egt4MOvfuWjZYe5lSnohj73hPBweemllzAajfwam4LCSs7Ez3ZwJikda7mMT3acJNBXGMve6GucuZpBbm4u+/btY8eOHXQP80dhI+fs+VQ+/+Y48z/ci1qjRyQS8cIzvSxz6vTp08jlcm6mFVJVo6aNvzunI1P4+UACwwd3ZPe+eKJihPHPnj6U+Ph4tmzZgslkIiy4BRqdDplUzFtf7yc6MRORCKIvZ+Dj4ci+M0nkFFbg5eXFmTNn2LFjB+NGh1Fdo2bCEz04E5XChdh0fHycqahUUVOrxmyG197aTm1tLWq1mvDwcNKzShjYO4DraYVk5ZUR0NaDo6evc/D4Fbp2aoHRaGL6vB3Y29tTVlZGZWUlNjZyomLT+WHHecJCWnD1Rj5Wcimz39/NzAU7uZVZQkpKCr1792b//v34tPHAwcUOpYOCg9+fQiaTkn3jNnG/JdG6ox9715xA6aBg+fLlGAwGOnfuTJfOLZFKxXTq6IfRaOJGSgEL39+DRCymsLCK8vI6Hh0ewokTJ1ixYgWDBg2isL6a/PoqDuRe5UJJBlZiCfUGHWVaFW3s3Ugsz+PrGyeJi4vj/fffJzs7G19vJ7b+cpGEpBwABvYKYNvqlzi5ezY71rzCpPE9kUgELeOrV69irvsKjBkEeu9Dot1Kp65TkMv0mLWRoDkA5lrL9VcqlUycOJHvdkZxMiaVyzfzqarRYDCa0GgNtGvlzg+/xPDL8cs8P6YHK1euZNasWVRVVVnaeCU4nKSyIl4+vYcfUxMJchLmpZXkXl/N4bPXSUjOpeDWRTp16gROnfH09qNbr4HInNvz4+ZNTJo0qUkdhcSRYd5vc6p0GUonOU4u9iicJCicJGReqMevi00T5aVr164yevQ4QkI64+3tw5gxj/Pii5ORy2XU1qoxGk3o9UYWLlzImDFj8PPzu+/9Vluv5Z1hn3D6p/Pk3LxNzo183nzzwcIO/pvw448/Mnjw4Hu2+y3dVlZWYjKZcHFxaVLu7OxMRUXFPftXVFTcd99/FhP4r6LZ8GvGfwxubm6WTaFQIJPJLN89PDzw8PCwfLe2tsba2rpJnTsoLi5m5cqVD6VnfDekUjFBAZ7YWMuIv5RpKY+/lIWTkxIvT0cLh+Dd6NjCAzcHJddyipqUK63kONkqSE5Oxtramscee4zIlCwu3MrBaDLRJ6AlQzu0Y3dckqWOXcMSaUBAAEqlkjNnzlh+u3I9DwBXZ1vcXGzp1N6H2MSsJn0WFBQgEomwt7UmOa0QVb2OiH7t0RuMlJTXYjI1iqo3OVal0K+vjxP2dtbUq3VEX7jFGzMjyMgsQaGwQmEjb8Ko38Xfm6TsAlq5O9GllTfx6XnEpOZYNFk7+HmQlF1AbW0tkyZN4tq1axw6dhWz2Ux5uQoHexv69wng0NErxCZkERzkjVwuITQ0lLNnz1r66dTeh/yCSqytZFTXCsa9l4cDJpOZju0bqXjOnj2LjY0NWq0BqVSMk4MCqVRC7m3hZursqBRUAzDj5SFcS09PT8RiMSPCg7iWVQAiEQ4KQXEkOafIMhatwdjkfGk0GhzthTfwmLhMJGIREY8EI5dJMJnMBLT1tCypAoSHhxPX4AF0c7UlLiGLuIRMvDwdcXOxJTYhi07BPgS282TJkiWAoLYiLO+KKC6vRaXW0bGdFxXV9TgorTGbzbg52lJTp8FsNnPixAnGjx+Pl4cDnTr4EhTgSdylLGxshGsml0tJun6b4CBvxGIRlZWVKBQKWrRoIcynIB/iLmehsJFbZM6Ky2oRiURk5JTx5MiuTJ06FTs7O1QqFV07tgAgM7cMkUiEUmFFcmoBqnrBCxV7OQtfX1+MRqPA7RmVSnCPttyMz+B6bDo6jY4WAV6c3n0Ro9HEuFeHUJBZQn5+PjKZjIqKCkY9GkpMbDouzkpMJjNikYhfdrxGQIBw3e7+X2o0GhQKBR0dvYV54+RNF5cWaE0Gnm3dnZjH3kYiEtPB0Yv2DkL4RIcOHfDw8MDaSoaHW6NnZnC/9qzbGsWkmRtZteEUY4aFMmfOHMLDw5v8JwHM2ihEUj9c3e5VUQIIDQ3F2tqai1ezG+d0gDfZt8vp160NFdUqzl1K52JSNp6u9uzfv5/4+PgmbYS5+3DudibWEilrBoxh6aWzgKBxayu7v8qFSV1C//79sJJLUVjLuJJyG5mdH4WFBU103EHECJ95XKs6QoH6epM2yrN1FKdoCR5m26Q8JKQzZ8+epqKiHLPZTEJCPC1btqC6uraJU+3cuXMYjUbCw8Pve4z3g7X1/RV//gyIzH/N9sILL3Dq1Kl7thdeeOHfPub/BMNes+HXjL8dFi5cyLRp0/D29v632nGwFwwFpdKKiorGoOyKyjpkDVqy7u7ugEBYffGz10j4chZb33gGgNPJGU3a2xl1BYCwsDCuXLlCXV0di/ecwGAyUV2vYUBga0xmM4cSbwKgkMt457H+nLuZiUwmw97evslyTFV1o0fTxckWFydbKipVTfq8Ex/laK+gvEpFSx9nZj4/kMjYdJwdFKi1+nvGLRaLefP1CG6lFyGRiJHLpVxLzmPwI+0JDvLml32XLOO/Y/jZ2dnxWFgQ3dr4snXWM/x0/go7oq5gMJlQaYUHv4udgrLaetzc3IiIiGDbtm3YKq0t0m7Dh3TEbDJz/PR1KipVWMml+Hg5IZPJKCkpaTJWuVyCSCQiJj7DUqbR6nFxagyyDwkJASAuMRMHexthGdFsZuiA9pzeO4f9W2ZQV6exxEa5u7vj6OjIjz/+SGgbL8La+RL19QzsGgw/JzsFKo0wlrG9O9DWW3jr7tKlC88880zDuRMx57WhnNg7h1lTB7No6X7q1YJcnp1t4wPM3d2dikoV4oYYtvJKleXauTjbIpWIkUolLF9zAo1G87vrI6JeI1w3V0clNSoNzo5K9AYjvTv7k3gzn9raWk6ePGm5/p+9/zhSqYTyShU1NfUA2CqtqK6px0ouZcxjXSzxnXfPp4DWHtgqrTh+VjAAxA2/t/V3I7CNJ2VlZZw4cQI7OzuC2grGk6TBwLVVWlFR1Tgfh/YPplWrVkgkEkwmE59PXY9PG3c69gpg8+VPQSSivk7D/A1TEYtFtA1tyYLHl7Fw4ULKy8spLCwkMMCLc5GpDVrjQjsL3t/DhZhbuLvbW+ZlWFgYU6ZMAeD7PhO5OmYRPw14mR0ZcaxNjeKt+D08H7mZy+U5yCVS9g6aRnZ2NseOHbM8WF2dbZHLBQ/aT/vjiIq9RWFJNRcTsli/PZrJkyfj7u5+zxIpJuG7i4s798Ode0b5XefG1UlJZXU9bk62/Ho2GaPRxIBwwRj79ddf723DxpZStYqPekZwvaKYfZmNBtr9DL/eXVtj0Klwc3PjpfG9mff1QdKyShBJhVjeu2ONe7o+hwgJsWU77mnnxm91KF0ktAhrGgO8ZMkn2Ns7MHr0MAYO7Mlbb82ia9cwbG2byrYZDAaqqqos5+BB8MEHHzzwvv8tsLe3x9fX957t98u8AE5OTsI94Hceu4qKCpydne/Z38XF5b77/t4L+O+g2fBrxt8KO3fupHXr1pYHcWJi4r9tAP4z3HlI1NXV8eRX23hm2Q6W7jmDWCRiSKe2XPzsNdZMHQfA031DAUhISGDixIn4+fnx8fhGtZOQFp4cv5ZGjUaLjUzK6udHYzCZ+eLIuT8+jrs4BEKCfUhLSyMtLc0SfwWCwfDx3NGs3xlNdcMS3+8hFotZuXIlvj7OfLn8mKU8N7ecGdMG89GnB9DrG2N7QkJCSEtL48UXX+RqdiHnU3JYuucMLw4M49Lnr3Px09ewtW76IJowYQJardaifXoHo0aEciYqhbo6raUsoK3gNdm0aRNpaWlMfLIHbq52uDd4Y8rKmxq6d05DREQEc+cKiQc5txuXS8QiEecu3OKVOVt5e8kvON1lKO7ZsweZTMYzzzxDUUUtF27mMGXFzxhNJgDudowWV9Sxe+Ek8vPzOXjwILdu3bL8tvy7E8x4ezu/Hk9iwexHm3j6HgQSiZhnn+wJgFJhRVpaGp999pnFiJPLpLTxdeWF0Y2xT2azkORRXF7L5LE9sLOzY9CgQZalpbu1iY2mxr5GDhPm5LBBHYiJibmrPTNisYieXf1Z/PlBSsvrmhyjSARLvj6EVqslPz+/wYst48SuN/li0eP3HVdiw7Kp2WymXbt2fH1sHpp6HZdOJrPgieWoatTY2FqzbsEuVNVqKktrWHV6ESNGjGDy5MmMHz+egsIqtNrG+deurSfhYa349MvDpGcUW8q/+OILC8XF18knePLM93x05QjPt+2JSq8lriybW7WlnCtOR2c0NIxXTHV1tcUIMplM+HkJcZBTnuvH8Z/esGxvTx+Kg4OQxNOlSxdE7pctG/KBlnH+K3B2UCAWizhw+hqdg3wY2ivQchz3Q6irF93cfVh08bcm5ffrNvF6rsVb/euZZN57bTgB/u531RF+69GjByFOozha8Bm/5yXRa03cOltH0BBbxJKmc/rkyWOsWrWc69evc+3aNX74YRO5uTmUlf3OKP5df3+Elz56muHD/3GM5b+N/wI6F7lcTlBQELGxsZayvLw8bt++TWho6D37h4SEkJSU1CSU6eLFi/fd92HRbPg142+DgoICVq9ezfPPP28pGzt2LMXFxf+k1j9GdU09BoMRlUqLs3OjgeDkqESvF5b67rztm81m8sqquVVYxs8XkqhVa+ns782TX21jyS7hxpyUXWhp48yZM8yfP5+Rndvj7+aIo8IGZ6WCXbFJ2FrJ+f6lx7GRy3hlwx5uV9ag1+upqalpsqTtaN/41l1RqaK8sg5nJyUp6cVEREQQERHB2rVrAaiqqcfD1Y7WLVyZ88oQnhnVjVZ+LiisZUjEYs7tmsMbb7zB2rVr6dKlC7Pf3kFWdilmsxmD0YSnpwMO9jasW/0in3zwhOXGLRKJsLKy4tq1a+SXV2Mlk/BzTBKbziRQp9ExYdkOy4OovLYeVzsFzz77LPv27UOlUlGnEpYlnZ2U+Pk4c/CI4BV1dlSi1Rk4H5uOXq/nyy+/JCIiAolIjK+3I2XldWh1BmpVgjesvLIOaysZ5VUqBvUL4rvvvmP9+vWWc1NdoxaE4PVGcvLLycwuJTYxi1ORNy3ncMKECajVaoqLi7mSUYBcKuFSWj4/nhB0TFu4OaFsMGIXbznG4x/+yLhx4+jfvz8nT54EBJF6swlSbhWxdvM5Um8VYWMtQ28wUlvX6LkrKSnB2UlYrjSZTLg4KXFyVFrmkpeHkKn58eJxWFlZIZVKLd44g9FESWUt+04lUValwk5pTWW1CjulFTuOJDDoldWYTCYWL15MYaEw53LzhbhIFyelZV7X1Kq5EJuOTmdgxtxtKJVKi5HRt3s7RGIRJ6NSLHFuAMYG46GqRk2dSktxcTFubm5UV1cDsHrTWT79RnhhqFNpcXZs/N9U1ajJz8/HZDKxadMm2oW2RKPSYq2UE9InkNoKFSd2nOeRp3pgY2dNZUk1dk5KNm7cSF5eHmPHjuXXI1dIvJqD2WzGaDRx8PBlDh6+gl5vJDI6zdJXREQESUlCyERiRR5pNSXsyk5gw60LzAoeBIBcLGFm0EAWJh6kXKti7dq1dOrUiaioKAAKi6sRNRjtP+yI5qXZP1q2F97YTJ8+fSguLqakpARz+RjLhiFdmHcV9zd67nivXe46N2WVKrw9HKmp01BQUk1YhxbYKYX/96FDh8jJyaF379481S6E9ElvU66pp5OLJy3tnEia8Cbpk962tPVsQGcyMpquNmi0BuTWtpSWlvLz0URuZhQzcXQ4ZoO6Yd4K171Pnz4oJA680nYbbwQd5Y2go/gpQ+noMIxWt6ai15hpP7TpMq9IJGLlymUkJaVQXa2hqkpN27ZBSKUyKiubxqhJpVIcHR3v9ZLeB9O/fp5hLw7k6aef/sN9HxZ/1VLvv4rnnnuOTZs2cfLkSVJSUli4cCE9evQgICCApKQkhg8fbnmO9evXT0jAW7iQW7du8csvv3D48GEmTpz4p52XZsOvGX8b3Lhxg7KyMiIiIggODiY4OJjc3FwmTZp0j3fpQWAwmEhJK0Kt1hEe5m8p7x7emopKFUVF1ZYH6+9RWFmLlUxKXlk1JdWCV8rJTkGlqp6OHTtia2trudl2bemLWCwis6Sc3PIqNk0ZD8ArG/ZSq9GiN5q4evUqKpWKgQMHWvro3FEIkC6vrKO0vI5rN2/TvYs/Op2B7OxssrOzsbERgrCr6zQE+HswZd52Jr+9hepaNTEJmYhEIgxGE1Pnb6d3794EBATwxBNPUFJai4+3EyKRiLpaDS4udkyeuoFXpm/iUmI2FZUqNBo9ly9fJiIigosXL3I5q4CQVt4oreSYzWakEjE+rg4Wj9f1vGI6+/vg5+fH1q1bhTF0aoFIJCKgrTvpmSXcSBXOZ/du/txIKaCuTsvVq1fp0KED48ePZ8Lj3fn5QAKuzrak3Cq0eDEKi6sRi0W4u9gx/40RzJ49G4lEQl5eHqXldRgMJjQaPQaDke5dG69l+3ZCjGZpWS3x8fFUVlbi6OjIlYwCQvy9UVrLCWsrZE97u9hbxqIzGMkuriQ+Pp6srCwiIiLIa/As9gxvbWnf0UHI8k1Lb4wPBIiPjye8a6uGvusI7+pPjzB/CourSU0vJi4hi9RbRbzy+mYiIiL46quvMBgM6PRGDAYjro5KDCYT124V4OKgoLJhyfpq2m26tvdDIpEQFxfHmDFjSLqej6eHA6VltYSH+Vvmdb1aT4cgb66nFGCrtKJDhw7U1dVRXV3NU6PDSEzKwbfB43UHHm52mM1mHO0VKGzkXLp0if79+9O3b18AbqQWYGcnxBvWqbR0DPRG0RBTGBbSkqysLCQSicW7mHU9n/bhbbB1UGA2mRCJRDi42CGRiGndwQ+tWkdRURFPPPEEMpmMY79do75eR3W1GpFIRFCAF7W1gkHdo7tw3otLasjPz2fs2LHk5ORws6rxPypGhFwsePSkYglSsQQ7mRVOVgpSU1Mxm80EBQWh0xsEQ7VAuKauzrbcLqpqsmVnZxMfH0/v3r3BmGvZRPJwzMZ8ykrv/8KZlJSERqOhR2grS1lmfikKaznx1wQje++JKxyJTKa0os7yEnflyhWO56bx6KFNxJfkYTCbGH5wI48e2sSjhzYBYDKb2JKayIgR93Ikim3ciYqKokdoK2GpXCpBX5uHp6cX6emCsfrjjz+yNetVtmVNt2xF6lTSa8+zZssXtOymwNa1aQKJSCRCq9Wi1WobXmTMmM2QnZ1LQEBAkxji/v37I5FI7olZbHKcYhFzv59Kv8e7807Ex0I28/9xjB8/nmnTprFkyRKefvpplEoly5YJ3IpqtZqsrCwLdY5cLmfdunWUlpby+OOPs2bNGj788MM/jcoFmulcmvE3Qs+ePTl48GCTslGjRvHxxx/Tp0+fB25n+PDhZOYLn3fujuWDxWNxc7Nn9usR1Km09O8bgNFo5pvvBC/P3LlzMZvNPPXCZBbv+A1/Dyf8XB0Qi0QseWoIBRVCWn9bTxeibmbR3s2O7du34+Xlhc5o5LUhvTCZTBxIvMGWqU/IdsYHAAAgAElEQVRhMJlws1MS0bEtUanZAHz//fesWbMGb29vFrxhg9FkpkeDARN3OZu2/u4cP3ODzxeP49DWmUx+MQY/Pz8mTpxIQnIuPTv7o9bomDGpP3UqLXK5lLYt3bieVkBgG0/emPwIrvYijEYjAwYMIKdQyfhx3aipUWNvb4O9vQ3jRnelTqWlW9dWGI1m0m4VUV9fz8iRIzGbzTw9qBsqjY4fX38KXxcHEjJvs+SpoSTnFtGxhSdZxUJcitFopFevXjg4ODB7xhBupBTQPtCL6zcLCOngy4cLx2BvZ8P8D/YAAoffDz/8gMFgYPWGc7i62CIWi7CxltMxyBuZTIKftzMms5kpk/qx+afztGrVildffZU9e/ZgZ2tNbZ2G6Lh0hvRvT4dAbxbNeQzMZrqGtMBsNrPlZ8EQ+emnn5g7dy5vjR+ARqdn27vP0sLNgXqtjqcHhpKcXUTHVp6M79uJ3NIqpi+Kp6CggPbt23PmfAZOjgoe6RuIRqPHwcGGtq3dMZnNFp5AV2dbNkZGcvr0aUaN9kanFehOBg8IwmQys2VnDE+M6krXzi3ZvjuGD+aP4fGx31qy+07HpRHRKwi9wci388ej0ugwm6Ff19Zcu3WbZ4Z35bF+HUhOTubUqVNIpVJy86uwVVpx6txNRj/amZtphWTllBEc5I1IBNZWMrasexmpVIpSqcRoNLLk68NodUa+WDSOw9te58Nlh3C0VzImIpRrN2/Tsb0PX7//JJvWf427uztisZhbmcW4u9rxyoS+JCTlEtrBF43OwPovJ1JaUUdAa3dcHSXExsby9ttvU1VaQ25aIVKZhB7DQ3D3c8EvwAuTyYReZyAjOY/24W0oLCxkw4YNXLt2jcoqIT5x284LvDZtMB2CfVg0bxTWNjI6BvtgMpk4ceo6S5cuZezYsezfv59jw15nQeIBQp19mRX8CJm1pQQ7eFKlU5NTV86i0Eep1qkxGo0cPHgQX19fomLTaevvjmuDp3/s8FD0eiMX4jOoVWlo09KNZ4YuYP369Rw4cACRdjZm9QG05hCsbCZRlLkUvV5EWaUj+VWP4uXcEalYQ4cOHdDpdGzbto1Xn36W8koVBaXVtPJ2wWw2U1lTT0tvZ4LbeDK0dxArt5610FRZW1vTx6slS+JO8sP1ePY8OpEn23YivjifAEdXQEg6kiCmrq6O4cOHs2jRIi5er+BUTAq3Zd1JStxJt25JOCva8NXmn9FXpvDiW2+zaqVA3l5VVcW3r5xn5Ice2LoIj3+9ScONmykUptUyYtG9sXkmkwk/vxYsW/YFr78+G1dXNxITL/Hdd6sYPjwCOzsbVCotYrGITz75hAMHDpCXl4cDbXDxduLzowvYuHgXFw5eQiwRM3/LTDoPDOaDp5ZTU1HXZJXjT4fpIdxzfxGmTZvGtGnT7inv0aPHPVRlrVu3trw8/xUQmf8TKSTNaMbv8M033xAXF/cPJ/e8efMA+Oyzz/5pO4GBgf8yj9/s2bO5csPT8n3Y0I68/GJ/XBvoS2pq1GxvIHBOS17FkiVLGDt2LG5ubtSqteSVVbEv9jqDO7WlZ2CLe9rX6XSCR6yBwDmloIQWLo58eTSK98cOvu8xjR8/Hj8/PwuBs0h0b9zYpp/Oo1BY8fSYbmi1WkpLS9mwYQOnbtgxbUJfHn2kIw52QoJBvVrPyfMppGUWM3fKkCYxYHfjfMwtos6n3Xf8rf3dUNpUkZKSYhl/nUYHmLGSSjFjRi69/7ujTqdDpVIRFZNDaXktE5/uRWlZLR5uQoD+wSNX+Hq1sESefnXlPxRpNxpN1Km0nLuQRt8ebXF2uldB4fK1XN5YuAuxWMSSt0fRt0fbRgJng5Ede+LYuOO8Rblj586d9OvXz7KcbTYjkFJL70+2nZyczMKFC3l7/ld0CPTGwUFh8XJoNHpWfX+aIyevAeDpbs+uDffe3O8cC2bBe7ll5wUkEjHzZz9Kjx49mDRpEjNnzrynjtlspl6jp06txclOSGARiURwV8xa0o0S+vVqx6fLjgAw8emeeHsKBMZ3xx9WVVXh5OR0Tx8gPNxLymr5pYHA+d3XhjGkX3ukUjEGg4G6ujqUSjtqVVqOnrpmIXB+clQYzk5KS3yk0WgkNzeXI0eO0KVlbwLC/HHzdsJoMCISi4Xj/gdzMS4ujncXN2bQTnt5IE+M64ZUKracC6PRjMFg5PLlS5SXl9OzZ0/c3Nyo0WkoUlcT4OBBTl05DnIFComMKp0aB7mNxQuoVqvZv38/epk/LzzZ655jMBhNqNU68goq2LrpG7Zs2SLQdGxYANLW6DSlLFuxhc2bN1vqjBs3rsl9Ki8vj759+/LJ6l8Y0S8YO4UVYomYS8k5uDgqaentTHlVPbuPJbLzSIJFuePs2bO0a9eOvr98R76qhkd8WvNJr2F4K+9NGNi9ezcxMTEsX76cuKvZ+Pu54mhvw9FjJ1i75htyc3NwdXVl6IixZFS5cnzLu4CwFGttbc2z63yw9xD+u+NbfMnnH60gJjqW59b5WJa/71buOHz4JN9//y1XriRSW1uHp6cnI0eO4bnnnsfe3qaBwBl27NjOkiVLUKvVdCwfiEdLV7akruSrKes4sTXS8v0/hQGPffGXtHvu8Dt/vNN/MZoNv2b8f8H/T8PPx8enWbKtWbLtgeo0S7Y1S7ZBs2TbXy3Z9o9e/P5dDHj0LzL8jjQbfs1oxt8KPj4+f7xTM5rRjGY04z+Cv8rwGzjirzH8zh79ext+zckdzWhGM5rRjGY0oxn/I2hO7mhGM5rRjGY0oxn/99C8oHlfNBt+zfifhHfEg8VSFfzWGEsVGPz6A9VJvfGN5fODxN9A0xicln0eIGbnfOP+7UIeLMbrVtJdMV7dHywuMDOuMS7wQY7r98fm3+OP+8mKbeyjVe8H6yP7wr/Wx+/7eZj4u381lvJhzvFDxes9RD9+Ax/sPOedbTzPdt/cP2nlbtS+vs7y+WFiL21ffbDYy7q1jbGXDxOvOOV4tz/cf/2wS5bPDxOv9zBxgQ8zlgfp59/t42Fi/Px7PuD/8uLyP96pGX8qmg2/ZvxPQiIRM+PxPozsG4yDrQ0iQKXR8VtsKit2nkOjM+BoZ8Pcr79m4MCBODk5IRJJkEjElJbWcuPmbdq19cDHx8miuNCIebRo0YJBgwaxbOV0nBqImI1GE1MW7SA1SyB4lYhFrFr8JB3beSOVzhFIovPyyCzU0inQGzulFSmZJfyw+wKDewXQN6wNzo6Khoxf4UGk1WpJzyxn284YLsZnWtqdPKkvPcJb4+PlBJiRyaVIJW9jNpspLi5Gb7LC092e8koVyTcLaOHrRCtfF4uEVVlFHZ9+c4zMOGFEQ4cOZcWq6TjYCWMxm81k3y7n6w2nuXxD4MaZOWkAfbq2xtXxVYxGIzU1NU3iKQtLqomOSycspCWebvaIRCJq6zRUV47Gzc0NJycn1myL5JlR3SznrKCkhr3HL9OtU0sC/N1xcVRy8XIWToqR+Pn5UVdXx83MKmrqNPQKa42dworUzGI27LzAqKGd6Ne9naCnazZTVTm5Qe/VifyCCtzd7CmvULH3YAK7919i3uwRjBjS6XfX8h327dvHm2++yYyJ/Rk2IBhHOxu0OoNA4m82k5lbxs9HEpk4tjttW7kjEc9Fr9eTlFLI8u9PYTabefOVQYQE+yIRixFLRIhFIgt5tlj0JoWFhWzcuJHTjeT+vDVrGKOGh2Iymcm7XcGWn2I4E5XCys+foVPwvTFGer2RI2eS+eq7Ezw7NpxxI7rg4qzEYDBhNBqRSmZSVFTEoUOHeHTsBNr4ud7TRmFpNbuPX6Zf1zZ0DfYD7n1BulSWQ1eXFhZ5tzuo1ql5bmMcly9fBmDUsBAG9Q2iXWt37O1sqKyux8Fe+K9V16iJuniLoHZetPCZRUlJCZGRkXQdPJQ2rs6U1Kk4kHQTF6WCnq388LS3o0qtJi47jzZuLgQtmIVYLEav13PszE32HElkynP9qK3M4rtvvyEzMxMXF1cmTpzIgMGjWLslkswGarlBgwbxRsBXOMjc0Gm1LF++okmW7h3Mnj2bt94SDNEXX3yRvn37Mnr0aOzt7bl+/Tr7Dx5h6KgJtGvpjpebPet2R/NhpFB3zpw5iD3nYq7/mbiohWzeBTfTwc4hkNXffEGLloGIRGLM+mR8fV8mPz//nv57hvkzdWJ/Wvo6U16pYs+view6eOme/QDir8Lmn924lSXimQkvMmHCBBQKOeiTMNd8DMRZ9nWws+GzhY/Tvp2gL20wGNl/7CqrNpxu0uZTTz3FzJkzadGiBdKG7H2TyYxarUOtFjjnRCIRSqUcuVyKWCwiJiaGNWvW8NNPPzF9Un8ee6QjdrbWGIxC1vzh09f4/Dshm3/00BAG9Q6kjd/L9x3Tn4GHIVv+X4BkyR2F8GY042+IXbt2ERQUdB/j6x9j2bJlvLdwPiP7dkAEpOSUkHG7DG9XRzyd7Qls6c7pS7f4dMZI/H1cWb16NREREVy+koO3lxMpqQX06R3AlSu55N+uRCaVoFDKWfrpIVZ+8xuffjKN1q1bs3v3biQSMfUaHSUVtTjaKxjWL5hfz1xDrdUz9ak+9Atvy9YDcXy6ZA5paWk89thj+Pu58sOuC3y3Iwp/XxdmTOyPTCbF3s4aa7mMkrJarOQSVCoV1tbW5OaXM/GZXlyMy6C8QoWVXMaEJ3uw/9Blrt+4TZ9e7QCBYuXkyZN07twZpY0Vs9//mYzsUp57ojtFpbW4OduydmsUl5Pz6N2tDREDgjl+7Bje3t7s3r0bK7mU4vJaTl1IJbC1B3a2NkT0bU9UfDqVNWrcnG357XwKn78/g4yMDMaPF4iqa+s0bNkTS78ebQls48GazefYuCuG/cev0rqlK6Ed27Br1y66dOlCWMcWiMUiVm0+w7W0Qvp3b0vXDi2ISchk329XGdIniDq1jq+/+JiVK1dy+PBhXnrpRbp0aMGXa0/w455Y/P1cmP78AFr6upCaUcyyH07i5+2En48bRUVFODk5cTE+k4+/+pXbhVW8NmUQ1TVq3FztUNhYYWdrxbXr+Xz/YyTq2ixGjhxJREQE3boE8fl3v+HhZk9NrRonBwVvLd2LwkbO6y88gpODgp8OXmLZ5wtxdHSkZ3gog/oEMXxgMOUVKmISMukY6I1GayArtwwXJ1vEYjFms5m9e/cyffp0amq1pN4qYtzIrjz/TC8KCqvIy6/gxJkbzH5tKG1bu9Gpgy+VlRXk5eXh4uKCwWBixfpTyGQSBvUJJDTYl2EDg1m9+SznYtJQ2Mho6evC5Bdf5Pz58yxevBgXRzuyCspZtzuaPp1bozMYmb/iANczinhj4kDMZjOllXXU11Yybtw4tmzZwiE/LQM8AyhUV6OUylEb9eiMBi5X5LMg4QCOcgVzJ77CoUOHqK6uZuCQ8ZSW11FUUk37AC+s5FIOn0gi4WoOYaEtCWzrSXp2Kc9PfAKDwcDUqVNJKSnjtZ8PkVtRxVtD+gn/19Pn+TbqIuczc3lrcD887W1Zvnw533zzDS4uLjwyIJzHBnXk4JGzfPLBu7QN6s43K78ip0jL9i3rqK4z8dmSl/nt+HG8vb3ZuXMn+ZpUslRJ3FanM2HYy3Qb1wb6ZxA02hkbZynFSSqSkq7x/fffs3btWia+OIVxY0ZjBvafvIxZqmTS02NIvJnPr2eTCQn05mZmEeeO/0KfPn2YPXs29opCMJVwK/U0Gi08OdqVmXN/oboyF2f5FkTWA8BUxpCICezYsQODwYCTjyDlF9jGgxUfPMXxszf4eu0JbhdWMvMlYZ6mZhRTWXDRcj+bM01OejZo9D68O28x3cIHERUVTVvPXxGJpIjsZrN1227q6+tRKBQc2bsWPx8nduyNZdOuC8ikUkYM7kh0bDqV1QKPYr8ebfnsg9fZs2cPXbt2xWg0I5GI0Wj0KBRWmExmDAYTTk7Ci6hKpaW+Xse0aS9TWVnJK6+8wrhRQ9i6N47KahU6vQE3FztyCyo4FyvIH4a096Gsoo59u75n2LBh/+aT4P74cdv5v6TdFyf1/Uva/U+hObnjT0JgYOA/3X7/Rrd06VICAwMtepMAe/fuZdCgQfe0HRsbS2Bg4F8+hr8jOnfuTFZW1r9UR6lU8vgjIVxIysLaSs6clft5a9VBNDo9iWn5RPQIwtvVntB23mzfvp2+ffty5coV5i34mYyMEtq09iA3t5yAAE9U9VoKi6qIjk5j5GOdqaxUUVpayowZMwDBy7X94CVORKdQV69FLpMwbqiguThiQAe27Itj056LxMTEsHXrVsxmgRXfbDaTmVfO5j2xSCVi6uu12NpYcSO9iHGvrefWrVtcvXoViURCqxau1Nfr6NRBUKDQaPXMnreTE2duMGRQMCaTmRVrTqDVavH29qayshIQlBaOnrnOL78m0iHAi10HL7Hr4CW2740j5lImarWOqVOnWsYiFot5b8Vhvlh/kp2/JiIWiair1/Ls6HAADp+9TkJyLrm5uRY6HoPRJBAX/3KR3YcSkIjF+Pk4k1dYye2iKhZ8foCbN29ibW1tuT4rN59h7/GrbNkby+5fE5GIRdRrdETGCeoDu35N4MiRI2RkZJCRkYGLoxKxWIRaoyMrt4zNP19EKhEjFol46+M9nI/PZMo728nLy8PfXyDFPnj0Cjl5FRw7mczeQ4k8O15gxXd3s6O6Rs3r7/7EybM3efnll8nKyiI4OJi126OIvpTBa4t3Mn3xTjRaA+Ghrdi0+wKIIPF6Hmt3RHHy5EkmT55MbZ0GFycljvYKPlj+K0P7t+en/fF8uOwwQW09uZVVQmpGMbW1tRaZs2fHd8fKSsqrLw0g+eZtkq7no9Hq2b0vngux6fTp0Y6EKzmCp/PmTRISEqip0+DkqOStj/ZQXaOmS8cW7D6UwPGzNzgVncq8pftJzypl7NixREdHI5PJ0OoNVFSp6Brsx/X0QupUWgJbeXA48jo//3YZDxd7jEYTer2elJQUUlJSCHb0xkFuzdy4vehNRrZlxPNuwgF6uftTUF/D3Li9GI1Gyz3s54MJbP35Ih0CBS3t7Lwyvvz2N9b+GElpeR16g5EWPk6kp6fTunVriouL8Xd2IrOsgn1JN9gaexkXhYJz6VnkVVbT1tUZWQOP4ZEjR4iMjGTy5MlIxGKKSmvYtGkzEmtXvvriQ+KTK7iaIcPGMZijh38hI7uUqVOnMnXqVK5evcpPuR9zpHAdv5VuQCQSEeLZBxsnKTZOUvJiavHqrKSyspLS0lLq6+t5ctwotvy0B0cHB34+eYNP1p1ErTVQU6fh1MVUgaMRcHV1ZeXKlcyaNQvMgszdgJ4wZyoMHvwIcrmM04engFqgsTLX/4S/vz+jR4+2zH8baxnvzR6J2QzjR3blvTkjUdXr2Hs4kWcfv796w4CeMOeVAlq16cUP678mOzsbTEWYq+eBWcekSZMAmD59Og72Cn7aH8/326NJSMrloxWHSc8q4ekxjcvfE8Z15+DBg7i5uXHlyhWqq9XodAakUglqtR6FQo5CIUckElFdrUavN2IymUlISCA5OZmJEyeybnsUuw5d4pPVx5j53i5MJjMtfV0sffx8OJEte2KJjo7+45v2w+K/QKv3vxHNht+fhOjoaMv20ksv0aVLlyZlXl5eln3j4+OJiYn5axnL/2bQ6XQPVc/Ly8ui2fmgCA0NxUomxUom5VpGASq1DpPZTOz1HFztFRhNJkLb+XAlrYBHHxUIds+cOUOXzi3x83PG0VHB+ZhbeHk5YmUlJSjQi7CurQgN8WPJe+MICAigZ8+eiMViqmrVbDsoLLNotHokEjFhHQXSZ7lMilbfKEjfpUsXpFJhySS/SDDOZDLhL9rSxxmD0cSFRGE5V6PR0LJlS4xGI+5u9tjYyEhKbvpyIZWKCWzngUQi5mpSHjKZDF9fX+Li4hCLRYQEC8uwt7JKkEjEpGYIElTt23nSqb0PN24VEh4ebhkLgE4nHG/MlSwkEjHWcimd2/s26ffNN9+0CNxLxCK0DXUuJgp1wjoJ4xeJoEeXVrRp04aEhARAIByOvZJtaSvmctM697uWd5anq2rUDeesgaxXq0dV3zivysrK7iseH5eQiZenI9bWMqQSMTY2MnZumMqHC8YQEBDAtWvXEIlEpOc06o+aTGbik7IJCfIhqK0nYpGItMziu343cS2lAICM3FLsbW1wc7Ej9nI2cVeyMZvNFJZUkV9YiYODA+fPn+fs2bN4eToyf86jyOVSDh252uQ48wsqEYtFFBRW4uXlxahRowgMDMRkMtM7rDUiEZgxIxaLLNfyDmIvZxEeHs6IESOQSqWUVtYR3MaTIT0DaentjN5gpEdIK+E6JWVjJZfS0tuZVq1akZOTw61bt3i9/UAyakqpM2gBeK5NOJ+HjcFsNvNB50fxsLZDJpNZVEhAmINtWgn3uTtyfSCoiYjFYrw8HPHy8iI8PJxz587h6+SAh51AJB6Zkd3k+9iQYAux+bZt27hw4QLLly9HJpMgl0uxldfy0qQncGuQhAOQ2/pi0tdx4mwC4eHhhIeHc+ZMI0n0HSilDthLXajK0VCWqqZNhGOTOWZlJefYoT306NmT9OiN1GSdIfZqOqGBjaEMImD16tVs27bt/pJlIisMBgMmU+N/HrMBo9FIz549LUWfLXwcT3d7jp29zvOzNrH/2BWWzB1FRbWg9+vmYntv2wCyjohEVsTFRt5VaALdBYvc15gxY5BIxPh5O7F/43S2rX6JGS8MICEph07tfSzXrH1bT86ePdvkfOl0RmQyCTqdAYlEjJWVFL3eiK2tFc7OSpycFCxatIjw8HCsra2Jvdz4Qm4ymalVaXB2UNz/2P8iiMzmv2T7u6PZ8PuT4ObmZtkUCgUymaxJmUQiPIxUKhWLFi3ik08+QS6X/yl93/EUHjhwgIEDBxIWFsa3336LVqtlwYIFdOnShZEjR96jiXj48GEeffRRQkJCGDlyJL/99pvlt7KyMmbNmkWfPn3o0qULzz33HDdvNgrea7VaFi1aRK9evQgJCWH48OEWIfv7eS6/+eYby1snwKRJk/jyyy+ZP38+Xbp0YdWqVX94TABHjx7lkUceoXPnzrzzzjsolUqLgPyDwt1dkCWyVVhR3rC0AVBeXY+Lo5IalQYXByWL1h2mqqoKb29vZs+ezaefPMmmzVFIJGIKCwTDLCOjhE8/P8QPG8/9P/bOO7yKam37v9k1vfeQQhqEElqCNKkaQUoQlF5FUVF6E1E5KFJsKFiwIUXkCIp0pYdeQgIECElISO+97GRnl9nfH5PsEMAjnnM473u+N/d1zUX2sNasMmtmnvW0G0EQsLOz4ODBgzg5OQHwt3UHzIFlxnruXlcn6cV94Woazw3sxIjIjiQnJ7N9+3ZzXyqrpY9rRk4pVRotttYWKBVyyipreLpPWzp27IiPj49ZIPvqu5Pcvudjb29nZV53Y559jJKSEmxtbcnNzUUul+HmbCsVrO/fm3Oe5viOuXy5ahy7Dl7hbEwq7u7uZraHnIJyXhrbC0c7S8orpXmzslThchebxqThXZk3bx5KpRKA42cbtSGl5ZKDuYebHYe3zeLEjnmsXBTFW2+9xenTpxvvQ3mjI3pDnYY5uxceHhIDS8LtPBJuS4JFZnYJBqMRC5UCB3sr5DKBQf2kOXsQSsukNnLyyhAEgegzSXyw/hBWlioOHjxoHoudjbppvfIaXBytGR4pXXf34UZBTSaTEdTSFaMokpVThnP9HJWWa/DzltZG78eC6ds9BIPBwJEjRygslHw/27TyRCYTKCnT8CAkJucxZ84cTCYTW7duRVNTR6sgd15/bSBqtfKBdUY+3Ql/f38+/VQKCtn06wX+9sVvmEQTB07dQDSZaBvoSUALZ/P8Hzh1k3fffZe//e1v5OTk4GxhRaiDJz3cAtiaeokFl3Yx8fRmNAYdbRw82fvky5SWlnLkyBFzu/Z2lijqGVEqq2rN562t1SjqhTM3Nzfc3NzMVhE3G2muijU1TX57OUjrtbhaw/Tp01m0aBFdunSR/s/dgbLSEuKTigF4dnBnhj4ZhkwhCRq5uQW4u7vj5uZGUVGjAH83bJSOpBwux9JJgVfnxvXW8L5YsuR1OvafgpV3N4zaMvJSr+Ds0CjIdG7ji1wuN8/xfag7h6WlFV17zQakd79gORS5XI67uzsg8XO3beWFIBO4dTuPvIIK9h2O5/DJBLp1lriKnR3/QPCTSQJ2aWlx0/NikXkMLVpImzSTCRa/t4svN5+kf6/WdAnzM69Re1vpnhUWFjaZL7Gea7nhfdYg/AmCQGVlLRpNHcOGDWP2bClA6e7nGCQfVIs/WJ/N+M+iWfD7D2PNmjVERkYSFhb2b71uSUkJx44d49tvv+Xtt99m3bp1zJgxg7CwMHbt2kVAQABvvfWWufz58+dZsWIFs2bN4sCBA7z00kssWrTIrD3TarWEh4ezceNGdu3aRXBwMK+88gp1dZJAsmXLFm7cuMFXX33FgQMHWLJkCdbWDxfF1oAff/yRwMBA9uzZw9ixY/+0T5mZmSxYsIBRo0axa9cu/Pz8EOuFqb+CBnLsB6FxM2dielR3/Pz8MBgMrF+/nq++OcHUKY83KX85No1z51MoKJD4eles3EthYaFZICu9S7C8t421m06QeKeAuVP7oVarqaqqMpf5bNkojm6ZyaFNr5FbUAFCPbn5tAFEPRHG3r17qauro7q6GoDJE3oQHOj+h+Pq2S2QqVOn3tOPpjvXLzZF8+LCraz95hijhnahXSuvJmXeXLsfRzsrDnw7g+/XSEJ8jVaHWM+HaW9ryciBHVm4cKH5vjzeNeg+KjSDQWTq/C28uOgHNu44z7Jly+je/X76rAfN2d2QyWTmzUSAjwuHfpjF4W2zGPdMV8orahEEgf3fz+DYT3MZ9mQYv/766z9s4z1QUX0AACAASURBVNp1SfCorNQSezWD15f/Qn5+PiEhIVIfHrDUbK0teDwiEABPd3uObJ1FcnIyaWlpODtao9MZ76uTmStpxGKvZ3I+7g5KpZJ+/frh4+MDwLadF+6rczeuXMti3759UoBNejrnY+9gMIg81bcNP++Pk/p6T50d+2LRarXmIAYfTydOx6ViAtJzS4mOuY3RKDLqqc7mOoN7t2X+/PksWbKEAwcOIJpMaI16pgV3Z1PKBS4Wp3O7sgidaCBDU4aNQs2WLVuoqbl/zf8j3LsO7+27CbBUKnC0lAJ+Rm/8ibi4OM6cOcP69VIEvbZOjyiazD5qJ84lMXJw41iEB7RzLww6kfRTlQQ+YY9Mfj9lYsvgdiRkaVE5+GEbNAgwIRq0gKS9bxPkwcyZM/+4HeMd3luxgND2IxHcGzYJSq5du4bRKK2T0CAPlAo5CrmM2S8M4ND22RzaPpvIPm1wd5Wo28aP6EpycrL5QOb54PbunsP6PjVoTL/54TRJqQWcjUnls40nCA3+82s8CKJooqpKi8EgotMZWb58uVm7+MB+/FOt/AsQH9HxX47mqN7/IE6fPk1sbOyffoD+Geh0OpYvX46joyNBQUFs2LABCwsLxowZA8C0adMYNWoUtbW1WFpa8uWXXzJr1iwGDhwIgI+PD5cuXeLnn38mLCyMFi1aMGnSJPP13377bfbt20d8fDwRERHk5+fTtm1bswDb8NH6K+jYsSMvvPCC+feSJUv+YZ9++uknwsLCeOWVVwB49dVXKSoqwt7e/i+1u2DBAtavX091TR3Od5kenOysKK3Q4O/lhCiaGD8wnCFDhrBhwwYMBgP7DsYSFOjOwKfa4+kpacFKS6VdraOjNTqdgfLyGrKysvDz8wPg+FZp9ysTBDNvqsEovTmqNFre+mS/5MOXvM0cEAJw5VY2H357DICXxvTE2cEaOxsLdvwWxxfbTrNkYghpaWlmoeR2aiFjn+vKO6v3mcdTUVmDKEqmvxXv7+fWrVsUFhbi5eWF0ShSVCoJjQ0v49LyGlIziknNKMbWWs3EZ7tRkJ+DjY0Nrq6ulFfUMO2NbVhZKIno4M+q+cPQ6YyUVkhCb4CPM65OtqxZs8Ys+KpUCtxd7YjeOY9tv0ohq8Wl1eTkl0v9TivEVshssg6cHawpKJaEYMd6jUpxWXWTe6hUKvn888/N627+uz9TXK8hq6zWMmRAezQ1Oka+9BUWaiVlFTW8/nxrHgRHB2nDkpldgslkwt1V0iwZDCLx8fFmM1xVTV2Tep3b+eBob8UXP5xk5uR+FJVU8cLrP/Di8JYEBQWRkV9H60APnBytzdo7JwdrSZAHNDV1pGeV0qmNB/PmzeP8+fMAzHr5SUwmE++/+yxCPQvusX0LOHFK0rgrVZIgXVhYiKurK53a+SCXyygurSItswSAe8UWuVxGfn4+Bw4cYMqUKUyO6sqWfRcpLtfg7GCNg60llRotnq52ZnPcrNU/c/PwZ4DE8zvplRdRyxR4WzWaQRWCDAeVFSo7OeW62vuCrCoqazEYjCgUcuzqI8IBNJo6s9avqKiIwsJCszaqqFqaKxdrqR81Oh3fjRth1pgb75LAL1+Woly1Wj0yhRXl9f6rZRU1uLvaIRokLaOnpzuFhYVmS4yGpPvWQeLZLAxakcAnHJqcb9iQHbuQbD4nU1jg4uZJcbEkxKuUcixUSi5ebAzLFhQKTMoIBMtnMBX1A7GAk9G/42r9O69McUJwu4Cp9ie8vBabXR0EQUBTU4e2Ts+Js0nsOnjFfL1WQe4sXzCMTTvOs3ThN+bzp3+pN62LkmbOyemeaG2Zi1lrV1xcjJeXFw72VmTkSPXSsiQNYWWVJMRWVEn3zM3NzbzGQNp4mkwmM0+1KJowGptKQUlJjfN693MMoFTIqavT3zfvzfjPo1nj9x9CdXU1y5YtY9WqVf82E+/dcHFxaULA7uzsTFBQkPl3g+mxwbE/OTmZVatW0alTJ/Px66+/ms0ter2etWvXMmjQIMLDw+nSpQsajYa8PMmcFhUVxe+//86IESP4+OOP7zMjPwxCQ0Ob/P6zPqWlpd2nKS0sLKR9+3tTcPxjHD58mDq9gTqdgfaBXlhbqBAE6NrGl+LKGuQyGXfqtTKiKBITE0Pfvn0BKSVLba2OHj2Cyc+voLj+xdY1oiUJtySfLnd3d/Ly8hBFkU27zjNl8RZ2H71GdU0dRlHkVMztJv0xGEXy8vK4du0aoihSq9WjrdOTU1BObmE5HUJbkHinALlcRsc2LbCzsaBPnz4kJiYil8spKq7CaBDNvm1Qrx2c+RRGo4goiri5SdqCmJgYunbtiiiaiE+QaJKCW7piNIqE3KUxFGQCapWCmJgYLly4gCiKPNbRH4AarZ52wZ4YRRFrKxXRF6Wgi1up+UyYv4nIyEhOnjyJKIpUVUsfsanzt2BlqcJoFIm9ntlk/IIgmM2pomiiawd/8/9169jyvjoKhYzvv/+ekJAQRo0aRZ3OgK+3Ezn55eTkl1Ot0WJna4GVpRJBECirqMHOxoL+/fubNR5347EuLckrqCC/oJKKylrC2vmY5zA0NBRLS0tMJhOBfo0f1BdG9yQkwJ3fTyWw9+h16nQGIsL8mTWlHy1atGD48OG0DvQgKbWAdiGeVFTVUlRSRddO/kR08EMQBDxc7enayZ/CwkJUKhUWFhYUl1TxwmubSLlTyKXLaZy9mMKtpFxeeG0TlpYqRNFEeP19iImJYfz48YQEulNSVk1WbtkD7yVA107+xMTEEB8fj16vRy6ToZDLiU/OoVuYPxHt/JDJBApKqujeoSV5RRXEJ+eSnp5Oeno6Op0OC5kCS4WKQq205mUIfNVjLDJBYNmVg9ipLMjNzW26tg0iqemS0BEa0qhVqtXqEEWRvIIK8vLyiImJoXfv3mSXV1BQJQn5jwf6k1tRyYfPSJy/P125jslkYkCrQPN1LOu1gDVaHUord0oLUygqqSKsTQvyCyvQVWchU9rwRN8uxMTENHmW74bGUEHMr7fx6mKDlXNTc2RgYCAmk4myqrs0maKe7l07c/WmtPZranX8cvgKkZGR5sOkvw51RzCVRIF4r/m1XlhTBOPq6spvv0l8xUmp+djaWJCSVkhosKd5Tefkl9Mq0IO8wgpS04vM9yU9PR2o1yrrb2Ay1RHR9W6rhACq7ly6JPkZnz9/HqNR5LHOLc0lfOtdD+JvZZvv2a2UfPr06dNkvpRKyadPpVLUB/4Yzb6Ud88VSK5AXevXKUj+vLY2Fg+0gDxKNPv4PRjNGr//ELKyssjJyTFr4ACMRiNLly5lz549bN68GRsbG7Pp7m5UVVX9qRm14cPZAEEQzLmXGn4DZhNcTU0Nb7zxxn0mtoboyu+++47du3ezdOlS/P39UavVjB49GoNBckwOCwvj2LFjREdHc/r0acaMGcO8efOYMmWKOUXF3WiodzcaXtoN+LM+SbvNph/uS5cuNfEdfBhUV1ez60Q8A7u3prZOx0ezo6iurcPKQkWnEG8OX0wkJiGDjLxS1qxZg5ubGy4uLrz3riNdOvtzKymXsHY+nD6TxML5T1Or1fF4r1ZUVtby7vKR+Pi0YOHChXz66aeMH9aVkvIafDwdsbZUoa0zsPM3aRf/wnPdGT24C+u2RJNiM5DJkydjMpmwUCtIyyqhZQtnxg0Lx8ZKxbHzSbQL8aRtkCe7v5xOdVUF/fr1w2g0kpZRRHinlnyw7nd2bpW0obdTC2gb6s2mH84ybfLjvPbSALSVLwPg6OiIwSASG5/BU33bMGpoF+JvZTN6WDhV1VpCAtx54vHWiKKJb775BqVSyeDBg5n3fH/8vZ0xGo2MHSL5VuUXVfLj3hie7tuW1yb0YcUXv5FcXc3OnTvp06cPtjZqqmvq6BkewIiBnTCZTCSnFeDhakevroFMea471pZKduzYIUWuCzD3+f7Y2qiRCzLGDOmC3mAkPjGH4PoggcXTn6S0tITZs2dTVVXFoZM3eXlibyqqtWTllDI2KgKFXIamRseqxcM5cSGJCcO7olKpuHnzJm3btmXss4/hc/42L07uja2NBV9ujObVF/px/FQizwzpxOFdc0lJLyQgwB25XE5CQgIvjX2ckjINY4eG06mtD9o6PT/tv4yFWsHRM7eYPbUfFVVaFi2YxbJly7BQK9iy8zzBLd1YNm8wR07dYvwzEdQM7EhiSj4hAZJwZjQa0Gq1hISEsP7raNIyitn041neeWM4BoOROxlFRHT2p1tEIGcv3mbmywMw1s7E3d0dT09PTCYTzo42nLucysjBnTkbk8qooV3IyC6hd7cQwsN8USkVrFlxgP79+6PT6ZDJ5UT1a8/15Fye7N4ak8mE0SCSX1TJ5KjHiLmZyfIZT7PHPpWwsDCmTJmCIJMjAM5qa15v/yThzn60cfQgoTyPl1r1oqC2ivT0dE6dOsXKlSsp0Vvj5GjNhct3aBXkQUtfF5YvHkZpmQZXF1tkgkBGdgmBgYGkpqYyfPhwavR6Iny98XKwY1LXTsgEgUptHYv3HsJKqWRslw4sfqI3uuefp7i4mPfeew9RFPFws2fQ4BHs/vtHvPPuKubMnMbmHw5QW36LQUMnENTSldmvfoNarebXX3+lJn8yeWIibhaSZj4+7SKlKVoGvd2G1rZdecJjIvs8osjPz6dXr16cOnOBSUPDycjIJTsnh3GDOqJWW3AjXUOwnyuy+mhjhUKBRqOpF8jUoOpOjWYFGZmScDZ06ASUFqmk5spwVBTj7DyZo0eP1peH2PhMYq6mE+DrgouzLXOnP0Hs9Qx6PxZM/16t+fSbY+b32MCBA1myZAnIpqKpLiAzV8DDeJBpL8zj998PcSe7Be5en2EjWPHDDz8AsGHDBqKGD2fsM12prNZSVq5h1gsDEEWRbbsac/1t//US7ywcxrfffsvQoUMRRSloqrZWh6WliurqOvR6I46OVtjZWaBQyKmuruOtt95i586dVFRUMH3cOMoraxAEGU/3a4tMJlBaVk2QvysGg0hldS1ODtYYrUL+0vv7L+G/X0Z7JBBMf+b40Iy/jPXr13Pp0iW2bt1qPldXV0dGRkaTctOmTWPcuHEMGSIlo01MTCQqKopjx46ZzR4A69atIzo6uknql7uxa9cuPvvsM44fb0zAOXHiRLp27crMmRLbRHZ2NgMGDDBfe9SoUURERLBw4cIHXvOll6RcdIsXLwagoKCAPn36sHLlSkaMGHFf+W+++Ya9e/eyb98+Tp48yezZs4mNjTUHF7z88stoNBrznNzbP+BP+/T+++9z9epVfvzxR/O5MWPGEB4ebk60+jDw9vbGZ9BCZozoydDH22JvLQmWNVo9hy8lsXZ7NFqdAW9Xe2Y84UNkZCR6vR6TSZBMasVV3EzIISTEAy9PR7OQK5fLiI1L440lL3Pjxg0iIyP5+JPPcbgrgfP0t7aTWB/9OXNCH8YODTfX1+l03LhxgwqdDR1CW2BTn4z4WlIOT/ZobXa+Vty1y66uribpdgk7dsWQmVXC3ze//A/HbjKZyM/Px2BS4+5qR2lZDfmFFbg42+DhaieZ6gTJNP3euoN8seZFACIjI/n8i6+wtGjUzJ2Muc0H3xyjoqqWEZEdWPDCE5SUa7C1UlJeXk5hYSHBIa1R1Wsi8worycorw8/bCScHKwwGI1aW6j/sZ0Od30/e5PlRPf70vlZr6lAq5STdKeB6QjaRfdvi7GCNIIBRNDWZt7tx9OQt1nzyGyveHE5QgBsOdlbI5dLmxWg0snfvXubOncvKT3cysE9b8314WGzYcorOYb6EhXqjVMgRBAFBkObQYBSRy0ChULB7927Wft1oTlw46ymG1Cdwzs4tY8v2cxw/lcj3n0+lhbeD+dm6F78dv0F6Vgkjnu6Eq7OUK7BOZ0Cv05Kdnc3BgwcZM3EaHs62CIKAwSiazbHF5RoOnrpJx9betA/2MvtnCoLAjbIctqbGMDYgnDBHL2TCHxuM5s6dS1jXZ5k6tud9/2cymaioquX0hRRCgz3w8bKnqKiIrKwsunfvjs5goKi6hqJqDR1bPNj3rGF9FBcXs2LdcVr6OvPc0HASbsTy0UcfkZWZgbOzCxMnTaTvgGFs2HySv38zB4VCwVNPPcXqT97FyapRK/r2229z+vRpPvr5DTJrExjeYjaPPfYYbm5ufP311zw77gWmTnyWqKFDsLOzIyEpld/PprDklWH39e3cuXM899xzZGecQlAEciW6H2NekjShK1eupF+/ftjY2FBSUmLO9rBjxw7mzp1LQMQcVCoFU0f3YFD/tjjVuyHodEYOHr/Ox19JAXR3Yj5h1KhRrF27FrGoH5cu5zB5jiR4zp07l6ioKOzs7MjIyCDYN5sWgY2b4+emfcySWYPMwV3lFTWs+fwQZ2NSm4wjvGUuM2fOxMfH5w8TOCuVcmxsLFAoZBiNIl9//RUffvghBoOBlZ/u5Ol+7XB8QCRvXmEFv524yfOj//y5/lcwoN+qR3LdYyeWPJLr/qfQLPg9AjxI8HsQ+vfvz2uvvdZEkJowYQJGo5EFCxbg6upKXFwcK1as4M0332T48OEPvM4/I/gdO3aMuXPnMn/+fPr06UNtbS2XL1/G1dWVgQMHsmLFCs6ePcuHH0rUSB988AFXrlxh2bJljBgxgk2bNuHu7k5oaCh1dXWsWrUKOzs71q1bR2lpKf369WPatGlERUVx8uRJ1q1bR2ho6D8U/P6sTxkZGQwaNIjZs2cTGRnJ77//ztdff027du3+dK7vhre3dzNlWzNl20PVaaZsa6Zsg2bKtkdN2ZaTk/NQZf8qBvRd+Uiueyz6jUdy3f8Umn38/pdh3bp1BAYGsmDBAoYNG8bGjRtZvHjxHwp9/ywGDBjARx99xO7duxkyZAhTp04lOjoaLy8p2eqMGTNo0aIF48ePZ+bMmTz77LM4Ozcm37S0tOSLL74gKiqKSZMmYW9vb44adnJyYtWqVezevZvhw4eTmJjI2LFj/+U++fn58cEHH7B9+3aeeeYZUlJSHuq6zWhGM5rRjGY0Q0Kzxq8Z/+dwN39sM5rRjGY0438Wj0rj90SfR6PxO3ryv1vj1xzc0YxmNKMZzWhGM/7/Q7Ne64FoNvU2oxnNaEYzmtGMZvwfQbPGrxn/J9HeYcpDlbtevsn8t/3Uh3M8r/i+0fHct89DOoWfbHQKfxjn67sdr336PVygStaJxkCVkHazHqpO8o115r/VCx+unboPGtt5mGCNuwM1/plAhX8muMP7iYcbS87RxrH8FWd1+OeCYbyeesigo0ON/fqngkg6P5yDf0pc4zr7q4E6LQY83Fiyj/1rY1G883ABMYa37wqI+YvPmHLlwz0v+jcan5dHFagBfz1Y4+42wmweLv1VfHVjwNw/E9zxzwRq/bsh/H/AsvEo0Cz4NeP/HO7NHwgQ8XgIU+ZE4hPgSk2VlsqKGmzsLHFyeY+ZM2dSXl7O0lfHE+DqRFGVhquZefQK9sPO0sJ8jRqdnq+iL/HR99JvhULBd++OJ8TfDblMQBRNVFRrUchlqFVyEtMKWbvlOElpEkfrvHnzmD9/PreS83B0sMLRwZrikioQBNycbTHU0zrJZDIqyicjiiKOjo7klWj4fvcFEu7kM39Sfzq28gZBsnIIgkBOQTn+3k5kZjxDr169zP1t6e/CtCm96dLJH5VKYc7IX1FZy49/v8DOXRLR/MiRI5k7dy6+fn7IBAGDKBKdno5Gp6OTpyfuNjbojUZUcjkquRxmz6W0tJS1a9cybsp4Qlo2jv9OVglfbT/N+bg07G0t+XjpCIL8ZiOXy9Hr9WTklKFSKvB0t6ekTMMvB+JQqRSMf6YrVpYqTCaJ73bLJhlr166lb9++LH9vCv4+zma2ilqtns82RbP3SLx5rMOeDKPHvJ9o27Ytjo6OTfJM5hZVsuTzfSSmS/fB08WOPR81MIk0/Xg1ppmp4K0P95FUn5pnYN+2vDlzEJVVtRgN03B0dGTGsp/o0TmAgb1DsbVWk1NQgZuzLTZW96awmY8oiuh0OpKzS9m4/yJn4yWCe7lcxrZlEwhscQ8bA/PQarXEx8fz8+Fshg/sQHgHP5QKOUajSHp2CbZWFjg4WJGRXcKGLae4U5+mrX///ry9fDL+Ps6YkNLcCIKAwSDy64E4Pv8u2tzKE088wYoVK/Dy8kIulzcd/wfS+Af1a8vSmYPqazRujj7ZFo2zgzWDeoZiY2VBUnoBmXmlhPi708LNAaNRxM7G4r45Btj12xXWfn2Mbp1b8tacp7G1kZ4zQRDYtusii+oFv/79+/P68MkEO7hgEOufD0FGrqaSVTHRRPoG81xIez65chbFEiuGDh2Ku7s7RpMMtVKOvH7speUaHOwsEU1SuqRvtp2mIPwVpkyZgouLC6maClbHRXM6N126L4LAim5PMcS/NTZKFYIgUKPX8drJJA4dOgTAjCl96REegKuzrURtptGi0xmkFC0CpGUUs3nnee7E3Dd8YhLC2fSTgcSkfObOW0Cf3hHY2TuCqRb0CXTpsobY2FgcHR2Z/9KT9HosCDtbC4pLq/lx1yXirmcy58UBhLVpgbZOz749Hixfvpza2tom7fR4oi0DR3clMNQLJ1db7iTm4uBsi5OrLTNnasy8646OVuZkzQ9Kgm4wGCkra0zOrFAomDGhN0/Vr/3EO4V8+v1xku5Iz5iNlZppo7oTEeaHu/Mr909AMx4pmk29zXjkaNWq1T88Gpg5GrBy5UpatWrVJG9hwwvoXly8eFFK/PsX8NFHHzX5HdzWm2XrJ3D5TDKvjvyMc8cT8PZ15vwxiSLLx8eHjRs3cvp2BiM+38buuASeDmuFtVrFnaJSfroUj0EUqdHpeS6inZm26q233sLf24nvfjnHvDW7yCuuxNHOEmtLFe98+Tu5heWse+M5nOyt6NmzJ88995zEDRvozrc/nmXFJwfwdLfHw9WOWq2O1IwiFHI5J88n4ezszJ49e3jyySfZe+I6b788kK/fHoNRFIm+nILBIDGA3Lidi5ebPSbR1CTvW2CAK+s/noAgCKhUcgQBysprMJlM2Nla8OLzfRg6uCMAtra2+Pj4sPPmTSbv+oVfEhJ4IiCAIGcnFh0+xGsH9mOtUiGXydAZjXz66afY2dmxfPlygvxc2LjjHAtW7uJs7B18vRxZvWg4rQLcmDm5D4F+rmzYsIEpU6Zw5coVgvzdcHOx5bWlf+f7v5/j5Ym9eWFsT4xGkTWfH2LfkXgc7Cx5+eWXeeedd9i4cSMerraYRBPHzyVhMIpoaupY+PKTdGzbSCOoVis4e/YsO3fuBCShuKyqhg2/nMXDxZav3hhtpu+zVCspLtcQfzuXCxcuMG7cOHPi87/vu8w328/i7mrH5++OwcnBCv8Wzrw8/nGy88qo0mhZsWIFACOf6sjQ/u14/+ujrPj8d/y9nbFUK7mdVsiPe2Mkrt3sEt5++21Wrlwp0XVp6/hwZhSt/dwAmD2qNz7uDqRmF/PS6p/IzC/FZDLx5ptv8vTTT5OTk8PqN4YTHuZH4u18lq7ZQ3ZeGYF+rpRX1TJt/hYuX8tg9dJnCA0NJSwsjI0bN3IjIZs6nR6lQo7JBD/vjWX/4XieHdaFx7pIrA6WFkpWrlyJUqk0J2WPv5XDvqPXpfGvkMbv6WaHyWTiWkIW27ZtY/fu3QAM7BHKsD7tWP39UaYu20Z+cSWDerVlb/R1pr2znbPX7qA3GNFqtbz66qvs27ePWq0OgGOnE2kV6M7qpc9gba3mcnwGh09K7EBjoiKajOVyQQ5VOi2JZUUoZHLWXz3H62cOEeroRmsnV/I1VUT6BjNkyBAWL17Mnj17UCnkCDKB85el3HV2NhYcOZXIvsPXJHaQXq2ZP38+H3zwAU899RSn89L5tv9IWjtKScS9rO14NqgdxbUaMqrKKdPWYjSZ+PbbbwkODgYgPbOYtV8fZerczby06AdE0UQLL0c++uoILy38gZvJeax5cyTh4fenlqmpVRDor2D+DFdSUlI4duhTTMWDMJVOAmM+27dvp2XLluzatQtvTweWf7SP8a9+xzsfHyC3oIK174zCaBR55fUfWfbBPvr27Xvfew/AwlpFcnwWn/9Numd5WaXmvwHzHMtkAnq9kdpaHSaTiZoaHRUVNZSUVGMymaira5qg/6233mJI/3Z88PVRpr2+jdyCcj556zmc6ikYnR2t8XSz59ufzpkpOh8JTKZHc/yXo1nwa8Yjx5kzZ8zH888/T6dOnZqca0hiChIN1fnz5838kI8CUVFRuHs30tuNmNyT5BvZfL/2MFl3ilj3tz38uuUcXXpKlHf9+/fn2rVrrD18hjtFpfi5OKKp0wMCIz7fxjv7jrP13BVEkwkfJwdCQkKwtrZmwoQJrPshmk27LxKfnIOrow2aWh0Go4iLozUrNhxCrzcybnA4n376KbNmzcLR0ZE7mcUcir5J727B3EzOo0qjxSiaeGXxj/y8P5a+3Vuxd+9e3nnnHVJTU/nxt1iS04uwt7Fg9XdH6BcRzPrtp3jvm0OEt/Xl56NX0BmM2Nramsc885UnuHApFTs7S7R1BsrKNXz9XTQmE5w6k0xZmYaxox4DIDw8nKtXr/LGsSOcycrkjWNHSC8vJ8DRiZjcHIa1ao1BFPns4gXUCgXXrl1j8+bNyGQyamp1bN51kQtX01n60V6Jts4o0qWdL/27t+Lj746xatUqjh49Sl5eHkajiKWFCkd7K347cROd3ojJBAeP3+TAsRt8uOEIt9OKKCkp4amnniI5ORkrSzXb98Sw7KP97Nwfh8EgYhRFZj/fzzzenfvjWL9+PSNHjgTgekoumlo93++7xPZDcagUckb064BapeC9GYP5ZHs0mfll6PV6xo4diyAIFJdW8fnmk2z55QI79seiVMoZOagz78wfymebo4lPzCGvsJIzZ84A0DsiMjyR/AAAIABJREFUiA0/nuZMbCqPRwRx83YeeqMRKysVLk42FJdpUKkUfPfdd3z55Zds3LgRX3cnarQ6OgZ7Y2WhZETfMBLTCymp1JCYWYi7sx2aWh2Ojo4kJSWxY8cOZDIZMrmMRe/t4vTFFKyt1OgNRloFuqPTGflyyylS04uZPn0606dP59q1a1haqpAJMo6dusWOPZfp1S2ITzYc5dS524wd2RWAMSO6IooisbGx5qTLl66m8/6Xh9mxTxr/8Kc60rWjJCi++uZPLFq0iFWrpKS5rfzd+GLHGU5fucOdnBL+9tXvVFTV4mBnRUFJJf0jQvho6wnq6uokDemMGchkMsoqaoi/lcPoYeGIRhM/7rrEvL/9zIpPJVozk8nUZCzWShUZVeU8s28b39+MZUyrMEpqNUwI7chrJ/ZhMIm0cnRhzZo1xMXFERUVxdpvjnIuJpW2raRUUZpaHTn5ZXz81VE0NTr8fZz59ttv+fnnn0lJSWF1bDSJZUW80CYCgB6efuiNRmxUKqYc3YnGoGNLYhwymYxZsySz8MHjN0hIzuPZwZ355J1RUuJvE4R38CMrt4wvNkWTkV3C008/fd87qk+XC8ybepmne19n//795OUkgDEHDEmYqt7D2tqahQsXYmlpyeIVu0hKLWDU0HDeXTSMNUufwdXJliOnb5GSVkjc9UyWLl1KVFTUfZzqx/dc4Yf1Rzl39CYAZw/fMP8NMH36dIqKijCZoKKiFo1GSt6sVivQ6ST6NpC4khvQ8O7b8ONpzlxOJS2rhJVfHEJvMDL8yQ4AZOSU8vr7e4i+eJvU1KaJo5vx6NEs+DXjkcPV1dV8WFlZmYnSG44GTZRGo+HNN9/kvffeeyR8xg0wGo207eRr/t2mky+Xzzblz718JhmPFhKHZUBAACdOnDD/X2c/L4wmEYVcxvLhT3By8XQGtg/B3c4GgNLSUjp06ICFhQUXrqUD0DrAA7VKQWZeGUqFnKuJOYgmEzE3MhjStx0//PAD+fn5qNVqiur5f9u39ubSlTSsLFQo5DKWzRvCkCfbo1IpsLGxaaLB0xskM5efpxNqlYIL8emEBnhgMplIzSwhp7DCTH3n6OhIhzBfMrJKaBvqhaWFEpMIHcKkj0LM5TQcHa3x9HDA09OTiIiIJuMPc/fAydISK6USDxsbunh5YRBFwtzdqdbpuHbtGjk5OQiCgIOdFe4uksApADn55SgVcqpr6lCrFFy8mm6+bnh4ONl55YBEFO/pZo+VpQq5XEbPiEA83ewBuJ1WgJeXF5aWlmRlZQEQd0P69+KVNDzd7dHU6PD1cmpyT+fMmYOdncRZXFjWSI14Pj4NuVxGeBsfFk3qz83UfA5faCSb7969O4IgsOfwNfO5C3FSnaED2pNwO4+jZ+73gVIq5VyoH19YK28uXE2juFSDh4sdA3q0wspSiZebPT16SOwFp06dwtvVHiu1kivJOYT6e6BWKigsr6ZNSw/2vv8CaqWCmjqdmT+14TmprdWhqdHh6WaPq7OtWTPTPtTLPC8RERFEREQQHR1Nr27BWFgo8HR3YEhkezzdHZg+6XFirqTRppUXMplA7x7BXLp0if79+yOTybCxUtO1o7+0vurH36W9Lz6ejgiCwI4vXiAuLo4vvvhCut+CQHJmkXk+RJOJSzcz6BDiRWhL6XmIS8xCqVRSWlqKvb09CrmMqmotAB3btkCplHPxSuMaAVAo5HTr1s08lki/YOIKc1nXdyhjWrXHx9aBHYPHsTrmJOmVZQgICIJAXV2d+bm8GJeGTmfAzlZy+0hMyScsVGJLMhiMyGQy4uPjm7R7MieNcDepjI1ChVquYOXlaNKrysxlTCZTk43s6qUjCGrpyjsf7efbbacByS2gS5gvggBWlipKS0vvWzt/DBVYjae6upq2bdty6dIlZk7rx4GtrzE0MoyrN7O4EJdGVm4pS14bRJcw6T138uRJjEYjERERf6EtiIiIQKlUotcbsbFR4+RkjVotmchlMgELCyU6nQFRbNSCmef4rmdbFE3ExGcQ1vo/nErL9IiO/3I0C37N+F+DNWvWEBkZSVhY2CNtp7y8HCfXRu2Xk6stZcVNOZLv/m1nZ0dRUeMHzNXGGqt6bmQHKwtmbN3D1nNxABRXVVNYWIibm2SqKynX0LNTAB8vkthZAn1cKCytIrnBn8zVHpVCwaeffoq7u0QhVaeTds/OjjZotXpJ0LNWU1hSxRebTgLQo0ePJjR1apUcmUxGCw9Jk+nr4cjw/u2prNbi7GBNrVZvFhT9/f0BGD9aEmhE0cSVaxk82b8tggClZdUo62nW3NzccHNzo6qqiuszXiNx5mx+GT2GPYmSGXxSh4542dpiqVDQ278lbx47SkFBQRPNQr/uIRzZOpMT2+fQKsCdwpIqaus1BCXljU7qbm5uONhboq3Tk5Cc14QaLSW9kB1fvciJnXMZ8kQYRqMRa2trysqkj+5zQzrjYG9FeT0JvJ2NBUpVo2DcqZ0PEydONJvhtbpG01RJfR0/D0faBXry4Q+NDDggJSQH2H2oUfArre+3ra2aT75rWv5uNIzP2dGa0nIN6dklFJVVYxJNnLyUAsC2bdtISUkx86mu+/kUSZmFuNhL4z95JYVl3/zGlt8kZzCDQaRTp060atWK2NhYRFHEQq3EylJlFrLt7awQRYnDt6G/7u7uuLm5UVNTg421GplMRmFRJR+sPwxA1NMd6dLRD7VKga2NBd4eDgwePBi1WvJJrKzWEujnwuIZkebxuzjZYG2l4sCx67zx/h5efPFFbt9u3ETJZE39wUoqanCxt8a5nopswtMRlJSUcOTIEUaNGoXJZDL7ETZQfZXetUYa0LAua2pqsFOpmdC6E3maShafkfzr7FQqAuyl+yaaTORWVzJr1ixat5aCD4L8XenVNcjsr1ZZVfunVHxFtdW4WUplItx9EARoaeeEup7DeExwWL2vpLS2OrbzoX2oN60CPfjk3dFMHtWDN1b9yqHoBEYO7szEZ7thY63ml19++YftArTrMAjB7QqCezyC1XjGjBmDt7c3gwcPxsvdARBYtf43wkJbEBrsSfKdAg6flNoBiSu9vLzc/F56WLi5uWFvb49arUAQBCora6mpkczxtrYW9fy9+vvqQNNnG6T76PIX6Q7/VQgm0yM5/tvRLPg1438FTp8+TWxsbBMKt0eJf/XZbfBv/vLEBe4UlTCwveRn6GJrg4ODQ5OysQmZbPhJ2u2nZhbh6mhDiL8bHVt7E+LvSmFpFX+UR73hw2Qymfhy80my8yRBR61WM3PmTJKTk5k8rOt9A3vrpYG89/VhxLs+pA1oEAANRoP52tfis7h2Pes+x+2GunV1dQzZ9gPDt29j2YnjPBPaBoCT6ekYRJFNV66QV1XF2oGDyMjIMJtUAW6l5DNl4Vamv/EjqRlFuDrZ4Olq16QdmUyGQqHAQq2ksLjqvvvTLsSLpWv2MG3+Vo6cSmjidwbgYGfF/u9n8N1HkwDILagw78ztbS15e/bTzJ8//w/nGcDexpI3vzjQRCi8+x5U1dSZz3nU97+0vAZtXdMP3z9CRm4pNTU6TA19ROKbPXToEK+++ioA04f1oJVv4wf6aEwyp67eoaBU2oy4OtogCAKHDh1iwoQJlFXUIpML/PbDTNa+MwqAK9clDejd4234u0H4Bdh/5DoZ2SUA/Hb0Jt0jghrHLRMoKysz+zfW6QxciEsjsncbrOoDVExIS+5mch4p6UXExsaydm1jxO2DHrS7z/TuHMjUqVOpqalhwoQJZOaUYhT//OG8dyyJZUWsijmJn6307G1PjGdSm87m8gfTk6iqqmL58uUAvDypD/uPXn/gNf/od0Pfo1q2oZWjC/PPHOC5oPYkjJ+Hl7Ud9moLkpKS0OkkwSg0yAO5TIZMENAbjFhYKFm9dARP9W1DaLAnE5/tRnxCNidPniQ5OZnk5GSQPZibOPnWSUwlUZhKx4LuHF999RUymYzq6mo6t/dFoZDxt/lDcXa0xsXJhn49WxHZpw0tPKWN4OrVq3FycmLRokXsiluOq6f9n85xAxo2h1VVWgwGEb1eWg8qlQKjUUSvNz70tR70+N29Hpvxn0FzVG8z/sdRXV3NsmXL+OSTTx6pibcBDg4OlNWbUwFKi6pwdLFpWuau35WVlZLPofSdpqhag72lGoVcjkar4+spI7BRN/bb29ubwkJJo+fsYE1BSRXJGZLGsKC0Cm93ByYMjSAjtxQLlRIfT0cyMjLM9ft0b8WJX0IoLdNgYaHEaBTNwkWDJm7//v0MHz6ckSNHIvoNo2fHloiiSHaBZCp1c7Lhg/nDkcsEXh3zODJBMndlZGSYP37WVhaYTCbkchlzZ0UC0kv+veUjMRpF5HIZRUVFFBYW4uLiQkaFdO3E4mLau7sxul0YGRXlFGo0lNdp6fP9dxydNIVTe/eSkZHBsmXLAMmfp7xSiibMyC3F28OB8DA/8/xkKJV8/vnniKJIXmEFJaWSpqCkrFFjsOXnC5y6IGmS8gorKS8vx9bW1izEvvn+HiqrtXTt6M97i6JQKGTmOQvwdcHV2ZZNmzaZyw/u2QaZTODcxjlsOSBp0uRyGZuXTzC3KRMEwGQW/JwdrCmoXzcd2kgmP1dnW6J3zLurPJw9e9Z8jYb7X1KmwcnBGid7K0rKNVhZqszC7/Xr13F0dDSb/JIyC5k0KJxdJyXBxNnemoLSKoorpPmIuZVJKy87UlJS2Lp1KxMnv4xGIWf0K9/g6WbHxo8n4+hghUwmmLVlTg7WFBYWolQqsbS0RK83IpfLcHawxmiUPuTJqflYWnRBpzNQVa2lpFRDWloaCoUCV1dXZDKBsnrtaKCvFGVcUlqNQi6TIlUfgHtlOCc7K0oqNPQPlwIgln15kFu3btGrVy8CAgI4H3sHpUK6R2UVNbg62+LkYE1WblmT6xQVFSGTybC0tERnNHK7rBiA7p6SaXN8aEfkMhmpUxegkMmY1jYcvU7HxIkT2bZtGwve+ZmRgzsjiiZkMgE7G0tKy2uatHHvJsjF0pqiWg2Pe/njZ+vIBz0Hm8sJgoCAQEhIiPn+C4KApqaOFxc0pkVZMnMg9naWeLjZ8/p7v5KaUURpyo/m/z/9y4PNvjpdDRgzwZiJqeIKtbUHqaurIyUlhdRcgainOrJ09W5sbdSsWDycjKwSlq7eY3YBWbt2LePGjWP16tVknLGipLDqge3ci8LCQmxtbbG0bLy/d2tx7w3qaKgDTZ8XkDS492oBFQoZGzZseKi+/FP4/0A79yjQLGo3438cWVlZ5OTkMGbMGNq0aUObNm3Iyclh6dKlTJ48GQAbGxuqq6vvq1tVVYW19V8zH8jlcm5eyTT/TriSSZeewU3KhPcKpiBH+tjcuXPH7FMFEJeRi0yQYRRF3h8lOWafTcmgpFr6cGRnZxMfH49Wq+WxMH8AEtMKqNMZCG/rS3VNHSqFnF+PXqW8qpZfj14jMjKSyMhIdDodWbmlPD93M/EJ2UR08KdOZ0BXv6sO7+CPTm8gICCAiooKrl+/TqVGa/5YpueVotMb+OaXc3y85TiCIDD/w1/R6gxUVlYSGRnJzp07KSys5MKlVFLvFFJSUk3qnSISEnMxmUxcjkuntExDfn4FeXl5xMTENBk/QEsHJ0STifzqamJzc3ncTxLkBEFAr9fj7e2NyWQiM7dR6BMEiGjvR3VNHbVaPXU6Az27BPD9998TEhLC0aNHaeHhSPwtib4pr7CCmnpftfKqxjQUXTv5k52djV6vJzg4mDqdga4d/anV6mkT7ElBUSWuTrYkpUqpVm6l5DNxziYiIyO5ePEiAMmZheSXVDLhra1YWSgxiiI/H7vKhLe2mo/TV1IpLy+nuroaURTp2tHf3Ae1SoFRFNl96BpT529h6vwtnLmcQsLtPCZOlPKk6fVGHquvE5+Uw2Md/Qlv70d8Ug7xSTlEhPmRV1hBy5Ytyc3NpW/fvuQWV2AwiiiVChLTC6jTG+jern4N1f9uH+hpXpcVFRXY2VlgZalEFE3cTiuitFyDr7cTgiBw/Vauec5iYmKIiYmhd+/e3ErOQ6vVE9HZn8c6tySvoAI7W0kgvJmUiyiauJ6Qjb+/PxcvXkQURdQqBfZ2kk9cgK8zRqNI7PVMrt/KoWunxrlpgMlkIti3MUhLECCirS8ONpaEBXui0xtxd5GE3wkTJpCQkEBwSzfz/b96Mxu93njftQ1GkQsXLpjHcrUol0AHyaybVV1BvqaKr65fokpXx6Ddm8jXVLHl1hUGDRrE5cuX0Wq1dA8PoG/3EIpKJMGkVZA78bek7AIKhRxRFGnfvn2Tdvt4t+RyYTYfXDnFwL0bGbJ/E8eyUyjT1lJcq+FI5m0EQeC336QglKTUfGxtLFCpFOTkl5OTX46Lsy0tvJxY+M7PxMZnUF5RQ3p6uvmAh9OeyWQyCgoK8PX15fK1DGys1ZRV1Jh97Vp4OVFWUUNhveDVtm1b5HI5v/32G3mZJYjGh0twFxMTg16vN6dyAUnT19BOba3uvjoN776uHfzN5xqe/fjERmo2tUrBmsXDCQkJeai+NOPfh2aNXzP+xxEQEMC+ffuanJs2bRrjxo1jyJAhAPj6+lJRUUF2djYtWrQwl0tISDD7rD0s9uzZYxbqnN3saNPRFxcPeybPepJj+67QoWsAUeN78Mum04x9qR83btxg4sSJnG/bnpnb9pBeXIqFUjLtejnY8vPlG0zp2QVBgOO3UqmpqWHAgAHU1dUxZ1I/rCxUpGYVUVxWjZebPdaWan76PY4ZY3ojl8v4/tcLJCVJwQQ5OTn4+voR3NKNk+eTWb5wKAAWaiUrFkfRvUsAcfGZPNa5PdHR0UyZMoX5i17GzsaCimotrz//JMcv3WbMwM7oDEbOXUvjyW6tkQkCVVVVfP3116xatYptP51n1ownOfD7NQYP7ICTk43Zvyq8sz9Go4n1Xx4FoKamhs6dO3OlfXv+Fn2c7j6+RHh7k1FeTjs3N/Ym3eLrYcNJmjkbQRCwtrZm9OjRiKKIu4sdY4Z0wcpCydhhEcjlMpwUcj7bcpLC4kpmT+lHaWkJS5YsYfLkySgUMlydrAn0dyXI3xWVUsodN+eF/lhZqujfoxWhQR5UV9tw5MgRBg0aRH5xFa9N6UubEC8G9m2DwSBiwsTqL36n92NBvDT+cZZ9vB+FQsHBgwfp1q0bwT6uVNfW8VS31jw3oCM6vZHv9lykpEJD3y5BzHi2Fxl5pTg4OPDll1/yyiuvMGtqf2QyAVsbC0YM7IReZ2TzzvOUlGvo3TWILu18yc4vQ6GQXqtxCVnMGN+bOp2B0zEpLJ89BJPJREm5BmtLNa5ONtRq9Tg7+HP8+HFefPFFDEYTHk52LP5iHxFtfKnTGZg/ri82VmqSMwspLtfg5WKHXiHjxIkTfPzxxyjkUrDMyteHc/5yKhZqJYIAN5NyUSrlvDTxcYL8XbFRd2Pz5s0MGTKEU+dTaBfqzYDeoYiiyImzSbwwoRdyuYz4m9ls+fJ5Pt1wjD49oswBMfa2lvR+LIj0rBKeGSSNf8/ha0wb05N2IZ78vvU1Pv/MaE67VFKu4bXRj1On02NnbclLI3ugVilQq+QsXLuXQT1DefW5XlTdnsTAgQOJj49HrVKwtz6IZse+WPr3asW44RGo78ozKRPg+PHj1NbW8t1336EVjVgpVWzoP5z+PgH8dPs6o0PC+O7GZVraOeJsYYWLpRU+Pj5otVqOHj3KnBcGoa3Tm/3trK3UiCYTL0/sjbWVipz8cqZPn05ZWRk6nY4lY+dgpVTxYdwpCmqqKa7VsGfwJHxtHFh64RDvdIukX4tA9u/fz9WrV3FxcaFDGx8SkvNYvfQZft4fx+AB7fFyt+fy1QxaB3mQWf8OKrK1paqqXjOmfhLBdj6a3FfJyBZRW/kxcmQHlEIaKdl2WNuo8fIdhI+zD3PmzOHjjz+mT7cQrt/K4cO3RyKTyTh9IZm2rb35cs04Tp67zZUbmSyYPpo9e/aQlZWFo4303lu1+QX+vuEE6Un55ndj6zAfjPWbTG9vb44dO8bQoUOldW+rxmAQsbSU/JuNRhFRNKFSKbC2VlFRIW3Oqqur+eGHH3hp3DhKyjTkFVYwLioclUrBnvrcmlYWSj58YwSuzrZMGjeSo0eP/qV3+EOjOYHzAyGY/pHTSzOa8W/G+vXruXTpElu3bv2H5fr3789rr73GiBEjzOcmTJiA0WhkwYIFuLq6EhcXx4oVK3jzzTcZPnz4Q/chKCiIIPVoANy9HNh8ZCG7tpyh42OBtGjpilZTh90fOCHrDEaKqzXklFUQ0dLngWWeffZZfHx8WLt2LblFFXg420pO30aRiqpaVEoFapWCpLQC1m45QWLa/2PvvMOrqLq2/zstvTfSC4QOCYGELlUQEAQBEUFAQKUKAgIKIiAiSlUQFJCOdOm9hhBaAiSEFkjvvZeTU+f7Y8IJEXxEn0ff732fc1/XXDnnZM/ee/bM7Fmz9lr3nWNQ7ti/fz/2Tn442Ftib2dBXkE5EsDFyRoBMTM2K7eU6NvhNG3aFG9vb+RyOd/tDOXa3SRmjOxKYAMPJBIJgiAuUz5OziExvYBW9e3x8vJi2rRpRD905c03WjLozWDquIgP9qdv9aWlSn6pJnB+cn81CxYsYMiQIdja2iIIAhq9nhtpqUgkEho7OWNjZoZOr8dcoTAYj3FxcXz22Wd8v3YTHnVsDcthT5Jy+WnXFW5GJ9OqmRer5w954RhqdXryC8o5cOI2lhamvP1GsJh9LIhLTVu3bmXRokV06NCBFavW4uRQszRfWFzBl9+d5Pa9VAO58L5jtxnSr9Vz7QiCQGZ+KXN+OM6jZNFD+HrHJsz/oBfxaXn4uTvQpEkT2rdvz8rv1mJX7fHKyi1l3oqjBq9i765NmTu593P1A1RWqZFJpWTllVDH0QYz02oKDJXIo/d03FUqFWZmZiz4+TQnrj2kb4cmzB/bi+yCUlyq4/o0Oj1FJZUoJBosLCy4d+8eOSWmdAiuh62NBRIJqNU6ElPzcLATr6GU9EL2HrnF5x/3Ydq0aRQUFPDFwuUi6bVEgkQqQYJI3L1u0yUkUgmffdyHt8eup4l3tmHJ/lmoVFomfr6bxwk5TH6vC693b4a1pdlz5Z4ev0IuM3ilXwRBEIiKimLdrgeGMQVo16ou86b1eWHd+/bto6SkRDSY9XpDTF56eSl7n8Sw4V4Eb/o3ZUWnPpxNiaO+Xo67uzuVlZUgNTUkj/wrqFQqpFIpiupkro4HfiS9ohRPSxvCB7+YeHjFihVs2rSJ9VuO0Li+m6GdZ71mvz2OadNExZK0h+8itf2WqGszGTr6KN7e3nzxxRc0btwYGxsbystLsbeI5o23vufOnTt07NiRBV99R10fZzQaLSDB1FROeYUKqUSCuZkCZZWGY0d/ZcGCBSiVSgKsRuDiYc+2i7M5vT+CXm+1fmG/nuLKlSu0b9/BsMQrCAJSqZTi4ko0Gh2mpnJsbMwpKCgnIEB8IZbL5Xy9+gC9OjfBysKUx4k5fL/lErHVhOdBTTz5YeHbfzj+/y5eC1n4t9R7JvL5e+J/E4yGnxH/KP4dw6+wsJCVK1dy9epVioqK8Pb2ZsSIEbz11lt/qg8eHh5GyTajZNtL7WOUbDNKtoFRsu3vlmzLyMj444J/AUbD78UwGn5G/NfBw+Mf5pIywggjjDDid/G3GX7BC/6Wes/c+nvq/adgTO4wwggjjDDCCCOM+C+BMbnDCCOMMMIII4z4vwfjguYLYTT8jPivhHvPl4ylOlsTf9SwycuRSz9+uMbw2afjS8Z5hdfEeb1MbNizcWH1A14uxiku5pkYp78QS/VXYtb+bFzYn4kL+jNt/LYd/xYvN2bx0TVj5tvu5dpJvi6281divPwDX7Jfd/+9c+nV5eXGOS20ZpxtfvjwD8uXTt5g+Fyv1csdf8LtmuO3Gv9ycbTlP9XE0f6Vcf7gTPAflt/42i3D579yH/9d8Xrw5+MC/902/kqM35+Nif1bYMzqfSGMhp8R/5WQyaRMHNiBPu0bY2VhRmxyDit2XaKySs0n73YjqL4HKo2WvOw3sLa2xs7ODolEVk1qXMbBw7c48Gsks2a+Tq+ezX9T+6dMmTKF0tJSVn4/AfvqTNDfEsICHL1wj8BGHjjZjUen0xEXF0epxprmDd2xtjQlNjGXdTvD6NquAd3bNcTRzqK6HvFBpFKpiE8sYOee69yITDTU27F9ffr1CqR+PRccHKxQKtWYmc1EEARycnLQ6E1xdbGhoKiC+48y8fa0x9fT0SC6nl9YzpI1p0mMEOuTy+VMG92Nft2aYWoiF+spKEOn0+PiaC3SNuSV4u5ii5P9VKRSKVKplNJyJWamCgqKKjhw4g5ymZSh/UOwtTFHgpjZuvYHDGoPHVrVZf7UPliYmRjGbMmPZzh+8T4AVhamjB3SjsCv+uLl5UV5eTmPEovR6fV0DPFHIZeh0+m5djuR3IIyXgnxx87GnMoqDWUlQ7CxscHOzo70zEJcnG1EFQ0BLC1NyMouYfue65SVVzFjUg/quNii0UwjOzsba2trLCyskEglIMDD+Cy+33KJx4k5+Hk6Mm54R9oE+lUTbM9Ao9EQE5vFqvXnRTqaD7oT0MRTVHKQSZBWZ11rdXqkkmlkZWWxefNmLt6suTY+mfIa/XoFotcLpGUUsn33dS5dieWDUa/Q7ZVRODg4oNfrDaTnGo2OU6EPWP7jOYYNCOHN3kE4Olii1erR6XTIZZPJzs7m2LFj9BnwDvW8nJ67HrPySth3JopXWtajZRMv4PkXpNfOrmZzx5F4WNRWqClRKxm+KZL69eszefJkfHz90Gp06AUBC3MT8gvKcXCwRAIoq0RtYVsbc3Kyh7J582Y2bNhQq756TvbsGPEWDpY12bfJBUWM3HmAckRuugULFtDpBw+MAAAgAElEQVQiSMz4Bgi9fJlVK1eSkJiIXG6B3LoRFo7N6d2tKW+vCMPT05O0tDTumh7lXsllcu5XoL3gx/Tp06lXrx65ubns2LGDrVu38vrrrxtoY0rijqGtyDL044MPPmDUqFE4OYljWKlU89OecFaGPzdcRN6Frb/WJTZOxbRp0+j8Sgts7FxAUILmIa1afcvt27ef3/F3YG9rQVRUFC4uLgQHBwOlYhv7nYmN15OZVcjUqVMZPywRVFeQWE8jMrIT9vb2xMbGsu9kMm1a+tGxjT821mbkF5az62AER56RJHwW3bp1w97eAplMil4voFSqUSpFbj9LSxNkMhkymYSqqhoFG7lczoQRnRjUOwgzU8Vzder1Amu3X6ZdSz/qeY196WM34j8Do+FnxP9q7N27l0GDBhm4014WU4d0onf7xizadIaMvBJG9A5h7czBqNRaHqfmMnbxHj4d1Z2G3t48ePAAR0dH7kSl0KqlHxGRCbw/pjOqamWI5OR8vLwd2L7jKlFRKfh45bBq1SokEglqjY4Vmy7QpU0DWjXzQqXW8v7cXwykxu2D6nLuWiy3T61CLpezevVqurSsz+ptoUTeS2H4GyGsmf8WpeVVmChEvcyUjELcXazR6XSYmJhQqVSxeP5AJny8gyfxIl2CuZmCR0+yiE/KZfiQtsjkUubMmUOrVq0YNGgQWq2ej+fvw8PVjpkTe/IoLhuJRMLarZeRy6WMfacDS+cNIiZ8PY8ePWLevHm82SOArLxSNu2/Tr/uzWjZxAudXmDO8iPYWJnz6bgeXLuTyJmT11CpVHzwwQdYW5oxb9lRzM1N+GRcD9KzijBRyFi5/jzZeaW8/04HZsyYQXp6Oo8fP+abWQPQ6fWE30pApxfo0qY+M8Z259qdRAqLK3G0t8TNxZbly7/l8ePHWFpasmX7Huo42RCXlMu2X2/Sv0cAr7T2R63W8uk3h0nLLGL02+15tUN9IiMj6dixIw9jszhw5DZTxnVHrxfYsfc6lUoNc6aLhNwqtZZHT7LwcrfG1dWV+/fv49+gMXfup9EhuB7KKg3fffEWwz/ejKmpAk9Xe2QyKYUlFdyLvoVWq6VLl66s/mooer2e+KRcDp6MYki/ViirNKRnFtGgbh3kMhl6vY6zZ88ye/ZsrH4O4+jJaN7s25K+rwWQkVlEUXEll68+Yc6MPnR5pQEBTb2YOmUCn376KQ0bNkQQoKikgrikXN7oEYCnqx3NGrqz7KdzaLU6enRqTOsgP0aNHIGZmRlr167FxMSUhPR89p2+w+wxPdDodHy++hg2VubMGv0quYWlaLQ6tBo1U6dOxdramllfzed+USbpFcVIgMzKYn5+cpW40lwkwDt1W7N//35MTExYtGgR/k174e/nQuuWfgA42Fty4mwMGq2ON/uIBsG2vdeJiTjAkiVLUCqVHKq+P6USCTtHDsHOwpxj92K5lpTC2y0DCPBwZcu7g+i6YhFqtZqcnBwUchlqjY7Dxy6y8ItpjH5vNM3aDOZW5B1SYs9Sv64bsyf1YtGiL7l48SKvvvoqn8+bi1JXRp0WJXw4ZClxBXcpKikgQR/BJzNnUKWq4s0Bb9KpUydmz54NgIt3c9p2G0hqRiEj3huBjbUFyioNt+6l4Olmz/TR3bgX1oNz587VmmsqNY2oVz+Ivn09eRz/CG35Hgb0yAKJFRKL99i9ezedOnUiOzubP4JEAl9M70t0dDQ9e/asaUMJ9fzs6NunHl8vv1RT3n4tSEyZMGECBQUFDBs2jK/nTODB40wWrjhGdl4pjvZWyH+HaiYgIIDNmzejVmupqtIil0uxtjZDEECr1aHTCahUKszNaysuzZs3j77dm7Nk7WkKiisY2CuI1oE+TPx8N7MnvIaySoNer+fO/VR2bzvMihUrXtj+v4v/C7q6fweMyR3/EEaMGEHDhg1rbWPHjn3h789uBw8e5ODBgwZSVCNqo0WLFiQlJf2pfSwtLRnYNYB1B8IJi04kIaOALzedQSqRYG9jwefrT/IkLQ9fNwf27NlDUFAQDx8+5NM5+0lIyEWt1nHo8G2GDmkLgJOTFaGhj9ix8yr3H6SzcuVKcnJykEgkfL/tEgfP3eVubDrllSoUchld2zSgsKSSwpJKjofe5/b9VFJSUsjOzqZRo0ZUqbQIgkBiWgGL151BKpVQpdJiaW7Cw/hshk3fyrlz53jw4AEymQxfbycqK9U0b1pDbH3u4kO27rxKUIAoYXX+4kO2b9+OTCajqEgkjm0V4MOpSw84cPwOTRu4sffoLfYevcUvByO4fisRpVLNhx9+iKWlJSNGjEAul/HlD6c4G/6IwqJKAy9hl7YNOHn5AXtP3sHf14U5c+bg7OyMWq1GrdHh7GjNqUsPOHL2LnW9nVi77TKHz97lRlQSH376C1qtlhEjRjBx4kQAVm66wKdLj7BmWyggyjoN6BEIiPJvny49wsmTJ0lISCAhIQGnao67Xw7d5PL1J3zy1a+i0oSpgvSsYrLzSlnyw2nOnz9P/fqiQsvRU9G82qUJF8Ni2X/kNr26N2PfoUgKCstBAsvXnCE5NZ+oqCi2bdtGYGAg63aEMWfZEVLSC0hOK0Cj0TGgZwtSMwpwr2PH8o3nSckoIjMzk9GjR1NWXoWjvSV2NhYsXHmcHp0as/twJF+uOE4jf1fiknJ4nJBNWVkZer2eLVu2MGxwa0xN5Ywf05n7jzKIeZBOlUrDvkORXLsZT4c29dm4NYzz58/j4OBARkaGgQ9w5qKDlJQqCWrmzb5jtzkT+pAL4Y/59OvDxCflMWDAAMLDw1EoFKg0WgqLK2jZxIsH8VmUV6ho6FuHE2EP2H82ClcnW2TV6hAnTpxgz549zI86Tnf3RrhZ2CIIsD/5DruTbnGrIJXIglQ+ifwVhULB/fv32bhxIxt2XGHWl79SWCQq7iSn5bNs7VmsrUQvU6VSQ69uTdm3bx9btmwxnH+AIUHNsLcwZ+m5MGYeOc2hmEcM27aP0ioV/k6ONGjQgLi4ONq2bUthcQVXbsSx+JvvcHLxYvr06bzSriVKPLCwb0JG4g0uXo1l48aNJCQksH79eh6V3qCj80A6uvYnsyoeTDUUmCRxqXQb+4/uZvzED7l58yYtWrQw9KmkXM3V6CwKyvTY2Vjy3bZLHL14D1dnW0bO3I5OLzB58uTak43UkS69NzB9zBP69Arg2NGDZKXfAl0GaB8jlC3G0tKSgIAAwy7mZgqmjO3GwU3jObf3YzatHEmntuJ1O2pIe7RaHRs3bqzVTOe2MH1sHL3bn8ZEoTK0LTEJRij9klu3bpGUlERVlai3m5FdTPSDdLJzS3nwOBN/P2d2/jCG8/umsWvd+4wY3BaZTMaHH37I3bt3qahQo9PpUam0KJUaLCxM0Gr1VFSoUFXPV8/Or++++y7rf7nChauPiX6QzoJVx1GpdbzRI5CmDdw5cvYu+0/cYfuvNwkPf4Gb1Ii/FUbD7x/EmDFjCA8PN2wrV65kzZo1hu9r1oixYc+W6dOnz/9wr/8ZPBU2/7Nwc3MjJibmT+0TGBiIqULOtXvJht/0gkBxuZJKpZqKahmi6CeZ1K9fH0EQSEtLI6iFD15eDkREJhBxKxE3NzvMzBRYWprSpnU9ftk+ngVfvEmDBg2wthZJmyPu1mjwmpookMmkjOjfmhWfDqRZA/da/QoKCsLMzAyFXEp0tbSRXhDIyC7B1dkanV7PtTuJ1PdxpnXr1uzbtw+dToeLsw3m5gpi7qfXqk8ul9Kwfh0AEhJF/cyQkBAiIiKQSiUENBFpbeKScpHJpAbi3Mb1XWne2IOHcVmEhISI42VqCoBaLWpzNm/oTnJ6AaYKOS0aiwbnjehk3F1scXNzIyQkBJ1Oh0Iu5W61FFZOfikSiYS4JLEvEgmEBPogkUgwMzOjbdu2SKUSbkbXnBcQ5alaNff+3XMpryYGzs4T1Q/0eoH07BIEQeCV1v4A+PuKY2ZmJhIBy2RSGtV3JeJ2EhG3E3FztcPZ0Qo7WwskwKUrNTFNGRkZSKVS4pNzkUjAwtyE4rJKImOSCWjkQaN6rpiayLkZXfMCotfruRcryqUlpORhY2WOs6M1N+8kERGdjCAIZOWWkJ5VhK2tLVevXiU0NBQ3Vzs+m94HExM5x07WXnpLzyxCKpUQGZXExx9/jI2NDXv27CEzpxiTamULAVF79lkSZICbUUmEhITQu3dv5HI5eUXlNKnnyqttG+Lj7oBGqzPIC96ISUYhlyEg4OPjQ0pKCnFxcYzxb4de0NPSUSQuH1a3Nddfn8mx7hOYE9ALD3NbZDIZ0dHRtdo2rV7qe/hEXCpt3tiDyKhkrCxNcatjh5ubG6GhoXh7e1PHWiTiHhDQBIlEgoe9DZemjOX85DEs7NOdJ7miJm9hYSFeXl64ublRx9mGxNR8rE3KGPzm62h1etq2qguAua03ubnZXAyr3af48jt4mjfEy6Ix8WV3SK14hLdFY2RZDpw5chE3Fw969uzJhQsXDPuoS5IpvLcdD/kjTE3kJCal0a6FH3cepCIgoNFocXR0fKYVCRLbFQiVe0DzoqVcE7AYTnl5OXfv1pzrb+YOxN/PmfnLjzFyyhYOn45mwYx+vN0/mH49Ali8+hQvx8JWvcQq1Mytffr0oUKpomNrfw5vnsDOH8awbskw3hnQmvU7rjBi8mZWb7pA/9cCmT59OiEhIVy6dKlWrWq1FplMWkuz91kEBgZiZmbGzahn7weByJhkOob4U1hcQVhE/Ev0/z8AQfh7tv/lMBp+/yAsLCxwdnY2bLa2ttjZ2dX6DtQq8/RB9a/w1CN45MgRunTpQqtWrVi7di0qlYo5c+YQFBRE3759efjwYa39Tpw4QZ8+fQgICKBv376cPXvW8L/8/HymTJlChw4dCAoKYvjw4Tx69Mjwf5VKxeeff067du0ICAigV69eBtmdF3ko16xZY9AwBdEDumzZMj777DOCgoJYvXr1H/YJ4NSpU3Tt2pUWLVowa9YsLC0tKSkpeZnhN8DFxQWAgpLaguFSqQTpM3fE5+tPUFRUhEQioXfv3ixZ/BZr1p7n1u1kigrFfTMzxf+v33iJFatOYWFhwsmTJ7GwEOOSnoqkP4jP4qfdYQCUlFdRVlHFjwvfJqS5D+1b1uXJkyfs3r0bgLkrj/Gk2jgCuHYnEQQwUcgZM7gdW74dQVhYGPPnz0da3eH1my4T95uHva2NBTKZaBSVV6gMx56ZmYlMJsXF0VosWD2Pff5xHy7um8aPS4Zx8GQUVyMTqFOnjmG8MnKKGfdOR+xtzHG0t0QqlWJpYYJTtcpJYbUA+5UrV/Dw8MDMzIxzYY94Um10yqofFF7u9pz9ZQqX9k3n61n9CQ8PRy6XY29vL56X3wi5Azg/o8zxLFxdXcUxLVPyMK4mBuva7UQEAaaM6UrovmlsXj6SrVu3Gs6LlaUpcrmMgqIKCovE9l7vGYBCIUMqlWJtVXPfPR1DqVTCyIFtsbI05fTlhxQWV+Jkb4lj9fE/22+pVIq/nzM6vZ60zEJDmcLiCnw8RV3ZTm3q06VdQ7RaLefOnTOI2zdp6IZUKqGg6PlxAGjo78qIESOQyWTk5uaK8VZSKSMGtTUYWb/FoD5B+Pr68v33YlLI1kM3WLDuFIJe4ETYffSCQNN6btT1dDQcR0ZOCYsWLWLBggVkZGQQ6OiFBAnBjj7sSLzJJ5G/MjJsK2tjL/NKHX8Odh+HRCIhNDS0VtsW1cuAKpX40uBob0V2Xs096+LiYjh2FytxnNztxGvTz96ej389wefHz9HC05WWXu6UqVTk5uZSp04dQx0fDO9ISUkRKq2ca5EJ2NmY069HALa24jWVk1P73ijXFCGXmmCtcKBcW8S1gsNEFJ5Ef83XYFTFxsaydOlSAEzt/bHy6YaNf18mTxCTXB6GbyXsxj1+2BnGqDfbVMfAPZNNYDkJJDKo+LFW281aDEPiEoWkTgwSi+EMHTrU0L8Wzbxo2tCdz74+xL1HGWTllHDsbAyh15/wwfBXWLLmFMUllS88x89Bn4ugTUNiNQ1HR0dkMhl169bF1tocczMFsxcf5OdfwmnWyJ30rCKu3IwjK7eEG7eT2PhLOKNHj8bFxYW8vLza1Vbr9P6e4WeYX39zHxeXKHF2sOLExfvoXlIr+N+G0fB7IYwxfv9HUFBQwIULF/j555958OABs2bN4s6dO/To0YMPPviAVatWMW/ePH799VcArl+/zldffcX8+fNp2rQp0dHRzJo1C1dXVwICAqiqqiI4OJhJkyZhYmLCtm3bmDBhAmfOnMHU1JTt27dz//591q9fj729PYmJiYYg85fFrl27mDRpEkeOHEEmk/1hn1JTU/nkk0+YPHkyr732GqdOnao90f5JXPihZmlpy3Exi+HZW/rD/u3w8TJHEATCw8O5e0/FR5Nepaiogpwc8cF1NyaNYUPbkZNTwp2oFGLupbF+3Vv4+PjUqu9GdDI51YLpKrWWBWtO4uxgxfB+wXy64gg9e/akf//+zJo1iy8m9xYfItUTTGFxBVKp+H3rwRtk5ZYyeXh3fvjhByZOnIi1tTWj3m1P9L2054y/f4Xfeg3WbQ0l5lEGzRp5MO7dV7h+O7FWmc9XHWfW+69y4ueJCIKAi6OVYfn6WUyePJmffvoJrVZL53YN2Hv8tsH4A8jOK2H0jO1YmJvQuoUvY99u/9yD+fm+in8DG3mwfO5ABN14cWwKCwG49yij1nzcwNcZiQROXrrPniO3aFivDpM++MBgKL8Ibw0IRq8XkMle/EDr1KY+g3oFMfubQ+QVltfqF0BAIw8CG3nQvMFbDBkyBJ1eQK3WPVdPaobY59sxqSirNLzSxp+uXbsa+vbL/htMn/Ta7/ZzyvhX+XjqeDZv3mz4TSqVMGJwG/Ydu83IwW357aNp37HbDBvQkr179/Lee+/h5ebAhgNXERDl8ZztrZBIYPviERw4J3rHMnKLWb9+PQCHDh3ietRt5FIpIU4+zI8+bqg7riyPNs5+vO0rSuJVVVW9uOO/87x89hp7+kkUkYNPDp+mSKnEXCFHpdWhkMnILi1/ro6IqCS0Oj2W5ia4OFmj0+kZ9HpLLoVFGGr8V2hi057m5l2ZduQb+oztAEBwcDCzZ8/m22+/xcypsaFs+P0iQoKhrLyS3JRols4aQMumXlyJTMDDQTyCNm3aILEYhlDw5nMH/uThUV4JCheXYi3eZv369QwYMIDMzEwa+7uikMs49UuNUohGq0Muk1FapuTW3RRmjO/Ba53FJeWwsDAo7w36LJ6HHqF4EhLbxcTExKDVapFKpaiqvfaPE3IMUoqtAnw4u2eq4XqWSSWYmirQaDQEBQXh5FTz4lVR/RL5Z+Htbo9UKuHY+T+3QmPEfx5Gw+8fxPr162tN1itXrqRr167/kbrVajULFy7E3t4ef39/fvrpJ8zMzBg6dCgAY8eOZciQISiVSszNzfnxxx+ZMmUKvXr1AsDLy4uIiAgOHDhAQEAAnp6ejBw50lD/F198wbFjx4iJiSEkJITs7GyaNm1qiE3x8nqxbu2/QosWLXj//fcN3z/77LN/2ae9e/cSEBDAhAmiRuakSZPIy8szeEpfFk+9C1NXHiK/2utXWlFF/07NEKrtSA9nW4b3CqZ///4cPnyYsrIyDh2+R726Lgx7py1bt4lxKWlp+Wi1OuztxYlRq9UTExODl5cXUqkUk2eMIodqzc786pin+0+y6NzanyqVlpTkZCIjIwGIS86jQqniu62hmCikbF8+iopKFSYmcvR6gZOXH2BaeY+RI0caPFhxCbm881ZrvvzmmKG9ktJKdDodMpkMK0tTw7G7u7uj0+lrjJfq8oXFlSSk5JOQko+1pSkjBrclJzvDMF7FJZWMnfMLFmYKdq0aTUmZEkc7S3ILymod3927d8nJycHa2pqyyiqGDWjNgpXH0enEljQaMcYIxGXm1zp44uTkRFFREc7OzjjaWRqM5Kd4OmaPEnN4b+YOcmK2s2DBAho3Fh/IttWZ0wAmChktmonX4627KSSm5pOYmo9J1X2mTxezocsrVGi1OhztLQ3eBysrM4PW8MGdk5BKJIBA+/btARj0mmj03bqXCoC9nQUFxRUGz1xeQRmxiTnYWwrodDpSsqpo5O+Gg52loYyDnSWZ1S8NFZUqktMKCGrqyvTp07l+/ToAU8b3QBAEli4abDCALhz7hEthosfdydGKrVu3IpPJWLJkCVKp1JAxblntXfutmSOTScnOzubEiRO89957jOrfmu3HbpJfXIFao+NqVCKBDT1IySrk9sM0hvZuZfDUARQXF5NUnk+AvQdWCtNadc8J6EVP98YUq5XYyE0NHp+nqFSqsbYyw9RMfNwUFJXj6lxzz+bl5VG3rrg0m1cujlNBRSUu1laYKeRY6U3YMLRGi7uiOizk2ZeFB0+ykEjNOXL6JhMnjKW0TEkdZxtKSsR41jp1avfJSm6HVq+mXFuMldyeTs5D+G7H16iUanw7il7CNWvWMG/ePL777rta+yakisvNTq6+2DrUoV2QHzOXHqJ7u4bk5YlGfYcOHUDqgMT5mUQLiRwkFmhMBoGwFzRRCCVRKJUnGTVqFEuWLEEikVBRqeLzb48Y9iuvULFp5Uisrcy49OuM6nMr3ksmJiZIrCYilM7jhdDGIhQMomEnMDc35/jx41jZOFBYLHoNpc8wDSxccZzktALD97R7W9m7dy+5ubkUFtZ47+Ry8QXlqefvt3g6X/z2Pm7k70ppeZXh+v9H8H/AO/d3wLjU+w9i6NChHD582LC1adPmP1a3k5OTYakMwNHREX9/f8N3BwdxeelpYP+TJ09YsmQJQUFBhu3QoUOkp4vxWBqNhlWrVtG7d2+Cg4Np1aoVFRUVZGWJb5b9+/fn9OnTDBw4kJUrVz63jPwyePrQfoo/6lNSUlKtIGgQJ5nmzX9Lp/KvERMTg0qjxdfNgfTcYtJziymrrMLW0gwLcxMszUwMFASBgYFIJBKDYavXC0gkEkKC/cjOLiE7u5THj7MICRYzF6VSCY0bN0alUiEIAiEBPoZ227bwQ6fTc/u+aDg08HMxGE1P+1VVVYWtjTlanZ6MnGJyC8qQSiSk5xQjl0lpV50hqdPpMDU1RSaTkZdfhk6rr6YSqYFWq+dxnPhwrOsnPvgiIyNp3bo1er1AzEMxjrC+nzM6nZ4G9WqWziRSCaYmciIjIw39atPCF4DKKg3Rj9Lx9XTEytKU0JtivE6bFn5k5ZaQlZVFZGSkIUzBpLpfdZxtEAQBf1/nmnYk4nJtVVUVN27cQK8XaB3oW+s49Ho9t6uNLbVaS35hOQsWLMDT05O33noLjVZHI39Xg6Eil0uRVnsynsbZPR0zjUZT/VlPbFw2IS39aNPKj5zcUt6buJnCogqUVRre/2grV2/GExUVxZMnTxAEgV/PRBmMPokEQpr7EBObQWxiDiq1lpAAXzxd7bC0tGTAgAE08nfjcUI2zRq6U1KmJK+gjNZBvoS0EOMaXV1saR3kR25uLiYmJpiZmZFfUMb7k7cSn5hLxK0krt6M59HjTN6fvBVzcxP0eoEtO8Pp2bMnFy9epKBAfFArq9SMnr4dvSA8dy4BWgf5Gs6lRiMuDctlMmKeZBDSzJum/m4ApGYVEdjQg+KyShr6umBlJb7QWFhYUM/aCYlEQlq5OIdIkbC45Rv08mjCtIgD2JiYkZqaSufOnWu1/TT7vXF9sY17jzIICfKlvEJFVo54vXTp0oW0tDRyykQDPzwxBUEQ6NesEdtHDAbg6zOXAYhOF+egtLQ0srLExBRvdwcUFnUoyhUpjcoqVGTnlqAsScXZpQ5dX2lRq0/+1i1JVz4mrfIR9ayCUEhNCT8ahXsrK5q5h1CszqGgoMDgEXsWT8/33NlTGP72APE6e5xJcDMfIiJED+O2bdsQCvohFPSv2TT3gCqEyl9An2+oTyqVGmJoHydkY21lRlFJJXfupXLnXipPEnMYOWULo6dtY8y0bYyeto1PPhH5DocPH45QvoY/QkVFBfn5+URHR2NrbcGVG3EAJKXlo9GIXum7D9PJyC42bMnVL6Pt27dHrxcMm0IhR6fT/67h93S+aF09XwD4eTniYGfJrWdino34n4PR4/cPwtbW1rAE+J+GQlE7tkcikdSiOHk6eT1dGq2srGTOnDm0a9eu1n5PH9abNm3i8OHDzJ07F19fX0xNTXn77bfRasVlgoCAAC5cuEBoaChXrlxh6NChTJ8+nffeew+pVPrcMuLT/Z6Fubl5re9/1CdBEJ6bhCMiImrFDr4MysvLOXgphomDO5BfUk5mXikjegcjAEWllSwa14f1h66SXVDK3LlziYqKonnz5ixeZEGrlr5oNDoaNnBj/YaLTBjXjWs34hnzXidah9QlITEXPz93wxhMfa8rEqmEXh0b07yhO2qtjruxGcwY052Q5j4oq9S0b+mHNskDW1tbYmNjCQwM5PLNOPw8HRn2RjA6vR4bK1MqlGqa+ruxf81Y7K1NkEql6HQ6klLyCA7yY9nq0+zfIXpDP5m7D4VcxsXLsTRp5E7P7k2ZNWsWJiYm2Nvbo9XquR2TwmtdmjCkXytiHqXz9hvBlJVX0aBuHV59pRF6vcDGjRspLy9n586dfDRiBHY2FsQmZOPhYotcJqW0vIorkfEM6tWCoX1bsf/UHbp27UpsbCwDBgzAw9WEG1FJvNM/mP49AsjJL2PiqM7o9QKebnYM6ReMiULGunXruHjxIq+/3pePR3fF1dkaFwcxzkurE4iJzcDBzoJWTb34dMJrFOTnMmrUKMrKyjgb9pDeXZqy+ssh7Dhwg37VGcCVSjUebnYIgkDndvWZOKIT8fHxNGzYkHcGtyH6XhrDBotG8PY91wkJ8sXW1gKpBL7/ZiiPnmTh5+dn4D/r2605CSl5uDrbMLx/a/SCwGU+PzUAACAASURBVJGzd1FrtIRHxjN1TDcEQSDm7kNWrFiBhbkJ2/fdoL5fHeZP78u5sEcMH9iaSqWG2PhsGtQVjTOdTktVVRUNGjRgzYZQklLy2brrKl/OGYBWqyMxJY+Qlr60DanH1ZtxvNmvJaHnxBcRZ2dn9HqB8koVLZt58UbPQK5GJjCkXytS0gvo1LYBwQHemCjkfPvVCbp164ZarUYqk9G/a3PuPcmkR7tGCIKATqsnO6+UUf3bcPtRGkGNPDlw4ACxsbH0798fhVyBIAicz4plbP32dHGtT5CjN0dS7zI3oBc5yjJ++uknFi9eTHR0NPlVHnRqVx/76vhGP28nFs56gwqlGicHK/R6gX1HbjF48GDGjh1LVVUVZye9x7vb97PtZhQjWwcxvVsHskrL2Hz9Nj8OfQOtXs+uW3dRKBQMHjyYsLAwBg0aTLeODZkyeRwrv53DypUr6dPndZat3kNl0UMatulHt46NGDt2LKdPn0YQBByUdblQtZFKXSlj635LXOYD5GpzJk0ZTRvHvtwqOsusWbO4dOkSXbt2Ze68oew7Fk5KdjnJKWkkJSfTpXMn8gqKeJKcz8z3X8XMVM7hw4cBMfQG2StIrGdQkTGKlNQczFwyGDx4KAp9KPGpJlhaOeHu+w5ejl4cOiQS2dyOSSUyOpnFs/vz4/Yw4pNzsbYyo3kjd9RqHcfOicuklfI0ABISEkBfSkUlZOb74dvsZ9q1W0Z+fj6P4k1wchyJs10BXl7XqVevHs2aNUMiEeMsvdztcXKworJKjaXEhJ6dmxAZnYxMJqWejzNDe8xh48aNHDlyBLVazOiVy6WYmysoLxeXe2UyKQqFDIVChiAING3aFLVazc6dO/lw2DCR3zO3hEUz+qHXC/xQnakP4GBngYOdJTqLBn9q/v5TMBI4vxAS4eXSg4z4NzFixAhat27NRx/9vvrDzZs3GTlyJI8fP671+8GDB/nhhx+4ePHiC/d70f9/2156ejrdu3fnwoULeHp6MmTIEEJCQpg5c+YL6xw3bhx169Y1cFjl5OTQuXNnvv76awYOHPhc+Y0bN3L06FGOHTvG5cuXmTp1Krdv3zYExo8fP56Kigp27Njxu+PxR31aunQp0dHR7Nq1y/Db0KFDCQ4ONrwBvww8PDzw6j2TiQM78HqHJlhZmFYTOIeKBM7Du9KivgdqrY7CvGzMzc1rETjLZFIuXnrI0uUn+XLBQPzruWBrW0NwmpGRztKlSykvL2fld2uxq16G1OkFBEFPeYWa+NQ8EtPyebtPKwqKK7C2UFBcXMzjx4/RyF0IbOyJlYUpjxNz2LTvGt3aN6RDq7o42FrUMn7Ly8t5HFfAvoORpKYVsGebGPv248ZLTPjg+TACQRDIzs5GK5hSx9mGwqJKsnNLcHK0wtXZRowzk4hLQItXn2Tdtx8AIiHr/mNhtGrmhVQiQavT8zA+C2tLMzxd7SgqqaSiUo2DvSV21ubPtatWa1n/yxWaNHCjTZBfzZKkRMKPP/7IV199BcDwKWtZOPV1AyHvs9i07xomChkj3nyxp1yr0yOTStDpBSKikigqqSQ40Ac7GwvUGh3WlqbP7VOl0qCs0mBlYUpWTgnb91yjgX8dhgwIQa/X/8uYwFnfHOTqrURcnW349cffV7X4aftlWgb4ENDYA4VcVu1FEr3HYp/F8T18+DCrNjwx7Ddzymv0rSZwTs8sYvvua1wMEwmcu3fye25J9SlOXbxPcloBA/sE4exoZYjr0qirSE9P5+TJkwwdMRZXRzHzXKvTo9XqkMtl5BdXcDLsAS0aedC8vrshflMikVCoquDTW4cpUJXzZVA/mtq7v7D906dP06BBA3x8fJG9gB9OEASUVWoqK9XY2JiTm5PNrVu3GDBAXM7ttnoTGSWlfNSpLZM7t3tuf4DBgwfj5eXF2LFjadCgkcHbHRoayrJlK0hKSgSpORYOTQ0EzkP7NuLWrVvMmzePWTuHkWZ+B4D6Vq1or3gHD2cfZAopCFCuLeLw7pMsXbqUnj17smrVKvr06UtKShLOzs7PJbA8xb59+5g2TVSsSHv4LlLbb4kK7crQcZl4e3vzxRdf0LhxY2xsbCgvL8Le4h5vvPU9d+6Ifakb8jEmJnJGv92ebh0b4uxgTWl5FfFJuew6FMGdao9zHflNDhw4QHBwMBHHS4mIgjnLPLl48SKffvqpwZCcM2cOI0e8hUYrp6ioiDNnzvA405p3B7Wlro8zhcUVhF59TEZ2Mf17tcDbwwG1WktaZiE7tqxh+/btdO/enc2btzxH4CyVSnB0fD7pKi0tjY4dO/L19/vp1bkp1pamyGRSTl66z7c/1iTrjRnSnjFvt3/hOP6n0Kvp3L+l3tMPFv8t9f5TMBp+/xD+fzP8Lly4wLRp05gxYwadO3dGqVRy69YtnJ2d6dWrF1999RVXr15l+XJRGmnZsmVERUUxf/58Bg4cyNatW6lTp45hWXPJkiXY2NiwevVqCgsL6dq1K2PHjqV///5cvnyZ1atX07hx439p+P1Rn1JSUujduzdTp06lZ8+enD59mg0bNtCsWTNDvS8DDw8Po2SbUbLtpfYxSrYZJdvAKNn2d0u2ZWRkvFTZP4veTeb8LfWeevj131LvPwVjjN9/Kbp3786KFSs4fPgwffv2ZfTo0YSGhuLuLr7FT5w4EU9PT4YPH85HH33E4MGDa3FUmZubs27dOvr378/IkSOxtbVl3jwxwNjBwYElS5Zw+PBhBgwYQGxsLO+8886/3ScfHx+WLVvG7t27efPNN4mPj3+peo0wwggjjPgvhJHO5YUwevyM+K+Dh4fH/3QXjDDCCCOMqMbf5vFr/NnfUu+pR0v+lnr/KRiTO4wwwggjjDDCiP97+J3M4/92GJd6jTDCCCOMMMIII/5LYPT4GfFfCe/OLxesnXr5maSLvxDg7fDOywWrF+6uCVavF/zHwdcJt55JCPgLiQr/1D71m0/5FyVFxN1b/Y/3y7XPy52X7JM15+XPJl40aPbHxw7w5H7N8f+VRJW/ktzzV9p5maSAZxMCmhV0eak27juGGj43aPqSY/agZszMP365RC3ldzWJWn/2WD453/Sl2lj+6oM/1cZv2wmwejlqqpjymmS2P3ssfyXp5K8kdzTJermM3Ydu116q3F+CMZLthTAafkb8V6JdCz/GD+mIr4cDBcUVHDgbjb2NBb06Nsba0pTYpFxWbb9I6uWafX74Yggtm9ZWKNHqdOj1AgVFFew/HYWTvRUdlg7Gw8MDmUyGTq/n+pNUZuw4jlKt5YPurencpC5NPFxQyGVUabTEZeWzMPkqXl5eTJ48GW9vXzRaHSYKkT5Gp9Nz5WY8S74/RYtmnnzwbie8PaaQm5vL5s2buVitSuXpbs/yr4bg6mJj6F9RcSXHz9xl225xcm3Tpg3jxo0jMKgtri62aDQ6AxO/AKRnFKLXC/h6O1XXMMtQlyAIVFSqkcmkmJmKU0d5hYq1P1/i0eNMRg/vgL9fHdzdPiEzUyRO9vT0ZP+hSFoF+eLr7YREIu5TVFSOt9fTNmbXakOt1pKdW0p8Yi7169XBtY4NefllKOQynBytAAk63TTS0tIoLy/HxdUHVxdbft5+hR17r9c6P9t/GouP19OkpJpjUao0DFu0k+8m98fLxQ4kErRaHbEpuWw4foPGPnVo38wX/5XvY21tTXBwTRZor1ebMXxIW1zr2JCVXcLx0zGEtPQloKknVSoNCfHdkUqlNGzYFFNTORKJhOKSSvbsu8n+g5GGevr2DuSDMZ2xthb7VVxczOFzsZgoZPTu1tRAi1OhVHP3YTrtWtYlK7eEXYcjaT99L02bNsXe3p6PPvmFew8yDH0bO+qV6nGqQV5+GRPG38TDw4P3338fv7oNMFHIyMor5fj5e+w/cYcPh3XkjZ4BWFmItDc6nR6pdDp79uxh5syZ9OsZQPeOjWjs74qFhSkarY6ikkqqlBpcnK2pUmk4dsSVhQsX0qhRI5bOnY9/kC8VpUqqKlTY17FFVakmLz0fhYkCj/puSCQiWXhMTAyvv/66ob9mZgrWrBqO/2+IqAF27LrGpzNX1/qtrbcX294aRHpJKWqdjroO9kglEvSCQKVag4CAdMKHJCYmsmHDBgYPe4N2wfUwUcioqKjAxMSE3Lw8dv6yl/3HorFwbM6QIUOYPHkynp6eVJDLzfxfiC29SNZ9DQ1KhvPGG29gY2PDgwcPWLx4MQ8ePKBRo0bExopG0tD+QQzuE4idnQ2JiYns2LETNw8fPP1C8HS3p3ljD/R6ATPTGUilUpKSkti/9iaXjkXXOjYbewtmLnubgNb1UJiIdEBa7Vfcu3ePxYsXY+7myJihHXiljT/y38gnAiSl5tOx3XfP/R55F7buhUfxkJUjYeqkPkyYOBVk3qD8FahtUFpbm2H2Apqlp2kCgiDwzTffsHDhQpRK5XPlnmLwjH70HNkFFx8npFIpCcnxv1v234bR8HshjEu9Rvx/gREjRtCwYcNaW/PmzZ/77dnt4MGDHDx4kG7duv2ptgICAlg6vT83YpIZ+dkOfv71OhOHvsKgHoF8u+k8Yz7/hczcYlbPeQtn5xqVCU9XO9QaLV+uPcW3G86i1wvodAJTFu1n04HrjBvaESc7SywtLYmIiGDs2LGcjYmjYyNfvhvVDwATuQxHKwsKy0XJpA83/Mr1Jyns2rWL5cuXs3v3bgqKygxG3/Z917kVnUzndvX5dt5Avp7zJhFRSfTs2ZOVK1cye/Zs3ujdAnMzBWuXD8fVxYbrEQn8vP0KFZUq7O0seLNvS8aN7gKApaUlT548IS+v1MCnJggCl67EUl5WhUqlxcvTgUVLj/Hmu2tp0aIFV69epbi4mGsR8QiCgJmpHL0gsGPPdQRBYNaUXrRq4UNObhnbdl8lNTWVkpISFi9eTEFhOf16t8DPx4l9ByP4ZsVJBEHA08ORRd8cZeA7P9CiRQsmTpxIYWEhYdeeMGriZiLvJNGtUyOSU/OZOGMnNtbmODtZE3Ytju9+PEd+fj4ymYzmzZtz5VocBYXP67d2bOuPp4c9er2esxcfsGXLFvR6PYIgEJeex4/TB2NtYcamEzf5esd5isursLE047uPBuDlYsfl6ARWr65tYHRs58+sqb04ejKasZO2cub8Aya+3wVrazMmffILC745SpMmTbCwsMDEVM6pMzGcPncPO1tzPhjTmX6viwoSr3Soz/Spr1Gl0jBz5kxWr16NjY0NwQHe9H21OVKJhJhHGVy/k4RcKqVdy7oUl4rXjKmpnKtXrxq4D5/t28yPe+HgYIleL1BcXIkgCOj1euzsLNizZw8ymYzvvvuO8Z/tYsTHW9l5MIKxQzvw3fy3GNArEEtzU06HPiQjuxhBEPn73NxExQ0zUwUp6YWYVqvaLP/xLGYmcjzc7dh75Bbzlx2jS5curFu3jt27d5Mel8WMbl8ilUpx9nDg8v7rLBv7I96NPNCotYQduM7Orw+Sm5tLs2bNapHbf79iGPXqijyFj59kkZpWYDiW4mq5sadwtLBgWe9eXE1Jxd7cHA8bG1Zeucro/QfJq6jA3ESBQiZj+PDhHDlyhNWrV/NKm/rce5SOXi+wZ88etm/fwZEzMUz7+CP6dquHh20+y5cvZ8eOHfTo0YN7xSd5zX0mvpYhvN3lI4aNGkKpkMmVtO1Y+VSxc9c2nF2c2bJlC8HBwbz//vuMfecVfli3nm+/38eTlAoWLFzAlcsXeK1LQzzc7Ni48wrmZgp0OlE54/Dhw8z4dgjBnWoIjc0sTFi2cxxOdWypKFOSmylKHe7cuZOwsDB27txJXR9ncvJLWb3pIgkpeZy7/JD+763j7fEbqVJpuBD+Ym9dpRLq+cIn48HJUQ5CGUL5WtC+uHx5eRX5+eW1tqcSh0VFlZSWVtGlSxdWrFjxwv2fIic5j42zdzAp5FPGB8006Mcb8c/BaPgZ8f8NxowZQ3h4uGELCwszfF6zRuTGe/b/ffr0+UvtfPjhhzxKzOHHPVdIySwkNOIJAqDS6Ai/k0BiegFf/XQGjUZnUAWxtLTEyd6KRwnZnA57SFATLx7EZ1FeqSKkuQ8nLz/gwOkoWgf6YGlpyZgxYzhz5gyzfzmFUqWhfUNfPBxsOHrrIZ6Otmy8ILrpMgtLWXP6GlqtloyMDO7fv4+rix06vcCVm/EENPHk08WHUFZpCGruTUJKHuu3hxEfH8++ffvYsmULwwa35tUuTbCxNic0/DGffXmQnftusGjZcSQSCSq1lqDmoqfy4sWLhIWF0aSxmNlcVaXhYlgsC789xuKVJ6hfrw6Rt5Po2yuQwqIK8vLyWLNmDXZ2diQl52NpYUpo+GNSUgswNVWweMUJpFIJ3Ts1Zt2mS5y99JDMzEzu3r3L0aNHkculmJrKCb3ymJ9+DuXM+ft8vew4UqmEQf1bGdooLCzEwcGBXftvkpVdQqMGbuTllyEBGtV3w0QhI/xGHLY25hw5Gc3s2bPx8fEhPDwcF2dr1NWyU8/incFtyMsr4+HjLBavOMHnn39OREQEEokEPzcH7KzMefPzLfx09AaHrtxn8Y7zBhm/0ooqdpy9TVRUVO06B7Xh0pVY9h++RWp6IaVlSvR60UsZn5hL1N1Uxo0bR8OGDUlMzGXF92dYtvIUySkFJCTl8s4QkXx63Ptd0en0jJu0jd27d7N06VLOnj1L0wbu3LidiLmpgtlLDjHn28PI5TISU/JxtLdCJpOy//gdVq9eTXh4eK2+DR3chrz8MrKzS9Bqdbz7/kbCrj6hoLCC8vIqFAoFnp6enDlzhpSMQjJzSjgd+oA791IIbOJBcYmSC+GxLF5zimEfbaa0vAqlUkmTJk0A2H/sNtZWpsQni1qs3h4OmJrIOXQiih6dG3PnXipz586lZ8+eKJVKVo7bSL0gX8wsTdk8by+dB7cl5kosi4Z+j38LX7YuPMCurw9z5coVAMMLnEIho75/HYOG8g8/XmDU2J9RKjVIJBIGD6zxvkokElb27c3OqGge5ORgbWrC4kuhrI+IJDwlhU7rf6ZYqcRcocDBwYGffvoJtVpNelYRRSWVPHj4mPPnz9Oj1wDq+npx8EQUH44bT0biDY4ePcrGjRtJSEjgTuGvxJddJcRxKIGOfbmWv5ljhbO4rz3AqbxFKJUqPvz4XSoqKujTpw/jx49n27btnLwUz7lr2Sz/6RIJyfl8Nmcucrmcyko1Q94IpqCowsCVevHiRa6du89b73cxHN/gsZ0wNTNhydRfsHey5ptpInn97du3Wbp0KYmJibRt6cfaLaEcOhVNaZkStzq2rP7qbX75YQymJnLMTBUGIv1n0bktTP8Q+nQDE4UGQRUGVUdAKHuuLDxlMhEMm7m56M0uK1Oh0+nRaHTMnTuX/v37/0vt9iu/3iDydDQZcVlkJmSzYcOG3y37b+N/GZ3L+vXr6dixI4GBgUycONEgyfj/2Dvv8CiqroH/tqf3XkggoSRAChAgEFqQgIiAihQFFEWqVAUpig3RV0UUEAWkI9IFkV6k1xBICJAQQkJCSO/ZZHezu/P9MbAhJioW3lc/9/c882QmM/fec++dnTlzzr331Mf169eZOHEiUVFRhIeHM3DgQE6ffji3uVnxM/O3wcrKCldXV9Pm6Oho2re3F4O6P3j+fii330tERARn49NMx80aeSCXSXGwtcTVSXSRGQWB81du07ZtW0CM2SuVSmjo48Lu5WOJbi+6yq4k3yWkmahEnY1Px8HOisTERMrLy5HJZPRpFYRCIcNoNBLu74VKIbpIqw01sYTkMimWlpZYW1ubYnYmpWRz5kIqwU3FNQw1mmoEQSD7ZwHOjx49iqeHAxGt/AE4cz7VdO5CXDpGo4CzozWXEzJM/+/duzcaTTUGgxFXF1vatmrIOzP6cjuzEIPBSH5hBcHNvJBKxQghw4YN48qVK7i5ii7kMxdSsbRUUlpWaSqjSWMP0/UPorxX3zPnatw5Fy7WTXO/jKSUHORyKUFNPLG2UnEpIYMWQd5cTbrL6fOpJrmOHTuGwWDA09OT0rK6biW5XEqzxh5YWio4f7Gmr62srDAajdhaWZCUkUdFlc507uy12xiMRuxtLCip+IU8m3hwPrYmvxbB3ty5W0yzJp6muhw7dkzsqxzROiORgJWlktTUPDw9HPBwt8PTw4HMrCKeeao158+f5/Tp0/j5+SGVSlCpFCTeyEZdqWP4M+0pLa+irEJUMFXK+kfn3JfN0lJBZZWOq9fvoq7UcT42DUcHa5wcbRAEodZanABBgR6EBPkglUpxd7Xl3GWxbkajwIX4dECMA34/gknLZt5cThTDhQX4u5KYfJeTF27i5e6Aq7ONqe6pqaliCK/IJlw/l8LpXbFYWFsQGObHxUNXMBiMNI8ULVsymei+LCoqAjC5E++7EN+c2ZcdWyYgk4lxcz09HExWyMmTJyMIsOz8BdxtbJBIJBxPS69pF6mU3IoK9EYj8fHx+Pr6YmFhQebdYlo28+b48WNERUVx9UY2LYO8OXcpDW8vdyQSgX379tVqq/SKWDwtmyGXKkmvqHHZF6RrOHn8FO0i22BjY2O6L89cuIa2PA2jXrS8njl3hcaBjSgpLePO3WLcXGxZu+Usly+Lrt2wsDBiT9ygWZiv6V7qGNOCq3HpPPdqdwDe+Exct/R+iE6NRkNocx+TLB5u9jTyc2XpuhPcvlNEYtJdenQOYurUhxuf/HtQqRSmoRn3uf+7jIiIeKg8JBIJXbt2/ctl+yeybds2vv76a95++202btxIeXn5r/bbtWvX8Pb25osvvmDHjh1ERUUxZswYMYzfb2BW/Mz863Bzc6OwtGbgsouDdb37RaVqU1is+3/fW7ybCe9tBokEO2sL2of54+YsxpQtKhHztLCw4MaNG6SlpTGzf1cmr95FSaUGFztr0vKKuFNYytPtxMHiUqmEwZGhSCQSbG1tuXjxInq9ARcnG9SVWlRKOSOfi8LZqW5oJIC8PNH64uluj1QqobBYlGHLmrHs2zYZqVR8WX679ZwpjZ+fH5YWCtO5NRtP42BvxafvD6S8QiMqH0o5tjYWuLq6EhMTw/r163FztUMqlRDesgE21ioOHLmKwWCkskqHQi7D1qauIi6TScWXenFNe99PI5fLsLWtKWPr1q3s3TqZfVunIJNJOXE2hW274nB2sqaoWE1Rsdokl16vp7KyEn9/f37YG1+nXHs7K+RyGdZWKlPZrq6uBAcHm5SYSo2uVhq9wYiu2oClSsHus9d/Mc/CB+pyX7b7ckHduNTPD47ExkbFoZ+uAdDA1wWpVIKPlxNNGnswZswYpk+fbrrHHOwsKSpWE97Cl349Qzl+LgUnB2u0On29yvXP66tQyEx1LipWm8KZCYJAbm4utra2HPh2Ij9tmsLXHz5HbMJtAOSy2nUrKqlEKpUik8lwcHAQ6+toQ8k9Rdve1pKiErUpjbOjDXq9HqPRaHJfOnk4UpxbSlFO6b1jBwx6A+VFFTh5iHmGhYVRXV3NwYMHAfFjQYw1LuPsuVTe+2AHq9aeNI1FBfH32KFDB4YNG8bre/YiAFYKMQxggVrN82GhxE96lcQpE/F3dCS7rIzc3FwGDhwIwJ7DV3B2tCEv9y6urq6UlVfh7GhtqoubmxvZ2dm12rjSUIRMKipcan2x6f/XDlRQWlGIj2sAdnZ2xMaKET80siZIZSoKUjZQlLKau+nnsbKyQm+U0zLYG4lEwp3sYlNbOTs7U5xfjlKlwNbeCgDPBs5E9WyBvtpAQW4pZcWim3vIkCEMHDiQsLAwXO49G1RKOe4utly5foe8gjIC/F1Zvek0y789yYgRI+q9b/4M98cfP4her6ekpOQXwwnex79FA34oW8de7Xd88803f7lsJozCo9keAevXr2fEiBH06NGDoKAg5s2bx9mzZ7lx40a91z/zzDO88cYbtG7dGj8/PyZOnIivry+nTp36zbLMkzvM/G1YunQpK1euNB1/9tlndOtWN97so+TnVvyfr29+PiEDvUEcJ3biYirP9gqngacjh9ZMYNeRKwAUFxcTExODvb09A6a9x7whvZDcy9tgFJi0+gc+HSYOZN8z4yXuh95VKBQMHTqUm+n5+Ho58s60vgA0CXTnTGwq7Vs3AgFCgr3Zu0F8GPxSLNkJ0zdgoZKz9PPhWKgUbFkzFp1WfPjn5eWJ8Vu11ahUUtIzCjl09Drb141Do6k25bFp1Whk0tHI5XLc3WsG2XfvEsSMd7eRX1h7XF1wUy/mvPEkKqWMiIgIMjIy+E0E8SWm1WrZuHEjUqvWzJj8OCCjZ3RzrO7F9P05MTEx2NjYsHPnTlJSc3+1CG8vB/ZunYxcNrlel9d9nu0agoVSzvbjV8grrjtmMKipaGWaN+cpDEaBbzed/a2q0a9POM8PjmT2O9seGJtWc09t+z6WjRs3ApisvZYWChQKGXMm9eajxftp1bIBv/aq+fSDgaZ30YNxnH+OWq1Gq9VSUVHBiNfWYqGS06KpN6++2OVX6wEQHh7O10snIZdLeWlwx3qvCfR35caNG0ilUiIjIxk8/YFFeU0TAKj1v5feH4S3tzeJiYlUVtYeuwfQNqIREW0akplZRMKVO4SHieMA/fz8mDNnDq+99hoFoa3qpNt57Ton02/jZGXJBzE9aOjkyODBgxk/fjwA6Zl1XWgPyvawcQ2qtUZSjlbgM8gdK7k9Q0Y/Z5rY4O+uYfXJH0z9ajSKSpKTvSW3Mopwdqz9MfdgmcK9HpdKJZQWq/ls1jb8At2Z/IEYJz0iIgK5XM7333/PE33E50TDBqJltnWoP61D/DAaBd5/ox+ye1ZkJycnunTpgsTtPzXllM0Bza7frKdCIcPeviYGt1Yrftz8XPGrry71cSf5LmPCp2Fpa4HvMw7Mnv1oYuoi1C/fn6WsrIyysrI6/7ezs8POzq6eCX8tIAAAIABJREFUFL+OTqcjKSmJmTNrFpz29fXF29ub+Ph4mjRp8iupRQRBoKSk5KHKN1v8zPxtGDx4MDt27DBt7dq1eyTl5OXl4WxfY9krKKmxcjxoCXSytyI/P9+UBsD5nkWwsFhNRaWWsgoNRSVqXpi+jrh7LjBLS0vS09OJj49nwe4TXM3MwdZSRWG5mPeN7ALe23YYgBe+3MRTn67FaDSSl5fHunXrSM8oIPlmDl8sP4xOp2f6e9twsBMtAEgg6WYuMTExxMTEMH26OCM0O7fU5NYFyMktJTOrGKVCLs7OlEjo27cvMTExxMfHiw9miQSj0YizozUlpZWUllVhaanEaBTQ6vS8MmkNhYWF7Ny5kxUrVmBpKbp2tu68yMXLopVIJpNiZamkWm/g0pUMRk5YTXx8PHv37mXdunUY7inJTo417X0/jV5voEKt4bnnnuP777+noqKCk2dvMnLiGvR6A+dib9Ei2IvCIjVOjtYmq1ebcD+++uorBEHg8OHD9fZxaVkler0BdaUWnc7AKxNXU1hYyKVLl9DpREuflUWNUjkspjWTBnRGEOBSSv1RBOLib6PXG1i57iQjX13Nzj2XRdnuyVVeoQFALhe/p319nBj9Sldmv7ONuEu3cXQQ+/D+RAW1WsvlhExTX27ZsgWAar0BL3d7XJ1t+WjWUwzu2wZ/X2csVHIc7Kw4umUq/fv3N8n10Wd7GH2vzdRqDdXVBlN7D3iqjeklbGUl3s+CIJCVU0Lq7QJ2Hojn4AnRuqk3GEz3D4CTg5XJenfmzBlemrKGgqIKDhwTlywpLa/CyUHsF4BLiRk8/vjjACQkJLB7+WGKcopxdLfH0UMcqlGcW4JMLsPWyYbw7i3p+WJXjh49WkvpKy0TXaNabTXrvzvNoOe/YsSoFbVmlPr7++Pp6cnq1atJem0ySa9NJqZJIABXpkykW0AjbpeUcOluNlfz8jAKAv/5z3/48MMP79XNmsLiCtzcvcjPz8fOxoKiErWpLvn5+SZ38n2sZI4YjOKHkbXcEYCbx9XotdAupAv5mlROnDhBbq74IZKTEc9LExczec5mJs/ZzO7DiVRWabCwUBHU2ANBEPh0zjNs2rQJgIkTJzJgZBd02moqSkXlsSivnLvphRgNRtKSs5k04EuTPG+88QZKpZKse0MKpPeU/suJGVTrDWzceZ6XpqzhhUmr6dixIyUlJRw4cAChsJ9pQ1t//PefU11toKhIbdpkMglGo1DnQ0Mul+Pg4GB6bv4S+mo9d1NzSL2czpIlSx5Khr8Ta9asoXv37nW2NWvW/KH8iouLxWfxz4ZiODk5mYZA/Bbr16/HYDA8lLHErPiZ+dtgb2+Pn5+fabOysnok5Vy4cIF2If6m46S0XPQGIyXlVeTfmx0qkUCbFn6cPy9OwkhISECr09MuVEyXkJxF2xA/bK0tSM8qIiu3hJbNvCkpq6RFixbY2NR8zTvaWCKRSLiUfreOLLmlFRRVVGE0GikqKqKkpIQr17No3tSLViENuJp8F29PB5oEuCORSPBws0en05Oenk56ejpBQUFk55ZyIS4dgPYRAaa824T7I5VKyM4pRSaTcvfuXdLT0zlx4gQSiQSlQkZBYQURrRpiZ2uBvZ0lUqkEFycbriXdxcvDEU9PT5YsWcLIkSPx93VBEMDD3b5OGTdSctBoqsnKLkGj0VBRUUFJSQm6atEy0L7tA3K1qknTplVDfH19WbdOXJdMp9OTcaeIpJQcXJxtUcjlJF7PonkzLyLbBpCbV8Ybk3vzzTffIJVKuXChZqzVg+j1RpJScqisqqZVaAO8vZzw9PSkvLyc/Px8SsoradbADWsLJWP6RvLKk+1ZtusMUqmE+NS6/QRQWakj6UYOgQHuZGWXUF6hIfFaFj7ejiTdyMZ4z+zWuXNnJBIJ/g1cmPnmVuIuiUpy2zaNyMkpJSe3jPyCcmxtLZDLpaa+vD8gvrRcg5+PM6+88S0vvb6W0vIqzly8hUQiIb+wnBGvra2l8BYUVpCRWUTSjRzUVdVYWippHuTF7NefoGWwt8lNLpPJ6m2vwiK16AbOL6NtmHh/SyTQJkS0rhUUFFBZWUlWTgmXr2YS4C+68VLT82nR1IuObQPIzislK6cUPz8/JBIJXl5eVJRUcvXMDYLaNSbyyTZo1BpuXr5Nmx4tkcmkBIT6MT1mLqWltcet6vVGSkurkEqltArzo7CoArlcSmCAu0mJ/fHHH4mOjiYmJoYn16zjyTXr2JJwBUEQ+PLMWX5KvSXWA+geEIBSJuPYsWMsX76c7Oxs2ob7cyUpi06du3Dy5EmCm3hx5XoW7Vo15G52HkYBevbsWUsuf5s2ZFcloTfq8LMRJ5hkHLGgS5cuSJUGUitEC3BmZiY5OTm0a9eOW7fziLuSQdyVDAL93biZehudTodEIuHW7QLOXkxjxYoVAEyaNInKCg1JlzNN91LixTQ8GzjV6+IvLy+nS5cuHD+TAkBaZgFGoxEvdwfkMhkbd8SSlVNCVk4J6enpGI1G1Go1GDJqNkFdJ99fwmgUTMqeQiFHq9WjUMh4UPfr3LnzL95n/xMe0eSOF154gcOHD9fZXnjhhToizJgx41dXp5gxY8afrubx48eZP38+n376qWk8/K9hdvWa+deRmJhI//79mTK8G9sPxRMc4AGAQi6jY3gj7uaVMvWFbjjZW7F//35AHH+Tcjuf8UM7YzAaycguokdHcbHSrfsu0atzMM/2CifuWiaB3jasWLGCK1euMOzFl7C2UBKXlkVWURkeDrY83bY5z0WJy3o82TqI/hHNyc/Pp3Hjxrz88ss4OlhhMAp0bt+YHw8ksPjDIegNRuKuZBDewpeRQ6PYITvDV199hYODA4uXH+PQ0WuMHN6Jbp2aIpX25VpyNsMHRSIIArY2Kk6eTcHKyooff/yRjRs3kl9QjouzDRYWCqK7NCOspS+CIHDzVh4RrRsy691tDOjXGo1Gw7Rp04iKiuKjBbuZMj6Gbp2aUlr2GKlp+Yx6sTNGo8D6zWcJbOSGg70VrVq1wsHBgSeffNI047Vb52ao1RquXM3i1dHdMRoFVn97mr5PhJGYmMjGjRtZtWoVF67ZIJfJSEnNpf8T4cQnZnL9Rja6agOdIhtjNIoWx6eeeoqDBw/i5+eHm58PKqWcQU9HoNFWc/rcTbKyS/hu6znendUfNxdbpox9jJycHKKiojAYDHyx/TTDYlrz3ZyhuDnYUKHRMqR7K45euolWp6eRlxOuDja88/zzADRu3BgrZzd27L7EjKm9uX4jm/OxadjZWiCVikp0QENX7GwteX/2WPR6PRKJlKiOTbCxsWDqxJ7Y2lqw6KtDAKxae4LpU3vz/aYJTJ9+m+bNm4tWmbJKght7UqXRMW54ZyrU4jjPQD9XbmUUoFTIKC2rJDw83LRshrenI1VV1fy4L55pk3oBojM5umsQEgnY21lSWaVj3759PP/88+h0Op4bNhKJRMLp2FR6dgkmJS0PL3cHukc1I7+wgmYB7tjaWKBUyLh69SrNmzenSZAPZ2JvET1JvO81Wh3VeiPPPNGK9VvPEt7Cl9dHDeLAgQNERkYy+auRnNx+DrlCxivzhnBo/QmC2gUya/0EqrXVrHxzE44eDvj4+NCqVSvGjx/PrQw3Um/lceLUDfr0DqV5sDdffjEUXx8n0xi/Gyk53Lp1i169ejF37ly0FhY8v3ELuRVq1Dodr0S0oUyj5UZBIXO6d8VWpcQoCKxcuRJXV1fWr1/PxElT2HP4CtEdQ+nWrRs/HfoBpU1DBvTtwLx5H+LTKJK+ffui1WqJjIxk6owJDP68MWd1X+Jn05qOriOwKmnMoeqvGP/GC0glMm6WncTV1RWNRsNXX33FjBkzKSj6Ao3gQuvwYAIbujJ8+GssX7aMcnU1uw8nMP7FbrRsJk7YaNSoERGdmzJ/5hZWHHgdpUrBtpUn6Px4CJPmPk1JYQWye+v0paWlsWHDBgoKCtj8YyyBDUVlvLBYjae7Pbezimga4E5OfhkBfq4M7jGLefPm1XoOqish455xu7paQkGxA9dvOWCtLsXP257mzZuj0+lISUmplc7CQoHBYESt1qJSybG1tUSt1iKVSvjggw/YuXMnmZmZBOOLs5cTHx+aw8pZGzi1Q/yIHj3/BU59f478zEIsrFV0HjTmTz3P/xf8Hpfu7Nmzee21X15k3MLCApVKhVQqpbCwkICAmo/k+6sd/BqxsbFMmjSJDz74gKioqIeSSSI87GAGM2YeIcOGDaNt27ZMmDCh3vPnzp1j+PDhJCcn1/r/9u3bWbx4MUeOPJzLAmDKlCksWLCAtKxCvN3sKSypZOuBSzjaWfF4p2BsrFTkFZbj6+lIu3btuHPnDl5eXny9ehvNAz1NMysrqrSUV2hxcbSmqKSSnYcTCA7woJm/Pc7Ozkgk4uSJ8zczeXXlDqp0euYOiqFfRN0oALNnz6ayspIJEybg5+ePgOi6kUhEK9jB49dZuPwIYS18GTWsE75e9qhUKnbs2MGC5eJ4P19vJxb+Z4jJpQjiwr0791xmy85YSrM2ce7cuTplgzg+xCgI3M0uYc13p7mUkMGmVWOQy37ZKSAIAhVqLUtW/ETc5dtsWvXrD/D7j5oKtZavlh/hfGwam9aO5cMP5/Hmm2+KLjc7B3TVBu7mlJB+u4DgZl54uNmTX1iOq7OtaaLCr3EpIYPJM8Vxc70ea8GoFzubXHjFxcUsWrSIH+7Y4efuyPa5L9abR2ZeMb5ujnX+/+FnewAYOkhcADs7t5Qf98UT0cqflsE+aHV67O0s66QDyM4u5rkXa5aueG9Ofzp1bIogCBgMBs6fP8+85ZcZ0rcNvaNbYG8rThaprKrm8KkkSsuqiO7YlAPHr/PSoLpREVavP0VObimjXuqMk2P9k4EuXrxIgwYNTOtTZueV8t2OC+w6fIWRgzvSLyYUaytlvWMFy9UabK3rTuApLatCpRItQLt+2MY777xDUFAQ/5k1n8BW/ihVSkrzy1BZq9Br9dg4/nrkiG4x/6FzVBNmTO9jWigcxPvn7PlbvPP+Dq5eXsDAgQNZsECMLNJl6Tc806I5z7RojlEQ8LazNdWhvrqUVVRhZyP2U0VFBSqVivz8fDZt3sr6bbFYObekTcO7zJw5Ezc3N6Kjo3npkw7kW51HioyObiNoqnwclUqFQqGoVcbmzZuZMmUKs95fycAnW2NvLy7gvHbtWhwc3WnQpD2B/h60aOaF0SggGKuxtrYmPT2dzV+e5erF26w5Ii5qPn/GFgqyS5g092k8fJ3r1GPHjh18uyeXLctG1zl3//eZebeIdasWsXbtWqAmcsf5S/DC5Lpt07ZtW5MFPjMzk/bt29eK3OHsbENVlY7KSh0ymQQbGwsUChmCABs2fMs777wjLgOU3QF3P1fWpy3hkxFfcmDNUQBmbZhMcGQTHD0cqCqv4kZa8kPPAv69PN7g4aKn/F72ZtRdEPvP8tRTTxEdHW16B2ZmZvLYY4+xa9euXxzjl5CQwIgRI5g+fTqDBg166LLMip+ZvwX/TcXP29vbHLLNHLLtodKYQ7aZQ7aBOWTbow7ZlpVV/7jaP8s/SfHbunUr8+bN4+OPP8bHx8dkob2vsCckJDB9+nTWrFmDu7s7ycnJDBs2jAEDBtSatW1hYYGtre2vlmVW/Mz86/D29v5fi2DGjBkzZu7xyBQ/34f7KPq97M384rcv+gMsXbqUdevWUV5eTocOHXj//fdxcRFDW943fhw+fBgfHx8WLVrE4sWL6+Tx1FNP8dFHH/1qOWbFz8y/DrPiZ8aMGTN/Hx6Z4ufzcBbk38veOwt/+6K/MeZZvWbMmDFjxowZM/8SzLN6zfwr+SNjVv5Oaf6ucv2RNH9Xuf5smr+rXI8yzd9Vrj+S5u8q1x9J83eV6+dp/nLMDs16MVv8zJgxY8aMGTNm/iWYFT8z/2gWLVrEsGEPNxPOjBkzZsz8izAaH832D8fs6v0LaNq06a+eP3z4MIsXL+b7778HxHWlXF1deeyxx5gxY4YpliNAUlISS5YsITY2lvLycjw9PWndujUvvvjib5ZjxowZM2bMmLmH2dVbL2bF7y/g5MmTpv2VK1dy6dIlFi1aZPrf/ZW3H3/8cWbPno3RaOTWrVvMmjULOzs7pkwR19Q6d+4cr7zyCtHR0cyfPx8fHx9yc3M5f/78L07d/v+CTqdDqVT+9oVmzJgxY8aMmT+M2dX7F+Dq6mrarKysUCgUtf4nk4nRBiwsLHB1dcXd3Z3IyEh69erF9etigHSj0cibb75Jjx49+Pzzz4mMjMTX15c2bdowbty4Workz9m+fTvR0dHs3LmTrl270rp1a7788ku0Wi2zZs0iPDycPn36cO3atVrpdu/eTe/evQkJCaFPnz4cOHDAdK6goICJEyfSsWNHwsPDef75502yAmi1Wt58800iIyMJCQmhV69eHDp0qJY8D/Jzl+ywYcP45JNPmDlzJuHh4SxcuPA3ZQLYu3cv3bp1IywsjOnTp6PRaB66n8yYMWPGzL+IRxSr95+OWfH7H5Gbm8vJkydp2bIlAFevXiUjI6PeIM9Qf9ihByksLOTw4cN88803zJkzh4ULFzJu3DhCQkLYvn07jRo14q233jJdf+bMGebOncvEiRPZvXs3o0ePZvr06SQkJACg0Who06YNK1euZPv27TRu3JixY8ei1WoBcTXxxMREli5dyu7du5k5cybW1g+3Ivx9NmzYQEBAADt37mTIkCG/KVNGRgavv/46AwcOZPv27fj5+bFhw4bfVaYZM2bMmDHzb8bs6v0vsmvXLvbv34/RaESj0dC2bVtGjRoFiHH5APz9/U3X//DDD7z99tum40uXLv1i3jqdjnfffRdHR0cCAwP5+uuvsbCwYPDgwQC8/PLLDBw4kKqqKiwtLfnqq6+YOHEivXqJQd19fX05f/48W7duJSQkBB8fH4YPH27Kf86cOezatYuEhAQiIiLIycmhefPmhISEmNL/XsLCwhg5cqTpeObMmb8q06ZNmwgJCWHs2LEAjB8/nhMnTvzucs2YMWPGzL8A4z/fOvcoMCt+/0Wio6N5/XUxRmhubi4LFixg2rRpLFy4kPoCqERHRxMaGkp8fDzTpk371bxdXFxwdKwJKu/s7ExgYKDp+P44w+LiYiwtLblx4waXL1/m448/Nl1TXV1N27ZtTfuLFy/mwIED5OfnYzAYqKqqIjs7G4B+/foxYsQIrl+/TlRUFL169SI4OPh3tUdQUFCt49+SKS0tzaRo3ic0NLSOC9uMGTNmzJgRhH/+DNxHgVnx+y9ibW2Nn58fAH5+fsyYMYOBAwdy+/ZtGjRoAEB6erpJubGxscHGxoacnJzfzFuhUNQ6lkgkyOXyWscgjiUEqKysZNasWURGRtZKZ2FhAcCKFSvYsWMHs2fPxt/fH5VKxaBBg9Dr9QCEhIRw+PBhjh49yokTJxg8eDBTp07lxRdfRCqV1lFk76d7EEtLy1rHvyWTIAh1XN7miINmzJgxY8bMw2Me4/c/5P6kj6qqKpo3b46vry8rV678r5TdrFkzMjMz8fPzq7W5u7sDolu5d+/exMTE0KRJEywsLCgpKamVh4ODA/3792f+/PlMmDCBbdu2AeDo6EhxcTEGg8F0bXJy8p+WqWHDhqbxfvf5+bEZM2bMmDEDiK7eR7H9wzFb/P6LaDQa8vPzAdHV++mnn+Lj40NAQABSqZT333+fUaNGMXHiRIYMGYKvry9FRUVs27YNqfSv1dFHjx7NlClTcHNzo0uXLlRVVREbG4urqyu9evXC19eXo0eP0qdPHwA++eSTWusNrl69Gnd3d4KCgtBqtZw6dYqGDRsC0LJlSwRB4Msvv6Rfv34cO3aM2NjYOq7d3yvToEGDWL16NUuXLiUmJoZ9+/aRnJxMixYt/tK2MWPGjBkzZv6/Yrb4/RfZu3cvUVFRREVFMXLkSCwtLVm+fLnJTRsZGcmmTZsQBIEpU6bQs2dPxo8fj8FgYMuWLX+pLN27d2f+/Pns2LGDPn36MGLECI4ePYqXlxcA48aNw8fHh+eff54JEyYwYMAAnJ2dTektLS1ZsmQJ/fr1Y/jw4djb25tmDTs5OfHhhx+yY8cO+vfvT1JSEkOGDPnTMvn5+fHJJ5/w3Xff8dRTT3Hz5s2HyteMGTNmzPwLMS/nUi8SwTxIysy/DG9v7/+1CGbMmDFj5h5ZWVmPJN9ejiN/+6I/wL7ibx5Jvv8tzK5eM2bMmDFjxsz/P/4fxNV9FJgVPzNmzJgxY8bM/z/MDs16MSt+Zv6VBLSZ/FDXpcZ+btr37Tr1odJkHv3MtB8UMO6h0lxPXVIjW+vfli31Yo1cgaGTHqqMm/Ff1JTxB+rfuOXEh0qTcmVhjWxhvy3bzcs1cjWKeDi5bl2okcsr5rWHSnP3wPwauVo9XDk342rK+b1t1jjk4folJeHP1f8P9eUfkM2z12+3c/a+mjZWfPBw90v17Jr7xa/jw/3Gbp+q+Y2FWA99qDQJ6vWm/Yf5LT/4O25R2PWhykh0Pmrab9h+ykOlSTu7wLTv3+Hh6p9+uka2hynnwTKCszs8VBnXPE+b9i9fTnqoNGFhzUz7mRcfLpKTb2v1Q11n5q/DPMbvb86wYcNo27YtEyZMqHPu3LlzDB8+/KGWSvlfs337dhYvXsyRI0f+16KQmppKAz9/BKOAVCohv7CCbT/GsfmHWADat27IK0M74+frRG5ONitXrmTZsmX4d3+d6SO607tTc+QycV6U0SiQU1DGgTNJrNh+hoUzBtAquHYUE0EQKCwoRyaXYW2torS0krKSKhydrHFytuHD93fy5dLxLFu2jMceewyFQoHBYKSiUouFSoFGW82xUzfYdSCBCa9EE9TYA4VchsFgQBAE1JXi+SXLf2LZwuH4+TrXqXOVRkdgQEOWLFlCz549UalUGAWB6moDKqUciUTC/p+uMv+rg4x8Poo+MSFYWigQBIGcnBzmzZtH4k1ffLwd+ei9AXh71SwWnpCYyYbN53jlxc408HWmvLwUS0tLrKys6sghCAJZ2SXExd+m7+Nhdc6rK7VYW6kwGIzkFZaz7cc4ZDIpTz0ehqODNaVllRiNAva2SsrKyjh+/DilSl+e7R6KnbWFKZ/r6bmM/mgzGp24fqSDrSXTnwwkOjraNENeV63n+KkbNG3siYe7Hdm5pezcc5mgJp5EtPLH0kJJYUEe1dXVeHl5oVAoKCuvIr+wHG9PR7FfTt/g7MVbTB71GG4utqbyb926xejJ36PXi66maZN68kSv0Dr1/enYdVo2d8XJyemBtTYFqvUGZDIpFRUasvNKcXKwrlN/nU6HVCrFysoag9GITCZFKpFgNArEX73DjLnbCWvhwytDOxPY0LXesI8Gg5Gycg3W1koKCitwcbJBJpPSvc+nAHTvoGXs2LG4uLjU25fVBiMFJRWk3imgoZczns62CIKAIAhoEVBJZeRWVbDq2kVWXLvAp1G9GRDYsk5eDRo0wN7ens07DtLY3w2ZVILeYOTy9Tt8tuIIRkFg6ohoWrf0RYIEo1FcUD43NxcbCydc3O0pyitj57rTSCUSuj/VCq8GzsgVcgQE5HIZEyZMYPv27cjlcj74ciu9OgZha62iuKwKAEc7S0CCTCYFQUzz8/rmZhSw88v9bF+4l2enPsGAKX2wdbJBKpVgNBhJuZnC66+/jouLC5998SWOduJvoKJSi0ZTjZ2tJXeyi1m1+Qx2thZEd2hKgK8djo6OfPDBB4x9dco9OeBuXhlvffYDJWVVjHmuE+1C/bG2VmE0GhGMBkpLS4mNjcWg9CGydSNsrVQk38plybrjPPlYSx6LCkKpkCEIoFZXYDAYcHBwYHKnt7h6qrYiN23leGJe7FqnX6ZOncqmTZtMip9CIcPSUoFcLkMmk6JWa6ms1Jmur0/xuxAPqzfB9ZuQnSth4ssCY2uCQuHbWv3Ixvj1tKk/BOqfZX/FmkeS738Ls8XvH0x4eDgnT578X4sBiLGCFy9ezE8//URhYSEeHh60a9eO0aNH/6Fwbo+Sw4cP89LLI0lIukNYc1+On7nBK8M6odFVk3wzh3mznmLTzljem78LF2UiH374IVVVVbSJ7sqTXVqQkV3M6fg0WgR60iLQi+LyKvp1C8FCpUAqkVBZWUlxcTEnT56kosyNgYPa4+xii8FgZPvWC7g429C1e3O+XXeKYS9EAfDZZ5/x+OOPs3nzZi4my3l32pPY21py5VoWK787xRsTehHY0I2gJh6ci0ujTWgDKioqsLKy4sCRa3Tq0JiGfs74eDuyct1J4uJv0zrcn+FDIikv13Dq7E169uxJ37592bVrF3HJMG18T6wslaZ2CW/py9yZ/WgT6s+lKxns3HcZlT6RN954g4ULF/LR/D2MHxWNnZ0lyTeyuZGayxM9Qwlp4UuLYB82bT3Pex/tokNrPS+//DJff/01l5Ot6dMrhCdiQiiv0JBxp4hjp24w9qWuGI0CarWWN998Azc3N4YNG4avry9VGh0/HkwgJS2P6eN6Igjwny/3Y2ej4tWXumEU4IXhw1Cr1Xz00Ue4eTXA1sqC1KwCtv+UwMDHwgnyd+er6c8yYu53AMwd3Zu2wQ0oKytj8eLFhLZ5kidiWvJY12C+XPET5y6m0b1zEBNeieZyYiYz39tOUbGaAb2ceOaZZ9i2bRuP9eiNlZWKRn6ufL70ELfvFPHGhF60DPLGzcWW1PR8tuyKpWOYDZ06dWLFlyN4YfQKoiIDeTwmBKPRyKTp39E6zJ9hz0USG5dO63B/qqsrKS0tJTs7m6ZNmwISyis0ODlYcyH+Nt06NK1T/4VffM6kSZMoKCigqEyLm7MdCrmMVd+dwtHBmv6Ph/HlR0No2MCFTTtj+WzpQVxVybz55pvIZDJ2779Cr8daIJfLsLVR8d1cykcrAAAgAElEQVSWc/TuGYJCIcP4wDplHTt25IsvviAyMpLOXbsTfzOL9s39kUolCAKM+2QLwx+PoFNoIyqqtFy4cIGkpCReeOEFCirLMciVfHP1PDPbdENjqAYgtaQQndGAs4UV21ITWTpsDAaDgTlz5hDo58qGXRdISMri6Zgw2ob4sejtgQiCkZT0fFZvPUuVtpoBPZqSmZlJ69atkUgkzJv0LZZWKia89xSHv49j5Sd78WvsjqunA5bWKmKeaUPLli3Zvn07b731Fk92acHcZfsJa+bNwJ6t0OsNqKt0ZOeX4elmj1QiQSE1Eh8fT0REBHuWH+Ho5jN4N/Zk4qIRaCt1FNwtpii7hM3zd3H72h1CuwQzYMoTbNu2DYVCga7awGfLD9O3RwiB/q6oFHLGz9lIcKAn70ztw4+HEohLzOC7NTuYP38+M2fOFNOsOIyNtQUjB3VgyXuDUVfpuJiYwfwVh+kT3YL461mcO7SKrKwsli9fjpeXN+99sZvU2wU83z+Che8ORCaVknwrl5WbTjPgiVa0C/MnOzsbBweHX3wu3r6WybcfbCc3PR+j0YjfM058/PHHtdZvlUjEjwWtVo+1teoX83qQyioI8IcnHoMPF5ntTH8HzMu5/INRKpW4uro+0jJ0Ot1vXlNQUMCzzz5LUlIS8+bNY//+/cyfPx9ra2uWLVv2SOX7I7i6upKUks2UtzZz/GwKTQLc2b47juefbsvAvm1IupnD0rXHuX2niM2bN7Nq1SrGjx9Pv+gQDEaBl9/ewMJvjzHmvU1UVGppEejJyUuptAryxdHeCqVSSffu3Zk6dSrfrTtNUZEaiUTCkYOJhIX7Me/9nZw4lkRISI1C3KNHD+7evcvUqVNxdRYtCFnZJQQ2ciMuIYMFSw/RvJkXKbfyOHnuJlKplEOHDrFy5Uo6RQby+ZKDhDT35cz5VNZ8d5or17JY/e0pEq9m4WBvxQ97LjNu3Dh27NjB2LFjsbZSoVLKKS5Ro6sWF9pevv4EbcMbkpKWy5Q5mzl6+gZLlixh+fLlaLVaBvRvg62tJUdPJDNm0jo+W3iA2xkFSCQStNpqlq06RkZmIe+//z7ffPMNvXv35vqNbPwbuFBUrMbO1pItO2LZ/P0FUlJzkUhg6epjbN26lSVLlhAXF4feYERvMFJSVsXeI1fRVRvQ6qrZf/QqHu72pKTlkXIrl379+nHhwgU2b96Mo60lBqORkfM2seVIPINmr8FoNNIiwBMvFzsAWjX1AaBTp04sWbKETxbvR6fTI5FIOHH2Jhl3ivBws6OsXAPAteRscvLKaNiwITt37mTy5MlIpBJkUgknzt2ka8emxF0R+6WRnysabTUvTV7D3sNXGTJkCPn5+TTwFcMkDh7QjuvJ2QgCXLkq9svpszeJaNWQsxduYWVlRWRkJO+++y5SqZRzcWm4OttyJ6eYqLaBbNx5oU79hw8fzg8//MCiRYtwdxYVlRPnbhLesgELlh7ibk4JjRu5k3o7n6Vrj3M16S4rVqzg9u3b6PV6klNyUChknDqbwtYdF3mmfxtOnblJ8o0cpNIay+CwYcPYtGkT0dHRfLHlOJO+2IFGV41EIkGt0dI22I+mDdy4eacAWysLxowZg729PXl5eRgEAaMg4KiyYvX1i4xp0Q5bhQpfWwfG/rQDndGAulpHfn4+1tbWPPnkk3y24jBfbzjJ6bg0pv9nB2VqLS6O1jjYWvH2F7tZue0s3/14kTfeeIO2bdty9epV1OUaXNztOfT9RX5Yd5rwjo2JPZ7MthXH+XruDyyYKS6F1bhxY6ytrRk6dChLNp3gRFwqPu6OnIxLxWAUsLOxYOJHW9l38hpKhYwLFy7QoUMHrl+/zpKpa7l2NoWD646zc8kBBr7eh582nmZs25ls+3wPsQcSWDF7I9euXTNFTFq46id2H7lCQ19nTl9MRSaTEhneiG17L3Hm4i38fJxZu+1crY/3L1b/xPb98azdfo7NP8ahUsoxGIy8+8UeDp9OZsrcbazedpa9e/eSmpqKq6srUqmEKo2OtMwC5n25D5lUikQiYcp7Wzh7KY3X524jNjbWtCzWL1F4t5ifvjvJtTPJJJ1LYcGCBSQlJdWKpKTTGVCrdWi1dSMx/RJd2sPUUdA7GpTK377+L8W8nEu9mBW/fwAajYbXX3+dsLAwoqOj2b9/PyC6ekULgciiRYsYNmwYa9asoWPHjrRv355PP/20Vl4ffPAB3bt3JzQ0lCeeeII9e/bUOh8dHc2KFSsYO3YsISEhrFixgqCgIFJTU2tdN2bMGD744AMA5s+fj9FoZPXq1XTo0AEvLy9CQkKYOXPmL8YYPnz4MM8++yzh4eFERUXxzjvvUFlZaTp/9ar4Ag0LCyMiIoKhQ4dSVlYGQF5eHgkJCYSEhNCuXTtGjRr1u9ozIiKCc3FpAJyPSyO4qRcXLqXj6e5AaHMf07n7HD16FF9fXxRyGddv5aCuEpVhoyBwOv4WgiAQGdqQuGsZ2FipEASBU6dOceLECabPehJvH0eMRgFPL0fKSsU6XjifSlCwuKyMVCrBzs4OW1tbgoKCaBnkTUpaHpYWClRKOVKphAuX0hEEgezcUloGeVNRUUF1dTVHjx7F08OBO3eKRJdyYe3xMhYWCoxGgVu38wkNDeXo0aMAdOnQBKNR4Nvt51EqRJdW/NU7pjJ+Xn9LS0tsbERX6plzN03nyso1CIKASqWopTAcPXqUBg0a4OFuR1ATT2xtLFBXajlxJgWA4hJRGR42qD1xcXFs2bKFqKgobmcWolSIL05PN3usLJXYWFvg6mzDlWtZ+Pk4c/tOEREREbi6uvLMM88gkUi4lpaLukqHRALtmvsBEgRBILRxzdI91dXVzJ49m7i4ODavHIVSKccoCLQM8kYigaj2jbmRmktIcx92rBvHqkUvEh4ezvHjxwFQKuTkFZRz5kIqwU29xH65LPZLTl6ZqZz7C7JLJBKaN/OkWRMP0tLzkcmkbFg5im3fjqNJoDtSqQSVSk5cXBzl5eX06tWLyiodPl6OCIKAr6cjVpZKbqTmApjqn5FVjLOzMxcvXuSJJ56gqETN1eS7JrnatfLH2cmm3r50cHBApVLx9JOtEAQ4cToFo9GIlaWSjdvOcys933RP3ic0NBQLCwtOJ6YjkYClSomuWs/JhDRCG3uhUsjJLSo35R8REUF6ejo+NvYYBCNt3X04lpWGr60DkR4NMAhGtvR+Dg8rW/o2DKJJkyamMs5eTjeVaxQEriSLLsDUjHzT7w7g2LFjCIKA0WjE0kpFYqz4m714IhkPX9H1C2KoytadmgBiLHBTOQliOfHJWYQ08UZdpaOyqhp7G0s6hDaktEJDaGgogiDQqFEjXls+Gtd7QyhiDybg4e+Gi7eTSR6JREKbHiGmvpdKpZy7lCa636VSrt/MQSaT0jpEDM2p1elp3sRTdCvfQyqVcu6B+p+9nGZyz78z6Ql+/GYsa+cPZ1j/tshkMkJDQ02L6pfcc1cbjQJV2moEQcDORnQZB/q74u/vbwrX+Us0bRvIprvLWZv6JXO2vMbzzz9PQEAAp06d+tV0f2vMkTvqxezq/QewYcMGRo0axbhx49i/fz+vvfYawcHB9V579epVfHx8WLt2LampqUyZMoWIiAi6dOkCiA/mBQsW4OjoyOnTp5k+fToBAQG1FMhly5Yxbdo0Zs2ahVKpJDY2lp07dzJ1qjjw+L4bc+PGjRiNRg4ePMioUaNqRfa4j52dXb1yarXi2KHGjRuTm5vL22+/zeLFi5k+fToA06ZNo0uXLnz88cdoNBri4uIAMebvrVu3cHV1Zc+ePVRUVHD27Nnf1Z5ubm4UFV8FoLBYjUopR3tvLJiTgzVFxbWVp7y8PNN+bmG5af+HRaNwtrdGIpGQW1DGog3HaR/iT9LVy7z11ls0aNCAN2d/hFwuQ6PREdzCh7dnbxXbsFCNUiX+/KysVMhkMvbv38++ffuQSmVIpRLOXrxF+9aNsLWxoPTegx0JODvamCyx92Xz9nJEIpHUemE7OVoT2Ei0CHh7OqJQKMjLy8PFxYWw5r4kJmXRpJGb6eViMNT/YrgfO7par0cqldRpHwCZTIqtrQWlpaKcarV4zbfLXkEmk6I3GPj+x0umMsorRMvafxbu42bCt/Tt25cOHTpQpi4w1cHZsWZwuLOjDUfP3MDGWsXU0T2Qy6VcvnyZK1euiOVptBz76lWUCjl6g5Hz1zJoG9wAZ3sxD6lUgkQqfyDetASJRIJeb8DZ0RoHeytsrFWEtfBFJpXy7se78PN1ZsrYHnTp0oXNmzcjk0qorNKZ7pkH+0VXrWfrijE42FuiVEzjp59+olu3bjRt6olcLiPtdgHzPt3NrbR8lEo5k8Y9hrubPQ39Xbl44RogLlCuUilwd7FFV21AKpUglcL4EV05HZtaq/4SiYS5c+dy8OBB7uaUUK03MGlUd1RKOXNn9Ofz5YeZPr5nnX667+oLaOQGgFwupc/j4thDW1sL1GotEomkVl+6uYnXFpaqGflkeyQSiL95l/wSNU18XTmdmEabZqL1eubMmXh4eGBvLypeLpbWlOo05FeJ90NmRSkLLp8ko7yEb3sORimTs2fPHubPFyeFFJbU3FtSiYTG/q4YjEYysotN/+/QqhHvrhLbLDg4mPfHryX12l0AivIrAGjexp9Jc59BqZKbxlkmJibW1OVeORv2xKJSyhk1QJzwsP3zkew4ksD1WzlcObKab7/9luvXr+MX5M3iU+8zJmImxTmi69PJwwEbB2s+P/YOSgsF+moDlxMu0bZtW1MZer2RK0lZdOsgjn1zcbKhfXhDOkUEoFTIcbC15MFI7A/Wv1ovWuJdHG3IKyxnytxtNPRxYsrL0egKXyclRfyIupaSzbWUbFO68goNKoWMLV+9gl5vQCqVMn/+p4wcORJHR0fq48L+S5z8/hxSmZSZ304i6ql2RD3djvnz53Pw4MF605j552JW/P4BNGvWjLFjxwIwduxYjh8/zqZNm+jUqVOda5VKJe+++y5KpZKAgADatWvHhQsXTIrf+PHjTdcOGjSII0eOcPDgwVqKX48ePRgwYIDpuH///ixYsIApU6YgkUjYs2cPDRo0oEWLFhQUFFBeXk6jRo1+V5169+5t2vf19WXChAl88sknJsUvOzub7t27m8YHNm7cGBDjGuv1ery8vLC0tDS1z5/mZx9xIcHefDxnAIJx3C+Gy/t8/VHeG98bQRBoHujJFzMHkFdcQV5eHsnJySQnJyM1tGflujGoVAounLvF2dMpdfIZPb47AAMGDODHH3+kYWArjEaBZoEeAGz+ZpTJu9DA24nCorqKV33foL1jWlJdbUQmk/H1gmEArFq1ipycHAqKK7CyVNItqp62E2rqL5VMMCn0Ws1vuHceEOK+9Xbh0kNMHd8TpUKOulJrOl9QJL6g09MLuHjxIhcvXuSll17C073+DwVBEAgJ9mbsC12Q3FMMNRoNfn5+AKirdDz/9nqsLBQ83TWEp7uKyurYpzsivzfpQRAEhg0bRnZ2NkNefJuXh3ZCIZehvGdVBcjJK8XX2wkLCwVjRnQFoF+/fiQl1TOrUai9P2Hmd6hUcuwll3j33XfF/9/TpW9nFqLV6ln06XMAyO9ZWR+cECKTyZDLpJRXaHCws+TEuZt0bt8YV2db2rduRElZJWNf6GKSVafTERYWhlRmyeWrmSxcdpjpE3rx3ffnefWlbnVlfIDCogqcnWwYPjiS7Tsv8uLQqDr1+TlPdw1hxBPtADh/LQPbe5NpPv3uKHNfeRw3R1tiYmIAsLYWFe7Y3DvYqyyI9hGfD++cO8SFvDsAaA16vk9NpL+DD127im0d0tSbj2f0B0QLq8FgQKerifkNEHc1g5iYGE6ePElmZiavfzyImS8uNyl/ALlZxYzv9wVW1ipaRTXmpWm9CQ4OJjExEYADy8TnoEwqfpSUlFehVMiZu2wfk4d2o6SsksXHjol55ebyn1eWs/r6Anq+0IUzuy6KTSQI3Llxl3FtZ2Fpa8Hoj4cS0SkCo9FoisMO8N7CPbw7RQx96eVmz/gXurDr8BUG9G6F4VesR9J7H2TVegNL1otW55T0PJwdbXjxxRdN92QjXxf2rxNnUK/bfg5rSyUymZRZH+/kTnYxTQPcGf/KKyh/xc96dJM4g1eukDMq5DVsHW14b980Jk6cyOXLl38x3d8ewbyOX32YXb3/AO5bXB48TktLq/daf3//Wj9wV1dXCgsLTcc7duzgmWeeoV27dqbJITk5ObXy+HlM3R49ephmkAH88MMP9OvX70/VKTU1lVdffZWuXbsSHh7O9OnTa8kxdOhQXn75ZSZNmsTOnTspLRVdVpaWlqhUKhITE5kyZQrff/99LRfxw5CXl4fTPWuSk4MVWp0epUp8UBeVqHFytCbpZi4vT15DTEyMSRkFcHeueVGfirvFqUu3ANh38jqtgnwoLqs0WRUAXFzEWY4Ahw8mmv7v6GSN7t44mVXfiG6rI0eOMGPGDO5kF6M3GDhxNgVBEBg7bT2vTF0HwN2cEgqLK0x9fH+M5927xfdcX2JZEgn06RXK9RvZaHV6Rk9eS3V1NZ988gn+/v54uNnTNNADuUxqkm/T8tGicBJIupnLN9+eQCKRsG6dWHZObilGo2BquwcxGIwmK55Yb3EW6LmLaQiCIE6U6Nf6/9g777CmzrePfwNIUXGAiAICooIooqCASkEFERxFcLYOHIWKe0/UqlVwjyq14KSCUreCEycqdYCDoSgqe8rehIzn/SNNfsRAhzk5ltfnc125lCfh/p6TE5I793OP//3Cn593TVT/9wFZWlqKr1RVJOdQWCeyWFRSiR8m2ePuH0m4eO0FMjMzMXjwYPj7+wMA9LVbI/NDCZLS87E7NBLZBaKt1/1nH+BhvGjLrKqqCrdv30ZiYiJOnH0i0SGEoKS0GjyeACWlVeDW8vE8PgMzFh0Dny/KA7x48SIEQoJmTVUlr5nyyhrJVp2qqgpyPpQiNaMQ586dk1SvJ6fmg88XQFOjOd68zYXXnCB4zQnCtYj4P39PWfJ6ycvL+3OLTg2EEMS+zAAgqnRu37al5PzDrseCEIKtW7di8eLFaKOpjvZtW0FICLi1fASdfIjb919LrmVdxH9HETcTwOcL0L59a3hMEEW79u+ejDHuomt07sQcTPq2H4D/RZXnj7FHem4RanmiiuM2LZuhoLQSZZU1OHZN9N4wYsQI5OTkSLbH1VRUkFZeAlsdkYMeOnQC3k1ZhndTlqGDeivM7/U1DAwM0KKF6O8qv6gcnitDEPc6C/lF5XgSm4bKKi7atP7fa66Gy0dmpsh5fP36NZLiMzHuh0EAAA0tdQBAQU4pctIL8T4xG6cPihy4YcOGSc5l0bZzmOITjLKKaoReeYrK6loIBELcefIWv566j8nfWEucVw6Hg/LiSmS8yUE7w7Zo/ec2cnFeKfg8AbKT8+A8ZSAMu3fAlStXJFuq4mPOyy/DgRP3AQCJb3PhsTAI3Fo+Kiq5KC2Xfu+qe57iquK6X5gAID2rEC1btpR86Vmy6QymLz2G6UuP4crteKirq4Fby8e9x2+RnF6Aq3de4vDhw5Ivyn8Fn8dH9vtcvIl5h/v376OgoECy00P5/wN1/BoB9bVhaAjx3N+6vyv+YH/69CnWrFkDd3d3HD16FBcuXICdnd2fW1//4+M3CDU1NQwdOhRhYWFIT09HXFwcRo4cCUA0l1ddXR3Jycn/6pxmzxZF0nbs2IGzZ89i3bp1UsexZMkSnD59GmZmZjh+/DicnZ2RkSH6ILS2tkafPn3QtWtXHDp0CCNHjpRsLf4ToqOjYWNpBACw6W2EV2+yYW1hhJy8UsS+zISNpRFqa/nIyi1BamoqunXrhszMTPD4AnTr1F5SCVvL58OiawdwOBy8TsmFspISEt/noXfv3lBXV8fgwYPx0+bxIISAw+HgZUKG5BisbToh8ZUof6moUNRqQVtbGyUlJYhPzIJZV110+XM7LjOnFHrtW4HD4UCrTQvEJ2ZBXV0dKioqGDRoEHLySqGnJ2oHoqkp+uCw6dMJOu1agc8X4NXrbKSmFyI2NhZmZmY4duwY+HwB+AIhnsWlIz2rCABw+PgDcDgctNduBeeB3eE9ZSAWLlyIiooKZGRk4MlT0ZeNfjadJefRooWapLijbjXooEGDkJGRga9Um4DD4aC2li/J3QNEW9NCIYGVRUfJWklJieixPNHrIOdDKaqqa1FRWYP8wgo0VWsCvkCIbsY6ePjwIVJTUxEXFwcA6KKvheZq/7suWq1FW/B3nr4F/8/jat68uST1gM8XgssVVZn+8eQ9BAIhEpNyYNChDV69yUZNDQ/pmUXIzs5GbW0t0tPTUcvjQ1urBfpbd8arN9kQCgmsLQzB4XDQrq10pNLKygoA8C75A14n5cK6z5+vqZwSZOWUoFWrZiCEoLqGJ3m9tG7dWpSvmJQDJSUl3H/8DgVFFVBvroacD2WS8+/apT0KCwthZmYmyXs17qQtdVzabVtIrmVdhEIhCCE4dT4Gb97m4uGT97h+KwEFheXwmhOE1PRCEELgNScIl67FSq4lIQQRT16jS4e2eJmai/49DGHT3QCxb0VRNtseHZFdUIrY2Fg8fvwYffr0QWx+NrppaON6WhLSy0uQW1WO4WFHJbfcynIEv3mOjIwMJCUloaamBtY9DbFgmgPaa7XEzLWhMO3cHq+T89DDREeqAn3AgAHgcDjQ19cHR4kj+QLRx94EeZlFKPgotxEQRVTj4uJQU1ODjrqayMwrgWoTFVRzeWilroZmTZugWVNV0euYw4G9vb1EQ635V9Dr0g75mYWwGtILuWn5KMgqgpISB0sOzID9aBssd96E0tJSVFVVQSgUwqbOa7ufpREEAiEePU+BiooSHPqb4P6Td1J1AkKhEDa9/vc71j0NQQgBv04KxleqKpjtMRACgQBjx45FTU0NDPQ0kZVbgqzcElRzeeBAFC2t+3zp6+v/q88RJSUldOvWDVVVVX8ZKfyvQ4REIbfGDt3qbQSIP9zExMfHo3fv3v/azosXL2BiYgIPD9G2HyEE6enpDeZ91GXUqFGYNWsWNDQ0YG1tDR0dHQCiNwhnZ2eEhoZi6tSpMnl+5eXlkm/zYoqKipCamop9+/bBxESUeF1fHomJiQlMTEwwY8YMjBgxAjdv3sT06dMlujNnzoSnpyfmzp3b4HZsfeTl5cF1pA52bRgHC3MDnAmLwZgRlth35A6S3uVh/9aJ2LB8JLp2boeA/eWYPn06NmzYACvHbzHaqRdObJ2KK/dfonfXDmjRXA2vknMx6RtrPIlPhV671mjSpAlu3bqFdu3aobyMC1XV5hAKCQYP6YFnMamwszfBAIduuBz+HL0sDaHdriXi4uJgaWmJHTt24FlSuWSr931aPsy66mDRTCfEvEiFhbkBepjqQSgUYsyYMRAKhbgZ+QaLZjsh7mUG+tt0xhi3Phj0tQn4fAF69zLEqg1nAQD79+/HoUOHwOfzEfjbPUyf8DX69DJEeEQsDDu0gfswC0Q/T0XvXgZYOtsZpy5G46effkKrVq2wbds2xL7WRHl5NRwGmILL5SMruxgdDbQkxR2L57vg5u2XuHTmDb766ivs3r0bE8cNQ3V1Ldq3awUul4+eZh1gatwedv2M8epNNrynD0RRzhR0795dEsFQVlKCoZ4mpozrB9UmKiCEwHlgd8QlZmH0MAsoKSnh1333YWNjAx8fH9RweVBtooIDq8Yj7P5LjHXsBVUVZbzLLEB2QRmUlTjIKyqDtkYLPHr0CL6+vnD55huo/dmn0MJcH7U8PvLyS2HeXQ8cAHo6rWGo3watW7eGiooKVq9eDSIUVakO6GeMo6FRsDTXxyJvJ+R+KEW7ti1xcKcHbkQm4vvQt2jatCk+5JehopKL3888xk9rRqGfdSfs9o+Aced2sOtvDEIgiUTevXsX2traf173dniWkA4d7VaoquJCs3VzLPF2wuvkPIx0FkX/9+3bi/nz56Nv374oK6+GiooyBvQzxrFTD7F41hDYWBohPbMQXTq2hddkO0Q/S8XpA88kkdjRbn1w4/ZLzJ/lBKGQIDj0Iax6d0RHgzYQCgk2rHbD4lUnsWHDBkyaNAk3b96Ey0AHlFbW4NqjRKyc7AQeX4Anien4YWQ/TBjSG/djkzF58mR06NAB6urqMFdXx6vCPAgJwbgu5tj6NBLjjXviatobdG2tBa2mzWGv0xHt1Zrj0KFDqKysxMJpHiitqMH2gzcxb8ogNP2qCYLOPYKJkTb8lrgiK7cU79LzMWn4BMTExMDS0hJKSko4tuc6Qh6sRsvWzZAQkwIzq46oquBi0DcWGDZelHOXlJQEQ0NDnD9/HjPHu6GgpBLPEjMwY6wtBEKCsooa7Fs5Fu20WqCwpAK+vr549OgRrKysEPhsK5RVlDFypjPUNZrj18XH4L1tMjr3MoRJn06oKq+Gy/RBGDl+CE6ePImJEydi/nRHKClx0K2LDoY7mKGWL8C71A/Y/eM4UT6pWQdY9TREYTMTyXvTou8d0UL9KyhzlPDdN33A4wmgpaGO6WP7obK6FrMm2UNZWQnHQ0JQXl6Os2fPYubk0Sgtr0FGdhEmuFmL8mg5HOz+cSyOnPwDvc0NMHakFXJycqCjowO9Lu2h1lQV8/Z74eDyEDy9EYepP30LLR0N3D/3CLxaPkbOcoGRkZEkl3TOnP8175YuSBH1Pay72/AxlVVA+p9t+ng8oKAISHwLNGsKGHb4x2/bnwbd6q0fQvlPM3nyZGJhYUECAgJIcnIyCQgIIN27dyfp6enk0aNHxMTERPLYvXv3ksmTJ0v9/ooVK8iKFSsIIYREREQQc3NzcufOHfL+/Xvy008/EUtLS8n9hBDi4OBAzp49W++xODk5ETMzM3LmzBmp9fYknOEAACAASURBVA8fPpCBAwcSd3d3cvv2bZKenk7i4+PJli1byJo1awghhJw9e5Y4ODgQQgjh8/nE2tqabNiwgaSnp5PLly+TgQMHSs6lurqabNy4kURHR5PMzExy9+5dYmFhIbG9a9cukpiYSKqrqwmPxyPFxcWkqKjoHz+n79+/Jzwen3BreYTH45OcvBKy79BtYj9yG7EfuY0s23CG5H4oJYQQkp2dTdavX090dXWJrccucvF2HOHzBUQoFBKhUEh4PD55n5FP9v9+j4xZfIjEJWUSQggRCoX1aguFQlJcVFHvfdnZ2aS2tlZit6S0ilTX1JKS0ipy8eoLMnnWoXp/TyAQkIuXnxNn913Eb+dlkpVdLNG/ePk5GTBsKxkwbCvR1dX9y+fl+p0EMmTcblLYwPE9j00jkz0PkPSMwnrvr63lk9paPiGEkPLyclJdXU2EQiEpKCwncS8zJI9JyygkD6Pfk+ycYsLj8YlAICACgaBemxnZRWR/0F2S+6GUcGt5pKy8mhAieo3k5OSQs2fPknvP3pGKKq7kmgiFQpLwPofYzfiZWE3bSaym7SQ/+P0uea7Ej8kvKCN7Am6Q9MxCUlvLJ5nZxYQQQvLyS0kNl0cysopIcHBwg8+5+LocOn6PFJVUSOwSQkhOTg5xdttJBg7dSgYO3UreJ+cRQkTXny8QkPTMQrLO9wI5ceoRKSgoaPCaZOeWkDOXnxFCCOHx+CS/sJzk5ZeRqqoqUlJSQsrKyohAIPzzeRS/JgUk5kUqGTJuN1m24Qx5m5xHuLU8ic3NmzeTt+9FayWlVaSouFJyXcIuP5dci2+n/NrgcZVVVpO0nCLCreWRgpIKkl9STnh8geRaVlSIXkNcPp9klJeQnx7fIibHdpC7me/Jh6pywvtTI6W0kDg7OxNdXV0yfvz4BvV+CblHYuLTCJ8vIAKBkPD5fJKXl0fi4+NJdnoBqeWKzu9O+HNy99ILkptZRHg8fr22Tp06RYLDn5CC4grCreWRvMIykldYRrhcHqnh8gifLyA8Pp9UV1cTLpdL8vPzSVlRBeH9qXH7ZBRx/moieRj+tMHjPX/+PCkqqZR6n6jl8UhJWRWJuPeK7Au60+Dvin8nK7eEfL88mKzdFU7ep+UTHq/+vxFCCCmvqCE1XB6JTcwkC9afJDcfJJIaLo8IhUIiaOC9iBBCtk3zJ8ObTiRPrj4nNXX+hmpraklCQgKZPXs20dXVJR8+lJEPH8pIcXFlvXa4XB758KGM6OrqSm6CHGMiyDEmD68YExMTE5nbpPGi+//ufUkehqh8q5BbY4dO7viP4+HhAXNzc+Tm5uLWrVvQ1NTE8uXLMWzYMJnJHfv27cOTJ08kOVkAsHLlSgDAli1bQAiBr68vLl68CCUlJYwdOxYFBaI+bFu2bAEgaucyd+5cjB49WuZY9u3bh0OHDiEqKgrq6upS9+Xn58Pf3x93796VNHC2tbXFjBkz0KFDB5nJHZGRkfD19UVubi4sLCwwatQorFy5Em/evEFtbS1WrFiBp0+foqioCO3atcPEiRPh6emJgoICrF27FnFxcSgrK4O+vj5mzJgBd3f3f/yc6unp0ZFtdGTbP/odOrKNjmwD6Mg2RY9sU9TkjiHK3yrE7g3BSYXYZQu61fsfp64T9zF9+/aVGtdW31g3sUMHiLaV1qxZgzVr1jRo869GqhUWFsLJyUnG6QNERQaSSsZ6GD16tJQzOXDgQEmlsZhRo0YBEFUm7969G/WhpaWFX3/9tUEdCoVCoVAoDUMjfpS/pbKyEomJifjhhx9w4MABWFtbf+5Dkgs9Pb2/fxCFQqFQWEFhET+lcQqxe0N4WiF22YI6fpS/ZeXKlbhy5Qq+/fZbrF69+nMfDoVCoVAolE+EOn4UCoVCoVAoXwi0jx+FQqFQKBTKFwJ1/CgUCoVCoVC+EKjjR6FQKBQKhfKFQB0/CoVCoVAolC8E6vhRKBQKhUKhfCFQx49CoVAoFArlC4E6fhQKhUKhUChfCNTxo1AoFAqFQvlCoI4fhUKhUCgUyheCyuc+AAqFwgy1tbUoKiqCUCiUWtfV1f1MR/TvmTJlCvz9/dGyZUup9YqKCsyePRvHjh37ZNvZ2dn/+LGN6Tlr7NDrQqGwC3X8KBQA+fn5aNOmDZSUmA+C37hxAydPnkRWVhaOHDkCHR0dnDx5Enp6erCzs5Pb/rt377B69WrExcVJrRNCwOFwkJiYKLcGWzx58gQ8Hk9mvaamBs+ePZPLtqOjIzgczj96LNPPWVxcHDIyMuDg4IBmzZqhoqICqqqqUFVVZVSHSf7N83Xr1i1WdD71upiamrJy7T08PP6xzqd+iWFDg00dCvtQx4/yxVJbW4tt27bhzJkzqK2txfXr16Gvr4/t27dDW1sbU6dOlVsjNDQU/v7+mDJlCqKjo8Hn8wEAKioqCAwMZMTxW7lyJTQ1NXHixAm0bdv2H79Zfwr+/v7w9PRE06ZNpdZrampw6NAhzJ0795PsXrhwQfL/q1evQl1dXfKzQCDA06dPYWBg8GkH/Sd1nZOXL19i586d8PT0RK9evUAIQVxcHI4cOYJFixbJpVOXnJwczJo1C2lpaeByubh+/TqaNWuGXbt2gRCCdevWMaIzd+5cuLu7Y+DAgWjSpAkjNufNmyf5f3FxMQICAmBvbw8LCwsQQhAbG4sHDx7A29tbLh02rktdxyQjIwO7d+/GmDFjpDTOnTuHhQsXynUuffv2lfy/pqYGJ06cgImJieQ5i4uLw5s3bzBx4sT/tAabOpTPAKFQvlA2btxIxo8fT54+fUosLCxIeno6IYSQmzdvEjc3N0Y0XFxcyN27dwkhRErj7du3xMbGhhGNXr16kdTUVEZs/R2mpqakoKBAZr2wsJB069btk+06ODgQBwcH0rVrVzJw4EDJzw4ODsTZ2ZlMmzaNREdHy3PoUri7u5OoqCiZ9aioKOLq6sqYjre3N/Hx8SG1tbVS1//x48fEycmJMZ2ffvqJ9O/fn9jY2JAff/yRPH/+nDHbhIjO4/fff5dZ//3338kPP/zAmA4b12XixInk2rVrMutXr14l3333HSMahBCyfPly8ssvv8is79+/nyxdurTRaLCpQ2EHGvGjfLFERERg//796NGjh9S6sbEx0tLSGNHIyclBly5dZNY5HA64XC4jGr169UJqaioMDQ0ZsVcf4jwsQghyc3Oljl0gEODhw4fQ1NT8ZPu3b98GINpe8vf3R6tWreQ74L/h/fv30NLSklnX1NREamoqYzpPnz7F6dOnZaJwurq6yMvLY0xn7dq18PHxwf379xEeHo7p06ejbdu2GDlyJNzc3KCvry+X/UePHmHFihUy6zY2NvDz85PLdl3YuC7x8fH1/k0aGxvj5cuXjGgAoveX8+fPy6wPGzYMo0aNajQabOpQ2IFW9VK+WMrLy9GiRQuZ9bKyMsa2y7p06YLo6GiZ9StXrqB79+6MaIwaNQq+vr747bff8PDhQ0RHR0vdmMDR0RGDBw8Gh8PB2LFjMXjwYMltyJAh8PPzw+zZs+XWCQ4OVrjTBwCWlpbYuHEjMjIyJGsZGRnw9fWFpaUlYzoqKiqoqqqSWU9LS4OGhgZjOgCgrKyMQYMGYefOnYiKisLYsWMREBAAZ2dnTJgwAWFhYSCEfJJtXV1dnDhxQub3T5w4wWjBBRvXxdjYGP7+/qisrJSsVVZWwt/fH8bGxoxoAICGhgYiIiJk1iMiItC6detGo8GmDoUdOORT3wkolEbOzJkz0aVLFyxduhSWlpYICwuDjo4OFi1aBGVlZezZs0dujT/++APz58/HxIkTERQUBC8vL6SmpuLWrVs4fPgwrKys5NYwNTVt8D6mijuysrJACIGTkxNOnz4tFd1TUVGBlpYWlJWV5dbh8/k4c+YMoqOjUVhYKFOhzFQSeW5uLpYtW4aYmBi0bNkSHA4HpaWlsLKywvbt29G+fXtGdDZs2IDMzEzs2bMHdnZ2CAsLA4/Hw4IFC2BnZ1dvFE0eqqurERERgbCwMDx+/BhWVlZwc3NDYWEhjh8/DktLS+zatetf2338+DHmzZsHdXV1SYT85cuXKCsrg7+/v1Q+mDywcV2SkpIwb948fPjwAUZGRuBwOEhJSUGbNm3g7++Prl27MnAmolzVZcuWoVevXujZsycAUbTxxYsX2LZtG4YPH94oNNjUobADdfwoXywZGRnw8vKChoYGEhIS0LdvX6SkpEBJSQnBwcHQ0dFhRCc5ORmHDh1CUlISqqqqYGpqCk9PT5iZmTFi//8Ta9asQUREBIYOHVpvocqnFo80xPv375GSkgIAMDIyQufOnRm1X1NTgx9//BHXrl0Dj8eDuro6KioqMGTIEOzYsYOxqt779+/j4sWLuHXrFrS1teHu7g53d3ep1/Dr168xbtw4xMfHf5JGRUUFwsLCkJqaCkIIjIyM4OrqWm/UXF4UfV2EQiHu378vdS729vaMV/Wnp6fj1KlTSElJkeh8++23chcqsa3Bpg5F8VDHj/JFw+PxcPnyZSmnzNXVFc2bN//ch/af5f3794iJiak3IievY2ZjY4N9+/YxFkH6nAiFQqSlpaFdu3YoLi7Gu3fvUFlZCVNTU3Tq1IlRLWtrawwfPhzu7u4NbonKW3nNNopssUShfMnQ4g7KF02TJk3g7u6uUA2BQID09HQUFhbK5EhZW1szohEREYGjR48iOTkZANCpUydMmzYNLi4ujNgXExwcDD8/PxgYGEBbW1vqPibayKirq6NNmzZy26mPVatWYfXq1VBXV8eqVav+8rGbN29mRNPV1RWXL1+GoaEh9PT0GLH5MbW1tfjuu+8wceLEv4xSq6mpyeX03bhxA6dOnUJmZqZC+lEC7LRYIoTgt99+k/TWvHz5MvT19REYGAhdXV24uroycCYiEhIScObMGWRmZsLPzw/a2tqIiIiAjo4OzM3NG40GmzoUxUMdP8oXS93ecR+jqqoKAwMDmYrff0t0dDSWLVuG3NxcmfuYyr8LCgrCzz//jMmTJ8PLywsA8Pz5c6xcuRI5OTmYNm2a3BpiDh48iHXr1uG7775jzGZdli5dit27d8PPz4+VIg9FoqSkBBMTE2RnZyu04lpVVRUnTpzA+PHjFaZRtx/lkydPFNKPEgC2bduG+Ph4HDlyBJ6enpL13r17Y9++fYw4fr/88gvCw8Mxb948rF69WrKur6+PoKAgxhy/GzduYPny5XB1dcXjx48llfAfPnzA6dOncfDgwUahwaYOhSVYbyBDofxHcHBwIBYWFqRr167ExsaG2NjYkK5duxILCwtia2tLTE1NyYgRI0hubu4nawwfPpz4+PiQvLw8Bo9cGgcHB3Lp0iWZ9fDwcDJo0CBGtaytrRXaM9DBwYH06tWLdO/enQwYMIA4OjpK3Rob165dI9988w25dOkSeffuHcnKypK6McXKlSvJ4cOHGbP3MWz0oySEEHt7exIfHy+jk5aWRiwsLBjRcHR0JE+ePJHRSE5OJn369GFEgxAiue4f6yQmJpL+/fs3Gg02dSjsQCN+lC+WefPmISwsDD/99JOkz1lGRgbWr18PV1dX2NraYunSpdi0aRP27dv3SRpZWVn49ddfZbZFmaSgoADdunWTWe/evTsKCwsZ1ZowYQLOnTvH6HSLutSdFsEGaWlpku3xzp07M56ovmDBAgDAkiVLAPxvO5wwPE6vTZs2+OWXXxAVFYVu3bpBTU1N6n558/rY6EcJsNNiqaCgoN7qYC6XK5OzKg/p6eno1auXzHrTpk1RUVHRaDTY1KGwA3X8KF8se/fuRWBgoFRzW319fSxbtgwzZ86Eu7s7li5dKtdIqgEDBiA2NlahlW/du3fHsWPHsG7dOinHIigoiLFegWLy8vJw8+ZN3L17FyYmJlBRkX4LkTc3jq1msMXFxVi1ahXu3r2Lli1bAhA5HQMHDsTmzZsZ67Enzwzbf0NsbCy6d++O2tpaxMbGSt3HRO6luB/lx3mKTPajBERjwk6fPo2lS5dK1vh8PgIDA2Fra8uIRs+ePXHr1i2ZFIjQ0FD06dOHEQ0A6NChAxITE9GhQwep9cjIyHqd6P+qBps6FHagjh/li6WkpATFxcUy66WlpSgtLQUAtG7dWq6IRu/evbF161bEx8fD2NhYJmrBRGHJ6tWr4e3tjXv37klyEhMSElBdXY0DBw7Ibb8uHA4HQ4YMYdTmx+Tl5SEsLAwZGRlYuHAhNDU1ERMTA21tbcYc6A0bNqC4uBhXrlyRVNi+f/8ePj4+2LBhAyM9HAHRxBNLS0sZB5nP5+P58+eMFXwEBwczYqchlixZgvnz5yM5ORkCgQDnz5+X6kfJFKtXr4aXlxdiYmLA4/Gwfv16qRZLTLBy5Up4enoiPj4ePB4PAQEBkvYxISEhjGgAwOzZs7F+/XoUFRWBEIJHjx7h1KlTCA4Oxo4dOxqNBps6FHag7VwoXyw+Pj54+PAhFixYADMzM3A4HCQkJGDv3r2wtbXFpk2bcPHiRYSEhOD06dOfpOHo6NjgfRwOh7GIUFVVFcLCwiQ9tjp16tQo29LExMRgxowZsLS0xOPHj3H16lVJxeXLly+xd+9eRnR69+6N48ePy2yRv3z5Eh4eHnj27BkjOt26dcODBw9kKpWLi4tha2vL2FYvG6SkpODgwYMK70fJRoulkpISHD9+XEpj0qRJjDXuFvPw4UMEBARI6Xh7e//l+8J/UYNNHQoLfL70Qgrl88LlcsnPP/9M+vfvT7p27Uq6du1K+vfvT/bu3Uu4XC4hhJCUlBSSlpb2mY/0y2Hs2LEkJCSEECKdRB4XF0fs7OwY07G2tibPnj2TWY+JiSHW1taM6XTt2pUUFhbKrCckJBArKyvGdAghJDIykvj4+JDvv/+eeHh4SN3kgcvlksWLF0uuhaLgcrnE3t6evHv3TqEa3377LUlOTlaYhlhn586dJDs7u1FrsKlDYQ+61Uv5YlFVVcX8+fMxf/58lJeXgxAiyfcS07Fjx89zcH/DhQsXMHz4cKiqqv5lWxqAme1kMUKhECdPnsT169eRk5MjaeshRt4I5tu3bzFw4ECZ9datW6OkpEQu23VxdnaGj48PfvzxR8kIqtjYWGzcuBHOzs5y23d0dASHwwGHw8GYMWOkmhALhUIUFBTgm2++kVtHTHBwMPbs2QN3d3c8fvwYY8aMQWZmJl68eIFJkybJZVtVVRUPHjzA/PnzGTrahnVUVFRkXlNMa2RmZjJaxNGQTkhICMaNG9eoNdjUobAHdfwoXyyKcmLYaBS8d+9eDBw4EKqqqn+5/cnhcBh1/Pbt24dz585h6tSp2LNnD2bOnInc3FxERERg5syZctvX0tJCenq6TBJ5TEyMVBGOvKxZswabN2/GDz/8AIFAAABQVlbG6NGjsXLlSrntz5s3D4QQ+Pj4YPr06VKVqioqKtDV1WW0kCAkJAR+fn5wcXHBuXPn4OnpCQMDAwQEBCAzM1Nu+6NHj8bvv//O+Gzhj5k/fz62b98uaRCsCKZNm4aAgAD4+voyNjKvPlxcXHDjxg18//33jVqDTR0KO1DHj/LFomgnRpHcvn273v8rmosXL2LTpk2wt7fHvn37MGLECBgaGsLMzAxRUVFyN4ueMmUKNmzYgLVr1wIQzTmOiorC7t27pSo95YHP5yMmJgYLFy7E8uXLkZGRAUBU0c1UHpm4OrlDhw6wtLRkrBVJQ+Tl5UkKe5o1a4by8nIAwPDhwzF69Ghs2rRJLvtFRUWIiIjAnTt36m0Xw9Skk71796KwsBADBw6EpqamjA4TObGRkZFISEjA3bt3YWRkJKNx7NgxuTUAxbfYYUuDTR0KO1DHj/LFoignpu6HIFMfiH+Fv78/PD090bRpU6l1RcxmLSoqklTBtmjRQlL9bGtriy1btshtf8qUKWjWrBnWr1+P6upqeHt7Q0tLC/PmzWNsq0lFRQWzZ8/GlStXoKGhAVNTU0bsisnOzoaOjg44HA46dOiA/Pz8Bh+rq6vLiKaOjg4+fPgAPT09dOzYEXfv3oWZmRmePXuGr776Sm77SkpKGDp0KANH+tew0cexb9++rMyCVnSLHbY02NShsAOt6qV8sVhYWODy5cvQ09PDgAED4O/vj549eyIjIwMjR47E8+fP5db4448/Guw/FhoaigkTJsit0VDlaFFREezs7PDq1Su5NcS4ublh5cqV6N+/Pzw9PdGxY0csXboUwcHBCA0NxZ07dxjTqqqqQnV1tUJm93p4eGDq1KlwcnJi3LapqSmioqLQpk0bmJqa1vvBSBhu4HzgwAGoqqpi2rRpiIyMxNy5c6Guro7S0lIsXLgQM2bMYESHQqE0fmjEj/LFYmhoiPT0dOjp6cHY2BgXL16EsbExrl69itatWzOiMXv2bLi5uWHFihVo1qwZAFFEyMfHB+/fv5fL8cvOzgYgciJyc3Ol+g0KBAI8fPgQmpqa8p3AR3h4eEhyxubNmwdvb2+cOHECKioq2LhxI6NazZo1kzxnTOPu7g4/Pz8kJyfD1NRUJlpqbW39ybZv3boled7ZauBc17EbOHAgrl69ipcvX8LAwKDeqS7/VcSv6YZgKkJKoXzJ0Igf5YvlzJkzIIRg3LhxePHiBby9vVFWViZxYpgoikhOTsbKlStRWFgIX19fpKWlYevWrXB0dMTatWvRqlWrT7bdUDQJEDmDampqWL58OSZOnPjJGn9HVVUVkpOToaury4iTmZ2djW3btiEmJkbSLLYuTEXI/mp7l8lIHFsoertfXKXcEEw5uH/1mgaYuf5saACiL0l/pcNELiEbGmzqUNiBOn4Uyp8w7cSIEQqF8PPzw/Hjx6GsrIwdO3Ywki+VlZUFQgicnJxw+vRpqWNWUVGBlpYWlJWV5dZhk++++w7KysqYNGkS2rRpI/NhY2Nj85mO7NNJSEhAUFCQZCZwp06dMHXqVJibmzOmoejt/vPnz0v9zOfz8ebNG1y7dg0//PADpk6dKpd9MVlZWfXqBAQEYN68eXBwcJBb48mTJ/VqhIaGYs6cOXBzc5NbAxA543Xh8XhISkpCTEwMJk6cyMi8azY02NShsAPd6qVQ/qRZs2aSykgmOXv2LM6fPw9nZ2e8fv0aBw4cQOfOnWFsbCyXXfG4r9evXzNxmP+IiooKBAYGIjo6GoWFhTL90OSN/Lx58wbnzp2DkZGRXHb+jtevXzNe1FEfly9fxooVK+Ds7CyJIL948QITJkzAli1b5O7lx9Z2f0MzlM3NzXHz5k3GHL/6RtgZGhqiVatW2LZtGyOOX31fHmxtbWFoaIigoCDGHL+GoqzHjh1DUlJSo9FgU4fCDjTiR6EoEC8vL7x+/Rrr1q3DkCFDUFNTg+3bt+PMmTOYNWsWY21jamtrERcXh9zcXJl+hEz28Zs3bx5evXqF8ePHo23btjIRuYYchH/KnDlz4OrqqvAK0h49eqBTp05wc3ODq6urwnrGubi4YMqUKTJNlENCQhAcHIzr16/LZf9zb/enp6fDzc2NkUKov+Ldu3cYN26cQnVSU1MxatQohZ9Leno63N3dGRsL+Lk02NShMAuN+FEoCkRdXR3h4eHQ0NAAAKipqWHt2rVwdnbG6tWrGXH8Xr9+jVmzZqG8vBxVVVVo1aoVSkpKoKamBk1NTUYdv6ioKBw7dkwhkVEA8PPzw/Lly/HixQt07txZpv8dU+dy7949hIeHIzw8HLt27UK/fv0wcuRIODs7y+TJyUN2djbs7Oxk1u3s7LB161a57d+6deuzbfcXFBTg0KFD9UbpPpXo6GipnwkhKCgoQFBQkGTCirx8XEAi1ggICEDnzp0Z0WgIQgguXrzIeNEV2xps6lCYhzp+FIoC2bNnT73rffv2RXh4OCMamzZtgoODA9asWYM+ffrg1KlTUFVVxcqVKxkfs8T0EPuPuXnzJqKiovDkyROJsyyGySkkmpqamDp1KqZOnYrk5GSEh4fD398fGzZsgLOzM9zc3NC/f3+5dYyMjHDp0iXMmTNHav3SpUuMjANka7u/ochi27ZtsWPHDsZ0PDw8pH7mcDjQ1NSElZUVIxNVANlCFfGmV48ePeDr68uIRkM6xcXFAERfcBqLBps6FHagW70UioKJiIjA0aNHpZL7p02bBhcXF0bs9+7dG+fPn4ehoSGsra0RGhqKLl264OXLl1iwYAFu3rzJiA4APH78GAEBAVixYgWMjY0ZjyaJ+wN6enqy2hj2xYsXuHjxIk6fPo127dqhoqICrVu3xsaNG+UqKHnw4AFmz54NMzMzWFhYSLQSEhKwf/9+2Nvbf7JtNuc1P378WOp6KCkpQUNDA4aGhlBRaVzxg48LSJSUlKCpqclIo+u6fFwQI3Zizc3NZb7U/Jc12NShsAN1/CgUBRIUFISff/4ZkydPlnzwP3/+HMePH8eCBQvkHnEGiLYNg4KC0KVLFwwfPhyLFy+Gk5MTXr16hUmTJjGasyQuiGjIKZO3FYatrS1OnDjBSDTs70hLS0NYWBjCw8NRVFSEoUOHwt3dHVZWVqitrcUvv/yCCxcuIDIyUi6dnJwchIaGIjk5GYQQdOrUCRMmTJC7J52joyPOnj0LDQ0NODo6Nvg4DofDWj9BphEIBEhKSoKOjg5jvTXro6ysDC1btlSYfQrlvwR1/CgUBeLo6IglS5ZgxIgRUuuXLl3Czp07GZl0MX/+fNjY2GDy5MnYvXs3wsLCMGzYMERGRqJDhw4IDAyUW0PMx60wPkbeditHjhxBeno61q5dq9BWNOPHj8fLly/Rr18/uLu7Y8iQITLzRwsKCmBnZyfXNurHOWtiOBwOVFVV0aFDh0aRI3Xq1Cm0adMGgwcPBgBs2bIFZ86cQceOHbFz504YGhoyovPjjz+iR48eGD9+PPh8PiZOnIi4uDioqanB39+/3nzJf4u/vz8MDQ3h6uoKQFSweRdQ2QAAIABJREFUdOPGDbRp0wa//vorY7mEt27dgrq6umQ83LFjx3D27FkYGRlh7dq1jEykYUODTR0KO1DHj0JRID179sSFCxck823FJCcnw93dHXFxcXJrFBYWoqamBnp6euDz+Th06BBevHgBfX19zJo1q1E4FmI8PDzw6tUrqKmp1buNyFSj2AMHDsDNzQ3t2rVjxF5D1M2NE7/V1v2Zw+HAzs4OO3fu/E9HnIYMGQJfX1/Y2NggJiYGM2fOxMaNG3Hz5k2UlZXh4MGDjOjY2dkhMDAQZmZmuHbtGrZv347Tp0/j/PnzuHLlCs6ePSu3xqBBg7Bnzx5YWFggMjISq1evxv79+3HlyhUkJCQgJCSEgTMBhg8fjlWrVsHe3h6JiYmYMGEC5s6di6ioKGhoaGDXrl2NQoNNHQo7NK7kDAqlkdG9e3ccO3YM69atk/rADwoKQvfu3RnRqPttW0VFhbEWMfWh6AhW3759JVEFRcLW7NoDBw5g//79WLhwIXr06AEOh4P4+Hj8/PPP8PT0hJaWFtatW4fNmzdj8+bNn6yzatWqv7xfHtsAkJeXB319fQCiApzhw4dj2LBhMDU1xbfffiuX7bqUlZVJXj+RkZEYPnw4NDU1MWzYMJkmwp9KYWGhxOG/c+cOhg0bhp49e0JDQ4OxHn6AKJdQ/IXv2rVrcHJygpeXF+zt7RlteK1oDTZ1KOxAHT8KRYGsXr0a3t7euHfvnqQFSkJCAqqrq3HgwAFGNI4dOwYNDQ3J1pWY8PBwlJaWYvLkyYzoANKjmxQRwZJ3tNg/RdGNqMX4+vpi+/btUtuH/fr1Q7NmzbBs2TJcv34dq1evxpIlSxjREyOerJCVlQVnZ2e57bVu3Ro5OTnQ0dHBvXv3sHDhQgCiqTQCgUBu+2L09PTw/PlzaGho4N69e9i9ezcASNoTMYG2tjbevXuH9u3b4969e1i/fj0AoLq6mtFClebNm6OkpAR6enqIiorClClTAIhaOtVttP1f12BTh8IO1PGjUBSIeLJBWFgYUlJSQAiBra0tXF1d0bx5c0Y0goKC6m2pYWBggMWLFzPq+Ck6gjV48GCcOXNGplKwrKwMo0aNYswhW7Vq1V82omaK3Nzcem1zOBzk5uYCAHR1dVFRUSGXTkPP9e7du2XmHX8Kbm5uWLp0KYyMjFBeXo4BAwYAAOLi4mTSGORhzpw5WLFiBdTU1GBiYgJra2sAov6RTEXIPTw8sGjRImhra+Orr76Cra0tAFE028TEhBENAJJ53GZmZkhNTcWgQYMAiAqgxNHTxqDBpg6FJQiFQlEIXC6X2Nvbk3fv3ilUp0ePHiQtLU1mPS0tjfTo0YNRLWdnZxIbGyuzHhsbS5ydnQkhhDx+/JjY2dl9kv2uXbuSgoICmfXc3FxGz8XS0pLEx8czZq8hZs+eTUaOHEmio6NJZWUlqaysJNHR0cTNzY3MmTOHEEJIREQEGTlypEL0U1NTibW1NSO2rly5Qo4cOUIyMzMla+fPnyc3btxgxL6YDx8+kISEBMLn8yVrsbGxjP4dxcXFkevXr5Py8nLJ2p07d0hMTAxjGlwulxw8eJBs3LhR6m/m6NGj5OTJk41Gg00dCjvQiB+FoiBUVVWhoqIiM0KNaQwNDXH//n2ZsWD37t1Dhw4dGNVSVARLnL/F4XBw+PBhNGvWTHKfUChEbGwso9EYRTeiFrN582b4+vpi2rRpki1RZWVlfPPNN/Dx8QEAtGvXTrLdyDSPHz9mrD/dsGHDZNaYnAojpm3btmjbtq3UGlOVtmLMzc1hbm4utSaOYjGFqqoqvLy8ZNaZaOHEpgabOhR2oI4fhaJA5s+fj+3bt8PPz09h82C9vb2xevVqZGZmwsrKChwOB9HR0Thx4gQ2bNjAqJadnR3WrFmDtWvXSrbeXr16hU2bNkmaEScmJsLAwOBf2X38+DEAUZ7gs2fPpEa1NWnSBLq6uhJHiQnWrVuHnTt3KqwRtZiWLVti69atWLt2LTIzM0EIgb6+PtTV1SWPYcKpqZt7CfxvDFlaWhpjEy+Kiopw//595ObmgsfjSd3HZG7mvXv3cP369Xp1mKrqfvv2LW7cuFGvhryFMHVhY4Y2W3O62dKhKB7azoVCUSCOjo4oLCxEbW0tNDU1ZRLUmcpZe/DgAQIDA5GUlAQAMDY2hre3t1yTIeqjrKwMvr6+uHz5cr0RrJYtWyIuLg4CgQCWlpb/2v6qVauwevVqKceIKT4eO0b+LEapD3kbUbPNvn37pM6l7qgzY2Njue0/evQIc+bMga6uLpKTk2FiYoLs7GwIBAJJ5ToTBAcHY8+ePXB3d8fJkycxZswYZGZm4sWLF5g0aRIWL14st8aVK1ewYsUKfP3113jw4AHs7OyQnp6OvLw8ODs7M+b4/d0MbSb+9tnQYFOHwg7U8aNQFMjHo44+ZtSoUSwdCbNUVFQ0GMH6r/J3zafrIm8j6v9vjBkzBk5OTpg1axYsLS0RFhYGLS0trFq1CpaWloy19HBxccHixYvh4uICS0tLXLx4EQYGBggICEBmZiY2bdokt4arqyumTJmCcePGSc5FX18fmzZtQtOmTRmrsJ48eTJMTEwkM7TDwsKkZmgPHz68UWiwqUNhic+WXUihUBotBQUF5Pnz54TL5TJuOzIykvj4+JDvv/+eeHh4SN2YIisriwiFQpl1oVBIsrKyGNNhC1NT03qLYoqKioipqanc9i0sLEh6ejohhBAbGxvy+vVrQgghSUlJn1zIUx+9evWSFI/Y2tqShIQEQoioUKlPnz6MaWRkZBBCCOnbty9JTEwkhBCSnJxM+vbty4gGIaICotTUVEIIIVZWVuTt27eEEEISEhLI4MGDG40GmzoUdlD63I4nhfL/mVGjRiEoKAgFBQWM2u3WrRsKCwsBiLYwu3Xr1uCNSUpLSzFz5kx8/fXXmDBhAvLy8gCIcubEPdfkITg4GIsWLYKamhoeP34MIyMjNGnSBC9fvpTMOmaCwYMHo6ioSGa9pKREMpasMUEa2Laurq5mpLijZcuWqKqqAiAqjHnz5g0A0euhurpabvtidHR08OHDBwBAx44dcffuXQDAs2fPGCtS0dLSQklJCQCgQ4cOePr0KQAgPT2dkdY3Ypo1aybJH2zbti1SU1MBiLbhxX+7jUGDTR0KO9DiDgpFgbi6uuLixYvYsWMH+vXrh1GjRsHJyUnuD7HffvsNrVq1AsBcwvs/QbzVFhkZiaFDh0rWhwwZAj8/PyxatEgu+yEhIfDz84OLiwvOnTsHT09Pqa0+pmjIUSopKUHTpk0Z01E04okdHA4HmzZtknpdCYVCJCYmylSvfgr9+vXDnTt30LVrV7i7u+Onn37CrVu38PTpU0arYUeNGoXY2FhYWlpixowZmDt3LkJCQlBaWippGi0vjo6OuH//Pnr06IHJkydj7dq1OH/+PN69e4dx48YxogEAvXv3xqNHj9ClSxfJyLtnz54hMjKSsVQCNjTY1KGwA83xo1BY4N27d7h48SIuX76M0tJSODs7w93dnZXxZEzSr18/hISEoEuXLlL5URkZGXB1dcWLFy/ksm9hYYHLly9DT08PX3/9NQ4cOAAzMzOkp6dj9OjRiImJkcu+uPo1OjoaFhYWUtXDQqEQqampMDc3x6+//iqXDluIHb/z589j2LBhUsVDKioq0NXVxdixY2Xao/xbamtrIRAIJE5xeHi4ZB70hAkTGIvGfUxmZiZevnwJAwMDxqPXYp4+fYrY2FgYGBjAycmJMbtszNBma073/6d54BQa8aNQWKFLly5YsmQJlixZgsOHD2P37t24cOEC2rdvj/Hjx2P69On/aiRVQzNz60M8/YAJGhrP9eHDB6nee5+KeKtPT09PstVnZmbG2Faf2NF+8uQJLCwspKanqKioYPz48YyMOGMLcQWqnp4evv/+e0auQX2oqqpK/ezq6iozIpBp8vPzoaury3gvyo/p06cP+vTpw7hdNmZoszWnm8154BTFQyN+FAoLZGZmIiwsDOHh4cjPz4eLiwvc3NxQUFCAQ4cOoWXLlggKCvrH9kxNTaV+bmh+LsBsa5IlS5ZAVVUVfn5+6N27N8LCwtCiRQvMnTsXHTt2lLvq8sCBA1BVVcW0adMQGRmJuXPnQl1dXbLVN2PGDLnPgc/n48yZM3BwcEC7du3ktvelcOPGDZw8eRJZWVk4cuQIdHR0cPLkSejp6cHOzo4RDS6Xi+3bt+PMmTOora3F9evXoa+vj+3bt0NbW5uR6mFCCH777TfJuVy+fBn6+voIDAyErq4uow5tQkICzpw5g4yMDGzevBna2tqIiIiAjo4OI1vwbGmwqUNRPLS4g0JRIL///jsmTJiAoUOHIiYmBrNmzcKDBw/g6+sLGxsbDB8+HDt27PhXETxA1FdLfDt48CDMzMxw6NAhxMTEICYmBocOHUKPHj0QGBjI6PmIG0UPGjQIXC4Xs2fPhoODA2pra7F8+XK57c+YMUMyDWDgwIG4evUq1q9fj7NnzzLi9AGiiIWfn59M497GxuDBg1FcXAxAlLc2ePDgBm/yEhoaivXr18Pa2hrZ2dmSBr4qKiqMvsa2b9+O+Ph4HDlyRCrC27t3779tjfRP+eWXXxAaGoo5c+ZIfUHS19dHcHAwIxqAyFH28PCAUCjEkydPwOVyAYii43v37m00GmzqUFjis9UTUyhfAEOHDiWBgYEkNze3wcdwuVxy7ty5T9ZwcXEhL168kFl//vw5GTJkyCfbrQ8ul0uEQiGJjo4mISEh5MCBA+TevXv1tkaRlw8fPhCBQMC4XUIImTx5MuMzZtnm3LlzknY6586d+8ubvLi4uJC7d+8SQqRbu7x9+5bY2NjIbV+Mvb29ZIZyXZ20tDRiYWHBiIajoyN58uSJjEZycjJjLWMIIeSbb74hly5dktFJTEwk/fv3bzQabOpQ2IHm+FEoCuTq1at/+xhVVVW5Gjnn5OTUW6GqpKQkabfCBDweT1LQYWVlBSsrK8Zsi2Fjqw8QjZjy8/NDcnIyTE1NZSp5mcyLVBR1XzOKbgSek5ODLl26yKxzOBxJ9IcJysvL0aJFC5n1srIyqUIceSgoKKh3VjOXy4VQKGREAxC1h+nVq5fMetOmTf/1LOvPqcGmDoUdqONHoSiY9+/fIyYmBoWFhTIfLEzMOB0wYAB8fHywZs0amJubg8PhIC4uDr6+vhgwYIDc9sU0adIEhoaGCn2jr7vV5+npKVnv3bs39u3bx5jjt3r1agDArl27ZO7jcDiNbmQbAFRVVSE8PBwpKSkAgE6dOmHEiBFSBSyfSpcuXRAdHQ09PT2p9StXrkhmNjNB3759cfr0aSxdulSyxufzERgYCFtbW0Y0evbsiVu3bklSCsSEhoYyWuTRoUMHJCYmyhSnREZG1utE/1c12NShsAN1/CgUBRIcHAw/Pz8YGBhAW1tb6r6G5sT+WzZv3gxfX194eXnVOz+XSVatWoVt27Zh2bJl6NatG+NtPCIiIrB//3706NFDat3Y2BhpaWmM6bx+/ZoxW/8FYmJiMGfOHDRv3hxmZmYARM/lzp078csvv8gdnV2yZAnmz5+P5ORkCAQCnD9/Hqmpqbh16xYOHz7MxCkAEDnkXl5eiImJAY/Hw/r165GSkgIlJSXG8u9WrlwJT09PxMfHg8fjISAgAO/fv0dKSgpCQkIY0QCA2bNnY/369SgqKgIhBI8ePcKpU6cQHByMHTt2NBoNNnUo7ECreikUBTJgwADMnj0b3333ncK12JifW7eauD7HVd5ImaWlJS5cuABDQ0OpPoEJCQn4/vvv/9W83S+JESNGoH///vDx8YGSkqhmjxACX19f/PHHH7hy5YrcGsnJyTh06BCSkpJQVVUFU1NTeHp6ShxNpuDxeLh8+bKUjqurKyORSzElJSU4fvy4lMakSZPq3QKWh4cPHyIgIEBKx9vbG46Ojo1Kg00diuKhjh+FokBsbGxw+vRpGBoaKlyrsLAQGRkZ6N69u0zfNab4O8dL3i7+M2fORJcuXbB06VKJ46ejo4NFixZBWVkZe/bskcu+GMJiSw826NWrFy5cuAAjIyOp9ZSUFLi7uyM2NvYzHRmFQvmvQbd6KRQFMmHCBJw7d07uUWZ/RWlpKVasWIG7d++Cw+EgIiIC+vr6WLduHVq3bs2oto2NDbKysnDy5ElJLpmRkRHGjx/PSKNdNrb6AFFLj/DwcMybN0+S7weIWnoEBQU1Osevb9++iImJkXH8YmJiGCvCEQgESEtLk2z31YXJYph3794hJiYGRUVFCsmJBUQRv/j4+HrPxd3dnRENMVwuF8XFxTLnoqur26g02NShKBbq+FEoDCMeowWIIks3btzA3bt3YWJiAhUV6T858eQFeVD0/Ny6REREYMmSJTA3N0fPnj0BiEZeHTlyBLt27ZJ76oW+vj4uXboktdU3ZMgQxrf6zp8/jy1btsDa2hpr166VrHfr1g3JycmM6bBFv379sGPHDsTExEgV+Ny9exfe3t64cOGC5LGf4tj88ccfWLlyJT58+CBzH5PFMAcOHMDu3bthZGQkNS1CrMMEFy5cwLp166CkpAQNDQ0ZDaYcv9evX2Pt2rVISEgA8L/50OJ/mXjO2NBgU4fCDtTxo1AUCIfDUfgIsPv37yMkJERmCoWhoSGys7MZ1dq6dSvmzJkjM7IpMDAQW7Zsketca2tr4eTkhKNHjzIedfkYtlp6sEVISAiaN2+O6OhoqWbgzZs3lypY+FTHZt26dXBxccHMmTNlHDImOXr0KLZu3YqRI0cqTGPnzp2YO3cuvLy8GHMm62PZsmXo1KkT1q5dC01NTYVosaHBpg6FHajjR6EwDBNRvH+Doufn1qWoqEgqqijGxcUFv/76q1y2VVVVoaKiIpkKoUjYaunBFrdv31ao/dLSUnh4eCjU6QNEfeGYLhb5GKFQiCFDhijcecnKyoK/v79C83vZ0GBTh8IOyuvXr1//uQ+CQvn/ypQpUzB48GCZticVFRXw8vJipPHumzdvEBcXh8GDByMwMBATJkwAIQQ//vgjLC0tGa26e//+PUpKSmSco1OnTqFly5ZwcXGRy36rVq0QFBSEfv36Mbq1+zFdu3bFjz/+iMTERCQlJaGiogIHDx5ETEwMdu7cqXAHR5FUVlaCx+MxWuBTWlqKlJQUhTe21tTURGhoKOzs7BhvFSRGWVkZkZGRsLe3l1RAK4L09HTw+XyFOrJsaLCpQ2EHWtVLoSgQU1NTREVFyTgSBQUFGDRokCRnRh6KioqwYMECpKenIz8/H507d0ZmZiaMjY1x6NAhtGzZUm4NMTt27EBoaChMTU0lOX7x8fFITEzEhAkToKamJnnspyTiOzo6orCwELW1tdDU1JSyBwC3bt2S7wTqwFZLD7Y4evQojh49ivz8fABA27ZtMW3aNEyfPl3u6JZAIICXlxdKS0vRuXNnheSqAkBxcTEWLFiAZ8+eoU2bNjI6TFz/2tpaeHt7IykpCYaGhjIax44dk1tDrDNr1iw0a9as3ueMiUIVNjTY1KGwA93qpVAUQN1k+qtXr0r11BMIBHj69CkMDAwY0dLU1ERwcDCio6OlnBg7OzvGt7NiY2MlkxrETiuHw0H37t2lWoZ8qu7cuXNZyx9q3bo15syZw4qWotm9ezfOnDmDefPmwcLCAgDw/Plz+Pv7o6SkBIsXL5bLvq+vL54+fYq+fftCWVmZiUOul4ULFyI/Px8LFixAmzZtFJYX9+bNGzg7OytMAwAOHz6MqKgodOrUCSUlJVL3MaXJhgabOhR2oBE/CkUBiLdXs7Oz0b59e6ktpSZNmkBXVxdz5sxRyLxbyj9DkW1p2MbOzg5+fn4yI/oiIyPh4+ODqKgouexbWlpi3759sLOzk8vO39GrVy+cPn0aJiYmCtOwsLDAb7/9Vu/sWSaxsrLCunXrFNoaiA0NNnUo7EAjfhSKAhAn23t4eMDf3x+tWrVSqF5kZGSDvc/YLjaRh27duuHBgwcyW+PFxcWwtbVlrG1EREQEFi9ejJ49eyqkLQ3blJeXy8zRBUT91SorK+W2r62tDS0tLbnt/B3m5uYoKChQqOP3ca9DRdGiRQtG5xh/Lg02dSjsQIs7KBQFMnr0aJk8Nabx8/PD9u3boaamBjU1NZmtFycnJ4XqM4m/vz+8vLzQtGlTqfXi4mKcPHlSpo3MpzJjxgxMnz4dmzdvhp2dHezs7DBmzBgoKysjMDAQU6dOZUSHLWJiYvD06VMMGDBAUtRRUVGBTZs2QVtbG25ubnLZ79SpE/bv34+uXbtCQ0NDYUURHA4HO3fuBABUVVUhNzcX2dnZklt9zu2/RUtLC7t27YKWlhaUlZVRWVmJ8vJyya1FixZyawCiFIzff/8dX3/9tcIKVdjQYFOHwg50q5dCaeRYW1tj9+7dCt+GUyTiptcXLlzAsGHDpD5chEIhEhMT0apVK8amd1haWuL8+fPo2LGj1Hpqairc3d3x4sULRnTYIiMjAzNnzkR2drYkopWSkgI9PT3s379f7nxS8YzmhvK5mIrE1p0F/TFMNQpuaN40082IHR0dUVRUBB6PBy0tLYUUqrChwaYOhR3oVi+F0sjR0tJC27ZtP/dhMAIhRGaElqqqKoYNG4axY8cypuPk5ISIiAjMmDFDaj0iIgKDBw9mTIctxBNPHjx4gJSUFBBC0KlTJ8YKfJiqdP07Xr9+rXANtpyUefPm/b/QYFOHwg404kehNHL++OMPHDlyBMuXL0fnzp0VWnWpaPz9/fH9998z3nj6YxTdloZCoVD+q1DHj0Jp5GRkZGDp0v9r786jojrPP4B/R0bjFhUosigEJdVBRQEVonE5YkQrKotN44bVpIGaYILRKiKSqCxNrCuaY2IbDWJqDbImGj1aMYqJ4MoiSNxQEK3BMQrIbwjc3x8eJo6DCs5y5w7fz1/Mvffc95k7Z+DhXZ53EfLy8po8z300tQUHBzfrOplMZrTeLl1lZmZi586dGquUZ86cyZWYRKSBiR+RgV26dAknT55EZWWl1opbffQmTZ06Fe3bt8fMmTObrEvm5eWlcxtk2jZs2IDExEQEBwerezDz8vKQlJSEWbNmITw8XOQIichUMPEjMqAdO3YgLi4OTk5O6N69u8Y5ffUmubu7IzU11WhlKsxBYmIiJk2aBCsrK7FD0QsvLy/ExMRolaE5cOAAoqKikJOTI1JkRGRquLiDyIC2bt2KDz/8ENOmTTNYG8OGDcOFCxeY+LVAcnIyPvnkE7z66qvw9/fHa6+9pte9bY3NwsICLi4uWsddXFwMuh8tEUkPe/yIDMjLywtff/01XnrpJYO1sW3bNnzxxRfw8/ODi4sL2rZtq3E+ICDAYG1LWXFxMTIyMvDtt9+iuroa48ePh7+/vySHxj///HOcP38esbGx6NSpEwCguroay5cvR9++fREaGipyhM1z9+5ddOvWDcDDMj7Hjh2DhYUF3N3d1e9L36KiovDee+9p9cgTmSsmfkQGtG7dOgDAggULDNZG4/ZwTZHJZGZRY6uiogIbN240yC4kgiDgxx9/REZGBr755hvY2Nhg8uTJ+NOf/qSXgsHGEBwcjMLCQgiCgF69ekEmk+HKlSuQyWTo37+/xrUtmV6gUCiaVQ5G1wVEpaWlCA0NRWlpKVxcXPDZZ59h4cKFuHDhAgRBgJWVFbZt26bTP1C5ublNHp8zZw5iY2PVn/XQoUOfuw3gyc+sU6dOcHZ2xuzZszFlyhSd2vDx8WnW56Lrd7+kpASbNm3Cxo0bAQCenp548OCB+nybNm3w9ddfc1cPiWHiR2RAEREROHjwIHr06IE+ffpoFT6V0nZqYiouLkZgYKBBVihXVFQgMzMT6enpuHnzJnx9fVFZWYkffvgBCxcuxJw5c/Tepr5t2rSp2de2ZEHRo3MDBUFASEgIYmJiYGtrq3Gdrr2kf/3rXyGXy/Hee+8hJSUFR44cwcsvv4y1a9dCEAQsWrQIcrkca9eufe42GhOyp/3J00cB5yfNp7x//z4KCwuRlJSEJUuWYOrUqc/dRmpqarOuCwwMfO42ACAyMhJOTk7qHXM8PDywcuVK2NraQhAEpKSkoKGhAatXr9apHTIuzvEjMiCZTIZx48aJHYbJe1bicvv2bb22V1VVhX379iEjIwNnzpyBl5cXQkJCMH78eHUNv4MHD2LJkiWSSPwMVWvw8YSuTZs2cHd3h6Ojo17bOXPmDHbs2IE+ffogPDwcX375JeLi4tTTFt5++22d3+PYsWNRW1uL2NhY2NnZqY/3798f6enpePnll3W6f6OnJcFjx46Fk5MTtm/frlPiJ5PJMHHiRIPPSz116pRWnI9+/h06dGBxZwli4kdkQOzRa57NmzfD1dX1ifO4ampq9Nre8OHD0aNHDwQEBGD16tUaiUCjV155RTJDWGFhYQgICMDo0aO15nhKgUqlUu/P3Ljn9O9+9zv1eWtrayiVSp3a2Lx5M9LS0jBjxgzMmzcPr7/+uk73e16DBw/GihUrdLrH0qVLMXLkSFhbW+spqqZVVFRo9O6uXLlSo01ra2tUVlYaNAbSPyZ+REZQWlqKy5cvA3i40lLXvVPNjbOzM4KDg584NFVUVISgoCC9tZeYmAh3d/enXtO5c2e97Q1saLa2toiOjkZ9fT0mTJiAwMDAZ74/U9KzZ0+Ulpaqe5K2bt2qkXDcvHlTIxF8XgEBARg2bBiioqKwb98+xMTE6HzPlrp9+zYsLS11uoexZmi9+OKLKC8vR8+ePQFAqxj49evX0aVLF6PEQvrDxI/IgJRKJZYuXYqsrCz1L8j79+9j9OjRiI+P1/kPgLkYOHAg8vPzn5j4tWvXDvb29nprrzEpUqlUuHPnjlZhbQcHB721ZQzLly9HZGQkjh49iszMTMydOxc2NjaYMmUK/P399TY0q499f5tgryplAAAUQUlEQVQyY8YM/Prrr+rXQ4YM0TifnZ2NkSNH6qUtW1tbbN26Fbt27cIbb7xhtCQKAG7cuIE1a9ZgxIgROt/LUJ/Fo4YMGYLdu3fD29u7yfP//ve/tT4rMn1c3EFkQOHh4aioqEB8fDx69+4N4OFOHpGRkbC3t8f69etFjtA0qFQq1NfXq4f7DO3ixYtYtmyZ1jZ3giDoZYK/2GpqapCUlISNGzeivr4e7u7umD59OiZPntyihOHxFaqNz+dxuj6vGzduwM7Ozug1BysqKlBYWIjhw4frbX/oJ624raqqwr179zBkyBAkJCSoy9Y8D2Otti4uLsYbb7wBX19fzJkzR72q+sqVK9i2bRsOHTqE//znP1AoFDq1Q8bFxI/IgDw9PbFz5064urpqHC8sLERwcDBOnz79XPdNS0tr9rWs46ftj3/8I6ysrDBv3jzY2Nho/RGVShmXxz148AAHDhxARkYGTpw4gSFDhsDf3x+VlZXYuXMnPDw8WrQytrk7fui6qtfV1RXHjh0z6Jw1Y7QBPHnFbefOneHk5IS+ffvq3IZCoUBCQgK6du361Ov0UZPyxIkTWL58Oa5fv64+JggCHB0dsWrVKrzyyis6t0HGxaFeIgOSy+Wora3VOl5bW6tV2qUlGutqNVIqlXjw4AG6du0KQRBw7949dOjQAVZWVpJK/IxVwPfixYtIT083aGFtYzp69CjS09Nx6NAhdO/eHQEBAYiJidEYHh8xYkSLFzQYq5i1MfofjNXHoWsJleby9PQ0eBILAN7e3ti/fz8KCgrUyZ+TkxP69+9vlOFm0j8mfkQG5Ovri8jISERHR2PgwIEAgHPnzmHVqlVa+6q2xH//+1/1z2lpadizZw9WrVoFZ2dnAMDVq1cRHR1ttD9CujJGAd9HDRo0CFevXjWbxO+DDz7AH/7wB3zxxRfw8PBo8hpnZ+cW7+Bx584dPHjwQKMHtLi4GNu3b0dNTQ18fHz09o+FMZIIMROVuXPnIiYmRpK9yTKZDG5ubnBzcwPwcFHHTz/9BBcXF1hYWIgcHbUUh3qJDKi2thbx8fHYs2cP6uvrATzcVzUoKAgRERF6mVc0ZswYbNmyRWsIqbi4GKGhoThy5IjObRiaMQr4PrpzQ3l5OT799FPMnDmzycLauu7eYGwqlQo1NTUoKChAZWWlVu/W8yZn77//Pnr06IHFixcDeDgnbtKkSXBwcICjoyO+//57REVF6bwXtUKhgIeHxzNL0bRk15Gm2pg4cSJeeOGFp16nawmmJ03DiIyMRHh4uHprOF0S5uDgYGzevNngK2pVKhU+/fRTFBcXw83NDW+//TYWLVqEAwcOQCaTwdHREZ9//rn6H06SBvb4ERlQ+/btsWLFCixevFg9TOLo6KjXYcu7d+/izp07WseVSiXu3bunt3YMyRgFfIODg7WONfVHXoqLOw4fPoyIiAh17+ijZDLZcycZ586dw+zZs9WvU1NTYWNjg7S0NFhYWCAxMRG7du3SOfEDYND9eBsZo58jIiIC3bt31/pnoqGhAUlJSZDL5Tp9JsDD3yuP9l4eOXIE3t7e6uLj+vL3v/8dWVlZGD9+PPbv34+cnBzU1dVh9+7daNOmDdasWYPVq1dj8+bNem2XDEwgIkmLiooSRo4cKSQnJwsXLlwQSkpKhOTkZGHUqFHCsmXLxA6vWdzd3YVr16498XV5ebng5uYmRmiS4OPjI6xfv1749ddf9XpfNzc3oby8XP161qxZwrp169SvS0tLBU9PT53b6du3r/Dzzz/rfB+x2xAEQYiNjRUmT54s5Ofnaxzv16+f8NNPP+mlDYVCofFePDw8NL4v+jJy5Ejhxx9/FARBEG7evCn07dtXyM3NVZ/Pz88Xhg0bpvd2ybDY40ckcdHR0fjss8+wdu1adRV9a2trTJs2rcVzusRirAK+5kqpVCIoKEjv862sra1x48YNODg4QKVSIT8/HyEhIerztbW1emnTnBYJREZGIjc3FwsXLsSECRMwf/58nRZyNUV4rOfy8df6cvv2bXUZKltbW7Rv317je2lnZ6fzjipkfMYtmkREete2bVuEhYUhOzsbJ0+eRG5uLrKzszF//nyD7+WpL00V8H00dn0W8DVHfn5+BpnLOWbMGMTFxeHw4cOIiYlBhw4dNIr5nj9/Xi8LZAyVuDyucZ6toQ0dOhSpqalQKpUIDAxEfn6+JJNbQRA0EnspvgfSxh4/IjPSuXNnsUN4LtOnT3/qeW4Er23Tpk3qny0tLbFx40YcP368ycUqzzs/8oMPPkB0dDT+9re/wdraGmvWrNFIyFNSUuDj4/N8b+ARxcXFOt/D1HTs2BErV67E0aNH8f777+s96fzXv/6lXhxWV1eHxMRErbp+us6LBYCYmBj1gpi6ujqsXr1aPRfz//7v/3S+PxkfV/USSdDYsWORnJwMS0vLJ+4U0OjQoUNGjIyMpanFKk2RyWTPvRpWrB01DEGhUCA7O9vgte9u3LgBe3t7je9kVVUVysrK0Lt3b730wjfns9flc28UERHRrF4+XVdCk3Ex8SOSoNTUVPj5+aFdu3ZP3CmgkVRq+T3NpUuXEBISorcktr6+nvXHmsFYu10Yg0KhwPHjx7VWPeubOT0zc0r86Tcc6iWSoEeTOXNI7J6lrq4ON27c0Nv9RowYgUmTJsHf3x8DBgzQ233Njbn1C7z77rsGrRUImNczGzt2rNkksfQbJn5EZqC2thaZmZm4fPkyAKB3796YNGkSOnToIHJkzfNorbimVFdX67W9jz76CJmZmZg+fTocHR3h7++PyZMnw8HBQa/tmANzmtBvjFqBgPk8M3NKYuk3HOolkrjz588jJCQEcrlc3XtVUFCAuro6bN26Ff369RM5wmdzc3ODn58fevbs2eT527dvY/fu3XovrHzv3j3s3bsXmZmZOHv2LAYPHoyAgAD4+vpKdqGMPhljRw1jMdYcP3N7ZsYYHifjYo8fkcStWrUKY8aMwUcffaSet1ZfX48PP/wQK1euxK5du0SO8NkUCgUGDBiAWbNmNXm+qKgIu3fv1nu7Xbp0wbRp0xAUFITExESsX78eOTk5WLVqFfz8/BAeHt7q6wcaq5fM0IzZC2cuzwwwzvA4GRcTPyKJKywsRGxsrMZiBQsLC7z55ps6bQtlTD4+Prh79+4Tz3fr1s0g7+XEiRPIyMjAgQMHYGVlhXfeeQf+/v6orKzEpk2bEBISgpSUFL23KyV/+ctfzGKOlzEHt8zlmQHmlcTSQ0z8iCTO2toaxcXF6gr7jYqLiyUzRDNv3rynnre3t9dryYh//OMf+Pbbb1FVVYUJEyZgy5YtGDx4sPp8jx49EB0djXHjxumtTSkyl7lqgPFqBZrTMwPMK4mlh5j4EUnc7NmzERUVhZKSEgwaNAgAcPbsWSQlJeHdd98VOTrTVFRUhEWLFuG1115TF6d9nJ2dHb788ksjR2ZaOAW85czpmZlbEksPMfEjkri5c+fC1tYWiYmJ+OqrrwAAvXr1wsqVK+Hn5ydydM3z6C4UT6OPnQhUKhWqq6vRr1+/JyZ9ACCXy+Hl5aVze1JmjjtqGJo5PTNzSmLpN0z8iCRMpVJh06ZNmD59OiZOnCh2OM/txIkTz7xGX70P7dq1Q1lZGRoaGvRyPyJzZU5JLP2G5VyIJM7T0xPp6elwdHQUOxTJ+Oc//4kLFy4gNjZWL1toERFJBRM/IolbunQpfv/73+PNN98UOxTJCA4ORkFBAeRyOXr16oX27dtrnGd5CiIyVxzqJZI4a2trbN68GdnZ2XB1ddVKYvQxL87ceHt7w9vbW+wwiIiMjj1+RBIXHBz8xHMymYy9V0REpMbEj4hapQcPHuDw4cMoKyvDtGnT0KVLF1y5cgVdu3aVTP1DIqKWaiN2AESkm8TERNy5c0fsMCSlpKQEvr6+2LBhAzZs2IBffvkFAJCSkoJPPvlE5OiIiAyHiR+RxCUnJ2PUqFEIDQ3F3r17oVKpxA7J5MXExGDq1KnYv3+/xqpeHx+fZpWWISKSKiZ+RBKXkZGB5ORkuLi44OOPP8bw4cOxbNky5OTkiB2aySooKMDUqVO1jtvY2ODnn38WISIiIuNg4kdkBhQKBRYvXoysrCwkJCSgoaEBb731Fnx8fLBu3TqUl5eLHaJJefHFF3H79m2t40VFRbC1tRUhIiIi42DiR2RGbt68ifz8fOTl5aFdu3bw9vZGUVERJkyYgO3bt4sdnskIDAxEfHw8rly5AplMhpqaGhw9ehTx8fF4/fXXxQ6PiMhguKqXSOKqqqqwb98+ZGRk4MyZM/Dy8oK/vz/Gjx+vrul38OBBLFmyBKdOnRI5WtPQ0NCAhIQEbNu2DbW1tZDJZGjbti1mzpyJJUuWiB0eEZHBMPEjkriBAweiR48eCAgIgL+/P+zs7LSuqaqqwrx587Bjxw4RIjRdKpUK165dQ01NDXr37o3OnTuLHRIRkUEx8SOSuLNnz8Ld3V3sMIiISAKY+BGZCZVKhTt37qChoUHjuIODg0gRma7g4GDIZLInnuduJ0RkrrhXL5HEXbx4EcuWLUNeXp7GcUEQIJPJUFRUJFJkpuvxfXrr6upQUlKCkydPYsaMGSJFRURkeEz8iCQuIiICVlZW+Oqrr2BjY/PUnix6KCwsrMnjiYmJKCkpMXI0RETGw6FeIolzd3dHeno6XnrpJbFDkbxr164hICAAp0+fFjsUIiKDYB0/IokbNGgQrl69KnYYkicIAtLT02FlZSV2KEREBsOhXiIJys3NVf8cGBiI2NhYXL16FX369IFcrvm1Hjp0qLHDM3k+Pj4aQ+KCIECpVAIA4uLixAqLiMjgONRLJEEKhaJZ13FxR9NSU1M1XstkMlhZWcHNzQ2WlpYiRUVEZHhM/IiIiIhaCQ71EklcWloaJk6ciHbt2mkcV6lU2Lt3LwICAkSKzHQ9OlT+LBwqJyJzwh4/IolzdXXFsWPHYG1trXFcqVRi+PDhHOptgkKhUM/xa/wV+PjrxmN8fkRkTtjjRyRxjYWaHz+Wl5eHbt26iRSVadu6dSs2bNiABQsWYNCgQQCAc+fOYf369Zg/fz5GjRolcoRERIbBHj8iiXq01+pJQkNDER4ebqSIpGPChAn4+OOP1Ulfo7Nnz2Lx4sU4cOCASJERERkWe/yIJCoxMRGCIODPf/4zEhIS0LVrV/U5uVwOBwcH2NnZiRih6aqoqGgyaW7Tpg1u3bolQkRERMbBHj8iiSsvL4eDgwO3amuB+fPn48qVK4iKioKbmxtkMhny8vIQGxsLZ2dnJCQkiB0iEZFBMPEjkqDc3Fx4eHhALpc/c4UqV6Vqq6qqQmxsLDIzM1FfXw8AsLCwwKRJkxAZGYkuXbqIHCERkWEw8SOSIIVCgezsbFhbWz+1mDNXpT5dVVUVysrKIAgCHB0d0blzZ7FDIiIyKCZ+RERERK1EG7EDICLdpKWlQaVSaR1XqVRIS0sTISIiIjJV7PEjkjgWcCYiouZijx+RxLGAMxERNRfr+BFJVGMBZ5lMhldffbXJa0JDQ40cFRERmTIO9RJJVE5ODgs4ExFRizDxI5K48vJy2Nvbo00bztwgIqKnY+JHZAbu3r2LgoICVFZW4vGvdEBAgEhRERGRqWHiRyRx3333HZYuXQpBEGBlZaVxTiaT4dChQyJFRkREpoaJH5HEjR07FlOmTEFYWBgsLCzEDoeIiEwYJwURSZxSqURQUBCTPiIieiYmfkQS5+fnhyNHjogdBhERSQDr+BFJnKWlJTZu3Ijjx4+jT58+kMs1v9ZhYWEiRUZERKaGiR+RxJ05cwZ9+/bF/fv3cerUKY1zj+/oQURErRsXdxARERG1EpzjR0RERNRKcKiXyAx8//332L9/P27evIm6ujqNc4mJiSJFRUREpoY9fkQSt2PHDixYsADt27fHiRMn0KtXL7Rt2xaFhYVwd3cXOzwiIjIh7PEjkrikpCTExcVh/PjxSElJwVtvvQUnJyds2bIFZWVlYodHREQmhD1+RBJ369YtDBgwAADQsWNH3L9/HwAwceJEfPfdd2KGRkREJoaJH5HE2dvb43//+x8AwNnZGVlZWQCA06dP44UXXhAxMiIiMjUc6iWSuMDAQJw7dw4eHh4ICQlBWFgYkpKS8MsvvyA8PFzs8IiIyISwjh+RmSkrK0NhYSGcnJzg6uoqdjhERGRCmPgRERERtRKc40dERETUSjDxIyIiImolmPgRERERtRJM/IiIiIhaCZZzITIDly5dwsmTJ1FZWYmGhgaNc2FhYSJFRUREpoaJH5HE7dixA3FxcXByckL37t01zslkMpGiIiIiU8RyLkQSN2rUKLzzzjuYNm2a2KEQEZGJ4xw/Iomrra3FsGHDxA6DiIgkgIkfkcRNnz4dKSkpYodBREQSwDl+RBJ369YtHDx4EFlZWejTpw/kcs2vdXx8vEiRERGRqWHiRyRxMpkM48aNEzsMIiKSAC7uICIiImol2ONHZCZKS0tx+fJlAICLiwucnJxEjoiIiEwNEz8iiVMqlVi6dCmysrLQpUsXAMD9+/cxevRoxMfHw9LSUuQIiYjIVHBVL5HErVixAkqlEnv37kVOTg5ycnLwzTffQKlUYsWKFWKHR0REJoRz/IgkztPTEzt37oSrq6vG8cLCQgQHB+P06dMiRUZERKaGPX5EEieXy1FbW6t1vLa2Vqu0CxERtW5M/IgkztfXF5GRkfjhhx9QXV2N6upqHD9+HFFRUfD19RU7PCIiMiEc6iWSuNraWsTHx2PPnj2or68HAFhYWCAoKAgRERHo2LGjyBESEZGpYOJHZCaqq6tx/fp1AICjoyM6deokckRERGRqmPgRERERtRKc40dERETUSjDxIyIiImolmPgRERERtRJM/IiIiIhaCSZ+RERERK3E/wPRupnmLbR9IgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.heatmap(df_corr, cmap='viridis', linecolor='k', linewidths=2, annot=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:30.349446Z",
+ "iopub.status.busy": "2021-12-15T11:04:30.348379Z",
+ "iopub.status.idle": "2021-12-15T11:04:30.353179Z",
+ "shell.execute_reply": "2021-12-15T11:04:30.352492Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:29.957807Z"
+ },
+ "papermill": {
+ "duration": 0.125871,
+ "end_time": "2021-12-15T11:04:30.353295",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:30.227424",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "#df.dropna(axis = 0, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:30.595402Z",
+ "iopub.status.busy": "2021-12-15T11:04:30.594371Z",
+ "iopub.status.idle": "2021-12-15T11:04:30.597701Z",
+ "shell.execute_reply": "2021-12-15T11:04:30.597074Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:29.977873Z"
+ },
+ "papermill": {
+ "duration": 0.126771,
+ "end_time": "2021-12-15T11:04:30.597813",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:30.471042",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "x = df.drop('binaryClass', axis=1)\n",
+ "y = df['binaryClass']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:30.844906Z",
+ "iopub.status.busy": "2021-12-15T11:04:30.843792Z",
+ "iopub.status.idle": "2021-12-15T11:04:30.882015Z",
+ "shell.execute_reply": "2021-12-15T11:04:30.881442Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:29.993351Z"
+ },
+ "papermill": {
+ "duration": 0.162877,
+ "end_time": "2021-12-15T11:04:30.882137",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:30.719260",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " on thyroxine \n",
+ " query on thyroxine \n",
+ " on antithyroid medication \n",
+ " sick \n",
+ " pregnant \n",
+ " thyroid surgery \n",
+ " I131 treatment \n",
+ " query hypothyroid \n",
+ " ... \n",
+ " TSH \n",
+ " T3 measured \n",
+ " T3 \n",
+ " TT4 measured \n",
+ " TT4 \n",
+ " T4U measured \n",
+ " T4U \n",
+ " FTI measured \n",
+ " FTI \n",
+ " TBG measured \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 41.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1.300000 \n",
+ " 1 \n",
+ " 2.5000 \n",
+ " 1 \n",
+ " 125.000000 \n",
+ " 1 \n",
+ " 1.140 \n",
+ " 1 \n",
+ " 109.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 23.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 4.100000 \n",
+ " 1 \n",
+ " 2.0000 \n",
+ " 1 \n",
+ " 102.000000 \n",
+ " 0 \n",
+ " 0.995 \n",
+ " 0 \n",
+ " 110.469649 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0.980000 \n",
+ " 0 \n",
+ " 2.0135 \n",
+ " 1 \n",
+ " 109.000000 \n",
+ " 1 \n",
+ " 0.910 \n",
+ " 1 \n",
+ " 120.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 70.0 \n",
+ " 1.0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0.160000 \n",
+ " 1 \n",
+ " 1.9000 \n",
+ " 1 \n",
+ " 175.000000 \n",
+ " 0 \n",
+ " 0.995 \n",
+ " 0 \n",
+ " 110.469649 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 70.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0.720000 \n",
+ " 1 \n",
+ " 1.2000 \n",
+ " 1 \n",
+ " 61.000000 \n",
+ " 1 \n",
+ " 0.870 \n",
+ " 1 \n",
+ " 70.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 3767 \n",
+ " 30.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 5.086766 \n",
+ " 0 \n",
+ " 2.0135 \n",
+ " 0 \n",
+ " 108.319345 \n",
+ " 0 \n",
+ " 0.995 \n",
+ " 0 \n",
+ " 110.469649 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3768 \n",
+ " 68.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1.000000 \n",
+ " 1 \n",
+ " 2.1000 \n",
+ " 1 \n",
+ " 124.000000 \n",
+ " 1 \n",
+ " 1.080 \n",
+ " 1 \n",
+ " 114.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3769 \n",
+ " 74.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 5.100000 \n",
+ " 1 \n",
+ " 1.8000 \n",
+ " 1 \n",
+ " 112.000000 \n",
+ " 1 \n",
+ " 1.070 \n",
+ " 1 \n",
+ " 105.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3770 \n",
+ " 72.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0.700000 \n",
+ " 1 \n",
+ " 2.0000 \n",
+ " 1 \n",
+ " 82.000000 \n",
+ " 1 \n",
+ " 0.940 \n",
+ " 1 \n",
+ " 87.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3771 \n",
+ " 64.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 1.000000 \n",
+ " 1 \n",
+ " 2.2000 \n",
+ " 1 \n",
+ " 99.000000 \n",
+ " 1 \n",
+ " 1.070 \n",
+ " 1 \n",
+ " 92.000000 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3772 rows × 27 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex on thyroxine query on thyroxine on antithyroid medication \\\n",
+ "0 41.0 1.0 0 0 0 \n",
+ "1 23.0 1.0 0 0 0 \n",
+ "2 46.0 0.0 0 0 0 \n",
+ "3 70.0 1.0 1 0 0 \n",
+ "4 70.0 1.0 0 0 0 \n",
+ "... ... ... ... ... ... \n",
+ "3767 30.0 1.0 0 0 0 \n",
+ "3768 68.0 1.0 0 0 0 \n",
+ "3769 74.0 1.0 0 0 0 \n",
+ "3770 72.0 0.0 0 0 0 \n",
+ "3771 64.0 1.0 0 0 0 \n",
+ "\n",
+ " sick pregnant thyroid surgery I131 treatment query hypothyroid ... \\\n",
+ "0 0 0 0 0 0 ... \n",
+ "1 0 0 0 0 0 ... \n",
+ "2 0 0 0 0 0 ... \n",
+ "3 0 0 0 0 0 ... \n",
+ "4 0 0 0 0 0 ... \n",
+ "... ... ... ... ... ... ... \n",
+ "3767 0 0 0 0 0 ... \n",
+ "3768 0 0 0 0 0 ... \n",
+ "3769 0 0 0 0 0 ... \n",
+ "3770 0 0 0 0 0 ... \n",
+ "3771 0 0 0 0 0 ... \n",
+ "\n",
+ " TSH T3 measured T3 TT4 measured TT4 T4U measured \\\n",
+ "0 1.300000 1 2.5000 1 125.000000 1 \n",
+ "1 4.100000 1 2.0000 1 102.000000 0 \n",
+ "2 0.980000 0 2.0135 1 109.000000 1 \n",
+ "3 0.160000 1 1.9000 1 175.000000 0 \n",
+ "4 0.720000 1 1.2000 1 61.000000 1 \n",
+ "... ... ... ... ... ... ... \n",
+ "3767 5.086766 0 2.0135 0 108.319345 0 \n",
+ "3768 1.000000 1 2.1000 1 124.000000 1 \n",
+ "3769 5.100000 1 1.8000 1 112.000000 1 \n",
+ "3770 0.700000 1 2.0000 1 82.000000 1 \n",
+ "3771 1.000000 1 2.2000 1 99.000000 1 \n",
+ "\n",
+ " T4U FTI measured FTI TBG measured \n",
+ "0 1.140 1 109.000000 0 \n",
+ "1 0.995 0 110.469649 0 \n",
+ "2 0.910 1 120.000000 0 \n",
+ "3 0.995 0 110.469649 0 \n",
+ "4 0.870 1 70.000000 0 \n",
+ "... ... ... ... ... \n",
+ "3767 0.995 0 110.469649 0 \n",
+ "3768 1.080 1 114.000000 0 \n",
+ "3769 1.070 1 105.000000 0 \n",
+ "3770 0.940 1 87.000000 0 \n",
+ "3771 1.070 1 92.000000 0 \n",
+ "\n",
+ "[3772 rows x 27 columns]"
+ ]
+ },
+ "execution_count": 64,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:31.122507Z",
+ "iopub.status.busy": "2021-12-15T11:04:31.121801Z",
+ "iopub.status.idle": "2021-12-15T11:04:31.128280Z",
+ "shell.execute_reply": "2021-12-15T11:04:31.128773Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.040224Z"
+ },
+ "papermill": {
+ "duration": 0.128824,
+ "end_time": "2021-12-15T11:04:31.128964",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:31.000140",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0\n",
+ "1 0\n",
+ "2 0\n",
+ "3 0\n",
+ "4 0\n",
+ " ..\n",
+ "3767 0\n",
+ "3768 0\n",
+ "3769 0\n",
+ "3770 0\n",
+ "3771 0\n",
+ "Name: binaryClass, Length: 3772, dtype: int64"
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:31.368778Z",
+ "iopub.status.busy": "2021-12-15T11:04:31.368143Z",
+ "iopub.status.idle": "2021-12-15T11:04:31.442142Z",
+ "shell.execute_reply": "2021-12-15T11:04:31.441425Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.047781Z"
+ },
+ "papermill": {
+ "duration": 0.195206,
+ "end_time": "2021-12-15T11:04:31.442268",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:31.247062",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/conda/lib/python3.7/site-packages/statsmodels/base/model.py:1362: RuntimeWarning: invalid value encountered in true_divide\n",
+ " return self.params / self.bse\n",
+ "/opt/conda/lib/python3.7/site-packages/scipy/stats/_distn_infrastructure.py:903: RuntimeWarning: invalid value encountered in greater\n",
+ " return (a < x) & (x < b)\n",
+ "/opt/conda/lib/python3.7/site-packages/scipy/stats/_distn_infrastructure.py:903: RuntimeWarning: invalid value encountered in less\n",
+ " return (a < x) & (x < b)\n",
+ "/opt/conda/lib/python3.7/site-packages/scipy/stats/_distn_infrastructure.py:1912: RuntimeWarning: invalid value encountered in less_equal\n",
+ " cond2 = cond0 & (x <= _a)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "OLS Regression Results \n",
+ "\n",
+ " Dep. Variable: binaryClass R-squared: 0.252 \n",
+ " \n",
+ "\n",
+ " Model: OLS Adj. R-squared: 0.247 \n",
+ " \n",
+ "\n",
+ " Method: Least Squares F-statistic: 48.57 \n",
+ " \n",
+ "\n",
+ " Date: Wed, 15 Dec 2021 Prob (F-statistic): 1.41e-213 \n",
+ " \n",
+ "\n",
+ " Time: 11:04:31 Log-Likelihood: 179.17 \n",
+ " \n",
+ "\n",
+ " No. Observations: 3772 AIC: -304.3 \n",
+ " \n",
+ "\n",
+ " Df Residuals: 3745 BIC: -136.0 \n",
+ " \n",
+ "\n",
+ " Df Model: 26 \n",
+ " \n",
+ "\n",
+ " Covariance Type: nonrobust \n",
+ " \n",
+ "
\n",
+ "\n",
+ "\n",
+ " coef std err t P>|t| [0.025 0.975] \n",
+ " \n",
+ "\n",
+ " const 0.0334 0.058 0.578 0.563 -0.080 0.147 \n",
+ " \n",
+ "\n",
+ " age -4.813e-05 0.000 -0.242 0.809 -0.000 0.000 \n",
+ " \n",
+ "\n",
+ " sex 0.0343 0.009 3.943 0.000 0.017 0.051 \n",
+ " \n",
+ "\n",
+ " on thyroxine -0.0530 0.012 -4.339 0.000 -0.077 -0.029 \n",
+ " \n",
+ "\n",
+ " query on thyroxine 0.0377 0.034 1.109 0.268 -0.029 0.104 \n",
+ " \n",
+ "\n",
+ " on antithyroid medication -0.0469 0.036 -1.299 0.194 -0.118 0.024 \n",
+ " \n",
+ "\n",
+ " sick -0.0130 0.020 -0.660 0.509 -0.052 0.026 \n",
+ " \n",
+ "\n",
+ " pregnant -0.0573 0.035 -1.654 0.098 -0.125 0.011 \n",
+ " \n",
+ "\n",
+ " thyroid surgery -0.0964 0.032 -2.989 0.003 -0.160 -0.033 \n",
+ " \n",
+ "\n",
+ " I131 treatment -0.0086 0.031 -0.279 0.780 -0.069 0.052 \n",
+ " \n",
+ "\n",
+ " query hypothyroid 0.0718 0.016 4.520 0.000 0.041 0.103 \n",
+ " \n",
+ "\n",
+ " query hyperthyroid 0.0258 0.016 1.593 0.111 -0.006 0.057 \n",
+ " \n",
+ "\n",
+ " lithium -0.0436 0.055 -0.794 0.427 -0.151 0.064 \n",
+ " \n",
+ "\n",
+ " goitre -0.0680 0.040 -1.693 0.091 -0.147 0.011 \n",
+ " \n",
+ "\n",
+ " tumor 0.0327 0.024 1.344 0.179 -0.015 0.080 \n",
+ " \n",
+ "\n",
+ " hypopituitary -0.2020 0.234 -0.862 0.389 -0.661 0.257 \n",
+ " \n",
+ "\n",
+ " psych -0.0225 0.018 -1.258 0.208 -0.058 0.013 \n",
+ " \n",
+ "\n",
+ " TSH measured 0.1060 0.018 5.802 0.000 0.070 0.142 \n",
+ " \n",
+ "\n",
+ " TSH 0.0040 0.000 22.821 0.000 0.004 0.004 \n",
+ " \n",
+ "\n",
+ " T3 measured -0.0199 0.011 -1.808 0.071 -0.041 0.002 \n",
+ " \n",
+ "\n",
+ " T3 -0.0216 0.006 -3.348 0.001 -0.034 -0.009 \n",
+ " \n",
+ "\n",
+ " TT4 measured 0.0202 0.029 0.704 0.481 -0.036 0.077 \n",
+ " \n",
+ "\n",
+ " TT4 -0.0016 0.000 -3.641 0.000 -0.002 -0.001 \n",
+ " \n",
+ "\n",
+ " T4U measured 0.1140 0.165 0.691 0.490 -0.209 0.437 \n",
+ " \n",
+ "\n",
+ " T4U 0.1602 0.055 2.920 0.004 0.053 0.268 \n",
+ " \n",
+ "\n",
+ " FTI measured -0.1421 0.165 -0.863 0.388 -0.465 0.181 \n",
+ " \n",
+ "\n",
+ " FTI -5.955e-05 0.000 -0.133 0.894 -0.001 0.001 \n",
+ " \n",
+ "\n",
+ " TBG measured 0 0 nan nan 0 0 \n",
+ " \n",
+ "
\n",
+ "\n",
+ "\n",
+ " Omnibus: 2079.207 Durbin-Watson: 2.009 \n",
+ " \n",
+ "\n",
+ " Prob(Omnibus): 0.000 Jarque-Bera (JB): 14879.706 \n",
+ " \n",
+ "\n",
+ " Skew: 2.602 Prob(JB): 0.00 \n",
+ " \n",
+ "\n",
+ " Kurtosis: 11.221 Cond. No. 1.03e+16 \n",
+ " \n",
+ "
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The smallest eigenvalue is 1e-24. This might indicate that there are strong multicollinearity problems or that the design matrix is singular."
+ ],
+ "text/plain": [
+ "\n",
+ "\"\"\"\n",
+ " OLS Regression Results \n",
+ "==============================================================================\n",
+ "Dep. Variable: binaryClass R-squared: 0.252\n",
+ "Model: OLS Adj. R-squared: 0.247\n",
+ "Method: Least Squares F-statistic: 48.57\n",
+ "Date: Wed, 15 Dec 2021 Prob (F-statistic): 1.41e-213\n",
+ "Time: 11:04:31 Log-Likelihood: 179.17\n",
+ "No. Observations: 3772 AIC: -304.3\n",
+ "Df Residuals: 3745 BIC: -136.0\n",
+ "Df Model: 26 \n",
+ "Covariance Type: nonrobust \n",
+ "=============================================================================================\n",
+ " coef std err t P>|t| [0.025 0.975]\n",
+ "---------------------------------------------------------------------------------------------\n",
+ "const 0.0334 0.058 0.578 0.563 -0.080 0.147\n",
+ "age -4.813e-05 0.000 -0.242 0.809 -0.000 0.000\n",
+ "sex 0.0343 0.009 3.943 0.000 0.017 0.051\n",
+ "on thyroxine -0.0530 0.012 -4.339 0.000 -0.077 -0.029\n",
+ "query on thyroxine 0.0377 0.034 1.109 0.268 -0.029 0.104\n",
+ "on antithyroid medication -0.0469 0.036 -1.299 0.194 -0.118 0.024\n",
+ "sick -0.0130 0.020 -0.660 0.509 -0.052 0.026\n",
+ "pregnant -0.0573 0.035 -1.654 0.098 -0.125 0.011\n",
+ "thyroid surgery -0.0964 0.032 -2.989 0.003 -0.160 -0.033\n",
+ "I131 treatment -0.0086 0.031 -0.279 0.780 -0.069 0.052\n",
+ "query hypothyroid 0.0718 0.016 4.520 0.000 0.041 0.103\n",
+ "query hyperthyroid 0.0258 0.016 1.593 0.111 -0.006 0.057\n",
+ "lithium -0.0436 0.055 -0.794 0.427 -0.151 0.064\n",
+ "goitre -0.0680 0.040 -1.693 0.091 -0.147 0.011\n",
+ "tumor 0.0327 0.024 1.344 0.179 -0.015 0.080\n",
+ "hypopituitary -0.2020 0.234 -0.862 0.389 -0.661 0.257\n",
+ "psych -0.0225 0.018 -1.258 0.208 -0.058 0.013\n",
+ "TSH measured 0.1060 0.018 5.802 0.000 0.070 0.142\n",
+ "TSH 0.0040 0.000 22.821 0.000 0.004 0.004\n",
+ "T3 measured -0.0199 0.011 -1.808 0.071 -0.041 0.002\n",
+ "T3 -0.0216 0.006 -3.348 0.001 -0.034 -0.009\n",
+ "TT4 measured 0.0202 0.029 0.704 0.481 -0.036 0.077\n",
+ "TT4 -0.0016 0.000 -3.641 0.000 -0.002 -0.001\n",
+ "T4U measured 0.1140 0.165 0.691 0.490 -0.209 0.437\n",
+ "T4U 0.1602 0.055 2.920 0.004 0.053 0.268\n",
+ "FTI measured -0.1421 0.165 -0.863 0.388 -0.465 0.181\n",
+ "FTI -5.955e-05 0.000 -0.133 0.894 -0.001 0.001\n",
+ "TBG measured 0 0 nan nan 0 0\n",
+ "==============================================================================\n",
+ "Omnibus: 2079.207 Durbin-Watson: 2.009\n",
+ "Prob(Omnibus): 0.000 Jarque-Bera (JB): 14879.706\n",
+ "Skew: 2.602 Prob(JB): 0.00\n",
+ "Kurtosis: 11.221 Cond. No. 1.03e+16\n",
+ "==============================================================================\n",
+ "\n",
+ "Warnings:\n",
+ "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
+ "[2] The smallest eigenvalue is 1e-24. This might indicate that there are\n",
+ "strong multicollinearity problems or that the design matrix is singular.\n",
+ "\"\"\""
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x = sm.add_constant(x)\n",
+ "results = sm.OLS(y,x).fit()\n",
+ "results.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:31.687978Z",
+ "iopub.status.busy": "2021-12-15T11:04:31.687289Z",
+ "iopub.status.idle": "2021-12-15T11:04:31.696103Z",
+ "shell.execute_reply": "2021-12-15T11:04:31.696654Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.101277Z"
+ },
+ "papermill": {
+ "duration": 0.132195,
+ "end_time": "2021-12-15T11:04:31.696799",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:31.564604",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:31.950584Z",
+ "iopub.status.busy": "2021-12-15T11:04:31.949720Z",
+ "iopub.status.idle": "2021-12-15T11:04:31.952367Z",
+ "shell.execute_reply": "2021-12-15T11:04:31.952986Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.110233Z"
+ },
+ "papermill": {
+ "duration": 0.134106,
+ "end_time": "2021-12-15T11:04:31.953139",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:31.819033",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(3772, 28)"
+ ]
+ },
+ "execution_count": 68,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:32.218571Z",
+ "iopub.status.busy": "2021-12-15T11:04:32.217308Z",
+ "iopub.status.idle": "2021-12-15T11:04:32.229206Z",
+ "shell.execute_reply": "2021-12-15T11:04:32.228459Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.125578Z"
+ },
+ "papermill": {
+ "duration": 0.14952,
+ "end_time": "2021-12-15T11:04:32.229368",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:32.079848",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import StandardScaler\n",
+ "\n",
+ "sc = StandardScaler()\n",
+ "sc.fit(x_train)\n",
+ "x_train = sc.transform(x_train)\n",
+ "x_test = sc.transform(x_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.128541,
+ "end_time": "2021-12-15T11:04:32.481985",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:32.353444",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:32.731627Z",
+ "iopub.status.busy": "2021-12-15T11:04:32.730589Z",
+ "iopub.status.idle": "2021-12-15T11:04:38.037187Z",
+ "shell.execute_reply": "2021-12-15T11:04:38.036591Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.146090Z"
+ },
+ "papermill": {
+ "duration": 5.43009,
+ "end_time": "2021-12-15T11:04:38.037305",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:32.607215",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "from tensorflow.keras.models import Sequential\n",
+ "from tensorflow.keras.layers import Dense, Dropout\n",
+ "from tensorflow.keras.optimizers import Adam\n",
+ "from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:38.285012Z",
+ "iopub.status.busy": "2021-12-15T11:04:38.284135Z",
+ "iopub.status.idle": "2021-12-15T11:04:38.287388Z",
+ "shell.execute_reply": "2021-12-15T11:04:38.287881Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.154187Z"
+ },
+ "papermill": {
+ "duration": 0.129452,
+ "end_time": "2021-12-15T11:04:38.288032",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:38.158580",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(3772, 28)"
+ ]
+ },
+ "execution_count": 71,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:38.531795Z",
+ "iopub.status.busy": "2021-12-15T11:04:38.531138Z",
+ "iopub.status.idle": "2021-12-15T11:04:38.535793Z",
+ "shell.execute_reply": "2021-12-15T11:04:38.536283Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.169562Z"
+ },
+ "papermill": {
+ "duration": 0.128549,
+ "end_time": "2021-12-15T11:04:38.536433",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:38.407884",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "28"
+ ]
+ },
+ "execution_count": 72,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x.shape[1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:38.789959Z",
+ "iopub.status.busy": "2021-12-15T11:04:38.789099Z",
+ "iopub.status.idle": "2021-12-15T11:04:38.970372Z",
+ "shell.execute_reply": "2021-12-15T11:04:38.969733Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.183056Z"
+ },
+ "papermill": {
+ "duration": 0.311586,
+ "end_time": "2021-12-15T11:04:38.970507",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:38.658921",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "model = Sequential()\n",
+ "model.add(Dense(256, input_shape=[x.shape[1]], activation='relu'))\n",
+ "model.add(Dropout(0.4))\n",
+ "model.add(Dense(128, activation='relu'))\n",
+ "model.add(Dropout(0.3))\n",
+ "model.add(Dense(63, activation='relu'))\n",
+ "model.add(Dropout(0.2))\n",
+ "\n",
+ "model.add(Dense(1, activation='sigmoid'))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:39.221407Z",
+ "iopub.status.busy": "2021-12-15T11:04:39.216626Z",
+ "iopub.status.idle": "2021-12-15T11:04:39.226322Z",
+ "shell.execute_reply": "2021-12-15T11:04:39.225657Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.264788Z"
+ },
+ "papermill": {
+ "duration": 0.132252,
+ "end_time": "2021-12-15T11:04:39.226439",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:39.094187",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Model: \"sequential\"\n",
+ "_________________________________________________________________\n",
+ "Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ "dense (Dense) (None, 256) 7424 \n",
+ "_________________________________________________________________\n",
+ "dropout (Dropout) (None, 256) 0 \n",
+ "_________________________________________________________________\n",
+ "dense_1 (Dense) (None, 128) 32896 \n",
+ "_________________________________________________________________\n",
+ "dropout_1 (Dropout) (None, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "dense_2 (Dense) (None, 63) 8127 \n",
+ "_________________________________________________________________\n",
+ "dropout_2 (Dropout) (None, 63) 0 \n",
+ "_________________________________________________________________\n",
+ "dense_3 (Dense) (None, 1) 64 \n",
+ "=================================================================\n",
+ "Total params: 48,511\n",
+ "Trainable params: 48,511\n",
+ "Non-trainable params: 0\n",
+ "_________________________________________________________________\n"
+ ]
+ }
+ ],
+ "source": [
+ "model.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:39.475245Z",
+ "iopub.status.busy": "2021-12-15T11:04:39.471767Z",
+ "iopub.status.idle": "2021-12-15T11:04:40.020565Z",
+ "shell.execute_reply": "2021-12-15T11:04:40.021302Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.277929Z"
+ },
+ "papermill": {
+ "duration": 0.674447,
+ "end_time": "2021-12-15T11:04:40.021453",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:39.347006",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAANQCAIAAABsGKkvAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVwTx/84/gmHBLABlduL0lKVVhEIiIqK5VApHm8E0SgIraJY3yrW1rRSKnhAwBarVgGhrVZAQT5FaYACFgUNWPTLoYK1tVakIAXFGEgICe7vj/m9tylHIIQc2NfzDx+7s5PZGTd5scfMLIUgCAQAAHLQUHUFAAAjHsQRAIC8II4AAOQFcQQAIC8tyZWysrIvvvhCVVUBAIwUs2fP3rlzJ7n6j/ORR48enT9/XulVAi+z8vLy8vJyVddCIRoaGv6dv5fy8vKysjLJFK3emTIzM5VVH/Dy8/PzQy/plyojI8Pf3/+lbJp0+JhKgvsjAAB5QRwBAMgL4ggAQF4QRwAA8oI4AgCQF8QRoHays7MnTpxYV1en6ooMj9TUVAqFwmAwWCxWYWGh5KaCgoKcnBy8nJSUtG3btoCAADc3t5KSkkEWnpaWRqfTaTSak5MTm82W3HT+/PmQkJCPP/54zZo1ERERIpEIIVRdXX3s2DHJ0bm3b99msVjvv/8+hUIJCwsbWhv7eO4LgGrp6+ubmJhQqVTF7aKpqcnc3Fxx5fd29OjRcePGSaacOHECIRQaGooQSk9P19XVPXLkCEIoLi7O1dU1Ly9v0aJF0suMj48vLCwMCAj4448/kpKSli5dWlBQ4O7ujhDKyMiIjY29fv26pqYmQRDe3t7h4eEsFsvW1lYoFDKZTBaLhQt566233nrrLYTQDz/8MOTWwfkIUDseHh43b9589dVXFVR+W1vbunXrFFR4f7S0/vE3+9KlSz/99BMOIgih77//nuzZ9d577xEEkZqaKr3A9vb2n3/+OTc3d/v27fHx8ZcuXaJQKHFxcXhrUlLS7NmzNTU1EUIUCmXx4sUXLlzAm5ycnEaPHv3VV1/1KFBPT2/orRvyJwEYibq6uhgMxu+//67COnR3d4eFhZ09e5ZMsbe3LyoqksxDoVCkF3L9+vWIiAhy1dnZ2c7O7rfffsOrPB6vqKhILBbj+FVTUzN+/Hgy886dO62srBYvXvzaa6/J3xwE5yNA3bS1taWkpHh4eGRnZyOEqqqqPvzwQysrq7a2tqCgICMjIycnJxwFamtr9+zZY2Nj09jYuGLFirFjxzo5OeE++Onp6TQabeLEiQih58+fHz58mEqlzp49GyGUmZl5586d1tbWjRs3Hjp0CCF07dq1iRMn5uXlKa2NKSkpXC7XxsaGTGEymWQcuX37NkJoyZIl0gtxc3ObNm2aZIqBgYGlpSVeDg4Ovnv3LoPB6OzsLC8vLyoqwo3F9PX16XT6wYMHh6M1CEEcAerm8ePHd+7cKSoq6u7uRgiZmZlVVVU9ePDg448//uijj86ePfvLL7/s2bMHIfTdd98dP3783r17hw4d2rFjR3Jy8oMHD9zc3JqamtasWYOjBkKIRqPt2LFj+vTpeHXt2rW2trZGRkYnT57ctWsXQojL5T558qStrU1pbfy///u/WbNmSdnq4OCwatUqmcrs7u6+devW2rVr8ermzZvff//9zMxMe3v7iIiIK1eu2NnZSeafPXt2VlYW/k+WH8QRoF6mTZu2fPlyctXMzMzR0REhdODAARsbG3d393nz5t28eRMhFB0d7eXlpaGhwWKxXF1dfXx8EhIS+Hx+QkIC6nW13+P2hCQvLy8ej8dgMBTVpF7q6up63HMldXZ25ufnZ2ZmamjI9tvMyckZP378+vXryZQvv/ySTqffvXu3tLT06tWrPfKbmppyudza2lpZK98niCNA7fT4zeObhWTiK6+8wuPx8LKenp6mpqa2tjZeXb58uY6Ozq1bt2TdI96FcnR0dDx69GjMmDF9bmWz2UwmU9Z7zF1dXbGxsRkZGWRDhELh8uXLQ0JCfvzxRxqNtm7durS0NMmPGBoaIoSam5uH1IieII6Al4eWlpaFhYVYLFZ1RaQRiUQEQfR3QVFXVyd5TjFITCYzOjra2tqaTAkLCxMIBBs3bvTw8KioqJg8efKWLVueP39OZsDnO7q6urK3oA8QR8BLhc/nT506VdW1kMbAwIBKpT579qzPrfb29gM+qenh+PHj8+fPX7BggWRiRkYGeYdo0qRJkZGRXC63srKSzPD06VOEUI87tUMGcQS8PJqamlpaWnx9fRFCWlpa7e3t5J/99vb2Fy9e4GUNDQ3cuZNEblICCoUyZ86cxsbGPrd6eXnJVFpaWhqVSl2xYgWZUlpaihAyMjIir/4QQnQ6HSFkYmJCprS2tpqZmY0dO1am3fUH4ghQOwKBACEkFArxKv7Nk1crAoGAz+eTmYVCYXV1NV7ev3//+vXrnZycEELTp09/9uxZdHT0vXv39u/fLxQKf/nlF/wH2cLC4vHjx1VVVZcvX+bz+UVFRWPGjFHmzGYMBoPD4fR+ddTFixctLS3J5iCEtmzZ4uLiQvYK6SE3N/fo0aMikSgxMTExMTEhIWHr1q01NTUIoZCQkPT09JaWFpyzoKBg3rx5U6ZMIT/L4XAGfLQ8eNAPDaiX8vLy+Ph4hFBiYqKlpaVAIMjKykIIRURE7N27Nz8///Lly8+fP4+MjAwPD0cIaWtrnzp1qqGhgUajWVpa4kfCCKEdO3bcuHGDxWKx2eyjR4/ev39fLBY3NDTY2dmFhoay2Wx/f/8DBw7gO7X6+vrkzVolCAwMZLFY5eXl5KUHxufzhUJhV1cXmVJfX19WVpacnBwTE9OjkIqKCl9fX4FAIDltpY6ODj7T2blz5+jRowMCAqZPn66pqdnZ2ZmdnU0+AxIIBBwOh8PhDFuTCAnnzp3rkQKAnHx9fX19fRVU+IYNG6hUqoIKH9Agfy9nzpxBCD179kwysaKiYtmyZYPZS0lJSUxMzBCr2I/w8PC4uLgeiVOnTt2xY8dgPt77mMJ1DQDKgC/WSHQ6ncFgJCcnS/8Uj8fLyckhh+EMi7y8PJFIhPvgSepxz0gmw3Nd097ePnr06GEpCoDBa29vx49RZX3GoXyhoaEuLi4zZ850c3PDKf7+/oWFhfn5+YsXL+7vUzU1NVFRUcM49Lm6uprL5UpeJd25cyc/P7+lpUWuMUeSJydDuK5JSkpyd3efMGGCTJ9ShO+//37ChAm1tbWqrghRWFj43nvv4f9eT0/PM2fOKHqPmZmZZD/rbdu2VVZWKnqPg6e465pTp07hXqFhYWHXr19XxC6k+9feB+h9TOU9H3n33XdPnz6tDj1/1GfSCnd3d3d394sXL7a0tHz99deS4ywVVB9fX98JEybMnj175syZX375pYJ2p24CAwMDAwNVXQuAkPzPfTU1NSdMmDAsVZGTuk1aQaPREEIGBgbKqQ/u5qy43QEgBdxnHZQhTFqBr9gVdN3euz4K3R0A0g0xjly4cCEkJGT37t3//e9/m5qayHSCIBISEkJDQ2fNmuXp6fnrr78iqVNI4K3BwcEsFmv58uUeHh5SypFCzSetUEJ9BtTc3BwSErJv376NGzf+5z//efLkCT6Or7zyCoVCOXz4MO62UFZWZm5ujmem6PMoPH78+IsvvpgxY0ZTU5Onp+fkyZNxUeBfTfJmySDvG6Wmps6aNUsgEBAE0dLSYmxsbGZmhjdFR0d/++23BEGIxWJnZ2czM7OOjo6mpiY8Z+SmTZvu3LlTWFhIo9FWr16NPzJlypSrV68SBCEUCr29vaWUI6VKtbW1eIra8+fPEwQhZY9MJtPQ0FBTUzMsLKy4uDgrK8vIyEhPT6+xsZEgCE9PT8l7xnQ63dnZGS97e3tbWlqSm9hstq6ubmpqan9Vev311xFC7e3tyqnP3bt3EUKurq791cfV1dXf3x8v29rarlu3Di8zmUyEUEVFBV4VCoWzZs2SchTy8vKmTp2qqam5d+/elJQUJyenP//8U8qhUWj/EdWC+6wkmeNIR0eHubl5WloameLj44PjyJ9//mlqatrd3Y3T8d/Js2fPEgTx8ccfI4RaW1vxpnfeecfa2pogiK6uLgqF8uWXX+L0/Px86eVIcfnyZTKOSNkjQRAMBkNbW7urqwuv4g7RERERBEGsWLFC8nfr7Ozc3++WIAixWCylPpJxRAn1GTCOLFy48ODBg3h57dq1M2bMwMuPHj3S0tLasGEDXv3hhx/27dtHSD0K+GnUr7/+KqX5JIgjL59heF5TWlra1NREzi6FEBo1ahRe4HA4IpFo06ZN5KYNGzbggcn9TSGhra3t6em5Y8eO27dvx8TE4AmypZQjhZpPWqGE+kj3008/IYQ6OjrOnDlTUVFBjkybMGGCn5/fmTNnoqOjjYyMMjIyPvvsMyT1KGhra2tpaeFAORjnz59/iW/cvMRNkwIPhiTJHEfw3z0ydkiqq6vT19c/efKkTAWePXt2zZo1J0+e/P777zMyMhYuXDi0coZM3SatUFB9uru7WSzWr7/+unPnzqtXr0oOyggLC0tPT09KStq1a1dra6uVlRUa6tHsk7Oz85BfjKLOysrKDh8+jM9K/lXwAChJMscRHEEePnz4xhtv9Nikp6fX0NDQ0NAg+SS4tbXVyMhISoF6enp5eXmpqam7du1avHhxVVXV0MqRh7pNWjG89fntt98sLCz+85//mJiYfPfdd70zODo6zp0796uvvpo6derSpUtx4jAehQkTJsg62+hIcfjw4Ze1aVJkZmb2SJH5ec2MGTMQQpIx+MWLF3iWh+nTpxMEsXv3bnLTX3/99c0330gpTSgUJiUlIYTWrl1bXl5OEERxcfEQypGHgiatIAiC/FcJ9ZGyow8++KCysrKgoMDV1RWn4L7kknk++uijxsbGDz74wM/PD6co+SiAEU3mODJ37tyFCxd+++23J06c4PP5FRUVV69ebWlpSU9Pnzt3rqOjY1pa2sqVK7/77rvPPvts7dq1wcHBSOoUEl9//TX+nVhYWBgYGNjb23t4ePRXjhTqNmkFnsOOy+Uqpz54Rz1m2eJyuevXr8e3MxBCp06dunXr1tdff33nzp3m5uaamhpyes6lS5e+9dZbtra25PzDUo6CWCzu7u5WnytBoHqSN10Hef+Zy+W+++67pqamkyZN2rt3b0hISHBwMH5RwJMnT9auXWtiYmJsbBwYGIifCBYVFeF7clu2bPnrr79Onz6Nu13u3bu3o6PD0dFx0aJFMTExISEhycnJeBd9liNFWVkZnkhq/vz5165dk7JHsVi8YcOGUaNGhYWF+fn5vffee/v27Xvx4gXZtKVLl44ePdrZ2bmioiIoKGjdunUXL14kCKK6unrixIlvvPFGZmYmQRA//fSTubl5dnZ278oUFxdv2bIF//cuXrz47Nmziq5Pdna2i4sL3qOzs/OiRYs8PDymTp2KL0ITExMJgti8efMrr7zi7OxcVFSUm5trZGTk6+tLPk4iCGL79u24aaQ+j8KZM2dwZ/zt27ffvn17wG8LPK95+QzDc9+XgGonrehNTerj5uaG+wQNL4gjL5/hH6enTMbGxv1t+vrrr8kbhGAIiouLHRwcFDrKEbzERlIcISeblJO6TVqhwvpcvXp106ZNb7755u3bt0tKSpS893+J1NTUdevWrVmzxtbWFt/+IzcVFBQIhUL8JzApKen27dttbW2NjY2fffbZ/PnzB1N4WlraF198ce/evalTp3722WfvvPMOuen8+fMFBQXjxo37448/rK2tP/30U21t7erq6tLS0vfff5/8st2+fZvNZtfX1x8/fnzHjh29n+kOiuTJyb/hPE3lk1aoVX1qa2utrKxee+21kpISBe1C0dc1eACBSgqRaV5Fsisz6fjx48ePH8fLaWlpp0+fxsuxsbEUCgX37Zbuiy++WLJkyeHDh3fs2KGnp0ehUAoLC8m6OTg44C7XL1688PLy+uijj/Cm69evk8uSJk2aNOR5Ff91cQQomULjyNOnT99++21VFSLP/KxFRUWS/y1+fn6hoaF4GY97DAgIkF4sj8cjB6kRBFFWVqahoeHp6YlX3dzctm7dSm49cuTIlClTyNWoqKhjx471KFCe+VlH0nUNAJKGMJmDggqRVXd3d1hY2NmzZ8kUe3v7oqIiyTwDXuRev349IiKCXHV2drazsyPfUMHj8YqKisRiMX7kX1NTIzmf1s6dO62srBYvXvzaa6/J3xwE848A9ZGVlbV169Zdu3YtWbIkPDwcdwUa/OQJKpkRYmhSUlK4XK6NjQ2ZwmQyyThy+/ZthNCAL5dxc3Pr8TY8AwMDS0tLvBwcHHz37l0Gg9HZ2VleXl5UVCQ5v4S+vj6dTsezQwwPyZMTuK4Bw26Q1zXx8fFz5szBg55bW1utra0XLFiA+9EMcvIEpc0IQRrydc2iRYv8/Pz6y799+3YHBwdypPUgicViY2PjlJQUMuX9999HCE2bNs3Dw+Phw4c98u/bt8/AwEByzDq8dwKMbH/99Vd4ePjmzZvxoOdx48Z98sknV65cSU1NRQjp6elJZu4xsJsUHR3t5eWloaHBYrFcXV19fHwSEhL4fH5CQsLgC0EIeXl58Xg8BoMhf7v6U1dXR/Yb7qGzszM/Pz8zM5N8Z9Ug5eTkjB8/XvId419++SWdTr97925paenVq1d75Dc1NeVyubW1tbJWvk8QR4DqlZeXd3R0TJo0iUzx9vZGCBUXF8tUjkpmhJBVR0fHo0ePxowZ0+dWNpvNZDJlnWa4q6srNjY2IyODrLlQKFy+fHlISMiPP/5Io9HWrVuXlpYm+RE8oS85MEJOEEeA6j18+BAh9PTpUzKFvCSRp1h1mxECw32FyLGXPdTV1UmeUwwSk8mMjo62trYmU8LCwgQCwcaNGz08PCoqKiZPnrxlyxY85gvD5zsDTuszSBBHgOrhP7+9H5rIP3mCus0IgRAyMDCgUqk9RlSS7O3tZe2OePz48fnz5y9YsEAyMSMjg3x58KRJkyIjI7lcLh7hieGo3eNO7ZBBHAGqN3v2bBqNhufoxhoaGvh8/rJly5CMkzlIUtCMEHKiUChz5szp71QLDzcdvLS0NCqVumLFCjKltLQUIWRkZEROuIcQotPpCCETExMypbW11czMbOzYsTLtrj8QR4DqjRs3jsViXbt27dKlSzjlyJEj69evX7hwIZJl8gSklBkh5MdgMDgcDtFrypiLFy9aWlqS9UcIbdmyxcXFhewV0kNubu7Ro0dFIlFiYmJiYmJCQsLWrVtramoQQiEhIenp6eRQkoKCgnnz5k2ZMoX8LIfDGfDR8uBBPzSgFjZv3mxhYREXF3fhwgVDQ0NTU1MWi4U37dix48aNGywWi81mHz169P79+2KxuKGhwc7OLjQ0lM1m+/v7HzhwAD+R0dbWPnXqVENDA41Gs7S03LNnj6yFaGpq6uvrkzdrFSEwMJDFYpWXl5OXHhifzxcKhfgFIFh9fX1ZWVlycrLkG3mxiooKX19fgUAgOUWmjo4OPtPZuXPn6NGjAwICpk+frqmp2dnZmZ2dTT4DEggEHA6Hw+EMW5MkHwJD/xEw7JQ5b4CSZ2CQp198RUXFsmXLBrOXkpKSmJiYIVaxH+Hh4XFxcT0Sof8IAOoOz9dHotPpDAYjOTlZ+qd4PF5OTk5oaOgw1iQvL08kEu3atatHupQ7TQOC6xrw8lC3GSEkhYaGuri4zJw5083NDaf4+/sXFhbm5+cvXry4v0/V1NRERUUN47ww1dXVXC5X8irpzp07+fn5LS0t8gwygjgCXhKnT58uLCzs7u7+4IMPVq9ejW+vqoO1a9euXbu2z02Sc5H0ae7cucNbGVtbW1tbW8mUN998880330QI9b4FM3gQR8BLIjAwMDAwUNW1+JeC+yMAAHlBHAEAyAviCABAXhBHAADy6uM+a0ZGhvLrAV5WDQ0N6CX9UpWVlaGXtGnS9XjrM0J99WcFAADpevRnpRCyv8ga/KtQKJRz586tWrVK1RUB6gvujwAA5AVxBAAgL4gjAAB5QRwBAMgL4ggAQF4QRwAA8oI4AgCQF8QRAIC8II4AAOQFcQQAIC+IIwAAeUEcAQDIC+IIAEBeEEcAAPKCOAIAkBfEEQCAvCCOAADkBXEEACAviCMAAHlBHAEAyAviCABAXhBHAADygjgCAJAXxBEAgLwgjgAA5AVxBAAgL4gjAAB5QRwBAMgL4ggAQF4QRwAA8oI4AgCQF8QRAIC8II4AAOSlpeoKALVz8uTJp0+fSqZcuHDhwYMH5GpwcLCJiYnS6wXUF4UgCFXXAaiXzZs3JyYm6ujo9N4kEonGjBnz+PFjLS34CwT+Btc1oKc1a9YghIR90dTUZDAYEERAD3A+AnoiCGL8+PFNTU19buVwOLNnz1ZylYCag/MR0BOFQlm7du2oUaN6b7KwsHB2dlZ+lYCagzgC+rBmzZqurq4eiaNGjVq/fj2FQlFJlYA6g+sa0Ddra+vffvutR2JNTc306dNVUh+gzuB8BPRt3bp12trakimvv/46BBHQJ4gjoG/r1q0Ti8Xkqra2dnBwsArrA9QZXNeAfs2cObOmpgZ/QygUyv3791999VVVVwqoIzgfAf0KDAzU1NRECFEoFAcHBwgioD8QR0C/1qxZ8+LFC4SQpqZmYGCgqqsD1BfEEdAvc3PzuXPnUiiUFy9e+Pn5qbo6QH1BHAHSBAQEEATh6upqZmam6roANUaojXPnzqn6PwOAEcPX11fVP9m/qd2AK4gmChUfH48QCgsLk+kjISEh+vr6CqvU8CgrKzt8+PC/5PuDj6P6ULs4smrVKlVX4WWWmZmJZPxPdnFxsbCwUFiNhtPhw4f/Jd8ffBzVB9wfAQMYKUEEqBDEEQCAvCCOAADkBXEEACAviCMAAHlBHAEDyM7OnjhxYl1dnaorokAFBQU5OTl4OSkpadu2bQEBAW5ubiUlJYMsIS0tjU6n02g0JycnNpstuen8+fMhISEff/zxmjVrIiIiRCIRQqi6uvrYsWPEyzJKFuIIGIC+vr6JiQmVSlXcLvqbC1Y5Tpw4cf/+/aVLlyKE0tPTdXV1jxw58t133y1evNjV1fXHH38csIT4+PgzZ84EBAS89957d+7cWbp0aVFREd6UkZERExNz4sSJ6OjotLS0mzdvhoeHI4RsbW2dnJyYTKZCm6Y0EEfAADw8PG7evKm4wb5tbW3r1q1TUOEDunTp0k8//RQaGopXv//++7KyMrz83nvvEQSRmpoqvYT29vaff/45Nzd3+/bt8fHxly5dolAocXFxeGtSUtLs2bPJYdOLFy++cOEC3uTk5DR69OivvvpKIQ1TLrXrhwb+Vbq6uhgMxu+//66SvXd3d4eFhZ09e5ZMsbe3J08lsAHno71+/XpERAS56uzsbGdnR05JyePxioqKxGIxfllHTU3N+PHjycw7d+60srJavHjxa6+9Jn9zVAjOR4A0bW1tKSkpHh4e2dnZCKGqqqoPP/zQysqqra0tKCjIyMjIyckJR4Ha2to9e/bY2Ng0NjauWLFi7NixTk5O5eXlCKH09HQajTZx4kSE0PPnzw8fPkylUvHLKzIzM+/cudPa2rpx48ZDhw4hhK5duzZx4sS8vDwltC4lJYXL5drY2JApTCaTjCO3b99GCC1ZskR6IW5ubtOmTZNMMTAwsLS0xMvBwcF3795lMBidnZ3l5eVFRUW4mZi+vj6dTj948OBwtEalVD3A5294ZISqa/GS8/X1lWl8V21tLR6Mc/78eYIgmpqa3N3dEUKbNm26c+dOYWEhjUZbvXo1QRBMJtPQ0FBTUzMsLKy4uDgrK8vIyEhPT6+xsZEgCE9PzwkTJpDF0ul0Z2dnvOzt7W1paUluYrPZurq6qampsjZtCN+fRYsW+fn59bd1+/btDg4O3d3dMpUpFouNjY1TUlLIlPfffx8hNG3aNA8Pj4cPH/bIv2/fPgMDA7FYLNNeZD2OigbnI0CaadOmLV++nFw1MzNzdHRECB04cMDGxsbd3X3evHk3b95ECEVHR3t5eWloaLBYLFdXVx8fn4SEBD6fn5CQgBDS09OTLFbKG/m8vLx4PB6DwVBUkyTU1dWNGzeuz02dnZ35+fmZmZkaGrL9RnJycsaPH79+/Xoy5csvv6TT6Xfv3i0tLb169WqP/Kamplwut7a2VtbKqxWII2AAPX7z+JYhmfjKK6/weDy8rKenp6mpSc4yv3z5ch0dnVu3bsm6R7wLRevo6Hj06NGYMWP63Mpms5lMpqx3l7u6umJjYzMyMsgmCIXC5cuXh4SE/PjjjzQabd26dWlpaZIfMTQ0RAg1NzcPqRHqAuIIUBQtLS0LCwvJSefVikgkIgiiu7u7z611dXWS5xSDxGQyo6Ojra2tyZSwsDCBQLBx40YPD4+KiorJkydv2bLl+fPnZAZ8vqOrqyt7C9QIxBGgQHw+f+rUqaquRd8MDAyoVOqzZ8/63Gpvby/rmwOPHz8+f/78BQsWSCZmZGSQr0OeNGlSZGQkl8utrKwkMzx9+hQh1ONO7YgDcQQoSlNTU0tLi6+vL0JIS0urvb2d/OPf3t6OZ5BGCGloaOAuniRyk0JRKJQ5c+Y0Njb2udXLy0um0tLS0qhU6ooVK8iU0tJShJCRkRF53YcQotPpCCETExMypbW11czMbOzYsTLtTt1AHAEDEAgECCGhUIhX8W+evFoRCAR8Pp/MLBQKq6ur8fL+/fvXr1/v5OSEEJo+ffqzZ8+io6Pv3bu3f/9+oVD4yy+/4D/LFhYWjx8/rqqqunz5Mp/PLyoqGjNmzPnz55XQNAaDweFwiF6d0y9evGhpaUk2BCG0ZcsWFxeX3i8qxXJzc48ePSoSiRITExMTExMSErZu3VpTU4MQCgkJSU9Pb2lpwTkLCgrmzZs3ZcoU8rMcDmfAR8vqD/qhAWnKy8vxFH6JiYmWlpYCgSArKwshFBERsXfv3vz8/MuXLz9//jwyMhJ399bW1j516lRDQwONRrO0tNyzZw8uZ8eOHTdu3GCxWGw2++jRo/fv3xeLxQ0NDXZ2dqGhoVn1U80AACAASURBVGw229/f/8CBA/hOrb6+fo9XgipIYGAgi8UqLy8nLz0wPp8vFAol35ReX19fVlaWnJwcExPTo5CKigpfX1+BQIA7y2A6Ojr4TGfnzp2jR48OCAiYPn26pqZmZ2dndnY2+QxIIBBwOBwOh6OoFiqNqh88/w36jyiBQvsdbNiwgUqlKqjwAQ3t+1NRUbFs2bLB5CwpKYmJiZG9XtKEh4fHxcUN4YPQf2T4tbe3q7oKYKSi0+kMBiM5OVl6Nh6Pl5OTQw7DGRZ5eXkikWjXrl3DWKaqjOw4cvLkSQ8PD3W4152bm7t06VIKhYLv3rm4uNjZ2Tk7O+/evfv+/fuqrp2StLe344epqq6IbPz9/SdPnpyfny8lT01NTVRUFI1GG66dVldXc7nc3ldJI9TIjiPvvvtuZ2enOvRQ8PLywh03J0+ezOFwrl69WllZefTo0ZqamilTpuzZs0c5zyBU6PTp04WFhd3d3R988MHPP/+s6urIxsPDY/HixVIyzJ07d3hnTrC1tV29evUwFqhaI/s+q6am5oQJE/q7i65k+A0vkh2KHB0d2Wx2YGDgwYMHR48e/fHHH6uudgoXGBgI7wD+1xrZ5yNqpc9uSxoaGl999ZWJicn+/fvr6+uVXysAlGBExpELFy6EhITs3r37v//9r+RUWgRBJCQkhIaGzpo1y9PT89dff0VSh7rjrcHBwSwWa/ny5R4eHlLKQUMd0m5gYLBq1So+n5+RkaGESgKgAip9WvQPg3xul5qaOmvWLIFAQBBES0uLsbGxmZkZ3hQdHf3tt98SBCEWi52dnc3MzDo6OqQMdScIYsqUKVevXiUIQigUent7SymHGGhIO+5hPXXq1N6bzpw5gxAKDg5WQiWlU7fnhcPoX9VvQN2Ooxr9vw/me9DR0WFubp6Wlkam+Pj44Djy559/mpqakrNF4Nlizp49SxAEvjHR2tqKN73zzjvW1tYEQXR1dVEolC+//BKn5+fnSy+HIAgp80RIiSN4jk83NzflVFIKdfv+DSOIIyo0wu6zlpaWNjU1TZ8+nUwZNWoUXuBwOCKRaNOmTeSmDRs24Lue/Q1119bW9vT03LFjx+3bt2NiYhYtWiS9HDTUIe1cLhch9MYbbyinktI1NDTgK6yXDJ5X9aVsWm8NDQ0TJkxQdS3+NsLiyN27d5FE7JBUV1enr69/8uRJmQo8e/bsmjVrTp48+f3332dkZCxcuHBo5UiHq21ra6sOlSwvL/f39x/CB0eEl7hpPeABkGpihN1nxRHk4cOHvTfp6ek1NDQ0NDRIJra2tkovUE9PLy8v78yZM1paWosXL66rqxtaOVIQBJGZmUmj0by9vdWhkmp1PjyM/m3XNTJ+DRVrhMWRGTNmIITwNwZ78eIFHo0+ffp0giB2795Nbvrrr7+++eYbKaUJhcKkpCSE0Nq1a8vLywmCKC4ull6OlO5kRD/9OD///PNbt24dOnRo/PjxyqkkAEo2wq5r5s6du3Dhwm+//dbBwWH9+vV37ty5evVqS0tLenr6smXLHB0d09LSOjs7V6xY8dtvv3E4nPT0dCR1qPvXX38dGhqqqalpYWFhYGBgb28/a9as/sopKipauXJlSkpKn38N8DAfyUH0Dx8+/Pzzz48dO7Z9+/aNGzcihDw8PBRdSQBUQIXnZj0M8ryUy+W+++67pqamkyZN2rt3b0hISHBwcFFRUXd395MnT9auXWtiYmJsbBwYGPjnn38SBFFUVPT6668jhLZs2fLXX3+dPn3awMAAIbR3796Ojg5HR8dFixbFxMSEhIQkJyfjXfRZDkEQP/30k7m5eXZ2du9a/fjjj/iFbAghFxcXNzc3Ly+vJUuWhIWFVVVVSeZUdCWlU7f7/MPo33Zdo1bHkUKozaiqjIwMf39/9anPS8nPzw8hlJmZqeqKDL9/1fdH3Y7jCLs/AgBQQxBHAFC4Bw8edHR0qLoWCgRxBPxLFRQU5OTk4OWkpKRt27YFBAS4ubmVlJQMsoS0tDQ6nU6j0ZycnNhstuQmHo9naGhI+R8fHx88HFxSdXV1ZGTkwYMH6+vrq6urjx07NnIvykbY8xqg5pqamszNzdWhEOlOnDiBEMLzm6Wnp+vq6h45cgQhFBcX5+rqmpeXh/sNSxEfH19YWBgQEPDHH38kJSUtXbq0oKAAD5JCCKWkpKxcudLKygqvenp6Sn72wYMHu3fvbmtrS0hIwG8InzRpklAoZDKZLBZruNuqFKq9zSvpX3W/XVUUep//6dOnb7/9tqoKGfz3p6ioSPI/wc/PLzQ0FC8/efIEIRQQECC9BB6PR46iJAiirKxMQ0PD09MTr4rFYldXVzw1XG8VFRXGxsbbtm178eJFj01RUVH4rGRA6va8Bq5rwPDo6upiMBjkXAcqLES67u7usLCwyMhIMsXe3v7evXuSeQZ8A9b169cjIiLIVWdnZzs7O3I+raysrKqqqtWrVyclJUm+Og8h1Nra6u3tbW1t/fnnn/fey86dO6OiokbiRJwQR0DfsrKytm7dumvXriVLloSHh+P316Snp9NotIkTJyKEnj9/fvjwYSqVil/akJmZeefOndbW1o0bNx46dKi2tnbPnj02NjaNjY0rVqwYO3ask5MTfjPD4AtBQ53zRYqUlBQul2tjY0OmMJnMoqIivHz79m2E0IAvlHFzc+sxK7CBgYGlpSVeLi4u5vP5WVlZmzZtsrGxKSgokNxXc3Pzp59+2ueb0vX19el0+sGDB4fSMNVS9QnR3+C6RgkGeT4cHx8/Z86crq4ugiBaW1utra0XLFiAz8M9PT0nTJhA5qTT6c7OznjZ29vb0tISLzOZTENDQ01NzbCwsOLi4qysLCMjIz09vcbGxsEXQgw054ukQX5/Fi1a5Ofn19/W7du3Ozg4kBMyDJJYLDY2Nk5JSSFTRCLRjRs3goKCNDQ0qFRqbW0tQRDt7e36+vq6urp79uyZOXOmoaGhu7t7dXW1ZFH79u0zMDCQMj0FBtc1QN399ddf4eHhmzdvxi+jGjdu3CeffHLlypXU1FSEkJ6enmTmPv+uIoSio6O9vLw0NDRYLJarq6uPj09CQgKfz8ezYQ+yEISQl5cXj8djMBjytwurq6sbN25cn5s6Ozvz8/MzMzPJ91QNUk5Ozvjx4yXfK66lpeXg4PDNN99kZmYKhUL8PrDKysqOjg57e/ugoKDKysqbN28+evRo7ty5ku8GNTU15XK5tbW1Q2qcykAcAT2Vl5d3dHRMmjSJTPH29kYIFRcXy1QOfjke+Wa85cuX6+jo3Lp1S9b6DG3Olz51dHQ8evRozJgxfW5ls9lMJvPVV1+Vqcyurq7Y2NiMjIw+6+nj4+Pn51dVVYUQwvGCwWDgMRBWVlaxsbHt7e3Hjx8n8xsaGiKEmpubZaqDykEcAT3haRmePn1KppCXJPIUq6WlZWFhodqXhOBnKOTrynuoq6uTPKcYJCaTGR0dbW1t3V+G+fPnd3Z2IoSMjY3RP8Oiq6sr3i+Zgk+FBjkllfqAOAJ6wn+Qez80mTp1qpwl8/l8+QuRh4GBAZVKxTNg9mZvbz/gk5oejh8/Pn/+/AULFkjPhluN/5UMxzQaTVtbW/L8CIdvdXi1m0wgjoCeZs+eTaPRsrOzyZSGhgY+n79s2TKEkJaWVnt7O/knvb29nZyTRUNDA89+0KempqaWlhY85YJMhQzjK8Tw2w77O7Hy8vKSqbS0tDQqlbpixQoypbS0tHe2K1euBAcHI4TMzc1dXV3JZ0MIoSdPnohEImdnZzKltbXVzMxs7NixMtVE5SCOgJ7GjRvHYrGuXbt26dIlnHLkyJH169cvXLgQITR9+vRnz55FR0ffu3dv//79QqHwl19+qaysRAhZWFg8fvy4qqrq8uXLePIUoVBYXV2NC9m/f//69eudnJxkKqSoqGjMmDHnz58frtYxGAwOh0P06oF+8eJFS0tLsrYIoS1btri4uPT3lrXc3NyjR4+KRKLExMTExMSEhIStW7fW1NSUlpbOmDHj8OHDOEpmZ2fr6uoGBATgT8XGxt64cSM3Nxevpqam2traBgUFkcVyOJwBnzqrIegXD/qwefNmCwuLuLi4CxcuGBoampqakv21d+zYcePGDRaLxWazjx49ev/+fbFY3NDQYGdnFxoaymaz/f39Dxw4gJ/IaGtrnzp1qqGhgUajWVpa4scWMhWiqampr69P3qyVX2BgIIvFKi8vxz1WSHw+XygUdnV1kSn19fVlZWXJycm938JbUVHh6+srEAhwjxhMR0ensbGRx+OZmpru27fv4sWLc+bModPpp06dIvM4OjpyOJzIyMgffvjBxMSkra2tpKSEfFwlEAg4HA6HwxmuxiqPqh88/w36jyiBMvsdbNiwgUqlKmdfhCzfn4qKimXLlg0mZ0lJSUxMjHz1kkF4eHhcXNxgckL/EQBUjE6nMxiM5ORk6dl4PF5OTg4ey6cEeXl5IpFo165dytnd8II4AhSlvb0dP2dVdUX64O/vP3ny5Pz8fCl5ampqoqKiaDSaEupTXV3N5XJ7X0CNFHB/BCjE6dOnCwsLu7u7P/jgg9WrV+Pbq2qFfFNyf+bOnaucmiCEbG1tbW1tlba7YQdxBChEYGBgYGCgqmsBlASuawAA8oI4AgCQF8QRAIC8II4AAOSldvdZ8Qt+gILg/pcv5X8yfmv6S9m03srLyyVH5aicGr1Pr6ys7IsvvlB1LUBPly5deuutt0xNTVVdEfAPs2fP3rlzp6pr8f9TozgC1BOFQjl37tyqVatUXRGgvuD+CABAXhBHAADygjgCAJAXxBEAgLwgjgAA5AVxBAAgL4gjAAB5QRwBAMgL4ggAQF4QRwAA8oI4AgCQF8QRAIC8II4AAOQFcQQAIC+IIwAAeUEcAQDIC+IIAEBeEEcAAPKCOAIAkBfEEQCAvCCOAADkBXEEACAviCMAAHlBHAEAyAviCABAXhBHAADygjgCAJAXxBEAgLwgjgAA5AVxBAAgL4gjAAB5QRwBAMgL4ggAQF4UgiBUXQegXgIDAysrK8nVR48ejRs3Tk9PD69qa2v/8MMPFhYWKqodUEdaqq4AUDtTpkz57rvvJFO4XC65bGNjA0EE9ADXNaCndevWUSiUPjdpa2sHBQUptzpgBIDrGtAHOp3+//7f/+v93aBQKL///rulpaUqKgXUF5yPgD4EBgZqamr2SNTQ0HB2doYgAnqDOAL6sHr16hcvXvRI1NDQCAwMVEl9gJqDOAL6YGJismDBgh6nJARB+Pj4qKpKQJ1BHAF9CwgIkLw/oqmp6e7ubmJiosIqAbUFcQT0beXKlVpaf3cLIAhi3bp1KqwPUGcQR0DfaDTakiVLyFCipaW1bNky1VYJqC2II6Bf69at6+7uRghpaWktX76cRqOpukZATUEcAf3y9vbG3eG7u7vXrl2r6uoA9QVxBPSLSqWuXLkSIaSvr7948WJVVweoL4WPr8nIyFD0LoDiTJgwASHk6Oh44cIFVdcFDN2cOXPwoVQUQsEUWHUAwOCcO3dOoT9zZYz3PXfu3KpVq5SwIzC8KBTKuXPnfv31VyaT2bub/Ijm5+eHEMrMzFR1RZShv1GXwwjuj4AB7N69+yULImDYQRwBA5DsjQZAnyCOAADkBXEEACAviCMAAHlBHAFAvTx48KCjo0PVtZANxBEwnLKzsydOnFhXV6fqigyzgoKCnJwcvJyUlLRt27aAgAA3N7eSkpJBlpCWlkan02k0mpOTE5vNltzE4/EMDQ0p/+Pj46Ovr9/j49XV1ZGRkQcPHqyvr6+urj527Jhadc6CW/FgOOnr65uYmFCpVMXtoqmpydzcXHHl93bixAmEUGhoKEIoPT1dV1f3yJEjCKG4uDhXV9e8vLxFixZJLyE+Pr6wsDAgIOCPP/5ISkpaunRpQUGBu7s73pqSkrJy5UorKyu86unpKfnZBw8e7N69u62tLSEh4bXXXkMITZo0SSgUMplMFos13G0dKoX2csMhU9F96YCCqOGxe/r06dtvvy1/Ob6+vr6+voPJWVRUJJnTz88vNDQULz958gT9b8InKXg83urVq8nVsrIyDQ0NT09PvCoWi11dXUUiUZ+fraioMDY23rZt24sXL3psioqKwmclA1LCcYTrGjBidHV1MRiM33//XWl77O7uDgsLi4yMJFPs7e3v3bsnmWfA3qLXr1+PiIggV52dne3s7H777Te8mpWVVVVVtXr16qSkpOfPn0t+sLW11dvb29ra+vPPP++9l507d0ZFRd2/f38I7Rp2EEfAsGlra0tJSfHw8MjOzkYIVVVVffjhh1ZWVm1tbUFBQUZGRk5OTjgK1NbW7tmzx8bGprGxccWKFWPHjnVyciovL0cIpaen02i0iRMnIoSeP39++PBhKpU6e/ZshFBmZuadO3daW1s3btx46NAhhNC1a9cmTpyYl5enoBalpKRwuVwbGxsyhclkFhUV4eXbt28jhJYsWSK9EDc3t2nTpkmmGBgYkNPuFxcX8/n8rKysTZs22djYFBQUSO6rubn5008/7bMroL6+Pp1OP3jw4FAaNuwUerZDqOW5MRgkWY9dbW1tWFgYQuj8+fMEQTQ1NeFbAJs2bbpz505hYSGNRsNn+Ewm09DQUFNTMywsrLi4OCsry8jISE9Pr7GxkSAIT0/PCRMmkMXS6XRnZ2e87O3tbWlpSW5is9m6urqpqamyNm2Q1zWLFi3y8/Prb+v27dsdHBy6u7tl2rVYLDY2Nk5JSSFTRCLRjRs3goKCNDQ0qFRqbW0tQRDt7e36+vq6urp79uyZOXOmoaGhu7t7dXW1ZFH79u0zMDAQi8XS96iE3yCcj4BhM23atOXLl5OrZmZmjo6OCKEDBw7Y2Ni4u7vPmzfv5s2bCKHo6GgvLy8NDQ0Wi+Xq6urj45OQkMDn8xMSEhBC5LuEMSkd8728vHg8HoPBUFCL6urqxo0b1+emzs7O/Pz8zMxMDQ3ZfkQ5OTnjx49fv349maKlpeXg4PDNN99kZmYKhcI9e/YghCorKzs6Ouzt7YOCgiorK2/evPno0aO5c+c2NjaSHzQ1NeVyubW1tUNq3HCCOAKGU4/fPB7gRya+8sorPB4PL+vp6Wlqampra+PV5cuX6+jo3Lp1S9Y9Km4MYUdHx6NHj8aMGdPnVjabzWQyX331VZnK7Orqio2NzcjI6LPaPj4+fn5+VVVVCCEcLxgMxuuvv44QsrKyio2NbW9vP378OJnf0NAQIdTc3CxTHRQB4ghQC1paWhYWFmKxWNUV+Rt+hoJnqO2trq5O8pxikJhMZnR0tLW1dX8Z5s+f39nZiRAyNjZG/4ySrq6ueL9kCj4V0tXVlbUaww7iCFAXfD5/6tSpqq7F3wwMDKhU6rNnz/rcam9vL+u8HsePH58/f/6CBQukZ8P/CfhfyasYGo2mra0teX709OlThFCPm7gqAXEEqIWmpqaWlhZfX1+EkJaWVnt7O3ki0N7eTr4kVENDQyQSSX6w9/tDhwuFQpkzZ47kL1mSl5eXTKWlpaVRqdQVK1aQKaWlpb2zXblyJTg4GCFkbm7u6upKPhtCCD158kQkEjk7O5Mpra2tZmZmY8eOlakmigBxBAwngUCAEBIKhXgV/+bJqxWBQMDn88nMQqGwuroaL+/fv3/9+vVOTk4IoenTpz979iw6OvrevXv79+8XCoW//PJLZWUlQsjCwuLx48dVVVWXL1/m8/lFRUVjxow5f/68gprDYDA4HA7Rqwf6xYsXLS0tycojhLZs2eLi4kL2CukhNzf36NGjIpEoMTExMTExISFh69atNTU1paWlM2bMOHz4MA6a2dnZurq6AQEB+FOxsbE3btzIzc3Fq6mpqba2tkFBQWSxHA5nwKfOygH94sGwKS8vj4+PRwglJiZaWloKBIKsrCyEUERExN69e/Pz8y9fvvz8+fPIyMjw8HCEkLa29qlTpxoaGmg0mqWlJX5OgRDasWPHjRs3WCwWm80+evTo/fv3xWJxQ0ODnZ1daGgom8329/c/cOAAvlOrr69P3qwddoGBgSwWq7y8HHdgIfH5fKFQ2NXVRabU19eXlZUlJyfHxMT0KKSiosLX11cgEOAOMpiOjk5jYyOPxzM1Nd23b9/FixfnzJlDp9NPnTpF5nF0dORwOJGRkT/88IOJiUlbW1tJSQl501ogEHA4HA6HM/zNHgKFPlUmoP/ISKbQY7dhwwYqlaqgwgc0+H7xFRUVy5YtG0zOkpKSmJgY+eolg/Dw8Li4uMHkVMJvUE2va9rb21VdBQAQQohOpzMYjOTkZOnZeDxeTk4OHsunBHl5eSKRaNeuXcrZ3YDULo6cPHnSw8NDHW5ByyQ3N3fp0qV43PecOXNcXFzs7OycnZ13796tJiMg1E17ezt+sKrqigzM399/8uTJ+fn5UvLU1NRERUUp59Wl1dXVXC639wWUKin0bIeQ/ZxKLBa7uLiYmZkprkoywT21B6OhoQEhNHnyZDLl559/Xrx4saam5ieffCJr72nFGXyLZD12g3fq1CncTzQsLOz69euK2IV0g7+ueQko7jiS1O58RFNTU7Ev/pJFW1vbunXrBpkZzz0j2SnI0dGRzWavXr364MGDajJVhEwtUpzAwMDW1laCIL744gv8jAaMaGoXR9SHrKPU++yVpKGh8dVXX5mYmOzfv7++vn5YKygz5Y+7B/8S6hJHLly4EBISsnv37v/+979NTU048fHjx1988cWMGTOampo8PT0nT56MZ47JysraunXrrl27lixZEh4ejnsrSBmKjvX5KSWMUjcwMFi1ahWfz8/IyFC3FgEwPBR61UQM7tosNTV11qxZAoGAIIiWlhZjY2N8fyQvL2/q1Kmampp79+5NSUlxcnL6888/4+Pj58yZ09XVRRBEa2urtbX1ggULXrx4IX0oen+fIoZvlDruQD116tTem86cOYMQCg4OVrcWSTeYYzdCwf2RYd6FQksnBtGGjo4Oc3PztLQ0MsXHx4e8z/ree+8hhH799Ve82tzcrK+vf/r0aTLzN998gxD67rvvCIJgMBja2tr4p0UQBO7mGBERIf1TK1askPzVOTs7S/nVSZnrQUoc+fHHHxFCbm5uatgiKSCOvByUcBxV35+1tLS0qalp+vTpZMqoUaPIZW1tbS0tLTx0GiFUXl7e0dExadIkMoO3tzdCqLi4eN26df0NRZf+KZlqO7RR6lwuFyH0xhtvqGGLpIuPj38pX6aNLw/x28KB/FR/f+Tu3bvon7FDiocPH6L/DXPEyFP93pnJoegyfUoRcBttbW17bxqhLQJAkurPR3AEefjwIf5zLR2eNqb3E4f+xpvjoeiyfmp4EQSRmZlJo9HwKUMPat6isLCwVatWDW+Z6gCfibyUp1q9yTq/wRCo/nxkxowZCKFz586RKS9evOhv8pjZs2fTaDQ8jTDW0NDA5/OXLVvWOzM5FF36p4ZrlDrRT9fMzz///NatW4cOHRo/frwatggA+ak+jsydO3fhwoXffvvtiRMn+Hx+RUXF1atXW1pa0tPT+Xy+WCzu7u4mB56PGzeOxWJdu3bt0qVLOOXIkSPr169fuHAhXu1zKLr0Tw3XKHU8JkhyXPzDhw+3bdv20Ucfbd++fePGjThRrVo0xGMGwD+p/roGIZSdnY3fEhITE/Puu+96e3uLRCITE5OsrCw2m00QxK5duzZu3Pjmm28ihDZv3mxhYREXF3fhwgVDQ0NTU1PJrqL9DUWX8qlhGaVeUFBw7NgxhFB9ff28efN0dHR0dHQIgpg6dWplZSV5ZyQ1NVWtWjSshxH8iyn0aRCh3GeHqh2KrgiqbZEyj52SwXPf4aX66xoAgKQHDx50dHSouhayeaniyAgaij5IL1+LRqiCgoKcnBy8nJSUtG3btoCAADc3t5KSkkGWkJaWRqfTaTSak5MTm82W3MTj8QwNDSn/4+Pjg8d8Sqquro6MjDx48GB9fX11dTV+s6/87RouanF/ZFicPn26sLCwu7v7gw8+WL169UswivTla5GkpqYmc3NzdShkQCdOnEAI4TmK0tPTdXV1jxw5ghCKi4tzdXXNy8tbtGiR9BLi4+MLCwsDAgL++OOPpKSkpUuXFhQU4JcNIoRSUlJWrlxpZWWFVz09PSU/++DBg927d7e1tSUkJLz22msIoUmTJgmFQiaTqSaDyBF6ue6PgOGluGP39OnTt99+W4WFDP7+SFFRkWROPz+/0NBQvIzHWAYEBEgvgcfj4beRYmVlZRoaGp6ennhVLBa7urris87eKioqjI2Nt23bhkdOSYqKisJnJQNSwm/wpbquASPCsExfoJw5ELq7u/GTRDLF3t7+3r17knkG7OV1/fr1iIgIctXZ2dnOzo6cWT4rK6uqqmr16tVJSUnPnz+X/GBra6u3t7e1tfXnn3/eey87d+6MiopSk9n2II4Aeck5fYGU6RGUMKuDdCkpKVwu18bGhkxhMpnkO2Vu376NEBrwzQ9ubm495gk1MDCwtLTEy8XFxXw+Pysra9OmTTY2NgUFBZL7am5u/vTTT/t8w7G+vj6dTj948OBQGjbsFHq2Q8B1zUg2mGMn//QF0qdHGK5ZHXoY5HXNokWL/Pz8+tu6fft2BwcHWWfMFIvFxsbGKSkpZIpIJLpx40ZQUJCGhgaVSq2trSUIor29XV9fX1dXd8+ePTNnzjQ0NHR3d6+urpYsat++fQYGBlLGoGNK+A3C+QgYur/++is8PHzz5s24b964ceM++eSTK1eupKamIoR69HPr848qQig6OtrLy0tDQ4PFYrm6uvr4+CQkJPD5/ISEhMEXghDy8vLi8XgMBkP+dpHq6urwPLK9dXZ25ufnZ2Zm4pfsDl5OTs748eMl3w2spaXl4ODwzTffZGZmCoVC3NWwsrKyo6PD3t4+KCiosrLy5s2bjx49mjt3C74LfwAAIABJREFUruRQTFNTUy6XW1tbO6TGDSeII2DopExfIFM5/U2PIGt9hjarQ386OjoePXok+T5dSWw2m8lk4gGTg9fV1RUbG5uRkdFnVX18fPz8/KqqqtD/3uzLYDDwFBNWVlaxsbHt7e3Hjx8n8xsaGiKEmpubZaqDIkAcAUOnoOkLyOkR5K2ffPAzlP6GjNbV1UmeUwwSk8mMjo62trbuL8P8+fM7OzsRQsbGxuifkdHV1RXvl0zBp0KSU4urCsQRMHSKm74AT48gZyFyMjAwoFKpeJq73uzt7WUdj3/8+PH58+cvWLBAejbccPyvZESm0Wja2tqS50c4gqvDy54gjoChU9D0BeT0CLIWImVWhyHArzTr79zKy8tLptLS0tKoVOqKFSvIlNLS0t7Zrly5EhwcjBAyNzd3dXUlnw0hhJ48eSISiZydncmU1tZWMzOzsWPHylQTRYA4AoZuGKcv6HN6BJkKkT6rw9AwGAwOh0P06oF+8eJFS0tLssIIoS1btri4uJC9QnrIzc09evSoSCRKTExMTExMSEjYunVrTU1NaWnpjBkzDh8+jANldna2rq5uQEAA/lRsbOyNGzdyc3Pxampqqq2tbVBQEFksh8MZ8Kmzcrw8/eKBSgzX9AX9TY8wLLM6DFlgYCCLxSovL8edVkh8Pl8oFHZ1dZEp9fX1ZWVlycnJvV+XWVFR4evrKxAIJN8ZoqOj09jYyOPxTE1N9+3bd/HixTlz5tDp9FOnTpF5HB0dORxOZGTkDz/8YGJi0tbWVlJSQj6xEggEHA6Hw+EMY3uHTqFPlQnoPzKSKe3YKX96hMH3i6+oqFi2bNlgcpaUlMTExMhXLxmEh4fHxcUNJqcSjiNc1wAgDZ1OZzAYycnJ0rPxeLycnBw8lk8J8vLyRCLRrl27lLO7AUEcAaqn5tMj+Pv7T548OT8/X0qempqaqKgoGo2mhPpUV1dzudzeF1AqBPdHgIqNiOkRPDw8pGeYO3eucmqCELK1te3zHSYqBHEEqFhgYGBgYKCqawHkAtc1AAB5QRwBAMgL4ggAQF4QRwAA8oI4AgCQm0J7ualtjwAA/lUU3Z9V4c99JV8ADkYif3//HTt29BhgAkaWOXPmKLR8CpwyAOkoFMq5c+dWrVql6ooA9QX3RwAA8oI4AgCQF8QRAIC8II4AAOQFcQQAIC+IIwAAeUEcAQDIC+IIAEBeEEcAAPKCOAIAkBfEEQCAvCCOAADkBXEEACAviCMAAHlBHAEAyAviCABAXhBHAADygjgCAJAXxBEAgLwgjgAA5AVxBAAgL4gjAAB5QRwBAMgL4ggAQF4QRwAA8oI4AgCQF8QRAIC8II4AAOQFcQQAIC+IIwAAeUEcAQDIC+IIAEBeWqquAFA7Dx8+7O7ulkxpbm7+/fffyVULCwsqlar0egH1RSEIQtV1AOrlnXfeyc3N7W+rtrZ2c3PzmDFjlFkloObgugb0tHr16v42aWhoeHp6QhABPUAcAT35+Pj0d9lCEERAQICS6wPUH8QR0JO+vr63t7e2tnbvTTo6Ot7e3sqvElBzEEdAH9auXSsWi3skamtr+/j46Ovrq6RKQJ1BHAF98PLyGj16dI9EkUi0du1aldQHqDmII6APo0aN8vPzGzVqlGQijUZzd3dXVZWAOoM4AvrGYDC6urrIVW1t7TVr1vSILABg0H8E9O3FixdmZmYtLS1kypUrV+bPn6/CKgG1BecjoG8aGhpr164ln9oYGxu7uLiotkpAbUEcAf1as2aNSCRCCI0aNSooKEhDA74toG9wXQP6RRCEpaVlfX09QujGjRsODg6qrhFQU/AXBvSLQqEEBgYihKysrCCIAClUMN7Xz89P+TsFQ/P8+XOEEJVKhaM2guzcuXP27NnK3KMKzkfOnz/f0NCg/P0C6fo8LjQazdDQcOLEiSqp0nApLy8vLy9XdS2U5Pz5848ePVLyTlUz/0hYWNiqVatUsmvQHwqF0udxKSoqGundz/DJVGZmpqorogwUCkX5O4X7I2AAIz2IACWAOAIAkBfEEQCAvCCOAADkBXEEAFV68OBBR0eHqmshL4gjYOiys7MnTpxYV1en6ooMs4KCgpycHLyclJS0bdu2gIAANze3kpKSQZaQlpZGp9NpNJqTkxObzZbcxOPxDA0NKf/T59RQ1dXVkZGRBw8erK+vr66uPnbsmJr3O4f3ToCh09fXNzExUeg7KJqamszNzRVXfm8nTpxACIWGhiKE0tPTdXV1jxw5ghCKi4tzdXXNy8tbtGiR9BLi4+MLCwsDAgL++OOPpKSkpUuXFhQUkI+9UlJSVq5caWVlhVc9PT0lP/vgwYPdu3e3tbUlJCS89tprCKFJkyYJhUImk8lisYa7rcOHUDqE0Llz55S/XyCdGh6Xp0+fvv322/KX4+vr6+vrO5icRUVFkjn9/PxCQ0Px8pMnTxBCAQEB0kvg8XirV68mV8vKyvAk+3hVLBa7urqKRKI+P1tRUWFsbLxt27YXL1702BQVFYXPSgakkuMI1zVATXV1dTEYDMn3bylad3d3WFhYZGQkmWJvb3/v3j3JPAP28rp+/XpERAS56uzsbGdn99tvv+HVrKysqqqq1atXJyUl4TEHpNbWVm9vb2tr688//7z3Xnbu3BkVFXX//v0htEsJII6AIWpra0tJSfHw8MjOzkYIVVVVffjhh1ZWVm1tbUFBQUZGRk5OTjgK1NbW7tmzx8bGprGxccWKFWPHjnVycsId1dPT02k0Gu53//z588OHD1OpVDw2JDMz886dO62trRs3bjx06BBC6Nq1axMnTszLy1NQi1JSUrhcro2NDZnCZDKLiorw8u3btxFCS5YskV6Im5vbtGnTJFMMDAwsLS3xcnFxMZ/Pz8rK2rRpk42NTUFBgeS+mpubP/30Uy2tPu426Ovr0+n0gwcPDqVhSqDk8x9CLc+fASH7camtrQ0LC0MInT9/niCIpqYmfAtg06ZNd+7cKSwspNFo+AyfyWQaGhpqamqGhYUVFxdnZWUZGRnp6ek1NjYSBOHp6TlhwgSyWDqd7uzsjJe9vb0tLS3JTWw2W1dXNzU1VdamDfK6ZtGiRX5+fv1t3b59u4ODQ3d3t0y7FovFxsbGKSkpZIpIJLpx4waez4VKpdbW1hIE0d7erq+vr6uru2fPnpkzZxoaGrq7u1dXV0sWtW/fPgMDA7FYLH2PKvl9wfkIGKJp06YtX76cXDUzM3N0dEQIHThwwMbGxt3dfd68eTdv3kQIRUdHe3l5aWhosFgsV1dXHx+fhIQEPp+fkJCAENLT05Msts+/xpiXlxePx2MwGApqUV1d3bhx4/rc1NnZmZ+fn5mZKetkTjk5OePHj1+/fj2ZoqWl5eDg8M0332RmZgqFwj179iCEKisrOzo67O3tg4KCKisrb968+ejRo7lz5zY2NpIfNDU15XK5tbW1Q2qcYkEcAUPX4zevqakpmfjKK6/weDy8rKenp6mpSc7SuHz5ch0dnVu3bsm6R7wLRejo6Hj06FF/rxxls9lMJvPVV1+Vqcyurq7Y2NiMjIw+q+3j4+Pn51dVVYUQwvGCwWC8/vrrCCErK6vY2Nj29vbjx4+T+Q0NDRFCzc3NMtVBOSCOABXQ0tKysLDo/aotFcLPULq7u/vcWldXJ3lOMUhMJjM6Otra2rq/DPPnz+/s7EQIGRsbo39GSVdXV7xfMgWfCunq6spaDSWAOAJUg8/nT506VdW1+JuBgQGVSn327FmfW+3t7WUdj3/8+PH58+cvWLBAejb8n4D/lbyKodFo2trakudHT58+RQj1uImrJiCOABVoampqaWnx9fVFCGlpabW3t5MnAu3t7S9evMDLGhoaeKJpErlp2FEolDlz5kj+kiV5eXnJVFpaWhqVSl2xYgWZUlpa2jvblStXgoODEULm5uaurq7ksyGE0JMnT0QikbOzM5nS2tpqZmY2duxYmWqiHBBHwNAJBAKEkFAoxKv4N09erQgEAj6fT2YWCoXV1dV4ef/+/evXr3dyckIITZ8+/dmzZ9HR0ffu3du/f79QKPzll18qKysRQhYWFo8fP66qqrp8+TKfzy8qKhozZsz58+cV1BwGg8HhcIhePdAvXrxoaWlJVh4htGXLFhcXF7JXSA+5ublHjx4ViUSJiYmJiYkJCQlbt26tqakpLS2dMWPG4cOHcdDMzs7W1dUNCAjAn4qNjb1x40Zubi5eTU1NtbW1DQoKIovlcDgDPnVWFegXD4aovLw8Pj4eIZSYmGhpaSkQCLKyshBCERERe/fuzc/Pv3z58vPnzyMjI8PDwxFC2trap06damhooNFolpaW+DkFQmjHjh03btxgsVhsNvvo0aP3798Xi8UNDQ12dnahoaFsNtvf3//AgQP4Tq2+vj55s3bYBQYGslis8vLyHpOb8vl8oVAo+XbB+vr6srKy5OTkmJiYHoVUVFT4+voKBALJmRx1dHQaGxt5PJ6pqem+ffsuXrw4Z84cOp1+6tQpMo+joyOHw4mMjPzhhx9MTEza2tpKSkrIm9YCgYDD4XA4nOFv9rBQ8nNmAvqPqCuFHpcNGzZQqVQFFT6gwfeLr6ioWLZs2WBylpSUxMTEyFcvGYSHh8fFxQ0mp0p+X3BdA8Df6HQ6g8FITk6Wno3H4+Xk5OCxfEqQl5cnEol27dqlnN0NwYiJI+3t7aquAhi69vZ2/GBV1RUZmL+//+TJk/Pz86XkqampiYqKotFoSqhPdXU19/9j787jmjr2hoFPWATBG0BWEQVpqUofSsWIIKj4IooU1I8V0QhBq1Kltojl1lSpFUUBUbGuoNC6sQj6inKDiOAGDSj6ILhgW6kvSkEFxbAEQsDz/jHPc25uCCFwskF/37+SOSeTmQR+OcvMb3i8nidQamUQxJHjx497eXmpz+2ud+/eRUZGfv/99zLun5ub6+fnh5NNTJs2zd3dfdKkSS4uLps2bVLbaVfyderUqatXr3Z3d3/77bd37txRdXP65uXl5e3tLWUHNzc3hWZLEOXo6Lh06VLlvNeADYI48sUXX3R0dKjJmKWcnJwvv/xy586dsh8f+fj44AHg1tbWXC63uLi4vLz84MGDlZWV48eP37Jli+LuZaoJFovV2NhIEMS+ffvwPRowxAyCOKKpqWllZaXqVvwPPz+/48eP9/dVOOGV6EjEKVOmcDicpUuX7tq1S63z0wAgg0EQR9SNjo5Of18icSikhobG4cOHzczMoqOj8VrcAAxS6htHLl68GBISsmnTpq+//rq+vp4sJwgiMTFx3bp1U6dOnTNnzh9//IGkJr/AW1euXBkXF7dgwQIvLy8p9QzYwFJjGBgYLFmyhM/nZ2Zmqm3XAOibku8zE7Ld305NTZ06dWp7eztBEA0NDaamphYWFnhTTEzMiRMnCILo6upycXGxsLBoa2uTkvyCIIjx48cXFxcTBCEQCHx9faXUI0v78cSq9evXixZKT42BZ21MmDCh56YzZ84ghFauXKnyrsnyvQxSso8fGQJU8j2qYxxpa2sbNWpUWloaWbJo0SIcR/766y9zc3MylwxOk5WRkUEQBL6Bgq/nEQTx2Wef2dnZEQTR2dlJo9F++uknXJ6Xlye9nj5JjCMEQUhJMCMljly5cgUh5OnpqfKuQRwZGlTyParjuPiioqL6+noHBweyZNiwYfgBl8sVCoVffvkluWn16tX4+mVvyS+0tbXnzJmzYcOGhw8fxsbG4mTfUuoZsIGlxuDxeAihjz76SB26FhAQEBAQMIBeDAoqWUD7b0Id48iTJ0+QSOwQVVVVpa+v3987JhkZGcuWLTt+/PiFCxcyMzNnzZo1sHoUAXfW0dFRHbq2YcMGsaklQwOeB4SzQA55KvklUMc4giNITU3NRx99JLZJT0+vtra2trZW9E5wY2OjiYmJlAr19PQuX76cmpoaERHh7e19//79gdUjdwRBZGVl0el0X1/fjIwMlXfN1dV1yZIlVHqknrKyshBCQ7JrPakkjqjj/ZpPPvkEIXT27Fmy5P3793iqtYODA0EQmzZtIje9fv36l19+kVKbQCA4duwYQmj58uWlpaUEQVy/fn0A9fRJynAyopfx4Hv37n3w4MGePXtGjx6tzl0DQDp1PB5xc3ObNWvWiRMnJk+eHBwc/OjRo+Li4oaGhvT09Pnz50+ZMiUtLa2jo2PhwoVPnz7lcrnp6elIavKLn3/+ed26dZqampaWlgYGBk5OTlOnTu2tnj7h1Vjx1VZSQUHB559/npKSgnPziMGDX0WTcdTU1Ozdu/fQoUNhYWFr1qxBCHl5eam8awAMkJKv6xKyXU/m8XhffPGFubn52LFjt23bFhISsnLlyoKCgu7u7jdv3ixfvtzMzMzU1JTFYv31118EQRQUFOAEuaGhoa9fvz516pSBgQFCaNu2bW1tbVOmTJk7d25sbGxISEhycjJ+C4n19KmoqGjVqlUIIXNz8/T09Pr6elx+7dq1UaNGZWdn93zJlStX/Pz88Kft7u7u6enp4+Mzb9688PDw+/fvi+6p2q7J8r0MUnC/RtFohNKnYNJotLNnz/5NTlYHkSH8vfj7+6P/vUoy5Knke1TH8xoVwmm7Jfr555/JwwoAgCiII/+hoaFB1U0Aqpefny8QCPDPxrFjxx4+fNjU1FRXV/fjjz/OmDFDxkrevXu3Z8+e7u7umJgY0fK0tLR9+/b9/vvvEyZM+PHHHz/77DNy07lz5/Lz842Njf/f//t/dnZ2P/zwg7a2dkVFRVFR0VdffaXO41/U8X4NGHpEZ0iptpI+HT16tLq6GgeR9PT04cOHHzhw4PTp097e3h4eHnj8cZ96yy+RkJBw5syZoKCgVatWPXr0yM/Pj8wRn5mZGRsbe/To0ZiYmLS0tHv37uG8to6Ojs7Ozmw2W94dlSeII0DhmpqaAgMD1aGSPhUWFl67do1MmHjhwoWSkhL8eNWqVQRBpKamylKPxPwSra2td+7cyc3NDQsLS0hIKCwspNFo8fHxeOuxY8dcXV3x2GUajebt7X3x4kW8ydnZecSIEYcPH6beQQWB8xqgWJ2dnUwmk5ygrMJK+tTd3R0eHp6RkUGWODk5ia4pg/ozuL5nfonbt29v3bqVfOri4jJp0iRy8YqWlpaCgoKuri48AaKysnL06NHkzhs3brS1tfX29v7ggw/60yclgeMR0D/nz59fv359RETEvHnzIiMj8eI16enpdDp9zJgxCKHm5ub9+/fr6uriIfZZWVmPHj1qbGxcs2bNnj17Hj9+vGXLFnt7+7q6uoULF44cOdLZ2Rkv0SB7JWigiRqkS0lJ4fF49vb2ZAmbzSbjyMOHDxFCVFaQ8fT0FEsPamBgYGNjgx+vXLnyyZMnTCazo6OjtLS0oKAA9xTT19dnMBi7du0a8LsrlpLvMxNDepzCoCbL95KQkDBt2rTOzk6CIBobG+3s7GbOnPn+/XuCIObMmWNlZUXuyWAwXFxc8GNfX18bGxv8mM1mGxoaampqhoeHX79+/fz58yYmJnp6enV1dbJXQvSVqEGMjONH5s6d6+/v39vWsLCwyZMnkxOp+9TbvHBSV1eXqalpSkoKWfLVV18hhCZOnOjl5VVTUyO2/44dOwwMDKRMK8dU8v8FxyNAVq9fv46MjFy7di1eicrY2Hjz5s03b97Elwz09PREdyZnJ4uJiYnx8fHR0NCIi4vz8PBYtGhRYmIin8/HKWxlrAQh5OPj09LSwmQyqfeLVFVVZWxsLHFTR0dHXl5eVlYWXqxbLnJyckaPHi26/PhPP/3EYDCePHlSVFRUXFwstr+5uTmPx3v8+LG8GiBHEEeArEpLS9va2saOHUuW+Pr6IoSuX7/er3rwynjksngLFizQ0dF58OBBf9szsEQNvWlra3vx4oXoutyiOBwOm80eN26cvN6us7Nz9+7dmZmZZC8EAsGCBQtCQkKuXLlCp9MDAwPT0tJEX2JoaIgQevXqlbzaIEcQR4Csampq0P+ueo+RpyRUqtXS0rK0tFT5egB4eR1yuXIxVVVVogcO1LHZ7JiYGDs7O7IkPDy8vb19zZo1Xl5eZWVl1tbWoaGhzc3N5A74UIhilhwFgTgCZIV/jXveNJkwYQLFmvl8PvVKKDIwMNDV1cWZ63pycnKS4zCwI0eOzJgxY+bMmaKFmZmZZPKXsWPHRkVF8Xg8vF46hiO4+izkJAriCJCVq6srnU7Pzs4mS2pra/l8/vz58xFCWlpara2t5O95a2srmUhBQ0MDT1mWqL6+vqGhAc+T7lcl8l33B69S1tuxlY+Pj7zeKC0tTVdXd+HChWRJUVERQsjExASnucMYDAZCyMzMjCxpbGy0sLAYOXKkvFoiRxBHgKyMjY3j4uJ+/fXXwsJCXHLgwIHg4OBZs2YhhBwcHN69excTE/P7779HR0cLBILffvsN/5xaWlq+fPny/v37N27cwBkPBAJBRUUFriQ6Ojo4OBivjyV7JQUFBUZGRufOnZNjB5lMJpfLJXrMXL106ZKNjQ3ZYIRQaGiou7s7OfRDIon5JXJzcw8ePCgUCpOSkpKSkhITE9evX19ZWYkQCgkJSU9PJ2dm5OfnT58+ffz48eRruVwulbvOCgXj0EA/rF271tLSMj4+/uLFi4aGhubm5uQiXhs2bLh7925cXByHwzl48GB1dXVXV1dtbe2kSZPWrVvH4XACAgJ27tyJ78hoa2ufPHmytraWTqfb2Nhs2bKlv5Voamrq6+uTF2vlgsVixcXFlZaWiiWX5PP5AoGgs7OTLHn+/HlJSUlycnJvy+4WFxefOHECIZSTk5ORkeHh4WFhYVFWVrZ48eL29nY8XgbT0dHBB0EbN24cMWJEUFCQg4ODpqZmR0dHdnY2eXuovb2dy+VyuVw59leelHyfmYDxI+pKad/L6tWrdXV1lfBGJNnzj5SVlc2fP1+WPW/duhUbG0utXf0QGRkZHx8vy54q+f+C8xoA/o3BYDCZzOTkZOm7tbS05OTkkNNwFO3y5ctCoTAiIkI5bzcAEEeAsrW2tuKbrKpuiGQBAQHW1tZ5eXlS9qmsrNy+fTudTldCeyoqKng8Xm8nUGoCro8ApTp16tTVq1e7u7u//fbbpUuX4sur6oZc4bQ3bm5uymkJQsjR0dHR0VFpbzcwEEeAUrFYLBaLpepWADmD8xoAAFUQRwAAVEEcAQBQBXEEAECVaq6zkjkvgVoZqt9LbW0tQigzM1PVDRm6lDzuTW1HDQAwZPwt1tMDg8sQXmcPyAtcHwEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUAVxBABAFcQRAABVEEcAAFRBHAEAUKWl6gYAtXP8+PG3b9+Klly8ePHZs2fk05UrV5qZmSm9XUB90QiCUHUbgHpZu3ZtUlKSjo5Oz01CodDIyOjly5daWvALBP4NzmuAuGXLliGEBJJoamoymUwIIkAMHI8AcQRBjB49ur6+XuJWLpfr6uqq5CYBNQfHI0AcjUZbvnz5sGHDem6ytLR0cXFRfpOAmoM4AiRYtmxZZ2enWOGwYcOCg4NpNJpKmgTUGZzXAMns7OyePn0qVlhZWeng4KCS9gB1BscjQLLAwEBtbW3Rkg8//BCCCJAI4giQLDAwsKuri3yqra29cuVKFbYHqDM4rwG9+vTTTysrK/FfCI1Gq66uHjdunKobBdQRHI+AXrFYLE1NTYQQjUabPHkyBBHQG4gjoFfLli17//49QkhTU5PFYqm6OUB9QRwBvRo1apSbmxuNRnv//r2/v7+qmwPUF8QRIE1QUBBBEB4eHhYWFqpuC1BjBGVnz55VdScAAAO0ePFi6kFAbhOuIJoMVQkJCSEhIfr6+mKFCKHw8HAVNUqBSkpK9u/f/zf5e8bfI3VyiyNLliyRV1VArbi7u1taWooVZmVloaH7pe/fv3+odk0M/h6pg+sjoA89gwgAYiCOAACogjgCAKAK4ggAgCqIIwAAqiCOACXJzs4eM2ZMVVWVqhsiZ/n5+Tk5OfjxsWPHvvnmm6CgIE9Pz1u3bsleybt37yIjI7///nux8rS0NAaDQafTnZ2dORyO6KZz586FhIR8//33y5Yt27p1q1AoRAhVVFQcOnSIUPrkW4gjQEn09fXNzMx0dXUV9xa95ZRVnKNHj1ZXV/v5+SGE0tPThw8ffuDAgdOnT3t7e3t4eFy5ckWWSnJycr788sudO3e2traKlickJJw5cyYoKGjVqlWPHj3y8/MrKCjAmzIzM2NjY48ePRoTE5OWlnbv3r3IyEiEkKOjo7OzM5vNlndH+wBxBCiJl5fXvXv3FDdpuKmpKTAwUEGVS1RYWHjt2rV169bhpxcuXCgpKcGPV61aRRBEamqqLPX4+fkdP35crLC1tfXOnTu5ublhYWEJCQmFhYU0Gi0+Ph5vPXbsmKurKzkb29vb++LFi3iTs7PziBEjDh8+TL2DsoMFBMBQ0NnZyWQy//zzT6W9Y3d3d3h4eEZGBlni5OREHi9gsuey7bla0O3bt7du3Uo+dXFxmTRpEpnpsqWlpaCgoKurC68BUllZOXr0aHLnjRs32traent7f/DBB/3p08DB8QhQhqamppSUFC8vr+zsbITQ/fv3//nPf9ra2jY1Na1YscLExMTZ2RlHgcePH2/ZssXe3r6urm7hwoUjR450dnYuLS1FCKWnp9Pp9DFjxiCEmpub9+/fr6urixfByMrKevToUWNj45o1a/bs2YMQ+vXXX8eMGXP58mUF9SglJYXH49nb25MlbDabjCMPHz5ECM04ptyAAAAgAElEQVSbN2/A9Xt6ek6cOFG0xMDAwMbGBj9euXLlkydPmExmR0dHaWlpQUEB7jWmr6/PYDB27do14HfvN+pTdPBMBOr1gEFk8eLF/Zrf9fjxYzwZ59y5cwRB1NfXz549GyH05ZdfPnr06OrVq3Q6fenSpQRBsNlsQ0NDTU3N8PDw69evnz9/3sTERE9Pr66ujiCIOXPmWFlZkdUyGAwXFxf82NfX18bGhtzE4XCGDx+empra367J+Pc8d+5cf3//3raGhYVNnjy5u7tbxjft6OhACK1fv763Hbq6ukxNTVNSUsiSr776CiE0ceJELy+vmpoasf137NhhYGDQ1dUl/X37+z32Bo5HgDJMnDhxwYIF5FMLC4spU6YghHbu3Glvbz979uzp06ffu3cPIRQTE+Pj46OhoREXF+fh4bFo0aLExEQ+n5+YmIgQ0tPTE61Wysp+Pj4+LS0tTCZTQT2qqqoyNjaWuKmjoyMvLy8rK0tDQ27/Xzk5OaNHjw4ODiZLfvrpJwaD8eTJk6KiouLiYrH9zc3NeTze48eP5dUA6SCOACUR+5/H1wjJwn/84x8tLS34sZ6enqamJpmtfsGCBTo6Og8ePOjvO+K3UIS2trYXL14YGRlJ3MrhcNhsthyvKHd2du7evTszM5PskUAgWLBgQUhIyJUrV+h0emBgYFpamuhLDA0NEUKvXr2SVxukgzgC1J2WlpalpaVo8nqVEwqFBEF0d3dL3FpVVSV64EAdm82OiYmxs7MjS8LDw9vb29esWePl5VVWVmZtbR0aGtrc3EzugA+Fhg8fLsdmSAFxBAwCfD5/woQJqm7FvxkYGOjq6r57907iVicnJzmuOnjkyJEZM2bMnDlTtDAzM5NcZXns2LFRUVE8Hq+8vJzc4e3btwghsSu1igNxBKi7+vr6hoaGxYsXI4S0tLRaW1vJA4HW1laciRohpKGhgcd0kshNckej0aZNm1ZXVydxq4+Pj7zeKC0tTVdXd+HChWRJUVERQsjExIQ8DUQIMRgMhJCZmRlZ0tjYaGFhMXLkSHm1RDqII0BJ2tvbEUICgQA/xf/z5NlKe3s7n88ndxYIBBUVFfhxdHR0cHCws7MzQsjBweHdu3cxMTG///57dHS0QCD47bff8O+wpaXly5cv79+/f+PGDT6fX1BQYGRkdO7cOQV1h8lkcrlcoscI9EuXLtnY2JCNRwiFhoa6u7v3XORUVFtbG0II37Uh5ebmHjx4UCgUJiUlJSUlJSYmrl+/vrKyEiEUEhKSnp7e0NCA98zPz58+ffr48ePJ13K5XCp3nfsLxqEBZSgtLcUp/JKSkmxsbNrb28+fP48Q2rp167Zt2/Ly8m7cuNHc3BwVFYXHd2tra588ebK2tpZOp9vY2GzZsgXXs2HDhrt378bFxXE4nIMHD1ZXV3d1ddXW1k6aNGndunUcDicgIGDnzp34Sq2+vr7Y0qJyxGKx4uLiSktLyfMLjM/nCwQC0VXWnz9/XlJSkpycHBsbK7Gq4uLiEydOIIRycnIyMjJwVu2ysrLFixe3t7fjsTOYjo4OPgjauHHjiBEjgoKCHBwcNDU1Ozo6srOzydtD7e3tXC6Xy+XKu9O9o37rGMaP/A3Ja9yBRKtXr9bV1VVQ5X2S/e+5rKxs/vz5sux569at2NhYau3qh8jIyPj4eFn2HArjR8RmJQEwuDAYDCaTmZycLH23lpaWnJwcchqOol2+fFkoFEZERCjn7TDVxJHjx497eXkp7WKyfPU2xbs3ubm5fn5+NBoNX5xzd3efNGmSi4vLpk2bqqurFdrUQaq1tRXfWFV1Q/oWEBBgbW2dl5cnZZ/Kysrt27fT6XQltKeiooLH4/V2AqU4qokjX3zxRUdHh/qMCJB9vnlvU7yl8PHxwWMxra2tuVxucXFxeXn5wYMHKysrx48fv2XLFsXdVugv5c+77+nUqVNXr17t7u7+9ttv79y5o+rm9M3Ly8vb21vKDm5ubgrNliDK0dFx6dKlynkvUaqJI5qamlZWVip56576Nd9c4hTvPuHFX0QHBU2ZMoXD4SxdunTXrl1xcXH9rVARlD/vXiIWi9XY2EgQxL59+/A9GqD+/u73fQcw37znFO8+SRyVpKGhcfjwYTMzs+jo6OfPn/e3TvlS/rx7MJQoNY5cvHgxJCRk06ZNX3/9NXkI/fLly3379n3yySf19fVz5syxtrZ+8+YNQuj8+fPr16+PiIiYN29eZGQkHncgZVI5JvFV/ZpvPjADm6VuYGCwZMkSPp+fmZk5ND4H8DdF/ZaPjPfJUlNTp06d2t7eThBEQ0ODqamphYUFQRCXL1+eMGGCpqbmtm3bUlJSnJ2d//rrr4SEhGnTpnV2dhIE0djYaGdnN3PmzPfv30ufVN7bq4j+zDfvk8Qp3tJnqeMB1BMmTOi56cyZMwihlStXDq7PQaH3fVXrbzWOQV7fo5LiSFtb26hRo9LS0siSRYsW4ThCEMSqVasQQn/88Qd++urVK319/VOnTpE7//LLLwih06dPEwTBZDK1tbXxPwlBEHjA4tatW6W/auHChaL/Py4uLvKNIwRBSMn1ICWO4BSenp6eg+tzgDgyNMjre1TSeNaioqL6+noHBweyZNiwYeRjbW1tLS2tDz/8ED8tLS1ta2sbO3YsuYOvry9C6Pr164GBgb1NKpf+KkV27n8MbJY6j8dDCH300UdosH0OtbW1mZmZcqxQTeAcq0Oyaz3V1tbK5Y6HkuLIkydP0H/GDilqamrQ/05YxMiD9p47k5PK+/Uq9YE/GUdHx56b1PxzKC0tDQgIkG+d6mMId00MngBJkZKus+IIgv/E+4QTwPS8d9DbzHE8qby/r1IHBEFkZWXR6XR8yCBGzT8HOK8ZAuQSRJDS4sgnn3yCEMLfEPb+/fve0sC4urrS6XScEBirra3l8/nz58/vuTM5qVz6q/o133xgpAwnI3oZmrl3794HDx7s2bNHNNk3aZB+DuBvSElxxM3NbdasWSdOnDh69Cifzy8rKysuLm5oaEhPT+fz+V1dXd3d3eTwVmNj47i4uF9//bWwsBCXHDhwIDg4eNasWfipxEnl0l8l+3zzPvsicYq39FnqePCraOU1NTXffPPNd999FxYWtmbNGlw4uD4HAEjKyxuQnZ0dHh4eFRUVGxv7xRdf+Pr6CoVCMzOz8+fPczgcgiAiIiLWrFnz8ccfI4TWrl1raWkZHx9/8eJFQ0NDc3Nz0UGfvU0ql/Iq2eebS++FxCneCCEps9Tz8/MPHTqEEHr+/Pn06dN1dHR0dHQIgpgwYUJ5eTl5ZSQ1NXUQfQ4A/Afqp1hKPp9U7aRy9aHazwHu+w4Ng+y+72Bhamra26aff/4ZL+MKABAz+OIIOalcjql0SWSiOvWn0M8BgH4ZZPP0Bt2kcgWBz0F95Ofn5+Tk4MfHjh375ptvgoKCPD09b926JXslvSW1SUtLYzAYdDrd2dmZw+GIbjp37lxISMj333+/bNmyrVu34nttFRUVhw4dIpSfuoX6qdHf6nwSYIq+PoInCqmkkn79PR85cuTIkSP4cVpaGjkdYffu3TQaLS8vT5ZKLl26tGTJEtRjssW+ffvmzZu3f//+DRs26Onp0Wi0q1evko2cPHkynorx/v17Hx+f7777Dm+6ffs2+bhPQyGvIgASySUTihLSqRQWFl67do1MmHjhwgU8ph4htGrVKoIgUlNTZalHYlKb1tbWO3fu5ObmhoWFJSQkFBYW0mi0+Ph4vPXYsWOurq54KgaNRvP29r548SLe5OzsPGLEiMOHD1PvoOwG3/URMLTJJROKEtKpdHd3h4eHZ2RkkCVOTk4FBQWi+8h+6apnUpvbt29v3bqVfOri4jJp0iRy8YqWlpaCgoKuri68sGllZaXoUMaNGzfa2tp6e3t/8MEH/enTwMHxCFAsiplQpGRa6Vc6lYEliJEiJSWFx+PZ29uTJWw2m4wjDx8+RAhRWUHG09NTLIGxgYGBjY0Nfrxy5conT54wmcyOjo7S0tKCggLRrDH6+voMBmPXrl0Dfvd+o35qBNdH/oZkPK+mnglFeqYV2dOpSE8QI0rGv+e5c+f6+/v3tjUsLGzy5Mnd3d191oP1loyC1NXVZWpqmpKSQpZ89dVXCKGJEyd6eXnV1NSI7b9jxw4DAwMpuSwwuD4C1N3r168jIyPXrl2Lh/kaGxtv3rz55s2b+KqB2JBZfHzeU0xMjI+Pj4aGRlxcnIeHx6JFixITE/l8Pk6dLWMlCCEfH5+WlhYmk0m9X1hVVZWxsbHETR0dHXl5eVlZWeTCVNTl5OSMHj1adPnxn376icFgPHnypKioqLi4WGx/c3NzHo/3+PFjeTVAOogjQFGkZELpVz29ZVrpb3sGliBGora2thcvXhgZGUncyuFw2Gw2nngtF52dnbt3787MzCS7IBAIFixYEBIScuXKFTqdHhgYmJaWJvoSQ0NDhNCrV6/k1QbpII4ARVFQJhQy0wrV9lGARwD2NmG9qqpK9MCBOjabHRMTY2dnR5aEh4e3t7evWbPGy8urrKzM2to6NDS0ubmZ3AEfCokuUaBQEEeAoiguEwrOtEKxEioMDAx0dXVxusyenJyc5DjI+MiRIzNmzJg5c6ZoYWZmJrmu8NixY6Oiong8Hp63jeHwrbSl5iCOAEVRUCYUMtNKfyuR43pjeGnE3g6sfHx85PVGaWlpurq6CxcuJEuKiooQQiYmJi0tLWQhg8FACJmZmZEljY2NFhYWI0eOlFdLpIM4AhRFjplQJGZa6Vcl0hPEDACTyeRyuUSPEeiXLl2ysbEhW4sQCg0NdXd3J4d+SCQxqU1ubu7BgweFQmFSUlJSUlJiYuL69esrKysRQiEhIenp6eR0sPz8/OnTp48fP558LZfLpXLXub9gHBpQIHllQukt04rslUhJEDMwLBYrLi6utLSUPL/A+Hy+QCDo7OwkS54/f15SUpKcnNzbsrsSk9qUlZUtXry4vb1ddFkiHR0dfBC0cePGESNGBAUFOTg4aGpqdnR0ZGdnk7eH2tvbuVwul8uVV2f7Rv3WMYwf+RtSZv4RJWdakf3vuaysbP78+bLseevWrdjYWGrt6ofIyMj4+HhZ9oTxIwCoGIPBYDKZycnJ0ndraWnJyckhp+Eo2uXLl4VCYUREhHLeDoM4AtQdmWlF1Q2RICAgwNraOi8vT8o+lZWV27dvp9PpSmhPRUUFj8fr7QRKceD6CFBroplWli5dii+vqhUvLy/pO7i5uSmnJQghR0dHiWshKRrEEaDWWCwWi8VSdStAH+C8BgBAFcQRAABVEEcAAFRBHAEAUCW366z+/v7yqgqoPzzIckh+6bW1tWiIdq2n0tJSFxcX6vXQqN+WLykp2bdvH/WmAPVUWFj4X//1X+bm5qpuCFAIV1fXjRs3UqxEDnEEDG00Gu3s2bN4YQQAJILrIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqmgEQai6DUC9sFis8vJy8umLFy+MjY319PTwU21t7X/961+WlpYqah1QR1qqbgBQO+PHjz99+rRoCY/HIx/b29tDEAFi4LwGiAsMDKTRaBI3aWtrr1ixQrnNAYMAnNcACRgMxn//93/3/Nug0Wh//vmnjY2NKhoF1BccjwAJWCyWpqamWKGGhoaLiwsEEdATxBEgwdKlS9+/fy9WqKGhwWKxVNIeoOYgjgAJzMzMZs6cKXZIQhDEokWLVNUkoM4gjgDJgoKCRK+PaGpqzp4928zMTIVNAmoL4giQ7PPPP9fS+vewAIIgAgMDVdgeoM4gjgDJ6HT6vHnzyFCipaU1f/581TYJqC2II6BXgYGB3d3dCCEtLa0FCxbQ6XRVtwioKYgjoFe+vr54OHx3d/fy5ctV3RygviCOgF7p6up+/vnnCCF9fX1vb29VNweoLxXMr8nMzFT+m4KBsbKyQghNmTLl4sWLqm4LkNW0adPwF6c8hNIptXsA/P2cPXtWyf/UqjmvUX4/QZ96+16io6O7urqU3x45Wrx48eLFi1XdCiVRyX80XB8Bfdi0aVPPuTYAiII4AvogOhoNAIkgjgAAqII4AgCgCuIIAIAqiCMAAKogjoCBy87OHjNmTFVVlaobImf5+fk5OTn48bFjx7755pugoCBPT89bt27JXsm7d+8iIyO///57sfK0tDQGg0Gn052dnTkcjuimc+fOhYSEfP/998uWLdu6datQKEQIVVRUHDp0SFU3dGUEcQQMnL6+vpmZma6uruLeor6+XnGVS3T06NHq6mo/Pz+EUHp6+vDhww8cOHD69Glvb28PD48rV67IUklOTs6XX365c+fO1tZW0fKEhIQzZ84EBQWtWrXq0aNHfn5+BQUFeFNmZmZsbOzRo0djYmLS0tLu3bsXGRmJEHJ0dHR2dmaz2fLuqDxBHAED5+Xlde/evXHjximo/qamJiUnPSksLLx27dq6devw0wsXLpSUlODHq1atIggiNTVVlnr8/PyOHz8uVtja2nrnzp3c3NywsLCEhITCwkIajRYfH4+3Hjt2zNXVFQ/VodFo3t7e5FwEZ2fnESNGHD58mHoHFQSGBgA11dnZyWQy//zzT6W9Y3d3d3h4eEZGBlni5OREHi9gva3I0ZOOjo5Yye3bt7du3Uo+dXFxmTRp0tOnT/HTlpaWgoKCrq4uPGCnsrJy9OjR5M4bN260tbX19vb+4IMP+tMnJYHjETBATU1NKSkpXl5e2dnZCKH79+//85//tLW1bWpqWrFihYmJibOzM44Cjx8/3rJli729fV1d3cKFC0eOHOns7FxaWooQSk9Pp9PpY8aMQQg1Nzfv379fV1fX1dUVIZSVlfXo0aPGxsY1a9bs2bMHIfTrr7+OGTPm8uXLCupRSkoKj8ezt7cnS9hsNhlHHj58iBCaN2/egOv39PScOHGiaImBgQGZf3/lypVPnjxhMpkdHR2lpaUFBQW415i+vj6Dwdi1a9eA312xVDL+H+bXqKH+fi+PHz8ODw9HCJ07d44giPr6+tmzZyOEvvzyy0ePHl29epVOpy9dupQgCDabbWhoqKmpGR4efv369fPnz5uYmOjp6dXV1REEMWfOHCsrK7JaBoPh4uKCH/v6+trY2JCbOBzO8OHDU1NT+9s1GefXzJ0719/fv7etYWFhkydP7u7ulvFNOzo6EELr16/vbYeuri5TU9OUlBSy5KuvvkIITZw40cvLq6amRmz/HTt2GBgY9DnXSSX/X3A8AgZo4sSJCxYsIJ9aWFhMmTIFIbRz5057e/vZs2dPnz793r17CKGYmBgfHx8NDY24uDgPD49FixYlJiby+fzExESEELlyMCZlGL6Pj09LSwuTyVRQj6qqqoyNjSVu6ujoyMvLy8rK0tCQ279MTk7O6NGjg4ODyZKffvqJwWA8efKkqKiouLhYbH9zc3Mej/f48WN5NUCOII6AgRP7n8fXCMnCf/zjHy0tLfixnp6epqamtrY2frpgwQIdHZ0HDx709x0VN2Owra3txYsXRkZGErdyOBw2my3HK8qdnZ27d+/OzMwkeyQQCBYsWBASEnLlyhU6nR4YGJiWlib6EkNDQ4TQq1ev5NUGOYI4AlRAS0vL0tKyq6tL1Q35N6FQSBAEzkfbU1VVleiBA3VsNjsmJsbOzo4sCQ8Pb29vX7NmjZeXV1lZmbW1dWhoaHNzM7kDPhQaPny4HJshLxBHgGrw+fwJEyaouhX/ZmBgoKur++7dO4lbnZycZL9T06cjR47MmDFj5syZooWZmZn4AjNCaOzYsVFRUTwer7y8nNzh7du3CCGxK7VqAuIIUIH6+vqGhobFixcjhLS0tFpbW8kDgdbWVnJJUA0NDTymk9RztVB5odFo06ZNq6urk7jVx8dHXm+Ulpamq6u7cOFCsqSoqAghZGJiQp4GIoQYDAZCSHThscbGRgsLi5EjR8qrJXIEcQQMXHt7O0JIIBDgp/h/njxbaW9v5/P55M4CgaCiogI/jo6ODg4OdnZ2Rgg5ODi8e/cuJibm999/j46OFggEv/32G/4dtrS0fPny5f3792/cuMHn8wsKCoyMjM6dO6eg7jCZTC6XS/QYgX7p0iUbGxuy8Qih0NBQd3d3cuiHRG1tbQghfNeGlJube/DgQaFQmJSUlJSUlJiYuH79+srKSoRQSEhIenp6Q0MD3jM/P3/69Onjx48nX8vlcqncdVYoGIcGBqi0tDQhIQEhlJSUZGNj097efv78eYTQ1q1bt23blpeXd+PGjebm5qioKDy+W1tb++TJk7W1tXQ63cbGZsuWLbieDRs23L17Ny4ujsPhHDx4sLq6uqurq7a2dtKkSevWreNwOAEBATt37sRXavX19cmLtXLHYrHi4uJKS0vJ8wuMz+cLBILOzk6y5Pnz5yUlJcnJybGxsRKrKi4uPnHiBEIoJycnIyPDw8PDwsKirKxs8eLF7e3teOwMpqOjgw+CNm7cOGLEiKCgIAcHB01NzY6OjuzsbPL2UHt7O5fL5XK58u60nCj5PjMB40fUlUK/l9WrV+vq6iqo8j7Jnp+1rKxs/vz5sux569at2NhYau3qh8jIyPj4eFn2VMn/16A5rxGb7wSAIjAYDCaTmZycLH23lpaWnJwcchqOol2+fFkoFEZERCjn7QZgEMSR48ePe3l5qcllaimTvnuTm5vr5+dHo9HwlTx3d/dJkya5uLhs2rSpurpa0Q1WE62trfjGqqob0reAgABra+u8vDwp+1RWVm7fvl05C5VWVFTweLzeTqDUhZKPf4j+H3d1dXW5u7tbWFgorkky2rdv37x58/bv379hwwY9PT0ajXb16lVZXlhbW4sQsra2Jkvu3Lnj7e2tqam5efNm2YdaK1R/vxfZnTx5Eo8TDQ8Pv337tiLeQrq/27oTyj+vGQTXWTU1Na2srKRfG1cCctI3fhoQEODm5hYfH48nlUinr6+P/nME0ZQpUzgcDovF2rVr14gRI3pmuxlKWCwWi8VSdSuAAg2C8xo1IX3St3QShzBpaGgcPnzYzMwsOjr6+fPncmsoAEqnvnHk4sWLISEhmzZt+vrrr0WTYhEEkZiYuG7duqlTp86ZM+ePP/5AUiet460rV66Mi4tbsGCBl5eXlHqkkD7pe2BT2g0MDJYsWcLn8/Gax6rqGgBUKfk8ipDt/C01NXXq1Knt7e0EQTQ0NJiampLXR2JiYk6cOEEQRFdXl4uLi4WFRVtbm5RJ6wRBjB8/vri4mCAIgUDg6+srpR7ZeyE26Vv6lHY82nrChAk9N505cwYhtHLlSpV3TZbvZZCC6yMKf1Mlvx8hQz/b2tpGjRqVlpZGlixatAjHkb/++svc3Jy8MIkTvWRkZBAEgS8xNDY24k2fffaZnZ0dQRCdnZ00Gu2nn37C5Xl5edLrkdGFCxc+/fRT0WQQUhJDSIkjON+np6enyrsGcWRoUMn3qI7XWYuKiurr6x0cHMiSYcOG4QdcLlcoFH755ZfkptWrV+Prl71NWtfW1p4zZ86GDRsePnwYGxs7d+5c6fXIouekbzTQKe08Hg8h9NFHH6lD1xISErKysgbQCzWHx4/6+/uruiFDljrGkSdPniCR2CGqqqpKX1+/ZwZd6TIyMpYtW3b8+PELFy5kZmbOmjVrYPWQek76HjDcWUdHRzXpGgADoI5xBEeQmpqajz76SGyTnp5ebW1tbW2tlZUVWdjY2GhiYiKlQj09vcuXL6empkZERHh7e9+/f39g9WASJ30PDEEQWVlZdDrd19c3IyND5V0LDw9fsmQJlR6pJ3wkMiQPtXqSY34D2anj/ZpPPvkEIXT27Fmy5P3793heuYODA0EQmzZtIje9fv36l19+kVKbQCA4duwYQmj58uWlpaUEQVy/fn0A9WC9TfpGUqe0E72M49y7d++DBw/27NkzevRolXcNgAFTx+MRNze3WbNmnThxYvLkycHBwY8ePSouLm5oaEhPT58/f/6UKVPS0tI6OjoWLlz49OlTLpebnp6OpE5a//nnn9etW6epqWlpaWlgYODk5DR16tTe6pECT/pesWJFUlISQoggiIcPH06cOHH69OkFBQWff/55SkoKzqkhBk8OEp1EX1NTs3fv3kOHDoWFha1ZswYh5OXlpcKuAUCJkq/rErJdT+bxeF988YW5ufnYsWO3bdsWEhKycuXKgoKC7u7uN2/eLF++3MzMzNTUlMVi/fXXXwRBFBQUfPjhhwih0NDQ169fnzp1ysDAACG0bdu2tra2KVOmzJ07NzY2NiQkJDk5Gb+FxHqkuHPnTs+rlTo6Om/evCEI4tq1a6NGjcrOzu75witXruDF2RBC7u7unp6ePj4+8+bNCw8Pv3//vuiequqa7N/LIAX3axSNRih96hSNRjt79uyQPA8f1Ibw9/J3uz6i/O9RHc9rVMjU1LS3TT///DN5WAEAEAVx5D+QWe0AwPLz8wUCAf4JOXbs2MOHD5uamurq6n788ccZM2b0q6qKiors7Gxtbe3AwMCxY8cihLKysnBCSVtb2x07duD1gCoqKoqKir766iuV3HkZGHW8XwOGHtEZUqqtpF+OHj1aXV2Ng0h6evrw4cMPHDhw+vRpb29vDw8PPBZZFs+ePVuyZElERERgYODmzZtxEDl58mRBQcG+fftycnK0tLT8/f3xTChHR0dnZ2c2m624fskdxBGgcE1NTYGBgepQSb8UFhZeu3aNTHp24cKFkpIS/HjVqlUEQaSmpspSz927d1dhozAAACAASURBVKdOnTpq1Kj8/HxylW+hUMjj8ZKSkjw8PGbNmpWcnCwUCm/fvo23Ojs7jxgx4vDhw/Luk6LAeQ1QrM7OTiaTSU5QVmEl/dLd3R0eHp6RkUGWODk5kWuGY7KcdzQ2Nvr6+trZ2e3du1d0fw0NjdDQUPIpzvOEFzbFNm7caGtr6+3tTYYedQbHI6B/zp8/v379+oiIiHnz5kVGRuJFJ9LT0+l0+pgxYxBCzc3N+/fv19XVxVnXs7KyHj161NjYuGbNmj179jx+/HjLli329vZ1dXULFy4cOXKks7Mznv8ieyVooIkaZJeSksLj8ezt7ckSNptNxpGHDx8ihGRZBYLNZr969eqHH37ouYapaElqampUVJToKhP6+voMBmPXrl0UO6IkSr7PTAzpcQqDmizfS0JCwrRp0zo7OwmCaGxstLOzmzlz5vv37wmCmDNnjpWVFbkng8FwcXHBj319fW1sbPBjNpttaGioqakZHh5+/fr18+fPm5iY6Onp1dXVyV4J0VeiBjEDGD8yd+5cf3//3raGhYVNnjy5z4SYra2t+vr6w4cP37Jly6effmpoaDh79uyKigrRfVpaWqKiokxMTE6dOiX28h07dhgYGEiZRy6RSv6/4HgEyOr169eRkZFr167FK8gYGxtv3rz55s2b+DKBnp6e6M5iP7+kmJgYHx8fDQ2NuLg4Dw+PRYsWJSYm8vn8xMRE2StBCPn4+LS0tDCZTOr9kqiqqgqfa/TU0dGRl5eXlZVFLi7Tm/Ly8ra2NicnpxUrVpSXl9+7d+/Fixdubm7kqn1tbW14bsTbt29ZLFZKSoroy83NzXk83uPHj+XSI4WCOAJkVVpa2tbWhu81YL6+vgih69ev96sevKIVuZzVggULdHR0Hjx40N/2DCxRgyza2tpevHhhZGQkcSuHw2Gz2ePGjeuzHhwvmEwmHpFsa2u7e/fu1tbWI0eO4B309fV//PHHrKysK1euGBkZiZ3FGBoaIoRevXpFsTtKAHEEyKqmpgb972rVGHlKQqVaLS0tS0tLcvaQOsBLZJBLDoupqqoKDg6WpR48rFE03nl4eOAaxPacPXt2eHj4s2fPRNczxsc7sqfFUSGII0BW+Be4502TCRMmUKyZz+dTr0SODAwMdHV1cRa7npycnGQcIYY7JRpn6XS6tra2xCOdjz/+2MrKSnTVURyy1WTlJukgjgBZubq60un07OxssqS2tpbP58+fPx8hpKWl1draSv6Gt7a2kokUNDQ0RH9mxdTX1zc0NOB50v2qREqiBorwimW9HWf5+PjIWM+oUaM8PDxE7xa/efNGKBS6uLj03PnJkyf4kyQ1NjZaWFiMHDlS5oarDMQRICtjY+O4uLhff/21sLAQlxw4cCA4OHjWrFkIIQcHh3fv3uFR3tHR0QKB4LfffisvL0cIWVpavnz58v79+zdu3MAZDwQCQUVFBa4kOjo6ODjY2dm5X5UUFBQYGRmdO3dOQZ1lMplcLpfoMYv10qVLNjY2ZOMRQqGhoe7u7r2tQLJ79+67d++Syx6lpqY6OjquWLHi3bt3y5cvx/ebEEJPnz69efNmXFyc6Gu5XK4st5bVAYxDA/2wdu1aS0vL+Pj4ixcvGhoampubk3/6GzZsuHv3blxcHIfDOXjwYHV1dVdXV21t7aRJk9atW8fhcAICAnbu3InvyGhra588ebK2tpZOp9vY2GzZsqW/lWhqaurr64ueBcgXi8WKi4srLS3FA1hIfD5fIBB0dnaSJc+fPy8pKUlOTpa4dOaUKVO4XG5UVNS//vUvMzOzpqamW7duaWlpaWlpNTc3h4WFHTt2zMvLa9y4cRwOR/T+VHt7O5fL5XK5CuqgnCn5PjMB40fUldK+l9WrV+vq6irhjUgDyz9SVlY2f/58Wfa8detWbGxs/9slTWRkZHx8/ABeqJL/LzivAUAyBoPBZDKTk5Ol79bS0pKTk0NOw5GLy5cvC4XCiIgIOdapUBBHgLK1trbiG6uqbkjfAgICrK2t8/LypOxTWVm5fft2Op0urzetqKjg8XgSz5LUFlwfAUp16tSpq1evdnd3f/vtt0uXLsWXV9UZudppb9zc3OT7jo6Ojo6OjvKtU9EgjgClYrFYLBZL1a0AcgbnNQAAqiCOAACogjgCAKAK4ggAgCqIIwAAypQ87m1QjBoAYFBT/nhWFdz3FV0AHKi/gICADRs2iE0zAeps2rRpSn5HFazLCQaXIbxeJ5AXuD4CAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACo0lJ1A4Daqamp6e7uFi159erVn3/+ST61tLTU1dVVeruA+qIRBKHqNgD18tlnn+Xm5va2VVtb+9WrV0ZGRspsElBzcF4DxC1durS3TRoaGnPmzIEgAsRAHAHiFi1a1NtpC0EQQUFBSm4PUH8QR4A4fX19X19fbW3tnpt0dHR8fX2V3ySg5iCOAAmWL1/e1dUlVqitrb1o0SJ9fX2VNAmoM4gjQAIfH58RI0aIFQqFwuXLl6ukPUDNQRwBEgwbNszf33/YsGGihXQ6ffbs2apqElBnEEeAZEwms7Ozk3yqra29bNkyscgCAAbjR4Bk79+/t7CwaGhoIEtu3rw5Y8YMFTYJqC04HgGSaWhoLF++nLxrY2pq6u7urtomAbUFcQT0atmyZUKhECE0bNiwFStWaGjAXwuQDM5rQK8IgrCxsXn+/DlC6O7du5MnT1Z1i4Cagl8Y0CsajcZisRBCtra2EESAFHKe71tSUrJv3z751glUqLm5GSGkq6vr7++v6rYAuXF1dd24caMcK5Tz8ciLFy/OnTsn3zqBCtHpdENDwzFjxkjZp7S0tLS0VGlNUqba2tqh9/dcWlpaUlIi3zoVkn8kKytLEdUClSgoKJA+/AwfqgzJLz0zMzMgIGCIdU0Rh5ZwfQT0Acawgj5BHAEAUAVxBABAFcQRAABVEEcAAFRBHAEqkJ2dPWbMmKqqKlU3RM7y8/NzcnLw42PHjn3zzTdBQUGenp63bt3qb1UVFRVRUVG7du3C44kRQllZWU5OTiNGjPjkk08uXrxI7nbo0CGVj0qHOAJUQF9f38zMTKGLV9TX1yuucomOHj1aXV3t5+eHEEpPTx8+fPiBAwdOnz7t7e3t4eFx5coVGet59uzZkiVLIiIiAgMDN2/ePHbsWITQyZMnCwoK9u3bl5OTo6Wl5e/v/8cffyCEHB0dnZ2d2Wy24volC4gjQAW8vLzu3bs3btw4BdXf1NQUGBiooMolKiwsvHbt2rp16/DTCxcukGO9Vq1aRRBEamqqLPXcvXt36tSpo0aNys/P/+CDD3ChUCjk8XhJSUkeHh6zZs1KTk4WCoW3b9/GW52dnUeMGHH48GF596kfYB0sMNR0dnYymUzRhbsUrbu7Ozw8PCMjgyxxcnIqKCgQ3YdGo/VZT2Njo6+vr52d3d69e0X319DQCA0NJZ8aGxsjhKZMmUKWbNy40dbW1tvbmww9SgbHI0DZmpqaUlJSvLy8srOzEUL379//5z//aWtr29TUtGLFChMTE2dnZxwFHj9+vGXLFnt7+7q6uoULF44cOdLZ2RmPwU9PT6fT6XjAfnNz8/79+3V1dV1dXRFCWVlZjx49amxsXLNmzZ49exBCv/7665gxYy5fvqygHqWkpPB4PHt7e7KEzWaTceThw4cIoXnz5vVZD5vNfvXq1Q8//KCl9R8/8JqamqIlqampUVFR48ePJ0v09fUZDMauXbsodmTAII4AZXv58uWjR48KCgrw6p8WFhb3799/9uzZ999//91332VkZPz2229btmxBCJ0+ffrIkSO///77nj17NmzYkJyc/OzZM09Pz/r6+mXLluGogRCi0+kbNmxwcHDAT5cvX+7o6GhiYnL8+PGIiAiEEI/He/PmTVNTk4J69H//7/+dOnWqlK2TJ09esmSJ9Era2toyMjKGDx9eXFw8adIkIyMjLy+vyspK0X1aW1u3b9+ekJDQ85TQ1dX1/PnzYguqKg3EEaBsEydOXLBgAfnUwsICH6Lv3LnT3t5+9uzZ06dPv3fvHkIoJibGx8dHQ0MjLi7Ow8Nj0aJFiYmJfD4/MTERIaSnpydardhvuCgfH5+WlhYmk6mgHlVVVeFzjZ46Ojry8vKysrL6zAJVXl7e1tbm5OS0YsWK8vLye/fuvXjxws3Nra6uDu/Q1ta2d+/eBw8evH37lsVipaSkiL7c3Nycx+M9fvxYLj3qL4gjQAV6HreLFv7jH/9oaWnBj/X09DQ1Ncn0jgsWLNDR0Xnw4EF/3xG/hSK0tbW9ePGit7VKORwOm82W5YoyjhdMJvPDDz9ECNna2u7evbu1tfXIkSN4B319/R9//DErK+vKlStGRkZiZzGGhoYIoVevXlHszsBAHAGDiZaWlqWlZc81ulRIKBQSBNHbCUVVVVVwcLAs9ZiamqL/jHceHh64BrE9Z8+eHR4e/uzZM5z1EsPHO8OHD+9f6+UE4ggYZPh8/oQJE1Tdin8zMDDQ1dV99+6dxK1OTk6y3KlBCOFOkWcxCCE6na6trS3xSOfjjz+2srISXTv17du3CKGJEyf2q/HyAnEEDCb19fUNDQ2LFy9GCGlpabW2tpIHAq2tre/fv8ePNTQ0RH+rEULkJrmj0WjTpk0T/f8X5ePjI2M9o0aN8vDwEL1b/ObNG6FQ6OLi0nPnJ0+ezJ8/X7SksbHRwsJi5MiRMjdcniCOABVob29HCAkEAvwU/8+TZyvt7e18Pp/cWSAQVFRU4MfR0dHBwcHOzs4IIQcHh3fv3sXExPz+++/R0dECgeC3334rLy9HCFlaWr58+fL+/fs3btzg8/kFBQVGRkaKy2zGZDK5XG7PwemXLl2ysbEhG48QCg0NdXd3f/r0qcR6du/efffu3dzcXPw0NTXV0dFxxYoV7969W758eWpqKn6Lp0+f3rx5My4uTvS1XC5XllvLCgJxBChbaWlpQkICQigpKYnL5RYWFp4/fx4htHXr1oaGhtOnT9+4caO5uTkqKgofa2hra588eXLJkiWrV68eNWoUeZ9iw4YNfn5+cXFxwcHB3t7ebm5ufn5+tbW1CKF169ZZWloGBAQ0NjbiK7X6+vqiZwHyxWKxjI2NeyaX5PP5AoFAdFnC58+fl5SUJCcnS6xnypQpXC43MTExNDR027Zt1dXVt27d0tLS0tLSam5uDgsL8/DwiI6Ovn37NofDEV2wvb29ncvlbtq0SRG9kwkhV2fPnpV7nUDNLV68ePHixQqqfPXq1bq6ugqqvE+y/z2XlZXNnz9flj1v3boVGxtLrV3iIiMj4+PjZdxZEd8XHI8AIAcMBoPJZPZ2oEFqaWnJyckhp+HIxeXLl4VCIR5xpyrqEkdaW1tV3QSgjlpbW/GNVVU3pG8BAQHW1tZ5eXlS9qmsrNy+fTudTpfXm1ZUVPB4vNjYWHlVODCqjyPHjx/38vJS1f0qKtLS0hgMBp1Od3Z25nA4srwkNzfXz8+PRqPhi/zu7u6TJk1ycXHZtGlTdXW1ohs86Jw6derq1avd3d3ffvvtnTt3VN2cvnl5eXl7e0vZwc3NTb7ZEhwdHZcuXSrHCgdG9XHkiy++6OjoUJ+RRTLmrUhISDhz5kxQUNCqVasePXrk5+cnNr9TIh8fHzym29ramsvlFhcXl5eXHzx4sLKycvz48Vu2bFHc7cn+Un7+jp5YLFZjYyNBEPv27cP3aIB6Un0c0dTUtLKyUnUr/oeMeStaW1vv3LmTm5sbFhaWkJBQWFhIo9Hi4+NleQt8mV103OGUKVM4HM7SpUt37doldjNPVZSfvwMMaqqPI+pD9rwVt2/f3rp1K/nUxcVl0qRJvQ0KECNxdKOGhsbhw4fNzMyio6PJPHqqovz8HWCwU1kcuXjxYkhIyKZNm77++mvyEPrly5f79u375JNP6uvr58yZY21t/ebNG4TQ+fPn169fHxERMW/evMjISDx+SUpyCkziq/qVt6I3np6eYhd0DAwMbGxs8OOBZbswMDBYsmQJn8/PzMwcLJ8DAP9DvreRZbzfnpqaOnXq1Pb2doIgGhoaTE1NLSwsCIK4fPnyhAkTNDU1t23blpKS4uzs/NdffyUkJEybNq2zs5MgiMbGRjs7u5kzZ75//57NZhsaGmpqaoaHh1+/fv38+fMmJiZ6enp1dXUEQfT2KoIg5syZY2VlRTaGwWC4uLjgx76+vjY2Nv3tdVdXl6mpaUpKCn7K4XCGDx+ORx/2hCdiTJgwoeemM2fOIIRWrlw5uD4HhY4fUa0hOR5KEd+XCuJIW1vbqFGj0tLSyJJFixbhOEIQxKpVqxBCf/zxB3766tUrfX39U6dOkTv/8ssvCKHTp08TBMFkMrW1tfE/CUEQeODz1q1bpb9q4cKFov8/Li4uFOPIhQsXPv30066uLrJE9LEYKXEEpwL29PQcXJ8DxJHBZYiMQysqKqqvryezVyGEhg0bRj7W1tbW0tLCKRgQQqWlpW1tbThlNubr64sQun79Ouo9OYX0V8lXZ2fn7t27MzMzRWd8DyzbBY/HQwh99NFHaLB9DufOnaMNRQEBAQghVbdCzhQxz0gFeZ6fPHmC/jN2SFFTU4P+d040Rh6099yZTE7Rr1dRxGazY2Ji7OzsqFeFPxlHR8eem9T8c3BxcQkPD5dvneqgpKRk//79+KhkyMCTm+RLBXEER5Camhr8wysdTiTV895BbxkocHKK/r5qwI4cOTJjxoyZM2dSr4ogiKysLDqdjg8ZxKj552BlZdVn/tFBav/+/UOsa1lZWXKvUwXnNZ988glCSDTGv3//vrd0Uq6urnQ6HScWx2pra/l8vljyBYxMTiH9Vf3KWyFFWlqarq7uwoULyZKioiKyR729iuhliDdOvblnz57Ro0f33KrOnwMAKogjbm5us2bNOnHixNGjR/l8fllZWXFxcUNDQ3p6Op/P7+rq6u7uJoe3Ghsbx8XF/frrr4WFhbjkwIEDwcHBs2bNwk8lJqeQ/irZ81ZI6UVubu7BgweFQmFSUlJSUlJiYuL69etxdm/p2S7wTCLRymtqar755pvvvvsuLCxszZo1uHCwfA4AIFWtg5WdnR0eHh4VFRUbG/vFF1/4+voKhUIzM7Pz589zOByCICIiItasWfPxxx8jhNauXWtpaRkfH3/x4kVDQ0Nzc3PRQZ84OUVtbS2dTrexscHrFUh/1YYNG+7evRsXF8fhcA4ePFhdXd3V1VVbWztp0qR169ZxOJyAgICdO3eKpSMXVVZWtnjx4vb2dtFhGjo6Ovi6g5RsF/n5+YcOHUIIPX/+fPr06To6Ojo6OgRBTJgwoby8nLwykpqaOig+BwD+h3xv/yj5Pplqk1OoD9V+DnDfd3BRxPcF63L2Cufvlujnn3/Gy0EDANBgX9+XTE5Bky0ld780NDTIvU4FUejnAGSXn58vEAjwb8yxY8cePnzY1NRUV1f3448/zpgxo19VVVRUZGdna2trBwYG4hFAWVlZ+GKWra3tjh078FpiFRUVRUVFX331lWq/+kE8T2/QJadQkCH/Ocglg4ES0iAcPXq0uroaB5H09PThw4cfOHDg9OnT3t7eHh4eeLCyLJ49e7ZkyZKIiIjAwMDNmzfjIHLy5MmCgoJ9+/bl5ORoaWn5+/v/8ccfCCFHR0dnZ2c2m624fslEvqdJQ/J8Ekin0Osjb9++/T//5/+oqhLZ/54LCgpEPwR/f/9169bhx3iOZVBQkCz1lJWVmZqafvPNN3gOFNbZ2fnTTz+RT/GipXhyA7Z9+/ZDhw7JUj8B10fA341cMhgoIQ1Cd3d3eHh4RkYGWeLk5CSW10qW847GxkZfX187O7u9e/eK7q+hoREaGko+xWsJ40WRsY0bN9ra2np7e3/wwQdUOjJgg/i8Bgw6FDMYSMmQ0K80CANL7CBFSkoKj8ezt7cnS9hsNhlHHj58iBCSZXEZNpv96tWrH374oef6x6IlqampUVFR48ePJ0v09fUZDIbYir9KJd/DGziv+RuS8TiZegYD6RkSZE+DID2xgygZ/57nzp3r7+/f29awsLDJkyd3d3dLr6S1tVVfX3/48OFbtmz59NNPDQ0NZ8+eXVFRIbpPS0tLVFSUiYmJ6BxubMeOHQYGBlImmpOGyHxf8Df0+vXryMjItWvX4uF5xsbGmzdvvnnzZmpqKkJIbKib2K8xKSYmxsfHR0NDIy4uzsPDY9GiRYmJiXw+H6e8lbEShJCPj09LSwuTyaTeL6yqqgqfa/TU0dGRl5eXlZWF1/GWory8vK2tzcnJacWKFeXl5ffu3Xvx4oWbmxs5qbKtrQ1Pnnj79i2LxSLXA8PMzc15PN7jx4/l0qP+gjgClEFeGQx6y5DQ3/YMLLGDRG1tbS9evJC4mjdCiMPhsNlsPGFSOhwvmEwmThZha2u7e/fu1tbWI0eO4B309fV//PHHrKysK1euGBkZiZ3FGBoaIoRevXpFsTsDA3EEKIOCMhiQGRKoto8CPHKnt4mmVVVVwcHBstSDxz2KBjgPDw9cg9ies2fPDg8Pf/bsmehcSny8I5o/XJkgjgBlUFwGA5whgWIlVBgYGOjq6uI0dz05OTnJOEIM90I0sNLpdG1tbYlHOh9//LGVlZXoHC4co1W1DhTEEaAMCspgQGZI6G8lclwniEajTZs2rbcDKx8fHxnrGTVqlIeHh+jd4jdv3giFQhcXl547P3nyRCxlRGNjo4WFxciRI2VuuDxBHAHKIMcMBhIzJPSrEumJHQaAyWRyuVyiR2aZS5cu2djYkK1FCIWGhrq7u/e2RMnu3bvv3r2bm5uLn6ampjo6Oq5YseLdu3fLly/HN5gQQk+fPr1586bYUkdcLleWW8sKAuPQgJLIK4NBbxkSZK9ESmKHgWGxWHFxcaWlpXjEConP5wsEgs7OTrLk+fPnJSUlycnJElfknTJlCpfLjYqK+te//mVmZtbU1HTr1i0tLS0tLa3m5uawsLBjx455eXmNGzeOw+GI3pBqb2/ncrlcLldePeo3+d5GhvEjf0PKzBug5AwJsv89l5WVzZ8/X5Y9b926FRsbS61d4iIjI+Pj42XcGcaPAKCmGAwGk8lMTk6WvltLS0tOTs66devk+NaXL18WCoURERFyrLO/II6AwYTMkKDqhkgQEBBgbW2dl5cnZZ/Kysrt27fT6XR5vWlFRQWPx5N4lqRMcH0EDBqiGRKWLl2KL6+qFS8vL+k7uLm5yfcdHR0dJS5UomQQR8CgwWKxWCyWqlsBJIDzGgAAVRBHAABUQRwBAFAFcQQAQJVCrrNmZmYqolqgnmpra9EQ/dJLSkrQkOtabW2tlZWVnCuV77C2IbYyOwBDktzHs9IItRzSA9QHjUY7e/bskiVLVN0QoL7g+ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCqIIwAAqiCOAACogjgCAKAK4ggAgCotVTcAqJ3jx4+/fftWtOTixYvPnj0jn65cudLMzEzp7QLqi0YQhKrbANTL2rVrk5KSdHR0em4SCoVGRkYvX77U0oJfIPBvcF4DxC1btgwhJJBEU1OTyWRCEAFi4HgEiCMIYvTo0fX19RK3crlcV1dXJTcJqDk4HgHiaDTa8uXLhw0b1nOTpaWli4uL8psE1BzEESDBsmXLOjs7/397dxrV1NE3AHxCQIHQIIKyVFBRqtKDlC2K0D7hAIoUxONh0YBBKqJyXMBajUoVLLIoFutxQYFWBQSNVJSDoLIo1Sguh8UFN0orKipRCCSBEOA+H+a8983DEgJJuIEzv0/J3Jt/Zrzk771z78z0Khw3blxwcDCJRCKkSogqQ9c1SP8sLCxevXrVq7CmpsbKyoqQ+iCqDJ2PIP0LCgrS0NCQLJk5cyZKIki/UB5B+hcUFNTV1YW/1dDQCAkJIbA+iCpD1zXIgL755puamhr4F0Iikerq6qZPn050pRBVhM5HkAExmUwymQwAIJFIdnZ2KIkgA0F5BBnQihUrenp6AABkMpnJZBJdHUR1oTyCDMjY2NjJyYlEIvX09Pj5+RFdHUR1oTyCSLNy5UoMw+h0upGREdF1QVQYRiiiW48gY8S5c+cI/CETP+AqIiICjddQNQEBAfhxSU5ODgsLo1AoRFdKMZKTkwEAkZGRRFdEkQICAoitAPF5xNHR0d/fn+haIP8jICAAPy7Ozs4mJiZE10hh2Gw2AGCM/ckRnkdQ/wgyiLGURBAlQXkEQRB5oTyCIIi8UB5BEEReKI8gCCIvlEcQxcjLyzM1Na2trSW6Igp27dq1/Px8+PrkyZObNm1auXKlq6treXn5UENVV1fHxMTExcW9fv0alrDZbFtbWx0dnblz5166dAnf7ciRI6Pr6SqURxDFoFAokydP1tTUVN5XDDRlrPIcP368rq7O29sbAJCdna2lpXX48OGMjAwPDw86nX716lUZ49TX1/v7+2/dujUoKGjnzp1mZmYAgNOnTxcXF//666/5+fnq6up+fn4vX74EAFhbW9NoNBaLpbx2KRzKI4hiuLu7P3z4UHljgpubm4OCgpQUvF8lJSWlpaXr16+Hby9evHjnzh34evXq1RiGZWVl2ZCGhgAAEWJJREFUyRLnwYMH8+bNMzY2vnbt2owZM2ChWCzm8XgnTpyg0+kuLi5paWlisbiiogJupdFoOjo6R48eVXSblIX459AQZFCdnZ0MBuPvv/8esW/s7u6OjIzMycnBS2xtbYuLiyX3kWWqWi6X6+XlZWFhcfDgQcn91dTUwsPD8bf6+voAAAcHB7xky5Yt5ubmHh4eeOpRZeh8BFGA5ubm9PR0d3f3vLw8AEBVVdVPP/1kbm7e3Ny8atUqAwMDGo0Gs8DTp0937dplaWn57t27pUuXTpw4kUaj3b17FwCQnZ1NpVJNTU0BAK2trYcOHdLU1ITP5rPZ7CdPnnC53DVr1iQlJQEAbt++bWpqWlhYqKQWpaen83g8S0tLvITFYuF55PHjxwCAxYsXDxqHxWJ9+PDh559/7rXoD5lMlizJysqKiYmZNWsWXkKhUOzt7ePi4uRsyMhAeQRRgPfv3z958qS4uLi7uxsAYGRkVFVVVV9fv2PHjm3btuXk5Dx//nzXrl0AgIyMjGPHjr148SIpKSkiIiItLa2+vt7V1bWxsXHFihX4SCsqlRoREYFPBxsYGGhtbW1gYJCamrp161YAAI/H+/TpU3Nzs5Ja9Oeff86bN0/KVjs7u0EfrhcIBDk5OVpaWrdu3bKxsdHT03N3d6+pqZHch8/n7927Nzk5ue8loaOjY25uLvwnVXEojyAKMGfOHB8fH/ytkZERPEXft2+fpaWlm5vbt99++/DhQwBAfHy8p6enmppaYmIinU5ftmxZSkqKUChMSUkBAGhra0uGlbJwn6enZ1tbG4PBUFKLamtr4bVGXx0dHUVFRWw2W01tkJ9PZWWlQCCwtbVdtWpVZWXlw4cPGxoanJyc3r17B3cQCAQHDx589OjR58+fmUxmenq65McNDQ15PN7Tp08V0iKlQnkEUYy+5+2ShV988UVbWxt8ra2tTSaT8cnofXx8xo8f/+jRo6F+I/wKZRAIBA0NDXp6ev1uLSgoYLFYsvQow3zBYDBmzpwJADA3N9+/fz+fzz927BjcgUKh7Nmzh81mX716VU9Pr9dVzIQJEwAAHz58kLM5IwDlEYRg6urqJiYmknPTE04sFmMYNtAFRW1tbXBwsCxxJk2aBP4339HpdBih155ubm6RkZH19fVisRgvhOc7WlpaQ6s9EVAeQYgnFApnz55NdC3+n66urqamZktLS79bbW1tZVxUEDYKv4oBAFCpVA0NjX7PdL7++uspU6ZIrhn0+fNnAMCcOXOGVHlCoDyCEKyxsbGpqcnX1xcAoK6uzufz8RMBPp8PJ5oGAKipqUn+Xw0AwDcpHIlEWrBggeTvX5Knp6eMcYyNjel0uuTd4k+fPonF4n7XSH727NmSJUskS7hcrpGR0cSJE2WuOGFQHkEUo729HQAgEongW/ibx69W2tvbhUIhvrNIJKquroavY2Njg4ODaTQaAMDKyqqlpSU+Pv7FixexsbEikej58+eVlZUAABMTk/fv31dVVd24cUMoFBYXF+vp6V24cEFJzWEwGBwOp+/D6ZcvX542bRpeeQBAeHi4s7Nz3zVMof379z948ODKlSvwbVZWlrW19apVq1paWgIDA7OysuBXvHr16ubNm4mJiZKf5XA4stxaVgUojyAKcPfuXThf4YkTJzgcTklJSW5uLgBg9+7dTU1NGRkZN27caG1tjYmJgecaGhoap0+f9vf3Dw0NNTY2xu9TREREeHt7JyYmBgcHe3h4ODk5eXt7v3nzBgCwfv16ExOTgIAALpcLe2opFEqvlUMViMlk6uvrwwdbJAmFQpFIJLmI+uvXr+/cuZOWltZvHAcHBw6Hk5KSEh4eHh0dXVdXV15erq6urq6u3traunnzZjqdHhsbW1FRUVBQIDl5ZXt7O4fD2b59uzJap3gEzg0LMzGx89Mi/VLqcQkNDdXU1FRS8EH5+vr6+vrKsuf9+/eXLFkiy57l5eUJCQny1au3qKioAwcOyLgz4b+jUXk+wufzia4CMvbZ29szGIyBTjRwbW1t+fn5+DAchSgsLBSLxfCJu1FhlOWR1NRUd3d3FenB7nfQt3RXrlzx9vYmkUiwJ8/Z2dnGxmb+/Pnbt2+vq6tTdoVVBJ/PhzdWia7I4AICAqZOnVpUVCRln5qamr1791KpVEV9aXV1NY/HS0hIUFTAkUDguRA29POxrq4uZ2dnIyMj5VVJRqdOnQoLCysrKystLbWxsdHQ0Hjx4oUsH4RX+1OnTsVL7t275+HhQSaTd+7c2d3drawaD8VQj4vsTp8+DZ8TjYyMrKioUMZXSCf7dc0oorzjJaNRNt6XTCZPmTJloL7xEYMP+oZv09LS7OzsKioqLCwsBv0s7EuTfLjIwcGhoKCAyWTGxcXp6Ojs2LFDSdVWBUwmEy0VPPaMsusaFTHooG8p+n2ESU1N7ejRo5MnT46NjcUny0KQ0WJ05JFLly6FhYVt375948aNkpNiYRiWkpKyfv36efPmLVy4EE4nJWXQOtwaEhKSmJjo4+Pj7u4uJY4U0gd9D29Iu66urr+/v1AoPH/+PIFNQ5DhIPCaCpPtui4rK2vevHnt7e0YhjU1NU2aNAnvH4mPjz916hSGYV1dXfPnzzcyMhIIBI2NjW5ubgCAtWvXPnny5Pr161Qqdfny5fAjs2bNunXrFoZhIpHIy8tLShxZ6t/W1hYTE2NgYHDmzBm8sKCgQEtLCz5i1Bd82nr27Nl9N2VmZgIAQkJCCG+aLMdllEL9I0qpAIHfjcnQfoFAYGxsfPbsWbxk2bJlMI+8ffvW0NAQ75iE09vk5ORgGAa7GLhcLtz0/fffW1hYYBjW2dlJIpF+++03WF5UVCQ9jnR8Pj86OtrX1xeOp0pLS8M3dXV1DfQpKXkEzvfp6upKeNMI/7tUHpRHlEHV+1n/+uuvxsZGfD4bAMC4cePgCw6HIxaL165di28KDQ2F/ZcDDVrX0NBYuHBhRETE48ePExISFi1aJD2OdHDQNwCguLjY398/Li5u9erVcNPwhrTzeDwAwFdffUV40wAA+FykYwy8XwYvHhFFUfU88uzZMyCROyTV1tZSKJTU1NQhBczJyVmxYkVqaurFixfPnz/v4uIyvDiS4KDvPXv2iMVieZ7Uho21trZWhaYdOnTo0KFDw/jgqED4wtpjjKr3s8IM8u+///bdpK2t/ebNG/jfC47L5UoPqK2tXVhYmJmZqa6u7uHhUVtbO7w4vfQd9D1UGIax2Wwqlerl5aUKTUPXNaPIUP/YFE7V88jcuXMBAOfOncNLenp64FgvKysrDMMkBzJ9/Pjxjz/+kBJNJBKdPHkSABAYGHj37l0Mw8rKyoYRp69eg76lDGkf6KjD+fWSkpK+/PJLlWoaggyOwCSKydY/5OLiQiaTjx07JhAI7t27Z2JiAgA4e/Ysn8+Hj2wsW7bszJkzu3fvdnNza2pqwv7vl4N3Rvr4+FCpVAzDOjo6bGxsYCdoZ2engYHBnTt3enp6BoozkObmZgaDkZmZ2dPTg2HYy5cvFy5cyOfz4VZ4G4XNZvf72YaGBgCAmZkZXvLPP/9s3LiRRCJt3rwZlkipkrKbBslyXEapsXo+gu7XDNJ+Ho/3ww8/GBoampmZRUdHh4WFhYSEwKnJP336FBgYOHny5EmTJjGZzLdv32IYVlxcDKfDDA8P//jx45kzZ3R1dQEA0dHRAoHAwcFh0aJFCQkJYWFh+B2WfuNI0dbW5uXlpa+v/9133/3yyy+ZmZlwwAhUWlpqbGycl5fX94NXr16Fi7MBAJydnV1dXT09PRcvXhwZGVlVVSW5J1FNgwj/u1QelEeUgYQRenFFIpHOnTs36Pz9yAgbw8fFz88PAMBms4muiCIRfrxU/X4NgeAkvf36/fff8dMKBEFQHhlQU1MT0VVAkNFB1e/XIIjquHbtWn5+Pnx98uTJTZs2rVy50tXVtby8XPYgLS0tUVFRkqO6q6urjxw5QmwPg5xQHkFGmuRIS2KDDMnx48fr6urg9Wx2draWltbhw4czMjI8PDzodDoc0zCo/Pz8tWvX7tu3T3JOP2traxqNxmKxlFV15UN5BBlRzc3NQUFBqhBkSEpKSkpLS/HJEy9evIiPG1i9ejWGYVlZWbLE8fb27vfxYhqNpqOjc/ToUUVVeISh/hFk5HR2djIYDHyiAwKDDEl3d3dkZGROTg5eYmtrK7kqDRhgWpl+jR8/vt/yLVu2mJube3h4zJgxY9hVJQo6H0GGLzc3d8OGDVu3bl28eHFUVBRcvCY7O5tKpZqamgIAWltbDx06pKmp6ejoCABgs9lPnjzhcrlr1qxJSkp6+vTprl27LC0t3717t3Tp0okTJ9JoNLjUg+xBwHAnfJFdeno6j8eztLTES1gsFp5HHj9+DACQf6EZCoVib2/fa4nfUYPAZ1cwFXh+BumXLMclOTl5wYIFnZ2dGIZxuVwLC4v//Oc/8AHfhQsXTpkyBd/T3t5+/vz58LWXl9e0adPgaxaLNWHCBDKZHBkZWVZWlpuba2BgoK2t/e7dO9mDYINN+NLLMJ5DW7RokZ+f30BbN2/ebGdnJ/vEuh0dHQCADRs29N30yy+/6OrqSpl0YiCE/47Q+QgyHB8/foyKilq3bh0cmqivr79z586bN2/CbgJtbW3JnSXnjpMUHx/v6emppqaWmJhIp9OXLVuWkpIiFApTUlJkDwIA8PT0bGtrYzAY8rerX7W1tXDqzL46OjqKiorYbDacg0ZOhoaGPB7v6dOn8ocaYSiPIMNx9+5dgUBgZmaGl3h5eQEAysrKhhQHroyHj5P28fEZP378o0ePhlqf4U34IguBQNDQ0NDvyt4AgIKCAhaLNX36dIV814QJEwAAHz58UEi0kYTyCDIccCaHz58/4yX4JYk8YdXV1U1MTPBVgVUBHDmFL13eS21tbXBwsKK+C57UyDjRlEpBeQQZDvg/cN+bJrNnz5YzslAolD+IAunq6mpqasLZMPuytbWV/U7NoGBeVpFl3oYE5RFkOBwdHalUal5eHl7y5s0boVAIJ2FRV1fn8/n4/+F8Ph+fkEVNTU0sFg8UtrGxsampydfXd6hBpEz4Iie48uFA51menp4K/C4ul2tkZDRx4kQFxhwZKI8gw6Gvr5+YmHj79u2SkhJYcvjw4eDgYBcXFwCAlZVVS0tLfHz8ixcvYmNjRSLR8+fPKysrAQAmJibv37+vqqq6ceOGUCgEAIhEourqahgkNjY2ODiYRqMNKUhxcbGent6FCxeU1FgGg8HhcLA+z61fvnx52rRpeOUBAOHh4c7OztLXaRMIBAAAeNemFw6HI//9Y0KgPIIM07p16/Ly8g4cOLBp06bdu3cbGhriM61FRER4e3snJiYGBwd7eHg4OTl5e3vD6R3Xr19vYmISEBDA5XLhHRkNDY3Tp0/7+/uHhoYaGxunp6cPNQiZTKZQKPJMaikdk8nU19eHD7ZIEgqFIpGos7MTL3n9+vWdO3ekLC1+69atbdu2AQDy8/NzcnLev3+Pb2pvb+dwOJKT140mBN5zxlTgvjfSrxE7LqGhoZqamiPwRbjhzWN0//79JUuWyLJneXl5QkLC0OuFRUVFHThwYBgfxFTgd4TORxBkcPb29gwGQ8qJBtTW1pafn48Pw5FdYWGhWCzeunXrcCtIMJRHECLx+Xx4Y5XoigwuICBg6tSpRUVFUvapqanZu3cvlUodUuTq6moej5eQkCBfBYmExukhhDlz5sz169e7u7t//PHH5cuXw+5VVYavmjwQJyenYYS1tra2trYeVo1UBcojCGGYTCaTySS6FogCoOsaBEHkhfIIgiDyQnkEQRB5oTyCIIi8iO9nTU5OHmOLEo0NY/W4wMdS4WpYiKIQvJ4eOpwIohBbtmyB804SguA8giDIGID6RxAEkRfKIwiCyAvlEQRB5IXyCIIg8vov6/NJy7DdRc0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 75,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from tensorflow.keras.utils import plot_model\n",
+ "from IPython.display import Image\n",
+ "plot_model(model, to_file='convnet.png', show_shapes=True,show_layer_names=True)\n",
+ "Image(filename='convnet.png') "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:40.281761Z",
+ "iopub.status.busy": "2021-12-15T11:04:40.277039Z",
+ "iopub.status.idle": "2021-12-15T11:04:40.287706Z",
+ "shell.execute_reply": "2021-12-15T11:04:40.288255Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.422302Z"
+ },
+ "papermill": {
+ "duration": 0.143587,
+ "end_time": "2021-12-15T11:04:40.288401",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:40.144814",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:40.541357Z",
+ "iopub.status.busy": "2021-12-15T11:04:40.540677Z",
+ "iopub.status.idle": "2021-12-15T11:04:40.543046Z",
+ "shell.execute_reply": "2021-12-15T11:04:40.543611Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.440045Z"
+ },
+ "papermill": {
+ "duration": 0.131344,
+ "end_time": "2021-12-15T11:04:40.543754",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:40.412410",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "lrd = ReduceLROnPlateau(monitor = 'val_loss',\n",
+ " patience = 20,\n",
+ " verbose = 1,\n",
+ " factor = 0.75,\n",
+ " min_lr = 1e-10)\n",
+ "\n",
+ "mcp = ModelCheckpoint('model.h5')\n",
+ "\n",
+ "es = EarlyStopping(verbose=1, patience=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:40.803331Z",
+ "iopub.status.busy": "2021-12-15T11:04:40.802627Z",
+ "iopub.status.idle": "2021-12-15T11:04:48.972327Z",
+ "shell.execute_reply": "2021-12-15T11:04:48.971666Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:30.451006Z"
+ },
+ "papermill": {
+ "duration": 8.299854,
+ "end_time": "2021-12-15T11:04:48.972461",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:40.672607",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/100\n",
+ "40/40 [==============================] - 0s 7ms/step - loss: 0.3350 - accuracy: 0.9006 - val_loss: 0.2092 - val_accuracy: 0.9258\n",
+ "Epoch 2/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.2003 - accuracy: 0.9328 - val_loss: 0.1609 - val_accuracy: 0.9364\n",
+ "Epoch 3/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.1732 - accuracy: 0.9458 - val_loss: 0.1376 - val_accuracy: 0.9470\n",
+ "Epoch 4/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.1573 - accuracy: 0.9497 - val_loss: 0.1183 - val_accuracy: 0.9576\n",
+ "Epoch 5/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.1429 - accuracy: 0.9529 - val_loss: 0.1017 - val_accuracy: 0.9576\n",
+ "Epoch 6/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.1271 - accuracy: 0.9588 - val_loss: 0.0796 - val_accuracy: 0.9611\n",
+ "Epoch 7/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.1155 - accuracy: 0.9580 - val_loss: 0.0683 - val_accuracy: 0.9682\n",
+ "Epoch 8/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.1094 - accuracy: 0.9658 - val_loss: 0.0515 - val_accuracy: 0.9894\n",
+ "Epoch 9/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0945 - accuracy: 0.9654 - val_loss: 0.0549 - val_accuracy: 0.9823\n",
+ "Epoch 10/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0859 - accuracy: 0.9717 - val_loss: 0.0444 - val_accuracy: 0.9894\n",
+ "Epoch 11/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0780 - accuracy: 0.9749 - val_loss: 0.0386 - val_accuracy: 0.9929\n",
+ "Epoch 12/100\n",
+ "40/40 [==============================] - 0s 4ms/step - loss: 0.0729 - accuracy: 0.9745 - val_loss: 0.0409 - val_accuracy: 0.9859\n",
+ "Epoch 13/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0757 - accuracy: 0.9729 - val_loss: 0.0336 - val_accuracy: 0.9894\n",
+ "Epoch 14/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0644 - accuracy: 0.9741 - val_loss: 0.0285 - val_accuracy: 0.9929\n",
+ "Epoch 15/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0568 - accuracy: 0.9776 - val_loss: 0.0248 - val_accuracy: 0.9965\n",
+ "Epoch 16/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0591 - accuracy: 0.9811 - val_loss: 0.0415 - val_accuracy: 0.9823\n",
+ "Epoch 17/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0522 - accuracy: 0.9827 - val_loss: 0.0242 - val_accuracy: 0.9929\n",
+ "Epoch 18/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0499 - accuracy: 0.9800 - val_loss: 0.0226 - val_accuracy: 0.9894\n",
+ "Epoch 19/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0464 - accuracy: 0.9847 - val_loss: 0.0258 - val_accuracy: 0.9929\n",
+ "Epoch 20/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0396 - accuracy: 0.9859 - val_loss: 0.0260 - val_accuracy: 0.9929\n",
+ "Epoch 21/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0379 - accuracy: 0.9870 - val_loss: 0.0268 - val_accuracy: 0.9859\n",
+ "Epoch 22/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0345 - accuracy: 0.9866 - val_loss: 0.0277 - val_accuracy: 0.9859\n",
+ "Epoch 23/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0310 - accuracy: 0.9878 - val_loss: 0.0196 - val_accuracy: 0.9894\n",
+ "Epoch 24/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0371 - accuracy: 0.9839 - val_loss: 0.0405 - val_accuracy: 0.9823\n",
+ "Epoch 25/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0322 - accuracy: 0.9882 - val_loss: 0.0257 - val_accuracy: 0.9929\n",
+ "Epoch 26/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0331 - accuracy: 0.9882 - val_loss: 0.0196 - val_accuracy: 0.9894\n",
+ "Epoch 27/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0261 - accuracy: 0.9886 - val_loss: 0.0172 - val_accuracy: 0.9894\n",
+ "Epoch 28/100\n",
+ "40/40 [==============================] - 0s 4ms/step - loss: 0.0317 - accuracy: 0.9866 - val_loss: 0.0324 - val_accuracy: 0.9859\n",
+ "Epoch 29/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0253 - accuracy: 0.9921 - val_loss: 0.0154 - val_accuracy: 0.9929\n",
+ "Epoch 30/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0253 - accuracy: 0.9918 - val_loss: 0.0235 - val_accuracy: 0.9859\n",
+ "Epoch 31/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0240 - accuracy: 0.9886 - val_loss: 0.0146 - val_accuracy: 0.9929\n",
+ "Epoch 32/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0332 - accuracy: 0.9851 - val_loss: 0.0196 - val_accuracy: 0.9929\n",
+ "Epoch 33/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0231 - accuracy: 0.9925 - val_loss: 0.0232 - val_accuracy: 0.9859\n",
+ "Epoch 34/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0245 - accuracy: 0.9898 - val_loss: 0.0268 - val_accuracy: 0.9894\n",
+ "Epoch 35/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0227 - accuracy: 0.9894 - val_loss: 0.0366 - val_accuracy: 0.9859\n",
+ "Epoch 36/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0201 - accuracy: 0.9914 - val_loss: 0.0188 - val_accuracy: 0.9894\n",
+ "Epoch 37/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0227 - accuracy: 0.9929 - val_loss: 0.0285 - val_accuracy: 0.9859\n",
+ "Epoch 38/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0202 - accuracy: 0.9906 - val_loss: 0.0423 - val_accuracy: 0.9823\n",
+ "Epoch 39/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0246 - accuracy: 0.9882 - val_loss: 0.0266 - val_accuracy: 0.9894\n",
+ "Epoch 40/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0216 - accuracy: 0.9914 - val_loss: 0.0215 - val_accuracy: 0.9859\n",
+ "Epoch 41/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0146 - accuracy: 0.9949 - val_loss: 0.0198 - val_accuracy: 0.9894\n",
+ "Epoch 42/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0207 - accuracy: 0.9921 - val_loss: 0.0475 - val_accuracy: 0.9823\n",
+ "Epoch 43/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0145 - accuracy: 0.9953 - val_loss: 0.0386 - val_accuracy: 0.9859\n",
+ "Epoch 44/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0230 - accuracy: 0.9914 - val_loss: 0.0228 - val_accuracy: 0.9894\n",
+ "Epoch 45/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0244 - accuracy: 0.9902 - val_loss: 0.0238 - val_accuracy: 0.9859\n",
+ "Epoch 46/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0178 - accuracy: 0.9921 - val_loss: 0.0260 - val_accuracy: 0.9823\n",
+ "Epoch 47/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0149 - accuracy: 0.9937 - val_loss: 0.0185 - val_accuracy: 0.9894\n",
+ "Epoch 48/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0211 - accuracy: 0.9929 - val_loss: 0.0250 - val_accuracy: 0.9823\n",
+ "Epoch 49/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0206 - accuracy: 0.9933 - val_loss: 0.0216 - val_accuracy: 0.9894\n",
+ "Epoch 50/100\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0147 - accuracy: 0.9941 - val_loss: 0.0220 - val_accuracy: 0.9823\n",
+ "Epoch 51/100\n",
+ "20/40 [==============>...............] - ETA: 0s - loss: 0.0176 - accuracy: 0.9937\n",
+ "Epoch 00051: ReduceLROnPlateau reducing learning rate to 0.0007500000356230885.\n",
+ "40/40 [==============================] - 0s 3ms/step - loss: 0.0164 - accuracy: 0.9929 - val_loss: 0.0181 - val_accuracy: 0.9894\n",
+ "Epoch 00051: early stopping\n",
+ "CPU times: user 10.4 s, sys: 1.15 s, total: 11.6 s\n",
+ "Wall time: 8.16 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "history = model.fit(x=x_train, y=y_train, epochs=100, callbacks=[lrd, mcp, es], batch_size=64, validation_split=0.1)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:49.329822Z",
+ "iopub.status.busy": "2021-12-15T11:04:49.329160Z",
+ "iopub.status.idle": "2021-12-15T11:04:49.409383Z",
+ "shell.execute_reply": "2021-12-15T11:04:49.408667Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:40.861451Z"
+ },
+ "papermill": {
+ "duration": 0.260662,
+ "end_time": "2021-12-15T11:04:49.409511",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:49.148849",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "30/30 [==============================] - 0s 972us/step - loss: 0.0463 - accuracy: 0.9905\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[0.046282220631837845, 0.9904559850692749]"
+ ]
+ },
+ "execution_count": 79,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.evaluate(x_test, y_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:49.765674Z",
+ "iopub.status.busy": "2021-12-15T11:04:49.764973Z",
+ "iopub.status.idle": "2021-12-15T11:04:49.927907Z",
+ "shell.execute_reply": "2021-12-15T11:04:49.927286Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:40.942176Z"
+ },
+ "papermill": {
+ "duration": 0.342022,
+ "end_time": "2021-12-15T11:04:49.928028",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:49.586006",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[2.03072801e-07],\n",
+ " [8.05705786e-03],\n",
+ " [6.27054396e-19],\n",
+ " [1.37921573e-21],\n",
+ " [3.64577457e-09],\n",
+ " [3.21706155e-23],\n",
+ " [1.37556775e-08],\n",
+ " [4.52054410e-12],\n",
+ " [1.91457133e-16],\n",
+ " [2.46224907e-08],\n",
+ " [3.03377368e-09],\n",
+ " [2.34503823e-13],\n",
+ " [1.82382209e-07],\n",
+ " [9.99995112e-01],\n",
+ " [3.76343614e-08],\n",
+ " [1.13201726e-10],\n",
+ " [7.12643555e-07],\n",
+ " [2.95673797e-09],\n",
+ " [5.46334894e-17],\n",
+ " [6.31992397e-13],\n",
+ " [3.00139433e-08],\n",
+ " [1.34220682e-06],\n",
+ " [9.46020862e-07],\n",
+ " [2.58415316e-08],\n",
+ " [6.49273261e-06],\n",
+ " [5.45249436e-12],\n",
+ " [1.05276843e-09],\n",
+ " [7.99125433e-03],\n",
+ " [2.62820787e-09],\n",
+ " [2.40026714e-11],\n",
+ " [1.23756384e-18],\n",
+ " [1.63034114e-10],\n",
+ " [2.05024081e-10],\n",
+ " [1.12360716e-03],\n",
+ " [2.15608722e-08],\n",
+ " [6.01888880e-23],\n",
+ " [1.45628212e-08],\n",
+ " [3.23315289e-12],\n",
+ " [2.34477550e-01],\n",
+ " [1.32944777e-07],\n",
+ " [1.38195477e-09],\n",
+ " [1.42708704e-14],\n",
+ " [7.32759894e-11],\n",
+ " [8.17880486e-10],\n",
+ " [5.36562295e-10],\n",
+ " [2.29073994e-05],\n",
+ " [2.81709799e-06],\n",
+ " [1.21122897e-02],\n",
+ " [1.04933974e-14],\n",
+ " [9.19601550e-09],\n",
+ " [4.34066064e-20],\n",
+ " [9.28347976e-09],\n",
+ " [3.91360243e-11],\n",
+ " [4.52054410e-12],\n",
+ " [9.86358404e-01],\n",
+ " [2.44828300e-07],\n",
+ " [1.15850760e-08],\n",
+ " [6.96351989e-08],\n",
+ " [4.50143672e-11],\n",
+ " [1.43259764e-04],\n",
+ " [9.79847312e-01],\n",
+ " [9.96614516e-01],\n",
+ " [3.90448149e-16],\n",
+ " [2.31735096e-13],\n",
+ " [6.17500495e-10],\n",
+ " [2.98890484e-07],\n",
+ " [1.24932342e-07],\n",
+ " [2.13195136e-16],\n",
+ " [1.04033615e-10],\n",
+ " [1.33606623e-16],\n",
+ " [2.43283323e-24],\n",
+ " [3.54697410e-10],\n",
+ " [3.53519880e-08],\n",
+ " [9.00523922e-09],\n",
+ " [3.36515177e-10],\n",
+ " [1.37284442e-08],\n",
+ " [1.98385264e-09],\n",
+ " [7.33705997e-01],\n",
+ " [5.76592329e-10],\n",
+ " [5.37905919e-07],\n",
+ " [5.57911228e-09],\n",
+ " [2.24865786e-07],\n",
+ " [1.72674020e-09],\n",
+ " [6.51282228e-09],\n",
+ " [1.59275933e-18],\n",
+ " [3.91613911e-12],\n",
+ " [1.13664811e-20],\n",
+ " [5.86710485e-06],\n",
+ " [9.75508690e-01],\n",
+ " [3.00031504e-14],\n",
+ " [2.84835414e-06],\n",
+ " [5.44445720e-06],\n",
+ " [6.45911926e-13],\n",
+ " [3.73333246e-18],\n",
+ " [1.15623386e-08],\n",
+ " [1.13216529e-08],\n",
+ " [1.56512381e-09],\n",
+ " [2.22600283e-05],\n",
+ " [1.03761714e-14],\n",
+ " [3.19702487e-10],\n",
+ " [1.12651289e-02],\n",
+ " [1.55635993e-09],\n",
+ " [3.47137230e-09],\n",
+ " [8.29642137e-18],\n",
+ " [5.63426259e-12],\n",
+ " [1.30178341e-05],\n",
+ " [2.09624659e-06],\n",
+ " [2.42309198e-07],\n",
+ " [1.23352808e-20],\n",
+ " [6.70710243e-09],\n",
+ " [9.98202562e-01],\n",
+ " [2.52522314e-25],\n",
+ " [1.85691921e-24],\n",
+ " [9.12608744e-09],\n",
+ " [5.07485651e-11],\n",
+ " [8.56397175e-11],\n",
+ " [6.33398685e-08],\n",
+ " [1.24990545e-12],\n",
+ " [2.10023757e-07],\n",
+ " [7.71787235e-12],\n",
+ " [2.56064095e-16],\n",
+ " [1.00000000e+00],\n",
+ " [1.62187500e-20],\n",
+ " [9.76557374e-01],\n",
+ " [1.51294199e-09],\n",
+ " [7.85448447e-06],\n",
+ " [3.84762592e-26],\n",
+ " [7.11385256e-11],\n",
+ " [4.66048330e-01],\n",
+ " [1.03714530e-12],\n",
+ " [5.96982527e-28],\n",
+ " [6.24449967e-08],\n",
+ " [8.80944371e-01],\n",
+ " [5.37741762e-09],\n",
+ " [7.46463835e-02],\n",
+ " [4.03153507e-07],\n",
+ " [1.29281617e-07],\n",
+ " [2.82901225e-13],\n",
+ " [6.40045905e-10],\n",
+ " [1.50244524e-21],\n",
+ " [7.92164875e-11],\n",
+ " [3.91675928e-12],\n",
+ " [2.21524847e-11],\n",
+ " [7.08416934e-08],\n",
+ " [8.20800210e-07],\n",
+ " [9.76669483e-08],\n",
+ " [1.01245642e-02],\n",
+ " [1.06815312e-08],\n",
+ " [3.24746097e-08],\n",
+ " [1.93702203e-06],\n",
+ " [3.91138066e-10],\n",
+ " [2.86460519e-02],\n",
+ " [1.56011964e-07],\n",
+ " [1.30313165e-08],\n",
+ " [4.49644488e-10],\n",
+ " [2.76966172e-10],\n",
+ " [7.32165047e-14],\n",
+ " [1.62291229e-08],\n",
+ " [9.28789419e-08],\n",
+ " [5.82424526e-08],\n",
+ " [6.59544071e-07],\n",
+ " [4.79175943e-09],\n",
+ " [6.38006453e-11],\n",
+ " [3.91206134e-09],\n",
+ " [4.36025858e-03],\n",
+ " [3.24235941e-07],\n",
+ " [1.80344131e-08],\n",
+ " [2.40445137e-04],\n",
+ " [9.99985158e-01],\n",
+ " [8.07240996e-10],\n",
+ " [1.28023657e-07],\n",
+ " [1.74661807e-07],\n",
+ " [1.65753787e-22],\n",
+ " [1.08296640e-12],\n",
+ " [2.37983890e-08],\n",
+ " [6.43103704e-05],\n",
+ " [1.28720803e-08],\n",
+ " [2.58432165e-11],\n",
+ " [5.39764844e-10],\n",
+ " [2.92745255e-12],\n",
+ " [6.23321685e-05],\n",
+ " [1.00036212e-12],\n",
+ " [2.40783550e-07],\n",
+ " [4.82603557e-09],\n",
+ " [2.99507577e-23],\n",
+ " [2.23328554e-24],\n",
+ " [1.49686230e-09],\n",
+ " [9.17784948e-23],\n",
+ " [2.92582035e-06],\n",
+ " [1.17239616e-12],\n",
+ " [5.37661322e-07],\n",
+ " [8.68774594e-33],\n",
+ " [2.18246990e-10],\n",
+ " [7.69183361e-19],\n",
+ " [3.16389475e-08],\n",
+ " [1.56571162e-17],\n",
+ " [2.99390734e-10],\n",
+ " [3.85578180e-10],\n",
+ " [1.50589255e-15],\n",
+ " [2.80254764e-23],\n",
+ " [3.46980705e-05],\n",
+ " [1.59154343e-08],\n",
+ " [8.67032384e-08],\n",
+ " [1.03163719e-03],\n",
+ " [1.68116998e-29],\n",
+ " [1.18160596e-14],\n",
+ " [1.91213130e-05],\n",
+ " [1.10656023e-03],\n",
+ " [1.52435635e-18],\n",
+ " [1.62899763e-11],\n",
+ " [9.98778224e-01],\n",
+ " [1.18208519e-08],\n",
+ " [1.94603986e-11],\n",
+ " [1.88592863e-19],\n",
+ " [4.35572911e-09],\n",
+ " [3.24531229e-08],\n",
+ " [1.21343136e-03],\n",
+ " [1.77508966e-07],\n",
+ " [4.44360637e-08],\n",
+ " [2.94150385e-14],\n",
+ " [2.10322204e-09],\n",
+ " [6.22655898e-06],\n",
+ " [2.66010636e-09],\n",
+ " [3.36431519e-19],\n",
+ " [3.14340731e-08],\n",
+ " [7.05934334e-14],\n",
+ " [4.33815622e-11],\n",
+ " [2.58785258e-06],\n",
+ " [9.46394677e-16],\n",
+ " [9.24860882e-13],\n",
+ " [6.89789139e-18],\n",
+ " [2.79545589e-17],\n",
+ " [6.48841842e-06],\n",
+ " [4.12263956e-09],\n",
+ " [9.42596955e-07],\n",
+ " [1.55424024e-11],\n",
+ " [2.13479311e-07],\n",
+ " [8.35410768e-11],\n",
+ " [9.95753229e-01],\n",
+ " [6.54122093e-16],\n",
+ " [3.81542478e-08],\n",
+ " [2.50907473e-08],\n",
+ " [5.37633896e-04],\n",
+ " [9.97959138e-09],\n",
+ " [7.33497574e-09],\n",
+ " [1.10775431e-06],\n",
+ " [9.79605079e-01],\n",
+ " [1.52689354e-05],\n",
+ " [3.42158181e-22],\n",
+ " [2.46990872e-10],\n",
+ " [4.22269106e-04],\n",
+ " [3.89664834e-08],\n",
+ " [1.72062420e-10],\n",
+ " [2.96808654e-11],\n",
+ " [8.78179307e-10],\n",
+ " [3.93644591e-21],\n",
+ " [9.64398410e-08],\n",
+ " [2.24097967e-08],\n",
+ " [1.04630704e-08],\n",
+ " [6.09707296e-01],\n",
+ " [2.78826983e-15],\n",
+ " [9.42631596e-06],\n",
+ " [1.72463743e-16],\n",
+ " [7.73352610e-07],\n",
+ " [7.39893702e-09],\n",
+ " [2.70790451e-07],\n",
+ " [5.31979619e-14],\n",
+ " [4.48962509e-13],\n",
+ " [2.12774056e-18],\n",
+ " [3.97057631e-09],\n",
+ " [1.00000000e+00],\n",
+ " [2.05571270e-16],\n",
+ " [2.04754465e-21],\n",
+ " [1.59746022e-10],\n",
+ " [3.03736329e-03],\n",
+ " [6.89690978e-07],\n",
+ " [1.05877129e-09],\n",
+ " [1.90320688e-21],\n",
+ " [3.41430717e-10],\n",
+ " [9.89617391e-16],\n",
+ " [3.07328246e-10],\n",
+ " [1.47687860e-15],\n",
+ " [4.23237623e-09],\n",
+ " [2.87217119e-07],\n",
+ " [1.88487737e-09],\n",
+ " [2.55091521e-07],\n",
+ " [4.01455070e-18],\n",
+ " [8.72313976e-04],\n",
+ " [1.06432400e-15],\n",
+ " [3.17158960e-21],\n",
+ " [6.71554804e-02],\n",
+ " [3.09973955e-04],\n",
+ " [1.75808871e-13],\n",
+ " [1.15205912e-04],\n",
+ " [2.83433934e-08],\n",
+ " [8.80358766e-06],\n",
+ " [5.63729202e-07],\n",
+ " [1.02777427e-07],\n",
+ " [9.99837399e-01],\n",
+ " [9.55923327e-11],\n",
+ " [5.46305081e-08],\n",
+ " [2.07547899e-08],\n",
+ " [5.45029819e-01],\n",
+ " [1.03028999e-08],\n",
+ " [2.74047343e-12],\n",
+ " [1.84390531e-10],\n",
+ " [1.87147131e-10],\n",
+ " [1.78050011e-01],\n",
+ " [8.36976639e-08],\n",
+ " [1.49825908e-07],\n",
+ " [8.57296186e-07],\n",
+ " [4.77101196e-07],\n",
+ " [8.02567520e-05],\n",
+ " [3.94305680e-05],\n",
+ " [5.80868270e-11],\n",
+ " [3.75649153e-17],\n",
+ " [2.21493082e-08],\n",
+ " [4.59856274e-05],\n",
+ " [2.70431566e-10],\n",
+ " [3.58266532e-01],\n",
+ " [1.89828882e-08],\n",
+ " [4.95308239e-11],\n",
+ " [1.00485624e-06],\n",
+ " [1.60915328e-15],\n",
+ " [2.44058782e-07],\n",
+ " [1.33459799e-14],\n",
+ " [2.17640309e-06],\n",
+ " [5.63632398e-07],\n",
+ " [6.84772905e-09],\n",
+ " [5.36031912e-08],\n",
+ " [5.51494961e-11],\n",
+ " [9.91178989e-01],\n",
+ " [1.65730715e-04],\n",
+ " [2.21555096e-24],\n",
+ " [5.22346236e-05],\n",
+ " [1.75355617e-05],\n",
+ " [3.79115486e-18],\n",
+ " [2.95491143e-09],\n",
+ " [8.66001119e-06],\n",
+ " [6.86830788e-08],\n",
+ " [8.06318155e-07],\n",
+ " [3.63486612e-13],\n",
+ " [3.91601404e-11],\n",
+ " [5.95308529e-06],\n",
+ " [6.75505385e-09],\n",
+ " [7.42169607e-12],\n",
+ " [9.97644365e-01],\n",
+ " [1.85441926e-10],\n",
+ " [6.47719345e-09],\n",
+ " [4.96160668e-09],\n",
+ " [5.01064856e-10],\n",
+ " [9.12048392e-09],\n",
+ " [5.55410043e-06],\n",
+ " [2.08415081e-08],\n",
+ " [2.06777534e-18],\n",
+ " [5.42680603e-08],\n",
+ " [5.67819625e-05],\n",
+ " [1.24815617e-13],\n",
+ " [9.75291371e-01],\n",
+ " [9.34593986e-18],\n",
+ " [1.02558497e-05],\n",
+ " [8.29279423e-04],\n",
+ " [1.11260223e-10],\n",
+ " [7.25795735e-06],\n",
+ " [1.35450238e-08],\n",
+ " [5.95355321e-09],\n",
+ " [2.14182083e-18],\n",
+ " [1.26957893e-04],\n",
+ " [4.43278747e-12],\n",
+ " [1.60047495e-08],\n",
+ " [2.08936379e-09],\n",
+ " [1.03830772e-07],\n",
+ " [3.51890339e-09],\n",
+ " [3.90655108e-09],\n",
+ " [4.15957313e-09],\n",
+ " [2.00748444e-04],\n",
+ " [1.15626932e-23],\n",
+ " [5.09147249e-08],\n",
+ " [6.52769927e-08],\n",
+ " [2.12737294e-09],\n",
+ " [1.22502230e-19],\n",
+ " [3.86535812e-12],\n",
+ " [6.20869856e-10],\n",
+ " [4.06311003e-08],\n",
+ " [1.68340797e-12],\n",
+ " [5.44948917e-16],\n",
+ " [2.53452748e-09],\n",
+ " [3.22027099e-20],\n",
+ " [2.44609968e-08],\n",
+ " [1.90410816e-07],\n",
+ " [1.89718297e-10],\n",
+ " [6.02577757e-07],\n",
+ " [4.37826989e-16],\n",
+ " [2.75907231e-19],\n",
+ " [1.65231206e-09],\n",
+ " [6.54194474e-01],\n",
+ " [1.99125536e-10],\n",
+ " [1.33071679e-10],\n",
+ " [3.74480322e-07],\n",
+ " [1.02848662e-06],\n",
+ " [8.26882854e-07],\n",
+ " [8.22120150e-11],\n",
+ " [1.74875470e-09],\n",
+ " [4.15876167e-10],\n",
+ " [3.09432517e-06],\n",
+ " [4.82429580e-13],\n",
+ " [2.15387165e-27],\n",
+ " [3.68859332e-10],\n",
+ " [5.53232431e-03],\n",
+ " [8.36623669e-01],\n",
+ " [1.62677872e-17],\n",
+ " [1.63835334e-09],\n",
+ " [1.75470944e-08],\n",
+ " [6.40594819e-16],\n",
+ " [3.14488702e-09],\n",
+ " [2.53715815e-17],\n",
+ " [1.71392469e-19],\n",
+ " [9.27341475e-08],\n",
+ " [4.44609114e-19],\n",
+ " [1.69784386e-07],\n",
+ " [5.46696161e-11],\n",
+ " [2.26447465e-19],\n",
+ " [1.06704784e-11],\n",
+ " [2.56382738e-16],\n",
+ " [1.26869654e-14],\n",
+ " [7.35247457e-23],\n",
+ " [1.45168488e-05],\n",
+ " [3.31853628e-02],\n",
+ " [7.39896564e-07],\n",
+ " [1.86687057e-08],\n",
+ " [2.37726212e-08],\n",
+ " [8.19921908e-10],\n",
+ " [1.94057384e-06],\n",
+ " [1.60679665e-05],\n",
+ " [5.30165434e-03],\n",
+ " [9.72764891e-09],\n",
+ " [4.09239886e-09],\n",
+ " [8.76730866e-08],\n",
+ " [6.82160438e-28],\n",
+ " [8.92572734e-12],\n",
+ " [1.21143853e-06],\n",
+ " [6.98675828e-09],\n",
+ " [1.54119757e-08],\n",
+ " [3.48080698e-09],\n",
+ " [2.50122781e-07],\n",
+ " [9.45178131e-25],\n",
+ " [3.26200261e-10],\n",
+ " [1.42669793e-10],\n",
+ " [9.91053343e-01],\n",
+ " [1.10002283e-08],\n",
+ " [1.61106470e-21],\n",
+ " [6.84499741e-04],\n",
+ " [8.36741334e-21],\n",
+ " [1.72383841e-12],\n",
+ " [1.25522201e-05],\n",
+ " [6.28243652e-06],\n",
+ " [1.03852352e-11],\n",
+ " [7.04316027e-15],\n",
+ " [4.60501814e-09],\n",
+ " [5.44598588e-09],\n",
+ " [2.00896224e-08],\n",
+ " [3.95734512e-09],\n",
+ " [5.13764053e-13],\n",
+ " [3.34182815e-08],\n",
+ " [9.90479231e-01],\n",
+ " [4.70059073e-29],\n",
+ " [2.78448326e-13],\n",
+ " [2.08701499e-06],\n",
+ " [9.98500347e-01],\n",
+ " [2.15558131e-08],\n",
+ " [2.14967315e-08],\n",
+ " [9.97554064e-01],\n",
+ " [4.41375651e-11],\n",
+ " [9.93339419e-01],\n",
+ " [6.68234268e-09],\n",
+ " [4.74023490e-13],\n",
+ " [4.39392882e-32],\n",
+ " [1.09098030e-18],\n",
+ " [1.79045057e-09],\n",
+ " [5.24880670e-06],\n",
+ " [4.29211311e-12],\n",
+ " [5.82027804e-09],\n",
+ " [5.41729905e-09],\n",
+ " [1.04687810e-04],\n",
+ " [1.60948654e-09],\n",
+ " [3.79402010e-10],\n",
+ " [2.47385727e-12],\n",
+ " [5.46379001e-12],\n",
+ " [7.83933656e-31],\n",
+ " [9.99543607e-01],\n",
+ " [8.41422754e-09],\n",
+ " [1.64020918e-07],\n",
+ " [9.98252392e-01],\n",
+ " [6.77049160e-04],\n",
+ " [9.99662399e-01],\n",
+ " [2.21566147e-12],\n",
+ " [2.07903304e-06],\n",
+ " [5.22168029e-14],\n",
+ " [1.74849691e-14],\n",
+ " [1.17234933e-08],\n",
+ " [1.81103519e-06],\n",
+ " [1.17239616e-12],\n",
+ " [9.98419762e-01],\n",
+ " [1.31364537e-08],\n",
+ " [9.94234562e-01],\n",
+ " [9.99972343e-01],\n",
+ " [3.85074333e-16],\n",
+ " [2.44345305e-14],\n",
+ " [5.91009855e-04],\n",
+ " [3.45619022e-09],\n",
+ " [2.50615849e-05],\n",
+ " [1.79989548e-34],\n",
+ " [3.36461596e-08],\n",
+ " [5.21642972e-12],\n",
+ " [3.36858275e-09],\n",
+ " [3.90084010e-09],\n",
+ " [5.10697040e-10],\n",
+ " [1.05335953e-08],\n",
+ " [1.43763764e-05],\n",
+ " [1.11228761e-11],\n",
+ " [1.10666677e-23],\n",
+ " [2.92548975e-05],\n",
+ " [1.02379760e-09],\n",
+ " [9.88334417e-04],\n",
+ " [1.19426240e-05],\n",
+ " [4.34204894e-10],\n",
+ " [7.09426918e-12],\n",
+ " [3.14571448e-13],\n",
+ " [1.67669603e-18],\n",
+ " [3.47505558e-09],\n",
+ " [8.76049285e-07],\n",
+ " [3.42870532e-09],\n",
+ " [2.07209232e-05],\n",
+ " [7.71787235e-12],\n",
+ " [9.55229282e-01],\n",
+ " [4.33390712e-10],\n",
+ " [5.34813305e-09],\n",
+ " [6.23835703e-08],\n",
+ " [7.85080612e-10],\n",
+ " [4.98779707e-12],\n",
+ " [2.80427933e-03],\n",
+ " [9.82350457e-07],\n",
+ " [9.97457325e-01],\n",
+ " [1.07182788e-17],\n",
+ " [9.98320103e-01],\n",
+ " [3.08925635e-10],\n",
+ " [1.19257547e-11],\n",
+ " [1.36067286e-12],\n",
+ " [8.46570730e-03],\n",
+ " [3.51067781e-02],\n",
+ " [9.95754242e-01],\n",
+ " [1.54113211e-09],\n",
+ " [2.05244066e-09],\n",
+ " [1.27417920e-07],\n",
+ " [1.00000000e+00],\n",
+ " [3.14712259e-22],\n",
+ " [1.87933445e-03],\n",
+ " [2.46285026e-06],\n",
+ " [2.54157858e-05],\n",
+ " [1.20259233e-10],\n",
+ " [3.74854564e-10],\n",
+ " [1.46208166e-07],\n",
+ " [9.80323672e-01],\n",
+ " [2.14863083e-09],\n",
+ " [1.74755114e-05],\n",
+ " [1.52388703e-12],\n",
+ " [4.23705293e-09],\n",
+ " [1.72893913e-08],\n",
+ " [2.98263740e-11],\n",
+ " [1.57358286e-07],\n",
+ " [7.74570044e-31],\n",
+ " [9.68590617e-01],\n",
+ " [1.08354459e-09],\n",
+ " [3.80840648e-09],\n",
+ " [6.16469379e-07],\n",
+ " [1.05946327e-07],\n",
+ " [6.44378773e-09],\n",
+ " [7.63385394e-15],\n",
+ " [3.90619363e-07],\n",
+ " [2.35024393e-02],\n",
+ " [2.83073205e-05],\n",
+ " [2.67916533e-09],\n",
+ " [2.03389888e-07],\n",
+ " [3.77906701e-08],\n",
+ " [5.01450574e-12],\n",
+ " [1.71290315e-10],\n",
+ " [9.99985933e-01],\n",
+ " [2.48256072e-07],\n",
+ " [9.14341777e-14],\n",
+ " [1.33622505e-11],\n",
+ " [8.63813805e-19],\n",
+ " [5.38599588e-14],\n",
+ " [7.27939437e-07],\n",
+ " [3.31781141e-25],\n",
+ " [2.32548682e-15],\n",
+ " [8.56111848e-10],\n",
+ " [1.31481341e-08],\n",
+ " [5.68216454e-21],\n",
+ " [1.64005875e-11],\n",
+ " [9.61293340e-01],\n",
+ " [7.33705008e-08],\n",
+ " [1.22476161e-01],\n",
+ " [1.48700581e-08],\n",
+ " [2.51396437e-09],\n",
+ " [2.11457074e-15],\n",
+ " [7.15386507e-20],\n",
+ " [8.54865234e-10],\n",
+ " [3.29414931e-08],\n",
+ " [1.85687510e-18],\n",
+ " [2.00718076e-16],\n",
+ " [8.82825475e-08],\n",
+ " [2.16190066e-09],\n",
+ " [4.95586350e-10],\n",
+ " [4.44683292e-06],\n",
+ " [2.77606181e-17],\n",
+ " [1.53790586e-06],\n",
+ " [6.77091661e-10],\n",
+ " [7.39686611e-12],\n",
+ " [1.00000000e+00],\n",
+ " [1.35717392e-02],\n",
+ " [5.00392972e-08],\n",
+ " [9.97840762e-01],\n",
+ " [6.65209029e-07],\n",
+ " [6.29411523e-11],\n",
+ " [3.48441220e-10],\n",
+ " [6.78783030e-10],\n",
+ " [2.64290662e-07],\n",
+ " [1.52927691e-06],\n",
+ " [1.49602412e-19],\n",
+ " [3.17958293e-05],\n",
+ " [1.90462195e-11],\n",
+ " [1.20561909e-14],\n",
+ " [1.14863224e-13],\n",
+ " [9.22165455e-10],\n",
+ " [2.95794476e-13],\n",
+ " [1.87470817e-10],\n",
+ " [3.54332807e-26],\n",
+ " [1.86445362e-07],\n",
+ " [4.60719685e-09],\n",
+ " [2.04542285e-08],\n",
+ " [5.32177580e-10],\n",
+ " [3.69957733e-14],\n",
+ " [2.78360585e-10],\n",
+ " [7.65585497e-08],\n",
+ " [5.90131011e-09],\n",
+ " [4.28202696e-10],\n",
+ " [9.36303769e-13],\n",
+ " [4.76110514e-12],\n",
+ " [2.07957243e-08],\n",
+ " [2.79496581e-09],\n",
+ " [3.97123557e-07],\n",
+ " [1.14009802e-09],\n",
+ " [6.16976581e-10],\n",
+ " [3.57644558e-09],\n",
+ " [2.94238329e-04],\n",
+ " [2.92701884e-07],\n",
+ " [3.36239458e-09],\n",
+ " [3.36898260e-08],\n",
+ " [8.65271375e-08],\n",
+ " [8.65386937e-06],\n",
+ " [2.61071445e-14],\n",
+ " [5.05941085e-23],\n",
+ " [7.96528269e-15],\n",
+ " [4.19899698e-10],\n",
+ " [2.06961602e-01],\n",
+ " [4.76281680e-14],\n",
+ " [1.05509069e-12],\n",
+ " [3.66464703e-09],\n",
+ " [1.11567839e-04],\n",
+ " [1.10180149e-08],\n",
+ " [5.36971045e-09],\n",
+ " [2.43317777e-06],\n",
+ " [8.38041248e-10],\n",
+ " [2.39891129e-08],\n",
+ " [1.08364134e-21],\n",
+ " [3.91616943e-08],\n",
+ " [9.08244946e-09],\n",
+ " [1.41052432e-08],\n",
+ " [2.43349674e-09],\n",
+ " [1.15906902e-08],\n",
+ " [1.51410904e-06],\n",
+ " [3.00913734e-24],\n",
+ " [1.46183055e-09],\n",
+ " [2.17075535e-09],\n",
+ " [1.51189772e-09],\n",
+ " [3.49507197e-08],\n",
+ " [2.58317479e-10],\n",
+ " [7.97099098e-09],\n",
+ " [2.53496268e-09],\n",
+ " [1.00000000e+00],\n",
+ " [8.53100417e-08],\n",
+ " [9.98300672e-01],\n",
+ " [1.71890724e-06],\n",
+ " [9.99212384e-01],\n",
+ " [1.15353938e-09],\n",
+ " [4.90128994e-04],\n",
+ " [2.32486187e-07],\n",
+ " [1.42950985e-05],\n",
+ " [9.99989152e-01],\n",
+ " [2.06554181e-28],\n",
+ " [2.72818096e-12],\n",
+ " [5.59788942e-03],\n",
+ " [7.06279554e-24],\n",
+ " [3.05973948e-08],\n",
+ " [1.51129598e-06],\n",
+ " [6.98835789e-09],\n",
+ " [4.91731065e-08],\n",
+ " [4.67887363e-21],\n",
+ " [6.70493210e-23],\n",
+ " [8.23343441e-07],\n",
+ " [1.51231885e-01],\n",
+ " [4.56331151e-07],\n",
+ " [6.52445964e-09],\n",
+ " [2.57762922e-09],\n",
+ " [3.98826160e-07],\n",
+ " [3.14978692e-08],\n",
+ " [1.04787141e-07],\n",
+ " [1.18870768e-23],\n",
+ " [9.30830049e-17],\n",
+ " [5.12320458e-14],\n",
+ " [9.48530499e-07],\n",
+ " [6.23433380e-07],\n",
+ " [6.85847809e-19],\n",
+ " [4.45461640e-14],\n",
+ " [9.99954045e-01],\n",
+ " [3.44292289e-07],\n",
+ " [3.86535812e-12],\n",
+ " [9.93827462e-01],\n",
+ " [4.40104143e-13],\n",
+ " [2.41015838e-22],\n",
+ " [7.90342318e-21],\n",
+ " [3.70245778e-10],\n",
+ " [6.02219490e-12],\n",
+ " [8.35843963e-08],\n",
+ " [6.90709545e-10],\n",
+ " [5.47306120e-20],\n",
+ " [5.66619498e-08],\n",
+ " [1.59848824e-07],\n",
+ " [3.25047845e-12],\n",
+ " [1.49647972e-09],\n",
+ " [1.72358386e-06],\n",
+ " [7.81232209e-15],\n",
+ " [1.73121208e-07],\n",
+ " [2.74950395e-07],\n",
+ " [3.28171253e-03],\n",
+ " [8.80461073e-08],\n",
+ " [3.00529957e-01],\n",
+ " [6.24627086e-13],\n",
+ " [4.99072157e-05],\n",
+ " [4.33072822e-09],\n",
+ " [6.59883022e-04],\n",
+ " [7.94664957e-05],\n",
+ " [7.29537026e-15],\n",
+ " [1.80663169e-13],\n",
+ " [2.10718509e-09],\n",
+ " [1.22222107e-20],\n",
+ " [9.98052657e-01],\n",
+ " [1.55977661e-10],\n",
+ " [1.16599608e-06],\n",
+ " [3.10053822e-13],\n",
+ " [1.00100335e-16],\n",
+ " [1.29404199e-15],\n",
+ " [2.36564318e-07],\n",
+ " [4.39887714e-07],\n",
+ " [2.17378329e-06],\n",
+ " [4.58272334e-05],\n",
+ " [3.99533656e-06],\n",
+ " [2.34095410e-09],\n",
+ " [6.02430639e-09],\n",
+ " [1.07339489e-04],\n",
+ " [4.67143173e-06],\n",
+ " [3.47564907e-07],\n",
+ " [2.84718471e-09],\n",
+ " [4.28070412e-10],\n",
+ " [2.83545614e-06],\n",
+ " [2.93266210e-19],\n",
+ " [1.63198019e-05],\n",
+ " [9.99640226e-01],\n",
+ " [7.40906495e-16],\n",
+ " [1.92303696e-06],\n",
+ " [7.20913954e-11],\n",
+ " [1.42173562e-09],\n",
+ " [5.85217410e-19],\n",
+ " [1.45783613e-15],\n",
+ " [1.17992216e-09],\n",
+ " [3.90961281e-29],\n",
+ " [1.43369294e-09],\n",
+ " [2.98964187e-06],\n",
+ " [1.15895862e-04],\n",
+ " [9.66461688e-10],\n",
+ " [1.34662819e-11],\n",
+ " [3.04787445e-12],\n",
+ " [2.53077196e-05],\n",
+ " [4.62344289e-03],\n",
+ " [2.56827420e-10],\n",
+ " [8.35069979e-22],\n",
+ " [3.49191879e-07],\n",
+ " [2.12540704e-06],\n",
+ " [9.99980092e-01],\n",
+ " [4.28223929e-10],\n",
+ " [1.34726841e-14],\n",
+ " [4.51637971e-09],\n",
+ " [1.37727085e-09],\n",
+ " [1.48563934e-08],\n",
+ " [9.31335080e-08],\n",
+ " [2.28648872e-18],\n",
+ " [6.45820819e-09],\n",
+ " [2.55381393e-11],\n",
+ " [3.97503584e-07],\n",
+ " [1.82869674e-11],\n",
+ " [5.03383347e-20],\n",
+ " [3.21298166e-09],\n",
+ " [1.91793811e-06],\n",
+ " [9.25751150e-01],\n",
+ " [7.05063343e-04],\n",
+ " [3.23845784e-10],\n",
+ " [1.04834719e-07],\n",
+ " [2.78592177e-10],\n",
+ " [3.57721652e-09],\n",
+ " [1.15394146e-10],\n",
+ " [9.03204409e-08],\n",
+ " [4.27324630e-05],\n",
+ " [4.76110514e-12],\n",
+ " [2.56916773e-20],\n",
+ " [6.84313229e-13],\n",
+ " [5.22530308e-06],\n",
+ " [7.53312953e-14],\n",
+ " [1.11587983e-09],\n",
+ " [6.58146888e-12],\n",
+ " [2.64839559e-06],\n",
+ " [1.38477981e-02],\n",
+ " [6.45132673e-07],\n",
+ " [2.53815940e-10],\n",
+ " [1.54264283e-14],\n",
+ " [4.31639932e-11],\n",
+ " [1.27399080e-09],\n",
+ " [3.46093427e-16],\n",
+ " [2.32674181e-02],\n",
+ " [5.89373661e-10],\n",
+ " [2.04352309e-05],\n",
+ " [8.36456153e-16],\n",
+ " [7.45949580e-10],\n",
+ " [1.80132713e-06],\n",
+ " [9.15339129e-08],\n",
+ " [1.05947147e-05],\n",
+ " [2.19997764e-03],\n",
+ " [1.38896013e-07],\n",
+ " [3.19795987e-07],\n",
+ " [2.55276973e-07],\n",
+ " [2.34632267e-07],\n",
+ " [5.66951712e-05],\n",
+ " [1.71008352e-09],\n",
+ " [2.62112609e-15],\n",
+ " [5.27507067e-03],\n",
+ " [3.96477131e-17],\n",
+ " [5.26595555e-15],\n",
+ " [5.74383635e-22],\n",
+ " [3.29919878e-08],\n",
+ " [7.73888953e-09],\n",
+ " [1.97384406e-06],\n",
+ " [1.17806842e-14],\n",
+ " [1.27561816e-06],\n",
+ " [1.36761685e-07],\n",
+ " [3.11607309e-08],\n",
+ " [9.94042516e-01],\n",
+ " [2.19808373e-12],\n",
+ " [8.90458729e-09],\n",
+ " [5.67479252e-16],\n",
+ " [6.63364780e-11],\n",
+ " [6.78734136e-09],\n",
+ " [2.48667664e-09],\n",
+ " [1.54812101e-12],\n",
+ " [1.15501450e-07],\n",
+ " [3.04787445e-12],\n",
+ " [4.05160080e-07],\n",
+ " [3.20259264e-09],\n",
+ " [4.65607969e-11],\n",
+ " [5.04093293e-07],\n",
+ " [8.08918355e-09],\n",
+ " [1.71579222e-06],\n",
+ " [3.85109455e-09],\n",
+ " [4.47555214e-13],\n",
+ " [8.04482347e-09],\n",
+ " [2.55186041e-08],\n",
+ " [8.33668025e-18],\n",
+ " [1.72225629e-25],\n",
+ " [1.68238207e-22],\n",
+ " [1.95536346e-19],\n",
+ " [6.14417149e-06],\n",
+ " [1.34759368e-08],\n",
+ " [3.83710748e-23],\n",
+ " [2.22275654e-15],\n",
+ " [1.53663990e-07],\n",
+ " [1.59823352e-11],\n",
+ " [2.91919946e-07],\n",
+ " [5.55650026e-10],\n",
+ " [9.99986053e-01],\n",
+ " [1.06624839e-07],\n",
+ " [5.05920798e-06],\n",
+ " [2.45368587e-10],\n",
+ " [6.21995330e-03],\n",
+ " [7.34435407e-13],\n",
+ " [2.95785485e-09],\n",
+ " [1.25386012e-15],\n",
+ " [4.80666677e-05],\n",
+ " [5.11962028e-10],\n",
+ " [5.07504865e-06],\n",
+ " [2.74327397e-03],\n",
+ " [1.75539069e-10],\n",
+ " [2.33624578e-11],\n",
+ " [6.57869563e-08],\n",
+ " [1.82676790e-12],\n",
+ " [2.07111339e-06],\n",
+ " [7.07829948e-18],\n",
+ " [4.04717682e-08],\n",
+ " [1.08578701e-32],\n",
+ " [3.65399239e-11],\n",
+ " [3.94940525e-09],\n",
+ " [1.12692414e-05],\n",
+ " [1.23821040e-11],\n",
+ " [3.88618551e-18],\n",
+ " [5.47425773e-14],\n",
+ " [2.42556886e-12],\n",
+ " [4.33400487e-07],\n",
+ " [2.77113029e-14],\n",
+ " [1.25522276e-17],\n",
+ " [9.96981025e-01],\n",
+ " [3.23155803e-07],\n",
+ " [1.34133538e-10],\n",
+ " [4.93266318e-22],\n",
+ " [7.10917050e-08],\n",
+ " [2.63771217e-05],\n",
+ " [8.71012928e-10],\n",
+ " [4.06884283e-11],\n",
+ " [1.85111165e-03],\n",
+ " [8.82726892e-10],\n",
+ " [5.07930679e-07],\n",
+ " [3.26060649e-06],\n",
+ " [3.85843579e-11],\n",
+ " [1.25795361e-06],\n",
+ " [4.20764651e-18],\n",
+ " [9.42092440e-19],\n",
+ " [4.01413258e-09]], dtype=float32)"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_pred = model.predict(x_test)\n",
+ "y_pred"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:50.290286Z",
+ "iopub.status.busy": "2021-12-15T11:04:50.289451Z",
+ "iopub.status.idle": "2021-12-15T11:04:50.293536Z",
+ "shell.execute_reply": "2021-12-15T11:04:50.294072Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.069376Z"
+ },
+ "papermill": {
+ "duration": 0.187777,
+ "end_time": "2021-12-15T11:04:50.294217",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:50.106440",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0.00805706], dtype=float32)"
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_pred[1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:50.711137Z",
+ "iopub.status.busy": "2021-12-15T11:04:50.710157Z",
+ "iopub.status.idle": "2021-12-15T11:04:50.714006Z",
+ "shell.execute_reply": "2021-12-15T11:04:50.714513Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.077141Z"
+ },
+ "papermill": {
+ "duration": 0.232991,
+ "end_time": "2021-12-15T11:04:50.714665",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:50.481674",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "270 0\n",
+ "2071 1\n",
+ "3660 0\n",
+ "3207 0\n",
+ "1675 0\n",
+ " ..\n",
+ "1791 0\n",
+ "2132 0\n",
+ "162 0\n",
+ "1885 0\n",
+ "219 0\n",
+ "Name: binaryClass, Length: 943, dtype: int64"
+ ]
+ },
+ "execution_count": 82,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:51.114782Z",
+ "iopub.status.busy": "2021-12-15T11:04:51.113738Z",
+ "iopub.status.idle": "2021-12-15T11:04:51.193614Z",
+ "shell.execute_reply": "2021-12-15T11:04:51.194162Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.095850Z"
+ },
+ "papermill": {
+ "duration": 0.267051,
+ "end_time": "2021-12-15T11:04:51.194309",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:50.927258",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "30/30 [==============================] - 0s 978us/step - loss: 0.0463 - accuracy: 0.9905\n",
+ "CPU times: user 79.1 ms, sys: 1.99 ms, total: 81.1 ms\n",
+ "Wall time: 75.2 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[0.046282220631837845, 0.9904559850692749]"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "model.evaluate(x_test, y_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:51.563709Z",
+ "iopub.status.busy": "2021-12-15T11:04:51.562562Z",
+ "iopub.status.idle": "2021-12-15T11:04:51.618447Z",
+ "shell.execute_reply": "2021-12-15T11:04:51.619470Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.193728Z"
+ },
+ "papermill": {
+ "duration": 0.24304,
+ "end_time": "2021-12-15T11:04:51.619626",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:51.376586",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([4.3406606e-20], dtype=float32)"
+ ]
+ },
+ "execution_count": 84,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.predict(x_test)[50]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:51.987287Z",
+ "iopub.status.busy": "2021-12-15T11:04:51.986253Z",
+ "iopub.status.idle": "2021-12-15T11:04:52.049690Z",
+ "shell.execute_reply": "2021-12-15T11:04:52.050202Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.267246Z"
+ },
+ "papermill": {
+ "duration": 0.247728,
+ "end_time": "2021-12-15T11:04:52.050358",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:51.802630",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0], dtype=int32)"
+ ]
+ },
+ "execution_count": 85,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.predict_classes(x_test)[50]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:52.417568Z",
+ "iopub.status.busy": "2021-12-15T11:04:52.416869Z",
+ "iopub.status.idle": "2021-12-15T11:04:52.421789Z",
+ "shell.execute_reply": "2021-12-15T11:04:52.422322Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.334484Z"
+ },
+ "papermill": {
+ "duration": 0.189251,
+ "end_time": "2021-12-15T11:04:52.422472",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:52.233221",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 86,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_test.iloc[50]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:52.788816Z",
+ "iopub.status.busy": "2021-12-15T11:04:52.788136Z",
+ "iopub.status.idle": "2021-12-15T11:04:52.849091Z",
+ "shell.execute_reply": "2021-12-15T11:04:52.848354Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.341158Z"
+ },
+ "papermill": {
+ "duration": 0.245472,
+ "end_time": "2021-12-15T11:04:52.849218",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:52.603746",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([2.4328332e-24], dtype=float32)"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.predict(x_test)[70]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:53.219258Z",
+ "iopub.status.busy": "2021-12-15T11:04:53.218592Z",
+ "iopub.status.idle": "2021-12-15T11:04:53.277992Z",
+ "shell.execute_reply": "2021-12-15T11:04:53.277408Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.415686Z"
+ },
+ "papermill": {
+ "duration": 0.246821,
+ "end_time": "2021-12-15T11:04:53.278125",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:53.031304",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0], dtype=int32)"
+ ]
+ },
+ "execution_count": 88,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.predict_classes(x_test)[70]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:53.645411Z",
+ "iopub.status.busy": "2021-12-15T11:04:53.644384Z",
+ "iopub.status.idle": "2021-12-15T11:04:53.648664Z",
+ "shell.execute_reply": "2021-12-15T11:04:53.648166Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.480264Z"
+ },
+ "papermill": {
+ "duration": 0.190069,
+ "end_time": "2021-12-15T11:04:53.648780",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:53.458711",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 89,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_test.iloc[70]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:54.022259Z",
+ "iopub.status.busy": "2021-12-15T11:04:54.021544Z",
+ "iopub.status.idle": "2021-12-15T11:04:54.064938Z",
+ "shell.execute_reply": "2021-12-15T11:04:54.064359Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.489240Z"
+ },
+ "papermill": {
+ "duration": 0.233246,
+ "end_time": "2021-12-15T11:04:54.065068",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:53.831822",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[0.]], dtype=float32)"
+ ]
+ },
+ "execution_count": 90,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.predict(sc.transform([[42.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.00,132,1.00,1.00,109.0,1.0,0.88,.100,110.00,0.00,0,1]]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:54.437580Z",
+ "iopub.status.busy": "2021-12-15T11:04:54.436809Z",
+ "iopub.status.idle": "2021-12-15T11:04:55.026656Z",
+ "shell.execute_reply": "2021-12-15T11:04:55.025998Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:41.547020Z"
+ },
+ "papermill": {
+ "duration": 0.78046,
+ "end_time": "2021-12-15T11:04:55.026766",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:54.246306",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAH7CAYAAABc7Oz5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXRU9f0//ue9c2dJyJ4MBJJhCyRhS9gDGFYB86uCC5FFsC24lKJiodWKVEER5Iu1YFEKKuISKVKxStVPpViUfTcEAiEsEUISICQhmeyz3N8fkZE0CSSZO3dmkufjHM6RO3fe93Xfp58Pz7n3vQiyLMsgIiKiVk90dwFERETkGRgKiIiICABDAREREf2EoYCIiIgAMBQQERHRTxgKiIiICABDAREpbMyYMVizZk2TvhMTE4Mvvviiwc8PHDiAmJgYXL582dnyiOgWGAqIiIgIAEMBERER/YShgKiFe/jhh/H8889j5cqVGDp0KAYOHIiVK1fCbrfjzTffxLBhwzBkyBCsXLmy1vdKS0vx4osvYsiQIejTpw8eeOAB7N69u9Y5GRkZmDp1Kvr06YO77roLX3/9dZ3rl5WV4ZVXXsHw4cMRHx+P++67D9u2bXP6vlJTUzF9+nTExcVh0KBB+P3vf4+CggLH55cvX8ZTTz2FhIQExMXF4c4778S7777r+Hz79u247777EB8fj4EDByI5ORknT550ui4ibya5uwAicr1vvvkGU6dOxcaNG3HkyBEsXLgQJ0+eRPfu3fHxxx8jNTUVzz33HPr374+RI0cCAJ5//nmcOHECr732Gjp06IC///3vmD17Nr744gtERUWhsrISjz32GGJjY/GPf/wDFRUVeOWVV2r9wyzLMmbPng0AWLlyJdq1a4e9e/di/vz5eOeddzB06NBm3U9+fj5mzZqF0aNH48UXX4TZbMZLL72Ep556Chs3bgQALF68GJWVlXj//ffh7++PS5cu4dq1a47v/+53v8PTTz+NpKQkVFdX4+TJk9BoNM50M5H3k4moRZsxY4Y8ceLEWsd+8YtfyPfcc0+tYxMmTJCXL18uy7Is//jjj3J0dLT83Xff1Trnvvvuk5977jlZlmV58+bNct++feXr1687Pj99+rQcHR0tv/XWW7Isy/L+/fvl3r17yyUlJbXaee655+Tf/va3jr9HR0fLn3/+eYP3sH//fjk6OlrOy8uTZVmWV65cKQ8fPlyuqqpynHPq1Ck5OjpaPnjwoON+/vrXv9bbXnp6uhwdHS1nZ2c3eE2i1ohPCohagdjY2Fp/DwsLQ1hYWK1jRqPR8Sv/7NmzAICBAwfWOmfgwIFITU11nNO1a1cEBgY6Po+Ojoa/v7/j78ePH4fFYsGIESNqtWOxWNCpU6dm38/Zs2fRt29f6HQ6x7HY2Fj4+/vjzJkzGDRoEH71q19h0aJF2LlzJwYPHoxRo0Zh0KBBAGpmOyQmJmLChAkYNmwYBg8ejPHjx6N9+/bNromoJWAoIGoFJKn2/6kLggCtVlvnPLvdfst2ZFmGIAh1/rshdrsd/v7++PTTT+t8Vt/1lXCjpkmTJmH48OHYtWsXDhw4gMceewxjx47Fn//8Z2g0Grz77rs4fvw49u7di23btuH111/HG2+8gdGjR7ukLiJvwIGGRFRH9+7dAQCHDx+udfzIkSPo1q2b45xz586hpKTE8fmZM2dgNpsdf+/Tpw9KSkpQVVWFTp061frToUOHZtfXrVs3pKamorq62nEsIyMDZrPZUTsAtG3bFpMmTcKKFSuwdOlS/Otf/0JpaSmAmvAQFxeH2bNn4+OPP8agQYPw2WefNbsmopaAoYCI6ujYsSOSkpLw0ksvYdeuXTh37hxeeeUVnDlzBo888ggA4J577kGbNm3wzDPPICMjA6mpqXj++edhMBgc7QwZMgTDhg3DU089hf/85z/Izs7GiRMn8NFHH2Hz5s3Nrm/GjBkoLS3FggULkJmZicOHD+OZZ57BgAEDHK88Xn75ZXz//fe4ePEizpw5g23btqF9+/Zo06YNjh49irfeegvHjh1Dbm4u9u3bh9OnTyMqKsq5jiPycnx9QET1Wrp0KVasWIFnnnkGpaWliI6Oxtq1ax3/cPr4+ODtt9/GSy+9hOTkZISHh2PevHl4/fXXHW0IgoC//e1vePPNN/Hqq6/i6tWrCAwMRGxsLB599NFm1xYWFob33nsPr732GpKTk6HT6TBy5Eg8//zzjnNkWcayZcuQl5cHHx8fxMfH45133oEgCPD390dqaio2btyI4uJiGI1GTJgwAXPmzGl+hxG1AIIsy7K7iyAiIiL34+sDIiIiAsBQQERERD9RPRSsW7cOiYmJiI+Px5w5c2qtfnaz8+fPY8aMGUhISEB8fDwmTJiArVu31jrn4YcfRkxMTK0/27dvV+M2iIiIWhxVBxpu2bIFa9euxYoVKxAZGYlly5Zh/vz5+OCDD+qcq9VqMWnSJPTs2RO+vr7YtWsXFixYgIiICAwYMMBx3qxZszBr1izH329eSIWIiIgaT9VQkJKSgpkzZ2LcuHEAgGXLlmHs2LHIzMxEdHR0rXNNJhNMJpPj7w899BA+/fRTpKam1goFvr6+MBqN6twAERFRC6ZaKKiurkZGRgYWLFjgOGYymRAREYFjx47VCQU3k2UZhw4dQlZWFvr27Vvrs40bNyIlJQURERGYOnUqJk+e3OTaiorKYLcrMwkjNNQPBQWlirTVWrEPlcF+dB770HnsQ+cp2YeiKCA4uE2Dn6sWCoqKimC32xEaGlrreEhICAoLCxv83t13340LFy4AqFmM5OanBBMnToTJZEJQUBAOHjyIpUuXQpZlTJkypUm13aqDmiM01E/R9loj9qEy2I/OYx86j33oPLX60OMXL3r77bdRWlqKffv2Yfny5YiKikJ8fDwA4MEHH3ScFxsbC7PZjA8//LDJoaCgoFSxJwVGoz/y8823P5EaxD5UBvvReexD57EPnadkH4qicMuAodrsg+DgYIiiWGe2QWFhIUJCQhr8XkREBGJiYvDrX/8a48ePx3vvvdfgub169UJOTo5iNRMREbUmqoUCnU6H2NhYHDhwwHEsOzsbOTk5jl/+tyPLMjQaTYOfZ2ZmOrXJChERUWum6joF06dPx4YNG7B9+3ZkZGRg4cKFSEhIQHR0NNLS0pCUlIQrV64AAL7++mv8+9//RlZWFrKysvDxxx/jiy++wC9+8QsAQH5+PlavXo309HRkZ2fjs88+w7p16zB16lQ1b4mIiKjFUHVMQXJyMgoKCrB48WKYzWYMGzYMS5YsAQBUVFQgKysLFoulpjBJwpo1a3DhwgWIooguXbpgxYoVGDt2rOPzgwcP4qOPPkJlZSVMJhPmzZuHhx56SLF6ZVlGUVE+qqsrATRuzMHVq+Jt96RvuQTodAYEBxsde9oTEZH34IZIaHigodl8HVarBUFBoRCExj1UkSQRVmvrDAWybMf169cgSTr4+wc1ux0OTFIG+9F57EPnsQ+d1yIHGnqjiopS+PsHNToQtHaCIMLfPxgVFZyTTETkjfiv3S3Y7TZoNB4/a9OjaDQS7Habu8sgIqJmYCi4Db4bbxr2FxGR92IoICIiIgAMBfQ/kpMn4Ouv/+XuMoiIyA34wryFePLJx9Gv3wA88shvnGrnnXc+hK+vj0JVERGRN2EoaCWqq6uh0+lue15wcLAK1RARkSfi64MWYOnSxUhNPYoNG95BYuJAJCdPwPr16/Dkk4/j448/wL333oWnnqp5gvDGG6/jwQfvxZ133oEZMybj22+31Wrr5tcHeXm5SEwciN27v8cjjzyMsWMTMXfubFy9ekX1eyQiItfjk4IW4Omn/4Ds7Ivo3TsO06bNgChq8Nlnm3H69CkYjW2xatXfIIo1+S8wMBAvvbQUgYFBOHz4IJYseRGdO3dFVFS3Btt/77238eST8xAUFISlS1/Cm2+uwssvv6rW7RERkUoYCppgz/E87E7Lu+U5ggAosUZkYlx73NGnfaPO9fPzgyRJ8PHxQWhomOO4KIr44x//BIPB4Dj2618/6vjviIhI7NmzEzt37rhlKPjVrx5B//4DAQBTpkzHm2+ubOrtEBGRF2AoUJAsy7DLgOghc/U7duxUKxAAwL///RU+/fQT5OXloLq6GtXV1bWCRH26dv05MISFhaGoqNAl9RIRkXsxFDTBHX1u/ev9emkVrpur0Cnc3yMW8dHraweCtLRU/L//9wqeeOJpxMX1ha9vG/z1r6/DarXesh1Jqv0/E26XQUTUMjEUKOhGDJDlmtcIapIk6ba7M544cRxdu3ZDcnLN9tKyLCMn5xICA5u/eREREbUcDAUKEsWaJGCXZYhQNxWEh7fHyZMnkJ9/tc4TghsiIiKRlXUee/fuRmRkJLZs2Yz8/HxV6yQiIs/FKYkKuvHKwO6Gx+tTpkxHcXExJk++F7NmTa/3nBEjRmHixPvw8ssvYPbsR6DXGzBixCh1CyUiIo8lyHxBjIKCUtjtdbvh8uULCA/v1Oh2yistuFpUgfZhbaDXapQs0as0td/+F/dfVwb70XnsQ+exD52nZB+KooDQUL+GP1fkKgTgpicF9QQMIiIiT8dQoKAbUxH58IWIiLwRQ4GChJ96kw8KiIjIGzEUKIhPCoiIyJsxFCjInbMPiIiInMVQoKCflimAfOs1hIiIiDwSQ4GCBEGAIAh8UkBERF6JoUBhoihwoCEREXklhgKF1WydzFRARETeh6FAYSJfHxARkZdiKFCYKApuGWj45JOPY/36dYq09fXX/0Jy8gRF2iIiIu/BUKAwPikgIiJvxa2TFSaIgGxVNxQsXboYqalHkZp6FBs2vIPw8Pb49NN/Yfv2b/D+++8iNzcXERERePTR2Rg5cgwAoLj4Ol577VUcOXIIFks1IiJMeOaZBaiursayZS8BABITBwIA/vrXtejff6Cq90REROpjKGgCS+YeWE7vvOU5Oqsdkl1Guc65XRK1MSOgjb6jUec+/fQfkJ19Eb17x2HatBkQRQ2OHDmEVav+jN///o+Ijo5FevoJLFnyItq2bYcePXrhnXfWoqysFKtXr4OPjw/Ons2EJGkRE9MDc+f+Hps2peCddz4AAAQEBDp1L0RE5B0YChQmCAJkqPukwM/PD5IkwcfHB6GhYQCADz5Yj0cf/Q1Gjx4LAIiIiMQPPxzBl19+gR49euHq1SuIj++Hbt26Oz6/uT1RFB1tERFR68BQ0ATa6Dtu++u9uKwaJeZKBLfzdyx77A7nz5/FiRPH8dZbbziOWSwW9Os3AAAwceJ9ePHF53Ho0AEMGpSAMWPGoWPHTu4ql4iIPABDgcJEAYAMyADcFwmA8vIKzJ07HwMHDq51XK/XAwASE0di8+YvsGfPTuzfvwcffvgeXnxxCUaNutMd5RIRkQdgKFCY8NMGCLJdBjTqxQJJkmC3/zwXslu37sjNzUFkpKnB74SFheHeex/Avfc+gD//eTn+7/++xKhRd9Zpi4iIWgeGAoWJjp0SAeeGGjZNeHh7nDx5Avn5V6HXG/DLX87Eiy8+j7AwI4YOvQOVlRU4duwHhIaGYfTosVi/fh1iY3uic+cuMJtLcPz4MQwalAAAaNeuPQoLC5CRcQrh4e0dYxaIiKhl4/+nV9iNUKD2UsdTpkzHkiUvYvLkexEaGoZPP/0XFi16BR988C7+9re/ok2bNoiO7oFHH/0NAECj0eCtt1bh8uU8tGnjh8TEEXjkkZrP4uLiMW5cEn73u9+itLSUUxKJiFoJQeZC/SgoKIW9nl2MLl++gPDwpg2+q7bakZtfivBQXxh0rTNzNaffbmY0+iM/36xgRa0T+9F57EPnsQ+dp2QfiqKA0FC/hj9X5CrkcGPCAaMWERF5G4YChTnGFHD/ZCIi8jIMBQoTRfeMKSAiInIWQ4HCbp59QERE5E0YCm6jqb/4bzwpaK07JfIJCRGR92IouAVJ0qGsrKRJ/9AJAgChdf7jKMsyyspKIEk6d5dCRETN0DrnzDVScLARRUX5KC293ujviKKI8pIKWCs0qCprfd0rSToEBxvdXQYRETVD6/tXqwk0GglhYe2b9B2j0R+/eunf6NkpBLPujnJRZURERMrj6wMX0Gs1qLTY3F0GERFRkzAUuIBBJ6Gy2uruMoiIiJqEocAFDDoNqqr5pICIiLwLQ4ELGHQaVDIUEBGRl2EocAE9nxQQEZEXYihwAY4pICIib6R6KFi3bh0SExMRHx+POXPmoKCgoN7zzp8/jxkzZiAhIQHx8fGYMGECtm7dWuscq9WKV199FQkJCejfvz8WLFiA8vJyNW7jlgycfUBERF5I1VCwZcsWrF27FosWLcKmTZtgNpsxf/78es/VarWYNGkSPvzwQ3z55ZeYNm0aFixYgCNHjjjOWbNmDb766iusWrUK77//PtLS0rBkyRK1bqdBBp0G1RY7d0okIiKvomooSElJwcyZMzFu3Dj06NEDy5Ytw/79+5GZmVnnXJPJhPvvvx8xMTEwmUx46KGHEBMTg9TUVACA3W7Hxo0bMW/ePAwdOhRxcXH405/+hK1bt6KkpETN26pDr9MAAKr4tICIiLyIaisaVldXIyMjAwsWLHAcM5lMiIiIwLFjxxAdHd3gd2VZxqFDh5CVlYW+ffsCALKzs1FUVIQhQ4Y4zhs8eDBkWUZ6ejqGDh3a6NpCQ/2acUcNM4a2AQC08TcgNNBH0bZbC6PR390ltAjsR+exD53HPnSeWn2oWigoKiqC3W5HaGhoreMhISEoLCxs8Ht33303Lly4AAB4+eWXMWDAAABwjEW4uT2NRoPAwMAGxyk0pKCgVLFH/UajP6qrLACAnLxi2DngsMmMRn/k55vdXYbXYz86j33oPPah85TsQ1EUbvlD2OP3Pnj77bdRWlqKffv2Yfny5YiKikJ8fLxH70Jo0NV0K9cqICIib6LamILg4GCIoljnV3xhYSFCQkIa/F5ERARiYmLw61//GuPHj8d7770HAAgLCwOAWu3ZbDYUFxfXeRqhNoO2ZkwBQwEREXkT1UKBTqdDbGwsDhw44DiWnZ2NnJwcxMfHN6oNWZah0dT8g2symRAcHFyrvUOHDkEQBPTs2VPZ4pvIoP9poCFDAREReRFVXx9Mnz4dy5YtQ48ePRAZGYlly5YhISEB0dHRSEtLw7PPPosPPvgA7dq1w9dffw1RFBETEwMA2Lt3L7744gusWrUKACCKIqZNm4aVK1eiQ4cO8PX1xdKlSzFx4kQEBgaqeVt16B1PCjiegIiIvIeqoSA5ORkFBQVYvHgxzGYzhg0b5lhXoKKiAllZWbBYagbpSZKENWvW4MKFCxBFEV26dMGKFSswduxYR3tPPPEEysrKMHfuXFgsFtx111144YUX1LylejnGFHBKIhEReRFB9uQReypRevbBxUtFeGLlTkwe3Q1JCR0Vabc14WhlZbAfncc+dB770Hlqzj7g3gcucOP1ARcvIiIib8JQ4AKiKECnFTmmgIiIvApDgYsYdBJnHxARkVdhKHARg1bDdQqIiMirMBS4iEHHUEBERN6FocBF9DoNxxQQEZFXYShwEYNO4uwDIiLyKgwFLqLn6wMiIvIyDAUuwjEFRETkbRgKXISzD4iIyNswFLiIQa9BVbUNXEWaiIi8BUOBi+i1GthlGRar3d2lEBERNQpDgYtwp0QiIvI2DAUuYtDVbIrEcQVEROQtGApc5EYo4P4HRETkLRgKXETveFLAVQ2JiMg7MBS4yI0xBXxSQERE3oKhwEUMWo4pICIi78JQ4CIcaEhERN6GocBFOKaAiIi8DUOBizjGFHCdAiIi8hIMBS4iaQRoRIGvD4iIyGswFLiIIAjcKZGIiLwKQ4EL6XUajikgIiKvwVDgQgadxHUKiIjIazAUuJBey9cHRETkPRgKXMig03CXRCIi8hoMBS5k0GlQWcVQQERE3oGhwIUMOg2qLBxoSERE3oGhwIX0OoljCoiIyGswFLiQQafh7AMiIvIaDAUuZNBqUG21w2a3u7sUIiKi22IocKEbOyVWVTMUEBGR52MocCGDvmZTJK5qSERE3oChwIX02p+eFHCtAiIi8gIMBS504/UBZyAQEZE3YChwIYYCIiLyJgwFLmTQcUwBERF5D4YCF9I7Zh/wSQEREXk+hgIX4usDIiLyJgwFLnRj9gFDAREReQOGAhfSO54UcEwBERF5PoYCFxIFAXqthusUEBGRV2AocDGDTsPXB0RE5BUYClxMz50SiYjISzAUuBifFBARkbdgKHAxg1bDgYZEROQVGApczKCX+KSAiIi8AkOBi+m1fH1ARETegaHAxQw6TkkkIiLvoHooWLduHRITExEfH485c+agoKCg3vNOnTqFuXPnIjExEf369cPkyZOxd+/eWuc8/PDDiImJqfVn+/btatxGo+l1HFNARETeQdVQsGXLFqxduxaLFi3Cpk2bYDabMX/+/HrPPXnyJCIiIvDGG2/g888/R2JiImbPno1z587VOm/WrFnYvXu348+IESPUuJVGM+hqxhTIsuzuUoiIiG5JUvNiKSkpmDlzJsaNGwcAWLZsGcaOHYvMzExER0fXOnfSpEm1/j537lx888032LNnD6KiohzHfX19YTQaXV98Mxl0GsgyUG21O/ZCICIi8kSqPSmorq5GRkYGhgwZ4jhmMpkQERGBY8eO3fb7sizj+vXrCAgIqHV848aNSEhIwAMPPIDNmzcrXrezDNw+mYiIvIRqTwqKiopgt9sRGhpa63hISAgKCwtv+/2UlBTYbDaMHj3acWzixIkwmUwICgrCwYMHsXTpUsiyjClTpjSpttBQvyadfztGo//P/x3aBgDg62eAMayNotdpyW7uQ2o+9qPz2IfOYx86T60+VPX1QXPt3LkTr7/+Ot58800EBgY6jj/44IOO/46NjYXZbMaHH37Y5FBQUFAKu12Zd/5Goz/y882Ov1dX1gwyzL1cDEm2K3KNlu5/+5Cah/3oPPah89iHzlOyD0VRuOUPYdVeHwQHB0MUxTqzDQoLCxESEtLg9w4fPoynn34aS5cuRWJi4i2v0atXL+Tk5ChSr1IMju2T+fqAiIg8m2qhQKfTITY2FgcOHHAcy87ORk5ODuLj4+v9TlpaGn7zm9/gueeew913333ba2RmZqJDhw6K1awEx5gCrlVAREQeTtUpidOnT8eGDRuwfft2ZGRkYOHChUhISEB0dDTS0tKQlJSEK1euAABOnz6NRx99FFOmTMGYMWOQn5+P/Px8mM01j1Dy8/OxevVqpKenIzs7G5999hnWrVuHqVOnqnlLt6XnkwIiIvISqo4pSE5ORkFBARYvXgyz2Yxhw4ZhyZIlAICKigpkZWXBYrEAALZt24bi4mKsX78e69evd7Rx//33Y/ny5ZAkCQcPHsRHH32EyspKmEwmzJs3Dw899JCat3RbP78+4AJGRETk2QSZq+q4dKBhaYUFc9/YhWlju2PcQJMi12jpODBJGexH57EPncc+dF6LHGjYWnGdAiIi8hYMBS4maURoRIFjCoiIyOMxFKjAoNPwSQEREXk8hgIVGLhTIhEReQGGAhUYdBIquU4BERF5OIYCFeh1Go4pICIij8dQoAKOKSAiIm/AUKACvZZjCoiIyPMxFKjAoJP4+oCIiDweQ4EKDBxTQEREXoChQAUGnYa7JBIRkcdjKFCBXqeBxWqHzW53dylEREQNYihQgUFXsxklZyAQEZEnYyhQwc/bJzMUEBGR52IoUAFDAREReQOGAhXotQwFRETk+RgKVHDjSUEVFzAiIiIPxlCgghsDDfmkgIiIPBlDgQocYwq4VgEREXkwhgIV6DnQkIiIvABDgQp+HlPAUEBERJ6LoUAFOsfsAw40JCIiz8VQoAJREKDnpkhEROThGApUwp0SiYjI0zEUqMSg5U6JRETk2RgKVGLQSais4pgCIiLyXAwFKtHr+KSAiIg8G0OBSgw6DSo4poCIiDwYQ4FKDDoN1ykgIiKPxlCgkprZBxxTQEREnouhQCV6rcQxBURE5NEYClRyY50CWZbdXQoREVG9GApUYtBpIMtAtdXu7lKIiIjqxVCgEgN3SiQiIg/HUKASvWOnRA42JCIiz8RQoBKDTgLAJwVEROS5GApUoufrAyIi8nAMBSrhmAIiIvJ0DAUqMWh/GlPAtQqIiMhDMRSoxDGmgDslEhGRh2IoUIljTAGfFBARkYdiKFAJxxQQEZGnYyhQkL2iBBUXTtT7maQRIWkEbopEREQei6FAQdYze5C38WXI1up6PzfoJG6fTEREHouhQEGCTyBgt8Fuvlbv53qthq8PiIjIYzEUKEgMaAsAkEuu1vu5Qa/hkwIiIvJYDAUKEn4KBfaGQoFWwzEFRETksRgKFCQY/CHoDA2HAp2GUxKJiMhjMRQoSBAEaIPCGwwFep3EMQVEROSxGAoUJgW3a3hMgY5jCoiIyHMxFChMGxwOu/kaZNle5zO9jrMPiIjIc6keCtatW4fExETEx8djzpw5KCgoqPe8U6dOYe7cuUhMTES/fv0wefJk7N27t9Y5VqsVr776KhISEtC/f38sWLAA5eXlatxGg7TB4YDdCrmsqM5nBoYCIiLyYKqGgi1btmDt2rVYtGgRNm3aBLPZjPnz59d77smTJxEREYE33ngDn3/+ORITEzF79mycO3fOcc6aNWvw1VdfYdWqVXj//feRlpaGJUuWqHU79ZKC2gGofwaCQauB1WaH1Vb3KQIREZG7qRoKUlJSMHPmTIwbNw49evTAsmXLsH//fmRmZtY5d9KkSfjjH/+IAQMGoFOnTpg7dy5MJhP27NkDALDb7di4cSPmzZuHoUOHIi4uDn/605+wdetWlJSUqHlbtWiDbxEKftopkdsnExGRJ1ItFFRXVyMjIwNDhgxxHDOZTIiIiMCxY8du+31ZlnH9+nUEBAQAALKzs1FUVFSrvcGDB0OWZaSnpyt/A40kBRoBQQO5JL/OZ/6+WgBAYUmV2mURERHdlqTWhYqKimC32xEaGlrreEhICAoLC2/7/ZSUFNhsNowePRoAHGMRbm5Po9EgMDCwwXEKDQkN9WvS+bcjBRmhrSqE0R35j60AACAASURBVOhf6/jgOA3e/tdJ5BVVoH+v9opes6X5376j5mE/Oo996Dz2ofPU6kPVQoEzdu7ciddffx1vvvkmAgMDAdQ8OVBKQUEp7HZl2jMa/SG3CUNFfi7y8821PhNkGSEBehw5dQWDY4yKXK8lMhr96/QdNR370XnsQ+exD52nZB+KonDLH8KqvT4IDg6GKIp1fsUXFhYiJCSkwe8dPnwYTz/9NJYuXYrExETH8bCwMACo1Z7NZkNxcXGdpxFqEwPawm6u+/pAEAREm4KQmX1d0VBDRESkBNVCgU6nQ2xsLA4cOOA4lp2djZycHMTHx9f7nbS0NPzmN7/Bc889h7vvvrvWZyaTCcHBwbXaO3ToEARBQM+ePV1zE40kBhiBqjLIVWV1Pos2BaG4rBpXiyrcUBkREVHDVJ19MH36dGzYsAHbt29HRkYGFi5ciISEBERHRyMtLQ1JSUm4cuUKAOD06dN49NFHMWXKFIwZMwb5+fnIz8+H2VzzCEUURUybNg0rV67E/v37kZaWhqVLl2LixImOVwzuIvg3vDFSjCkIAHA6+7qqNREREd2OqmMKkpOTUVBQgMWLF8NsNmPYsGGOdQUqKiqQlZUFi8UCANi2bRuKi4uxfv16rF+/3tHG/fffj+XLlwMAnnjiCZSVlWHu3LmwWCy466678MILL6h5S/USb9otUWPsUuuz8BBfBPhqcfridYyI7+CO8oiIiOolyHy5rfhAw6u5+SjdMBu6QZOg7zehzjlr/nkcWXlmvDZnmCLXbGk4MEkZ7EfnsQ+dxz50XoscaNiaCFoDBJ+ABjdGijYFoaCkEteKOa6AiIg8B0OBiwgBbRvcQjn6p3EFZ7KL1SyJiIjolhgKXEQMaAt7PasaAkCk0Q++eomDDYmIyKMwFLiIGNAWclkRZJul7meigO6RgchkKCAiIg/CUOAior8RgFzvIkYAENMxGJcLy1FcVq1uYURERA1gKHCRG9MSbzXYEADO8GkBERF5CIYCFxEcaxXU/6SgYzs/6LUanL7IUEBERJ6BocBFBJ8AQNI3OANB0ojoFhHAwYZEROQxGApcRBCEn2Yg1B8KgJpXCDn5pSitqDsYkYiISG0MBS4kBrRtcEwBUBMKZABnL3G9AiIicj+GAhcSAoywm/Mhy/Z6P+/aIQCSRuTURCIi8ggMBS4kBrQFbFbIZfX/o6+VNOjageMKiIjIMzAUuNDNuyU2JNoUhAuXzaistqpVFhERUb0YClzodmsVAECMKQh2WcbZHI4rICIi93IqFJSVleG7777Djz/+qFA5LYvgFwII4i2fFERFBEAUBI4rICIit2tSKPj973+PDz/8EABgsVgwefJkzJ49G/fccw927NjhkgK9mSBKEPxCbxkKDDoJncL9kclFjIiIyM2aFAoOHDiA/v37AwB27NiBsrIy7N69G08++STWrFnjkgK9nRjQtsH9D26IMQXhfF4JLFabSlURERHV1aRQUFxcjLCwMADAnj17MG7cOISFheGee+7BuXPnXFKgt7vdAkZAzWBDq03G+dwSlaoiIiKqq0mhICQkBJcuXQIA7N27FwkJCQCAyspKiCLHLNZHDGgLVJVBripr8JzupkAIAMcVEBGRW0lNOTkpKQl/+MMf0LlzZ5SWluKOO+4AAJw6dQqdOnVySYHeTggwAqjZGEljbFPvOW0MWkS29WMoICIit2pSKHjmmWcQHh6O3NxcPPfcc/Dx8QEAXL16FZMnT3ZJgd7u5rUKNMbODZ4XbQrC7rQ8WG12SBo+dSEiIvU1KRRIkoSZM2fWOf7II48oVlBLI/rfeFJw63EFMaYgfHvkEi5cMSOqQ6AapREREdXSpJ+kGRkZOHPmjOPv33//PebOnYvVq1fDauWKfPURdD4QfAJuuYARAHQ3BQHguAIiInKfJoWCF198EZmZmQCAy5cvY+7cuSgvL8fmzZuxatUqlxTYEgiNmIEQ2EaH8BBfrldARERu06RQkJWVhR49egAAtm3bhj59+uDdd9/FihUr8PXXX7ukwJZA9Dfedq0CoGZcQealYtjtsgpVERER1dakUGCxWKDX6wEABw8exIgRIwAAnTt3xrVr15SvroUQA9pCLi2EbLPc8rwYUxAqqqy4cMWsUmVEREQ/a1Io6NKlC7755hvk5uZiz549GDp0KAAgPz8fAQEBLimwJaiZgSBDNt86OMV1C4VOErHzWK46hREREd2kSaHgiSeewF/+8hfceeedGDBgAPr06QMA2L17N3r27OmSAlsCoRFbKAM16xUk9GyHfemXUV5566cKRERESmvSlMSxY8fiu+++Q35+PmJiYhzHhw4divHjxyteXEshBjRuWiIAjOkfiV1pedhz4jLGDTS5ujQiIiKHJoUCAAgLC0NYWBiqqqoAAHq9Hv369VO8sJZE8AkEJH2jQkGncH907RCAHUdzMHZAJARBUKFCIiKiJr4+AIAtW7Zg3Lhx6NevH/r164fx48fjs88+c0VtLYYgCBADjI0KBQAwpn8ELheW49SFIhdXRkRE9LMmPSn44IMP8Prrr2PatGkYNGgQgJpZCC+99BLKysrw8MMPu6TIlkAMaAt78eVGnTsoti02fXsWO47moGfnEBdXRkREVKNJoSAlJQULFy7ElClTHMfGjh2Lrl27Yv369QwFtyAEtIU9+zhk2Q5BuPUDGq2kwfC49vjmYDYKSyoREmBQqUoiImrNmvT6IC8vzzEN8WZDhw5FXl6eYkW1RKK/EbBZIJcXN+r8Uf0iIMsyvk/l9EQiIlJHk0JBeHg4Dhw4UOf4wYMHER4erlhRLZHYyGmJNxiDfNAnKhQ7j+XCarO7sjQiIiIATXx9MG3aNCxduhQXL17EwIEDAQCHDh1CSkoK5s6d65ICW4oboUAuuQq0j7nN2TXG9I/Eqn8cw9HMfAzu0c6V5RERETUtFDzyyCMwGAx455138M477wCoeXrw7LPP4qGHHnJJgS2F4B8KCGKjnxQAQO+uIQgLNOC/R3MYCoiIyOWavE7B9OnTMX36dJSWlgIA/Pz8FC+qJRJECYJfaJNCgSgIGN0/Av/YcQ6X8ksRaWRfExGR69w2FMyaNavRjb333ntOFdPSiQFtYS+5/W6JNxse1wH/3JmFHUdz8PBdjXvtQERE1By3DQXt2vGxtVLEACOs5w836Tt+Plok9GiLvemXkTwqCj76Jj/cISIiapTb/gvz6quvqlFHqyAGtIVcVQq5qgyCvk2jvzdmQCT2nLiMfemXMaZ/pAsrJCKi1qzJyxxT84nGLgAAW15mk77XpX0AOof7479HcyDLsitKIyIiYihQk6Zdd0DSw3rpeJO/O7p/BHKvlSEz+7oLKiMiImIoUJWgkSBF9IQ1O63Jv/gTerRDG4OEb4/muKg6IiJq7RgKVKYx9YFsvga5kZsj3aDTapAY1x4/ZOajyFzlouqIiKg1YyhQmWTqAwCwZqc1+buj+0XAbpex44dLSpdFRETEUKA20d8IMag9rNlNH1fQNtgX/aKN2HE0B5XVVhdUR0RErRlDgRtoIvvAlpcB2dr01wBJCR1RVmnF7jTuSklERMpiKHADqWMcYLPClnu6yd/tFhGIbhGB2HYoGzY7d08kIiLlMBS4gSY8GtDomjWuAKh5WnCtuBJHTjdtyWQiIqJbYShwA0HSQdMhtlnrFQBA3+5haBfsg/87cJGLGRERkWJUDwXr1q1DYmIi4uPjMWfOHBQUFNR7XlVVFZ599lkkJSUhNjYWq1evrnPOww8/jJiYmFp/tm/f7upbUIRk6gO5+EqTdk28QRQE3DW4Iy5cNuP0RS5mREREylA1FGzZsgVr167FokWLsGnTJpjNZsyfP7/ec202G3x9ffHYY48hNja2wTZnzZqF3bt3O/6MGDHCVeUrypmpiQAwrHc4/H21+PfBi0qWRURErZiqoSAlJQUzZ87EuHHj0KNHDyxbtgz79+9HZmbdvQB8fX2xePFiTJo0Cf7+/g226evrC6PR6Pij0+lceQuKEQPDIQS0bdbURKBmMaM7B0Qi7VwBcvJLFa6OiIhaI9X24a2urkZGRgYWLFjgOGYymRAREYFjx44hOjq6We1u3LgRKSkpiIiIwNSpUzF58uQmtxEa6tesazfEaGw4xNxM6N4f5rQdCA3WQ5SaHmaSx8bg6/0X8X3aZTw9tV+Tv+/JGtuHdGvsR+exD53HPnSeWn2oWigoKiqC3W5HaGhoreMhISEoLCxsVpsTJ06EyWRCUFAQDh48iKVLl0KWZUyZMqVJ7RQUlMJuV2bAntHoj/x8c6POtYbFQrb8G1eOH4UU2atZ10vsE44dR7LxiwQTgvz0zWrD0zSlD6lh7EfnsQ+dxz50npJ9KIrCLX8IqxYKXOHBBx90/HdsbCzMZjM+/PDDJocCd9F06AGIEqzZac0OBeMHmbDjhxxsP3wJyaOiFK6QiIhaE9XGFAQHB0MUxTqzDQoLCxESEqLINXr16oWcHO/ZRVDQ6qFpHwNbM6cmAjVLHw+INmLHDzmoqOLSx0RE1HyqhQKdTofY2FgcOHDAcSw7Oxs5OTmIj49X5BqZmZno0KGDIm2pRTL1gb0oF/bS+qdmNkZSQidUVFmxi0sfExGRE1SdfTB9+nRs2LAB27dvR0ZGBhYuXIiEhARER0cjLS0NSUlJuHLliuP8s2fP4tSpUygrK0N+fj5OnTqF3NxcAEB+fj5Wr16N9PR0ZGdn47PPPsO6deswdepUNW/JaRrH1MTmPy3o2iEA0aYg/OfQRVhtXPqYiIiaR9UxBcnJySgoKMDixYthNpsxbNgwLFmyBABQUVGBrKwsWCwWx/mPP/6443VAeno6PvnkE9x///1Yvnw5JEnCwYMH8dFHH6GyshImkwnz5s3DQw89pOYtOU0M6gDBLxS27ONAj1HNbidpcEf8dUsaDmdcxZBe4coVSERErYYgc51ct80+uKFy5/uwnNsPv1++CUHTvJxml2W88O4BaCURi349CIIgNKsdT8DRyspgPzqPfeg89qHz1Jx9wL0PPIDG1AewVMJ25Wyz27ix9PHFK6U4daFIweqIiKi1YCjwAFJET0DQwNbMJY9vGNqrHQJ8tfj2yCWFKiMiotaEocADCDofaMK7NXvXxBu0kgbD4zsg9ew1FBRXKlQdERG1FgwFHkJjioO9IBv2Muce/Y/sWzMl87tU71mvgYiIPANDgYe4sWui7dIJp9oJC/RBfFQYdh3LhcXK6YlERNR4DAUeQgwxQfANcmq9ghvG9I9ASbkFRzKvKlAZERG1FgwFHkIQBGgi+8B66QRku82ptnp2CUHbYB/sOMpXCERE1HgMBR5EMvUBqsudmpoI1ExPHN0vAmcuFSP7aqlC1RERUUvHUOBBJFMfQKOF9dxBp9u6o097aCURO45yeiIRETUOQ4EHEXQ+kDrGw5p1CLLduUGCfj5aJPRoh33pV1Beyd0TiYjo9hgKPIwUlQC5ogS2vAyn2xrdPwJVFhv2pV9WoDIiImrpGAo8jNQxDpD0sJ47cPuTb6NL+wB0ae+P/x69BG5xQUREt8NQ4GEESQ+pUz9Ysg5Dtjv/2H9M/0jkFZQj4+J1BaojIqKWjKHAA2mjEoCqMthyTjrd1qDYtmhjkDjgkIiIbouhwANpTL0BnQ8sCsxC0Gk1GB7XAUczr6HIXKVAdURE1FIxFHggQaOF1Lk/rD8egWyzON3eqH4dIMsydh7LVaA6IiJqqRgKPJQ2KgGoroAt27m9EACgbbAvencNxXepObDauB8CERHVj6HAQ2kiekLQ+8Fy3vlZCEDN9MTi0mqknrmmSHtERNTyMBR4KEGUIHUZAOuPP0C2Oj8WIK5rKEIDDPgvBxwSEVEDGAo8mBSVAFirYL2Y5nRboihgVL8OyLh4HbnXyhSojoiIWhqGAg+maR8LwSdAkYWMAGB4fAdIGgHfHLyoSHtERNSyMBR4MEEUIXUZBOvFNMjVFU63F+Crw+h+kdh9PA8Xr5gVqJCIiFoShgIPJ3VLAGzVsF5MVaS9iYmd4auX8Ml/z3LpYyIiqoWhwMNp2nWD0CZYke2UAaCNQYv7hnfFqQtFSD3LmQhERPQzhgIPJwgipK6DYc0+DrlKmQGCI/t2QPtQX2z+71muW0BERA4MBV5AG5UA2K2w/nhUkfYkjYgpY7rhSlEF/ns0R5E2iYjI+zEUeAHR2AWCvxGW88q8QgCAPl1D0atLCLbuzkJphfNLKRMRkfdjKPACgiBA23UQbJdOQq4sVazNKWO6oaLaii92ZSnSJhEReTeGAi8hRSUAsg2WrMOKtRlp9MPIvhHY8UMOFzQiIiKGAm8hhnaEEBiu2EJGN9w3vAv0OhGbd5xVtF0iIvI+DAVeQhAEaKMGw5aXAXt5sWLtBvjqMGFYF6SdK8CJ8wWKtUtERN6HocCL1LxCkGE9u1/Rdu8cEIm2QT7Y9N+zsNk5RZGIqLViKPAimuAIiG2jYMn4XtHVCLWSiAdHRyH3Whl2puYq1i4REXkXhgIvo4sdCfv1XNiuKDsGoH+0ETGmIPxzVxbKKzlFkYioNWIo8DJSVAKgNcCS8Z2i7QqCgKl3dkdZhQWb/nsWdu6LQETU6jAUeBlBq4e22xBYzx1SbNnjGzqF+yNpSEfsTsvDhq9OcXwBEVErw1DghbSxowBbNSwKDzgEgOSRUbgvsQv2nLiMtz47gWqLTfFrEBGRZ2Io8EIaY2eIoZ0UH3AI1LxGmJjYBTPGR+PY2Wv4y+ZjKK+0KnoNIiLyTAwFXkrbYyTsBRdhv/ajS9of0z8Sj03siXM5xVix8SiKy6pdch0iIvIcDAVeStttCCDpYDn1vcuuMaRnOOYmx+FyYTleTTmCa9crXHYtIiJyP4YCLyXofCF1HQzLuf2QLZUuu06frqH4w7R+KKuwYFnKEVzKV2ZDJiIi8jwMBV5MFzsSsFTCovB+CP+rW0Qg/ji9P2QA/+/joziXo9wyy0RE5DkYCryY2K4bxOAOLn2FcEOk0Q/PzxgAX4OENZ+fgNXG6YpERC0NQ4EXEwQB2thRsOefh60g2+XXMwb5YNrYaBSZq3D49FWXX4+IiNTFUODltN2HARpJ8RUOGxIXFYp2Ib7YdjBb8emQRETkXgwFXk4w+EHqMhCWM/sgW10/bVAUBIwfGIkfL5tx5hLHFhARtSQMBS2ANnYkUF0O6/lDqlxvWO/2aGOQ8J9Drn9lQURE6mEoaAE07WMhBLaDJcP1Aw4BQK/TYFS/CBw9k4+rXLuAiKjFYChoAQRBgDZmJGyXM2ErylXlmmP6R0IUBGw/zKcFREQtBUNBC6GNvgMQNKo9LQj212Nwj7bYlZbHvRGIiFoI1UPBunXrkJiYiPj4eMyZMwcFBQX1nldVVYVnn30WSUlJiI2NxerVq+ucY7Va8eqrryIhIQH9+/fHggULUF5e7upb8EiibyCkzv1gzdwD2WZR5ZrjB3VEVbUNO4+p83SCiIhcS9VQsGXLFqxduxaLFi3Cpk2bYDabMX/+/HrPtdls8PX1xWOPPYbY2Nh6z1mzZg2++uorrFq1Cu+//z7S0tKwZMkSV96CR9PGjoRcVQrrjz+ocr1O4f6IMQXh2yPZsNm5mBERkbdTNRSkpKRg5syZGDduHHr06IFly5Zh//79yMzMrHOur68vFi9ejEmTJsHf37/O53a7HRs3bsS8efMwdOhQxMXF4U9/+hO2bt2KkpISNW7H42gie0HwCYA167Bq1xw/yISCkiocOZ2v2jWJiMg1VAsF1dXVyMjIwJAhQxzHTCYTIiIicOzYsSa3l52djaKiolrtDR48GLIsIz09XZGavY0giJA6xsN66Thkuzrv+eO7haFtkA+nJxIRtQCSWhcqKiqC3W5HaGhoreMhISEoLCxscns3xiLc3J5Go0FgYGCD4xQaEhrq1+Tr34rRWPfJhlrK+gzFldO74F9xCT6d+6hyzftHd8O6fx5HQZkFsZ1DFGnTnX3YkrAfncc+dB770Hlq9aFqoUBpSi6xW1BQCrtdmfaMRn/k55sVaas5ZP+ugCjhWto+GNp0VuWa8V2C4auX8Ml/TmPOfb2dbs/dfdhSsB+dxz50HvvQeUr2oSgKt/whrNrrg+DgYIiiWOdXfGFhIUJCmv7rMiwsDABqtWez2VBcXFznaURrImgN0ET0gPViqmrXNOgkjOzbAUdOX8U1LmZEROS1VAsFOp0OsbGxOHDggONYdnY2cnJyEB8f3+T2TCYTgoODa7V36NAhCIKAnj17KlKzt5I6xkMuvgL79cuqXfPOAZEQIGD7kUuqXZOIiJSl6uyD6dOnY8OGDdi+fTsyMjKwcOFCJCQkIDo6GmlpaUhKSsKVK1cc5589exanTp1CWVkZ8vPzcerUKeTm1syJF0UR06ZNw8qVK7F//36kpaVh6dKlmDhxIgIDA9W8LY8jdewLAKo+LQgJMGBgrBG70nJRUcXFjIiIvJGqYwqSk5NRUFCAxYsXw2w2Y9iwYY51BSoqKpCVlQWL5eeFdx5//HHk5OQAANLT0/HJJ5/g/vvvx/LlywEATzzxBMrKyjB37lxYLBbcddddeOGFF9S8JY8k+odBDImE9UIqdHFJql13/KCOOHjqKnan5WHcIJNq1yUiImUIspIj9rxUSxpoeEPVwU9Rfexr+P1yNQR9G9WuuyzlCAqKK7HkkcHwNWib1Yan9KG3Yz86j33oPPah81rkQENSl9SpLyDbYc0+rup1p4zuhpKyarz3dYaiM0SIiMj1GApaKNHYFYLBH9aLTV8YyhlREYFIHhWFo5n5+M9hDjokIvImDAUtlCCK0HSMgzU7DbLdpuq1xw8yoV/3MPxjx1mczSlW9dpERNR8DAUtmNSxL1BVBtuVs6peVxAEPHJ3D4QE6PG3z0/AXF6t6vWJiKh5GApaMCmyNyBqYFP5FQIA+Bq0mHNfH5jLq/Hul6dg5/gCIiKPx1DQggk6H2jax8J6Qb31Cm7WKdwf08ZG4/j5Any974JbaiAiosZjKGjhpI7xsF/Phb3kqluuP6pvBwzp2Q7/3HUepy4UuaUGIiJqHIaCFk7q9NPqhm56WiAIAn6ZFIPwEF+s25qO4tIqt9RBRES3x1DQwokBbSEGdVB9auLNDDoJv72vNyqrrFi3NV2xhaKIiEhZDAWtgNSpL2x5GZCr3beDYaTRDw/fFYOMi9fx+e7zbquDiIgaxlDQCmg6xgN2G6yXTri1jjv6tMfwuPb4cu8FHM5wzxgHIiJqGENBK6Bp1w3Qt1F118SGzBgfjaiIALz75UlcuMz10ImIPAlDQSsgiBpIpjjYLqZBttvdWotW0uDJB+Lg76vFX7ekocjMgYdERJ6CoaCVkDr1hVxphj3f/e/zA9voMDc5HuWVVqzekoYqi7rLMBMRUf0YCloJKbI3IIhum5r4v0xt/fD4xJ64cNmM9V9xxUMiIk/AUNBKCPo20IRHe8S4ghv6dTcieXQUDmdcxdbdWe4uh4io1WMoaEWkTn1hL7wEu/mau0txSBrcEYl92mPrnh9x4OQVd5dDRNSqMRS0IlLHG6sb/uDmSn4mCAIevisG0ZGBWP/VKZzL5VbLRETuwlDQiohB4RDDOqE67d+QrZ6znbFWEjHngT4I8tPhzS3HkV/kvkWWiIhaM4aCVkY/ZCrk0gJUp/2fu0upJcBXh6eT41BlseGV9w6gpNxzQgsRUWvBUNDKSB16QOoyENU/fAV7aYG7y6klwuiH397XG9lXzXj5/UN8lUBEpDKGglZIP2QKABlVB/7h7lLq6NM1FCueHA5RELA85Sj+e/QSZE5XJCJSBUNBKyT6G6GL//9gPbcf1suZ7i6njm6mILz460Ho1SUEKdsy8e6XJxu1wJHdLiP1zDW8++VJ5FwrU6FSIqKWRXJ3AeQeuvi7YTm9G1V7P4bmvkUQRM/Kh34+WsxNjsOXe3/EF7uykH21FE/c3wftQnzrnGsur8autDx890MOrhVXAgCuFJXj+RkDIAiC2qUTEXktz/qXgFQjaPXQJ0yG/doFWDJ3ubuceomCgIl3dMG8yfEoMlfh5Q8O4YfMfMfnWXklWP/lSfz+rb349LtzCAs0YM59vfHLpBicyynB/nSue0BE1BR8UtCKSVEJ0KR/i+pDW6DtOgiCru6vcE/Qu2soFs0chDX/PIHVnx3H8Lj2uJRfhqy8Eui1GgyPa4/R/SMQafQDANhlGTtTc7H5u7Po2z0MPnr+z5yIqDH4pKAVEwQB+jumQ64wo+roVneXc0thgT5YMKM/RvbtgF1peaiosmL6uGj85ck78PBdMY5AANQ8YZg+LhrFpdX4at8FN1ZNRORd+BOqldOEdYY2djgsx/8DXexIiEHt3V1Sg7SSBr9KisX9I7rC30d7y/ECURGBGNY7HNsOXcTw+PZoF+yZT0GIiDwJnxQQdIOSAUmHyn1/d3cpjRLgq2vUAMLkUVHQaER88u1ZFaoiIvJ+DAUE0ScA+gH3wpadBuvFY+4uRzFBfnpMHNYZqWev4fh5z1qoiYjIEzEUEABA22ssxMBwVO77O2Sb1d3lKGbsQBPaBfvg79vPwGqzu7scIiKPxlBAAABBI0E/9CHIxZdhSd/u7nIUo5VETL2zOy4XlmP74UvuLoeIyKMxFJCD1DEOmoieqD6+DbK95fyqju8WhrioUGzdk4Xi0ip3l0NE5LEYCqgWbY/RkMsKYbt0wt2lKGrqnd1hsdqx5fvz7i6FiMhjMRRQLVKnfhAM/rBkfO/uUhQVHuKLcYNM2H08D+dzS9xdDhGRR2IooFoEjQQpOhHWC6mwl193dzmKmjCsMwLb6LBxeybs3HmRiKgOhgKqQxc7ApBtsGTudXcpivLRS0geFYXzuSX4/occd5dDRORxGAqoDjGoPTTh0bCc/h5yC/tFPbR3OHp1CcHG7Wdw8sdCd5dDRORRGAqoXtrYKgcC8QAAIABJREFUkZCLr8CWd9rdpShKFAT89t7eCA/1xVv/PI6c/FJ3l0RE5DEYCqheUteBgM6nxQ04BABfg4TfJcdDJ2mw6h/HOE2RiOgnDAVUL0HSQ9ttKKxZhyBXlbm7HMWFBhrwuwfjUVphxapP01BVbXN3SUREbsdQQA3Sxo4EbFZYzuxzdyku0SncH7+5txcuXjFj3dZ02O0ta/wEEVFTMRRQgzRhnSCGdYYlo+UNOLyhb7cwPDQ2Gqlnr2HTt2ca9Z28gjIUmfnKgYhaHsndBZBn08aOQNXuD2HPz4KmbVd3l+MSdw6IRP71Cmw7lA1jkA/GDTLVOedacQUOnrqK/elXcCm/FAG+Wvxxen+0D23jhoqJiFyDTwrolrTdhgKSDpaMne4uxaUmj+mGAdFGbPr2DH7IzAcAlJRV49sjl7As5Qie/ds+fPrdOeh1Ih4cFQUA+POmVORfr3Bn2UREiuKTArolQecDqetgWM7th37oVAhag7tLcglREPDohJ547e8/YN3WdHQ3BeHUj0WwyzIiwtrggRFdMbhnO7QN8gEA9O4aihUbj+LPm37Ac9MHINhf7+Y7ICJyHp8U0G1pY0cClkpYzx10dykupddqMHdSHIL99bhcUI6khI54edZgLHk0AfcM6+wIBABgauuHeZP7oqTcgj9v+gEl5dVurJyISBkMBXRbmnbdIAZ1QHUj1iyQ7TbIFu8dhBfQRoeljw/Bit8ORfKoKES29Wvw3K4dAvC75DgUFFfiL5tSUVZpUbFSIiLlMRTQbQmCAG3sCNivnoOt8FK958h2OyyZu1H2yXMo++SPkCu9d6VAURAgCEKjzo3pGIwnH+iDnGtlWLX5GCqqrC6ujojIdRgKqFGk7sMAUVNnwKEs22E5dxDlny5E5Xfv4v9v777DqjjTh49/Z06l9yJIERAQFBSNorGXaDSmmKJpm7qpm2xMNm+Ku+llN73sZuPuL5tmEpMYS6IptsQWuwIWEFRAiiC9nX5m3j9QIgH0gIjt+VwXlzrzzMwzt4dz7jNPk/RGVHM91s1fnaGa9rz+MQHcc0V/8g838O43WdjsYiIkQRDOTSIpEFwiu3mjjR6MPW8DqsOGqqo4CndiWvg0llXvgSRhnPQn3Gc8hz5lCvZ9a3GcZ+smnMjghCDuuKwf+w7V8q9Fu3E4lTNdJUEQhE7r8aRg7ty5jBw5ktTUVO677z6qqqo6LJufn8/NN99MSkoK48ePZ+HCha3233zzzSQkJLT6Wbly5em+hQuWLnE0WJuwbluIacnzmH96G9VuxTjuLtyvfgFdnyFIkoQ+7Qokr0Cs6z5CdV447ezDk0P5w5QEdh2s4vX5GWzLOYLdIZ4aCIJw7ujRIYnffPMN77//Pq+88gq9e/fmpZde4uGHH+bjjz9uU9Zut3P33XeTlJTEggULyMzM5KmnnqJ3794MHTq0pdztt9/O7bff3vJvHx+fHrmXC5EmPAnJKxB71o9IHv4YRt+GLv5iJLn1y0jSGTBe/AfMP76BLfMHDGmXn6Ea97wxA8NRgcXr8nlv8W7cDBoGxweTnhxCYqQfsuxaXwVBEIQzoUeTgnnz5nHbbbcxadIkAF566SUmTpxIbm4u8fHxrcquXbuW8vJyFi9ejLu7O/Hx8WzdupV58+a1Sgrc3d0JCgrqydu4YEmSjHHsH1HqytD1HYGk0XVYVhuZgjZmKLad36KLHYrsE9qDNT2zxg4MZ1RKL7ILa9i8p5xt+46wftdhfD31DO0XQnpyCFEhXi53ZhQEQegpPdZ8YLPZyMnJIT09vWVbREQE4eHhZGZmtimflZVFSkoK7u7uLduGDx/epuznn3/OsGHDmDFjBl99deF0bjtTtL0S0CeOOWFCcIxhxA0g67Cs/+S8XTuhIxpZpn+fAO64LIm3HhjJPVck06eXN6u2F/PcR9t4+n9b2JFbccHFRRCEs1uPPSmoqalBURQCAgJabff396e6urpN+erq6nbLHt8H4fLLLyciIgJfX1+2bNnCiy++iKqqzJw5s1N1CwjoeCx6VwQFeXXr+c5dXtSNv4mqn/6LW/lOvAaMcfnI8y2G4WG+TBsdR4PJxobMUhavOcA/F+4iIcqPW6YlMSA28LRc93yL45kgYnjqRAxPXU/F8Kyd5tiVb1DXXntty98TExNpaGjgk08+6XRSUFXV2G3L5gYFeVFR0dAt5zofqBHDkYNXUbn8Q8y+8UjGkydg53sMB8cFMDDGjw27yliyPp8n39vAgJgArh4TQ2RI9/3in+9x7AkihqdOxPDUdWcMZVk64RfhHms+8PPzQ5blNqMNqqur8ff3b1M+ICCg3bK/f3pwvOTkZEpKSrqnwkK3kGQZ46hbUa1NF9TcBSejkWVGp4bx8l3pXDsuloOldTzz4Vb+8+0ejohFloQLhGXN/zB9/xqqIkbpnC16LCnQ6/UkJiayefPmlm1FRUWUlJSQmprapnxKSgpZWVmYzb+9QW7atKndssfk5uYSFhbWvRUXTpkmIBLdgMkX3NwFrtDrNFw6LIp/3DOcacOj2JFbwZz/bOLzFblirgPhvKYqCvb8rTiLd2Pb8e2Zro5wVI/OU3DjjTfy4YcfsnLlSnJycpgzZw7Dhg0jPj6erKwspkyZQnl5OQCjRo0iODiYOXPmkJeXx4IFC1i2bBk33XQTABUVFbz77rvs2bOHoqIiFi5cyNy5c5k1a1ZP3pLgIsPgK5E8A7Cu+xjVKaYC/j13o46rx8Ty8t3DGZnSi5Xbi5m7ZI9IDITzllJTDDYzklcgth3f4ijNPtNVEujhpOCaa67h7rvv5plnnmHmzJl4eHjwxhtvAGA2m8nPz8dub57sRq/XM3fuXCoqKpgxYwbvvfcezz33XMtwRK1Wy5YtW7jtttuYNm0aH3zwAbNnz25JGoSzi6QzYBz5B5TaUmyZ35/p6py1/LwM3DIlkVkT+rI9t4L/W7q32/q7CMLZxFmWC4Db5NnIPiFYVs9FMdef4VoJkirGRImOhj3IvPJfOAp2YBz7R3Rx6e2WETFs9sOmQr7+5QDDk0O5Y1q/Tk98JOJ46kQMT11HMTSvfA9n+X48bngdpeoQpiXPowlLwm3KQ0iSmIH/eOdlR0NBADCOvAVNcCyW1e9jzfhejNM/gUvTo7hqVB827inj4x9zUESshPOEqqo4y3LRhPZFkiQ0gVEY0mfhLMrCvmv5ma7eBU0kBUKPkoyeuE39S/Nsh1u+wrrhU9Hz+ASmX9yHy0ZEsy7rMJ8tzxVJlNBtVIcNa8YyVJup56/dUIFqqkUT+ttMtrqkCWijB2Pd8jXOIwd7vE5CM5EUCD1O0uoxTrgHXcql2Peuxrz8HVS79UxXy2WO0uweHUVx1ag+XDoskp93lvDFqjyRGAjdwp79C7YtX2PbtaLHr+0sywNA0+u3pECSJIxjbkdy98W86t9nJFkRRFIgnCGSJGNMn4nh4ptwFmVhWvp3FFNth+VVVcV55CCWXz+naeEzOMv392Btj6uH04Fl5XtYVs9FVXpmZIAkSVwzNpZJQyJYua2Yr385cMYTA2d1EUpD5Rmtg9B1qtOBLesHAOzZP6MqPTsiyFm2D/TuyH7hrbZLBg+M4+9BbazCsvajM/46vxCJpEA4o/TJE3Gb9CBKdQmmJS/grC1ttd9ZXYx1ywKa5v8/TIufw753NWpjFaYf38RZU9rBWU8fR+FOVEsDalM1zpI9PXZdSZKYNSGOcWnh/Lj5EAvXHjxjyzKrioJ52WuYV/xTvGmfo+x5G1CbatAlT0Q11eIo2NGj13cePtafoO1HkDa0L/ohV+E4uAX7vrU9Wi/hLJ7mWLhwaKMH4T79ccw/vYVpyYs0XnYv1kP5OPZvbh7LLElowpLQpV2ONjoN1dqEackLmL9/Dfcr/ors2XZGzNPFnv0Lkoc/qsOKfd86tBEDeuzakiRx46R4nE6FZRsL+WlLEXHh3iRG+ZEY6UdMmDdazenP85UjB1DNdajmOpxluWh7JZz2awrdR1Wc2DKWIQdGYxh+A45Dmdj3rEIXM/TkB3cDxVyPUleGPmFUh2X0qdNwlmZj3fAZmpA4NL97oiCcPppnnnnmmTNdiTPNbLbRXV94PDwMmEy27jnZBUT28EPbZwjOgu007lyOszQbyScYfepUjGPuQJ88Hk1gFJJWj2TwQBOehD37Z5yHMtDFpSNp9ae9jkp9BdaNn6FPmYzsE4ojbyP6pPE9cu1jJEkiJS6QmDAfPN10HK4ysSW7eWnmn7YeYl9RLTUNFnRambBgr9PyWrTtXoFSkQ96dzDVoosd1u3XOFucj7/PjgNbcOSswXDxTWj8w0FxYM9Zi7bPYGQ3n26/3u9j6CjehePgFgyDr0L2bH/aekmS0PROxpG7DmfJXnSJYy/opca783UoSRLu7h2/Z4knBcJZQ/YOwv2Kv+Jet58m997IXh2vHKgJjMLtkgcx//AG5p/exm3qX077h7N931qQJHQJo1Atjdh3r8C+fxP6/hNP63V/T5YkUmIDSIltfkNtNNvZd6iGnMJacg7V8M2ag3yz5iAJUX5MHx5FUnT3PUlRVbX5UXNoP+TAKBxZ36PUlSP7hHTbNYTTR1VVbBlLkX3D0EanAaBLGI112yLse1ahGXXraa+DsywPNDrkoOgTlpPdfdFfdDXWtR+KJ1I9SPQpEM4qktETz/6jTpgQHKMNT8I47i6cZXlYVv37tA5tVBUn9n3r0PQegOwZgCYwCjkgCvu+daftmq7ydNMxOCGYGy+J5/k7h/HmAyO5eXICVbVmXpufwSuf72B/SV23XEupKUGtP8KifG9e3eGLKsnYdvd87/ULgVJ7GPvBrd16TuehTJTqYvQDp7W050tGT7Sx6djzfkW1NnXr9dqtQ1kumuAYJI3upGV1celg8MC+Z9Vpr5fQTCQFwjlNFzsUw4gbcBTuxLr+k9PW8c15KAvVVIuu35jfrp0wEqWqEGdl4Wm5Zlf5eOgZNyicuU9M5PoJfSmtbOKlT7fz1teZFJad2qxohzM2oKiQr43BJHmwzRqNJXstiqWxm2ovAKgOK6af3sKy6j2UppruOaeqYt35HZJXINq41k0++v4TwGHDnruhW67VYR3sFpTKwlbzE5yIpDWgix+JI3/7CUcnCd1HJAXCOU/ffxL6gZdhz1mDbfvi03INW84vSO6+aCN/W6VTFzccZC323PWn5ZqnSq/TMOmiCP5xzwiuHhPDgZI6nv1oK+8t2kVpZee/Ee7Mq6B+3xZKpVAevGkUz9x2EYeDhqNRbKxZ8CVNFvtpuIsLk3XLAtS6clBV7Hm/dss5nYdzUI4cQJ86FUlu3XKsCYxGDonDtnc1qnr6hto6y/eDqricFADok8aB6sSevea01Uv4jUgKhPOC/qKr0SWMwrZjCba9q7v13EpjNc6iLHTxI1u9mUpGT7TRaTjyNqI6z94PRINew7Th0fzjnuFMHxHNrvxq/vbBZj5YtpeqOotL59i4u4zPF28iQlNF77SR+HkZcDfquOG6CdR59iG2cTvPf7iZ/MNiQZtT5SjNwb57BbrkCcghcThyN3TLEzDbzqVIbt7o4ke2u1+fNB61rgxnyd5TvlZHnGV5zaOJQuJcPkb2CUXTu/8ZmU/hQiSSAuG8IEkShlG3oolMxbr+U2x7VnVbU4I9dx2oKrrE0W326RJGolobcRRmdMu1Tid3o46rRsfwj3uGM2lIBJv3HuGJ/2xi/qo8Gs0dJzWrthfz36V7GR/cPFmRR98hLfskSSL04ivwk00kcoCX521n1fbiE8ZeVVVqG62Yref2G3x5janb70G1W7Cs+QDJOwTD0OvQ9b0YpbYUpbLglM7rPHIQZ8ke9ClTOuyQq425CMnN+7S23zvLcpEDIpH0bp06Tp884eh8CjtPU82EY8ToA+G8Icka3Cbeh3nFv7Bu+BRn+X6Mo25F0hm6fE5VVbDnrEUTnozsHdxmvya8P5KHH/Z969DFXHQq1e8x3u56Zk3oy6QhESxZn8+KbUWsyyplyrAoLhkSgUGvAZo/vJf+WsCidfkM6hvIaN1msIYj+4S2Op8mMgXJJ5SrtQepC0jlsxW57Cuq5YqLo6lusHKkxkxFbfPPkaN/2uwKHkYtj14/iMgQr07fg6o4m9umg2O6JSadVVLZxHMfbSUi2JMnbxrc6RUsO2Ld9CVqQyVulz+JpDOgix2KdeNn2HPXownq0+Xz2jKWgd4dXb9xHZaRNDp0iWOw7VyK0lCB7BXU5eu1R3U6cJYfaNUvx1WaiFQkzwDse1efM79n5yrxpEA4r0haA25THmqeEW3/JkyLn0epLevy+ZzFe1Abq9Altv9GJskyuviROIt3dVuHsJ4S4GPk9mn9eO72oSRG+rFo7UEen7uRn3cU43AqfLl6P4vW5TM8OZR7L41CKc9tGcZ2PEmS0Q+4BKoKuW+UG9eOjWXHvgr+9sEW3vwqk89W5PLLzhKO1JgJ8nFjTGo410/oi16n4Y0vMyir7vwc9w3bl2Fa/By2sp6f7trucDJ3SfNslgdL61m5vbhbzuso3o09+2d0KZPRhvYFmqf91Ual4di/GdXZtacSzuoSHAXb0fefdNJv6Lp+Y0GSsO/9uUvXOhGlsgCctk71JzhGkmV0SeNwlmbjrCnp9roJvxGTFyEmLzrbnGoMJUlC2ysRTUgcjtz12LJXI/uGovEL6/S5rFu+RrU0YBx9K5KsabeM7BmAffcKJKMX2l6df8M7XVyNo7eHnmFJISRH+3OovIGfd5ayekcxOYdqmZDWmz9cmoCSvxVHwQ4MI25Advdtcw7ZNwxb9s9gqqPfmEtIjQskLtyHyUMjuWp0DNeMjWX84N4MSwphQEwAseE+pMQGsH7XYTbvLSctPgh348mHqAGUHKnH+vNcjJKdnMJagvoP67Zv6r/XXgy/XL2fjP2VPDBjAGarg3VZpQxNCsHDxfq3R7WZMH//OrKHL24T7mv1WpO0euz71iIHRaHx7cJreOMXKPUVuE2496RzeUh6d5TqIhz529H1n9jha74zjsXQcWATzpI9GEbchKQzdvo8sk8o9t0rALVVh98LQU9OXiSeFAjnLW3v/rhf/SyybxiWFf/Esml+pzoqKaY6HAU70cZffMIx1bJPCJpeCdj3rTun1wKI6+3DYzem8dC1KfQK8ODKUX24YVJfZEnCUbADyTMAOSCq3WMlnQF9v3E4Cnag1B8hKtSLiwf0Ij7CFz8vQ7uz0fUK8OCRmQMxW528Nj+DusaTr5S5O7+K7+YvxEdqoknrR4R5L/9dtAO7o2cWp8o6UMnKbcVMGNyb1LhA/jA5AY0s8fEPOaf0f2/59QtUUw3GsX9s88Gt6d0fyc0bRxeGCyr1R3Ac2IwuaRyS0dOlY3TJE5r7yRzY3OnrnYizLA/JJwTZvWuzJspu3mhjLsKeuwHVZu7Wugm/EUmBcF6TPQNwv/wJdEkTsGf9iHnpKy6Pd7bnbgDV2W4Hw9/TJYxCrS/HWZ53qlU+oyRJIiU2kCdvHszlF/dBkiRUuxVH8W600WknnGpWlzwB5M5NZhQZ4sXs61Kpa7Tx2pcZJ+zw+POOYt76KouxxhxUzyACL70Ho+RAPrSDdxdmYbOf3gWi6pps/G9ZNuFBHlw3LhYAf28j146LI7uwhrWZXVugy1GYgSN3HfrUae32kZBkDdq44TgOZaJYOjfPhC3zB5Bk9AMmu3yMplcisl9Yt3bWVVUFR1kumpBTe5KmT54Adgv2/Ru7pV5CWyIpEM57kkaHceTNGMffjbOyANM3T+EozDhpD3l7zho0ofEuPbLV9rkIdEbsOWd+hsPu5ijeBU57u/0Jjid7+KGNHYY9Z22nZsaLC/fhgasHUF5t4s2vMtr06FcUlc9X5vLp8lzGRtoIpwzjgEloQuORfUK5PLSEPQereevrTCy20zOiQVFVPli2F7PNyd2XJ6PT/vZYfUxqGImRvnz1836q610b4nmMamnEsu4jZP/e6Adf0WE5XfxIUJw49m9yvc5NNc0dYBNGInv4uXycJEnokiagVBagVBx0+bgT1qXmMFibTrl5TQ6ObZ5JdM/qc/qp3NlMJAXCBUMXNxz3K59GMnpi/uktzD+8jrO6/U5LzsM5qPXlHXYw/D1JZ0AXMxTHwS2o9s59MPQEVXGi1FfgKNmLPWct1oxlKI3VLh3rKNiBZPB0qYOYfsBkcFix53RuydukaH/uvbI/hWWNvLPgt2/9ZquDd77JYuW2YiYNiWBGSAHojOgSRjV/eCWOxrOxkPsnBJJbVMcbX2VisnR/YrBqWzG7D1Yzc3wcvYNaP4aXJIlbL03E6VT59Kd9nfqwsvz6Gaq5obnZ4ARNVJqACOSASJcnMlJVFeuGeSCBPnWqy/U5Rtd3BOiM2LppeKKzbB9AlzoZHk+SJHTJ41FqinGW5XZH1YTfEUmBcEHR+IfjfvVzGIbfgPPIQUzf/A3L+k/aPJa1Z68BvTvaTgx/0iaMAocVRzfPV+8KVVFQGqtxHN6HPXcD1u1LOPLdvzB993caP3+Exg/+SNP8RzEvewXL2v9h2/I15h9eP2nbrKo4cBRmoIka6FKnM01gFJpeidh2r+j0WhSD+gZx52X9yC2q5b3FuzlSY+LleTvYfbCamycnMHNEEM6DW5oTgqO96LV9LwZJQ5JzL/dckUx+aT2vf7nzhM0QnXWovIGvf9nPwLhAxg1qfwnfYD93ZoyOIfNAFZv3lp/0nKqqYt+3Dsf+jejTpqMJbL+vxvF0fS9Gqch3qfe9Y/9GHAXbMQyZ0e5Q2pOR9G7N0wsf2IJiPvUJqZxleUhuPkhdqMvv6eLSQe8u1kM4TcQ8BcIFR5K16Adcgq7vCKzbF2Hf+zP2/ZswDL4CXVJzm6Ujfxu6fmM6tfKiJiQOySf06CPbjteKPxnV6UCpLEB12MBpbx6K5rQf/bsdnA5UuwW1sQqloRKloRK1sRJ+9yHs9PRH9fBvfszuFYjkFYjsFYTsFYRSX475hzew/PwfjJc80LI4zu85S/eBzXTSpoPj6VMmY/7p7eYYdnJZ5fTkUCx2J5/8uI/dB6sx6GUeui6F/n0CsG5bBIqCPvm3VSlldx+0UQNx5G5g8I3XcP9VA3hv8S5e/WInj8waiPcJelm7wmJzMPfbPXi46bhtauIJ+1RMHBLB1pwjfL4yj6Rof7w92r+2s7IQ6+YvcZbsRQ6ORT/oMpfqoo1Lx7r5Sxy5G9AMu67DckpTDZYN85BD4tANmOLSudujSx6Pfc+q5lVIJ/2pU00Qv+csy0UT2rdblj+WtAZ0CaOw716JYqptdzSMy/WqLUU5ko82dhiSRnwcgkgKhAuYZPTEePHN6JLGY934BdaNX2Db+3NzZy/FgS5xbOfOd3RZZduWr1Fqy5B9Q09+0HFUpx37vnXYMpahNla5UH8vJK+g5hUb+ww+7kM/EMkzgOBeAVRUtN8xTfYOwjD8eqy/foZt2yIMF13dbjlHwQ7Q6tH27u/yfWgiU5F8QrFuWYAmONalFS+PN3ZgOA6HwsY9Zdw+LYnwQI/m2GT/jCYypc0yzbrE0TgKtuM4lMHAvkN48JoU/vnNLl7+dDtxvX/r6S5x3AeS1LwEdai/O1EhnkSGerU7pPB/3+7hcJWJR2YNxOskCYYsS9w6tR/PfriFz1fmcs8VrWOmNFZh3foNjryNSAYPDCNuRNdvXJt1CDo8v7sPmogB2PN+RX/RNUhy20ROVVUsaz8EpwO3sXe2W8ZVGt8wjBPvw7LmA0wLn8Y44T60YYmdPo+jrgK1sQpNStcTlN/TJ43Dvusn7DlrMKR13BejPUpdGfYDW3Ac3IpSXQSAtng3xnF3dSlpcdaUIHsGdGmY5dlIJAXCBU/jF47bpY/gLMrCuvELHHm/IgfFoAmI6PS5dH1HYNu6AFv2zxjSZ3b4Dfx4qsOGfd9abBnfozZVIwfHYhg2E8nNG0mrA1kLWh2SrDv6pxa0+k49xWi3rskTUaqKsO38Dtk/Al3s0Nb1UhUchTvQ9h7QqWtJkozbuD9i+v51TN++hNu0v3R6fP3EIRFMHPJb/B0HNqOa69H3v6RNWU3vAc2zSuasRddnCP37BPDQtanMW5FLTmHzhFLHWvmPb+53OhXqTb81MwT5GokK8SIqtPmnvsnGDxsLmDIskuRof5fqHR7owfQR0Sxal8+wfhUMig9CtZmw7VyKbfdyAOT+kykJGc3BSgfq1hISo/yICvFyaa4FXfxILIcycZbubTdRs+9bi7MoC8OIm9rMPNlZh8obWJppJCHqdoYeWYh52SsYhs1EN+CSTn14mouygVPvT3C839ZD+AX9wMvabdpqNNspLGvAaneSEqLgzN/W3BxS1byqqRwSh2HEjajmemw7v8PmGYBh6DWdqoct+xes6z5CMnqhHzgNXdL4U/69PNNEUiAIHJ3wKDIVTe9kHPs3dTge/2RkDz+0UYOw7/oJR96vaHoloOmViCYsEdkvvNWbqeqwNa/smLEM1VSLJqQv+jG3owlP7pbHrCcjSRKGkTfjrC3F8sv/Nc+3cFzbtlJRgNpUg/Yi15sOjtEEx+I+/QnM37+K+duXcbv0ETRB0V2qp6qq2HatQPYLRxOe1PY+js4qactYitJYhewZQGKUHy/c2XHThaoqOIuyMPnGcqjKRmFZQ/NPeQPb9lW0lIvt7cOM0Z2bSvnS9Ci27avgs+V7iWkwQdZSZHsTBW5J/GBJY99aGZWcVse4G7T0i/KjX7QfSdH+hPi5tfsa0EamNren565vkxQoDRVYN36BJqwfuuTxnarz8RxOhaW/FrBsYyF6ncw2q5NvdeO5P2QbvTZ9gfPIAYxjbnf5m7GlKBt0bsj+nU+yT0SfNAHz8rdxFO7E3msgheUNFByupbKkBFNFCQZzJUGaeqK1lZi1zU/e5OAYDOmz0MZchOwZADR8sfT1AAAdVklEQVS/vlRLA7aMpUie/uiTXIvdsYRAE54MgHXTfGxZP6IfNB1d4phztjni3Ky1IJwmkqztcBU5VxnH/rH5cXZpNs7SHBz525rPbfRqThLC+oHTji3zB1RzHZpeCejH3YUmrF+PJAPHkzQ63CY9gGnRs5h/ehv3q55umVzGUbADJLnLs8dpAiJwv3wOpu9fxbT077hN/jPasH6dPo+zLBelqhDDqFs7jI8uYRS2nd9hz13v0uNk287vsG1bhK7PEJIn3k//PgEt+5osdg6VNVBc0cTE4dFIjs51mNTIEncPtGDZvAB5ewO59lCWmMZSbwklupc3l/fzpk8vL6JDvVGB7MJq9hbUkF1Qzfbc5oTE39tAvyg/BsQEMKhvEDpt8xMnSatHFzusZQKfYx0uVVXBsuZ/AM0f2JJMvclGweF6+vb2xc3g2lv9ofIGPliWTdGRRoYnh3D9xHhqG638tPkQr+7VMk7vybSDW7FUFOEz9c8uPY2wFGWjCY07paaM9mgiU7EbfKlaPo8S+xKCNfWkyw1oJaW5C70HKFojddpAllSnoYsZyrXThyH/7jUkSRKGi29GaarBuuHTlsT+RGx7V2Nd/wmayFTcJv0JSaPDUZqDbdtCrBs+xZb5PYa0K5onPuuGWSF7kqSKwZ5UVTWiKN0ThqAgrw7bcQXXnG8xVOorcB7OaUkS1KbmoYCaXonoB1/RpQ9KV3Qmjs7KAkxLXkITGIXbZY8habQ0ffUkkocv7tP+3ynVQ2mqwfz9qyj1R3CbeP9J33B/z7zinzhKs/G88Q0kbceLW5mWvYJSfwSPWa+csNnGXrADy/J3kHxCUOvKMYz8Q4ffDjv7WnSW5WHZ/CVK+X4sbsHs8RuHZ2wafcJ88Pduf2bHY1RV5Uitmb0FNewtqCansIYmiwNPNx0j+ocyZmAYvQI8cJbvx7TkBYyjb2+ZWMu2ewXWXz9DP+o29hsHsCazlJ25FTgVFZ1WJi0+iIv7h5IU7d9uM4XDqbBsYyFLfy3Aw03HLZMTGBTfekGkmgYrK7cVUZy1lVmGX9DJKrUpNxI7bHSH96VaGmn85E/oh8zAkHa5y3F0RUllE6s+/5Rpxm3YDX5IPqG4B4VjDAhD8g1F9glFMjYvtrVkfT7fbijg4gGh3HZpv3ZjoNqtmJb+HaW6BPfpj3e42JZtz0qsG+a1SghazqGqOIt3Y922EKUiH8knBMPgq9CExDYPVbZZmjsJ2y1w9E/VZkYT1AdtxIAO77U73xNlWSIgoOPZLUVSgEgKzjbncwxVVUVtqEC1W9AERJ7Wa3U2jvYDm7Gs+je6xNHoUy6l6asnMFx8U6ve/l2lWhox/fA6SmUhxrF3No+Dd4HSUEnT/EfRp1yK4QQ97gHs+zdhWf0+blMfRds7ud0yzuoSTEueR/bthfv0xzEvfxfn4Rzcr3yq3f8PV2Oo1JVh3fw1joLtSO6+6IdchS5+5Cl9S1QUlezCGtZklLAzrxKnohIf4cuY1F4M2P0Wsocv7tOfQKkro3HB36h2i+a9urFU1lnxMGoZ0b8XyX38yDxQxZa95TRZHPh46hmeHMqI/qEt8y0UHWnkg2V7OVTeSHpSCDdMisfTreM5E8xWB5u27CVszyeEyZUc1kcTmToEXXgScmBUq3t2FOzEvPxt3KY/gbZXQpdj8XsWm4PnP95Gk9nO07cNxc/r5CuhLlmfz5L1zQt83TGt/cRAMdVhWvIC2C24X/m3NsM5jyVf2qhBGCfeB7KW3fnVmCwOPN11eLnp8HTT4emmRSrJwrZtIUq1awtmaSJSMA6/od0OyiIp6GEiKTi7iBh2j67E0bplAbaMpciB0SiVBXjc8Aayp2ud7E5GtZkxL38HZ2k2hhE3oe9/8mTDsulL7Lt+wuP6V1vagDs8v8NG42ez0fbuj9uEe9vutzTStPg5sFtxn/EMsocfirke0zdPIemMuM94pk07+cliqJjrse1Ygn3vL6DRoh84Ff2AKae0XHd76ppsbNh1mLUZpRypNTPNczeX6HeQN/hRvDPm4Wmv4u91lxMeGc7o1DDS4n9rcgCwOxQy91fy6+4ydh2swqmoRIV40SfMm3WZpXgYtdw8OZHBCa4vl2y3WslZ+gmG8t300tY1b9QZ0YTGow3rhyasH/b9G7HvXYXnLe+16YBnszv5+MccFBVuuzQRvc61BEpVVeZ+u4etOUf4y8yB9HOxEyjAdxvyWbQun/TkEO6Y1g9NO00aSm1Zc2Jg9MD9ir8iH33aYNu1HOvGz9FGp2GccB/IGr7++QA/bjnU7rUMeg1eblpSDCUMjDCQEBuGpDM2v8b0xqN/dwOtDvven7FuXwxOO/oBk9EPmt5qRcueTArEKomIVRLPNiKG3aMrcdSEJeKsLEQ5nIMc1AdD6qXdVh9Jo0MbMxSluhj77uWodguyb1iHy/mqdiuWn+eijUxB32/syc8va1CbanDkbUT/u17gquLEvPxdlOpi3Kc+gsaveRIiSWdonilw13IUUw266MGtztlRDFVFwZ71A+YV/0QpP4AucQxulzyALjL1tHQwM+o19O3ty/jBvYmP8KWgQU+CaTvO4t2EUEVO2HSuvGoil1wUSe8gTzS/+xaskSXCAj0YlhTC2IHh+HkbKDrSSOb+Si5KDObP16YS3cu7U3XSaLWEJA1mdWNfPjoQQkBMIhFhgSiVhTgObMae8wvKkQMYwuPRJrSeGdRkcfD2giwy91dRUtHE/pK6NolMR1bvKOHHzYeYMTqGiwf06lSdEyL90GokVmwtprzaxKD4wLZ9DIyeaEL7Yt+zEmdpNrq4dOy7V2Hd9AXa6MEYJ96HKmn4dPk+Vm0vZlxaOHdMS2JoYjAD4wLpF+1HbJgPYQEeeLrpOWTx4Mc8UL17kTwgAdkrANnNB8nggaTVI8laNCFx6BJGopobsO9dhT13A5KbN7J/byRJ6tFVEkVSgEgKzjYiht2jK3E8NgrDWVWEPmkCGv/2Z/DrKknWoI25CLWptvnNb9dynIf3gaoiewe3ap+171uLM38bhtG3nvQpQcv5Pfyw712F5OGHJji2Zbt105c49m/EOOpWtNGt+zTI3kGgKth3r0T2CmrVjNBeDBVzPZYV72LP/gVN72TcJj+IPmFUj4xTlySJIF83BiZFYCvNwdNUgiZ6MDGX/gFPN9eGwhn0GmLDfBg7KJzJQyNITw7F4OK39PYkRftxpFFh8S4r7rFpJE25Bl3iGDRBfZDcvPEfcgl242//f/VNNl77cieFZQ3cOT2JtPggVm4rJruwhsEJQei1HdflQGkd7y/ZQ0pMADdNTuhSx9z4CF/0WpkV24opqzIxqG9gm6YE2TMA2S+8eRRRwQ4c+39F22cIxon34lRl/rt0L7/uLmPa8Chmjo/D20NPoI8bYYEeRId6Ex/hS/+YAAYnBDEqpRf1TTZWbCumss5CSmxAu00Xks6ILjoNbe/+OMvzsO9Z1TzBVWAUnkHBIinoSSIpOLuIGHaPrsZR0ujQ9R3e7QlBy/klGW30IHRxw5EM7jjLcnHkrse2awVKTXHztyevQKy/fIDk6Y9hyNUuv/nL7j7NqwlWHGyeGEiSsOeux7bla3TJEzGkTW/3OE1oPM7SnJa5Do51UPt9DB2H92Fe9ipK3WEMI/+AIX0WslvnvmF3F42bJ0rtYdwm3IvcxYREqzn1EQGSJJESE0BZtYkV24rx8dTTJzIYjX9vtJGp+EZEt8SwstbMK1/spLLWwgNXpzA4PpiIYE96B3uyansxmfurSEsIwqhvf96B1+bvxN2gZfZ1A08pkenb2xeDTsOKbUWUVjWR3Me/TTKi8QtDMnjgyNuANuYijBPuwe6UeG/RbnbkVnLN2FiuGNnnpK9NWZJIPZoIrNhWTP7hegb2DezwqYjs6Y8ucTSSpz+Og1uw716OpHdD8Yvu8v0eTyQFLhBJwdlFxLB7nO1xlIyeaMP6oUue2DzmXpZxFO7EsW8ttt0rUZuqMQy9Dk1gJztkqiqOfevQRqaiNlVjXvFPNL0SMI6/q8NRCZIkowlPxpGzFkfJ7pZOgsdiqKoKtsxlWH/5PyQ3b9yn/gVd1MAeH0J6PNknFH2/cd3ef6ErJEliYN9ACssbWLG1iFB/95aOjMdiWFLRyKvzMzBZHDw8cyD9on6bNrlXgAcxYT78vLOY7fsqSOsb2GoYpaKq/GvRLkoqmph93UBC/NxPuc5xvX1wM2hZsbWI1dtLqG+yERrg3mpmS01wLNqYoej6jcNiV3lnQRZ7C2q4+ZJ4LrnI9delJEkkRPrh52Vg5bZidudXM6hv+8nPsfKawOjmBdlUFYOXN07frs2d0t65RVJwEiIpOLuIGHaPcyWOkiQhewagjUxFP2AyclAU2K1Ibl4Yhl3b6R78sk8Itl0rUM112LJ+RDK44zbtUWRd+30XWuqhd0P2C8O+azmq1YQ2MhUPDwNN1dWYV/4LR/bPaGOG4D5ldqenbr4QyLLEoPggcovrWLW9mOhQL0L83fHwMLBrfwWvzc9AkiX+3/WD2u2/EOznRkKkL2sySti89wipcQEtoyC+21DA2szD3HRJAoP6ut4Z8mRiw30Y1DcQs9XB+l2HWbGtiJKKRvy9jfh7Nz99kd28aLI4eOPLTA6W1nPn9CRGpXZuhs5jjs2W+fOOErbmlJMSE9DhSA+HUyH/iIWttQFoe/XF173jESGdcbKkQIw+QIw+ONuIGHaPCzmO5l/+iyN3A2gNuF/5VzSdmE3PsvEL7Lt+wjjpT/iHhXF4wWuo5noMw2ehS5pwRp8OnAvMVgevfLGT0somHr4uFQ9PIy9+uAUfDz0PzxpIsO+Jk7PCsgZe/zIDjSzxyKyB1DXaeOPLDNKTQ7nzstM3wVdNg5WV24tYs7MUk9VBXLgPk4dGEhPmzZtfZVBWbeLeK/q3mb+hKw6U1vH211kAPHRtKjFh3iiKStGRRrILa8gurCG3uBarrXnirKvGxjE9vXuGMIshiS4QScHZRcSwe1zIcXRW5GP+/nUMo29F12dIp45VnQ5M376IUnsYnHYkD3/cJt6HJqjPaart+afBZOPvn+2gusGK06nQK8CDh69LxcfTtaaOksomXp+/E7tDQZIkfDz0/PUPQzB08Li9O1lsDtZlHWbF1iIq6yxoZAmtRuaBqweQ1InhjydTVm3ijS8zqDfZSIryJ7eoFpPVAUCvAHcSI/3oF+VHfKQvsVEdL27WWSIpcIFICs4uIobd40KPo6oqLi1I1R6l/gimxc/jFpWEnP4HJINHN9fu/Fddb+GVz3cSHODOPdOTcG9nFcoTOVJr5rUvdtJgtvPULUPoFdCz/weKorIjt4LN2eVMGRpJbLjPyQ/qpLpGK+8v2UNVvYXEqOYkIPFo34PjicmLephICs4uIobdQ8Tx1KiKk+AQXxHDU+BwKoSGeFNZ2dil400WOyarg0CfEzc5nO96MikQCyIJgiC041xbyOZspNXIp9QHwN2o6/QTBuHUdO+yVYIgCIIgnLNEUiAIgiAIAiCSAkEQBEEQjhJJgSAIgiAIgEgKBEEQBEE4SiQFgiAIgiAAIikQBEEQBOEokRQIgiAIggCIpEAQBEEQhKNEUiAIgiAIAiCSAkEQBEEQjhJJgSAIgiAIwBlICubOncvIkSNJTU3lvvvuo6qqqsOy+fn53HzzzaSkpDB+/HgWLlzYar/D4eDll19m2LBhpKWl8cQTT2AymU73LQiCIAjCealHk4JvvvmG999/n6effpr58+fT0NDAww8/3G5Zu93O3XffTUBAAAsWLODee+/lqaeeYsuWLS1l3nvvPZYtW8Zbb73FRx99RFZWFs8//3xP3Y4gCIIgnFd6NCmYN28et912G5MmTaJfv3689NJLbNq0idzc3DZl165dS3l5OS+99BLx8fFce+21TJ06lXnz5gGgKAqff/45s2fPZvjw4aSkpPDXv/6Vb7/9lvr6+p68LUEQBEE4L2h76kI2m42cnByeeOKJlm0RERGEh4eTmZlJfHx8q/JZWVmkpKTg7u7esm348OG89dZbABQVFVFTU0N6enrL/qFDh6KqKnv27GH48OEu1y0gwLOrt9WuoCCvbj3fhUjEsHuIOJ46EcNTJ2J46noqhj2WFNTU1KAoCgEBAa22+/v7U11d3aZ8dXV1u2WP9UE49ufxZTQaDT4+Pifsp9B+3ZpQFLVTx3QkIMCTqqrGbjnXhUrEsHuIOJ46EcNTJ2J46rozhrIs4efn0eH+HksKOktVT/whfbL9nXGiAHVFdz95uBCJGHYPEcdTJ2J46kQMT11PxbDH+hT4+fkhy3Kbb/HV1dX4+/u3KR8QENBu2WNPBgIDAwFalXE6ndTV1bV5wiAIgiAIwsn1WFKg1+tJTExk8+bNLduKioooKSkhNTW1TfmUlBSysrIwm80t2zZt2tRSNiIiAj8/v1bn27p1K5IkkZSUdBrvRBAEQRDOTz06+uDGG2/kww8/ZOXKleTk5DBnzhyGDRtGfHw8WVlZTJkyhfLycgBGjRpFcHAwc+bMIS8vjwULFrBs2TJuuumm5orLMtdffz1vvvkmmzZtIisrixdffJHLL78cHx+fnrwtQRAEQTgv9GifgmuuuYaqqiqeeeYZGhoaGDFiRMu8Amazmfz8fOx2O9D8ZGHu3Lk8/fTTzJgxg6CgIJ577jmGDh3acr7777+fpqYmHnzwQex2O5MnT+Zvf/tbT96SIAiCIJw3JLU7e+wJgiAIgnDOEmsfCIIgCIIAiKRAEARBEISjRFIgCIIgCAIgkgJBEARBEI4SSYEgCIIgCIBICgRBEARBOEokBd1o7ty5jBw5ktTUVO67775OL8x0IVm+fDm33HILgwcPJiEhoc3+zMxMZsyYwYABA5g6dSpr1qw5A7U8u/373//miiuuYODAgYwePZoXXniBpqamVmVEHE/unXfeYfLkyaSkpDBixAgeeeQRKioqWvaLGHbO/fffT0JCQqvZZkUMT+7xxx8nISGh1c9HH33UqkxPxFEkBd3km2++4f333+fpp59m/vz5NDQ08PDDD5/pap21zGYz6enp3HXXXW321dTU8Mc//pG0tDQWLVrEFVdcwZ/+9CcKCgp6vqJnsZ07d3LnnXeycOFCXn/9ddavX88LL7zQsl/E0TUxMTE8++yzfP/997z//vscPnyYxx9/HBAx7KzFixe3mpoeRAw749JLL2X9+vUtPzNnzmzZ12NxVIVuceWVV6pvv/12y78PHTqkxsfHq/v27TuDtTr7bdq0SY2Pj2+17eOPP1bHjRunKorSsu2GG25Q//73v/d09c4p33//vXrRRRe1/FvEsWtWrVqlDhw4UFVVEcPOKCsrU8eOHauWlJSo8fHx6qZNm1RVFTF01WOPPaY+9thjHe7vqTiKJwXdwGazkZOTQ3p6esu2iIgIwsPDyczMPIM1OzdlZWUxbNgwJElq2TZ8+HARy5OoqanBy8ur5d8ijp3X0NDA0qVLSUtLA0QMO2POnDncfffdhIWFtdouYui61atXk56ezvTp05k7dy4Oh6NlX0/FUSQF3aCmpgZFUdos2ezv7091dfUZqtW5q73ltP38/EQfjRNoaGjgf//7H1dffXXLNhFH13377bcMGjSIIUOGUFxczOuvvw6IGLpq/vz5OBwOZs2a1WafiKFrRo8ezWuvvcbHH3/Mbbfdxocffsg777zTsr+n4tijCyIJgitUsRxHp9hsNh544AEiIiJa9dEQcXTd+PHjSUlJ4fDhw7z77rs89dRTvPPOOyKGLigtLeWf//wn8+fPb3e/iKFrpk6d2vL3hIQEZFnm2WefZfbs2UiS1GNxFElBN/Dz80OWZaqqqoiNjW3Z3l5mJ5xcQEBAmycsNTU1bZ7ECOBwOJg9ezZNTU189NFHaLW//UqLOLrO09MTT09PoqOjiYmJYfTo0ezfv1/E0AV79+6lsrKSSy65pNX2W2+9lauuukrEsIuSk5MxmUzU1NTg7+/fY3EUzQfdQK/Xk5iY2GoITlFRESUlJaSmpp7Bmp2bUlJSWsUSYNOmTSKWv6MoCo899hiHDh3iv//9Lx4eHq32izh2zbFvZLIsixi6ID09nW+//ZbFixe3/AC88MIL/PnPfxYx7KK8vDzc3Nzw8/MDeu73WSQF3eTGG2/kww8/ZOXKleTk5DBnzhyGDRtGfHz8ma7aWam2tpbs7GwOHToEQHZ2NtnZ2dhsNqZPn05jYyMvvvgiBw4c4D//+Q+ZmZmthucI8Le//Y3NmzfzyiuvYLfbqaiooKKiAqfTCSDi6AK73c6bb75JVlYWJSUlbNu2jUcffZTk5GSio6NFDF3g6elJfHx8qx+A3r17ExISImLoopdffpnMzEyKi4tZvnw5L7/8MjNnzmzpWNhTcZRU0eDTbebOncunn35KQ0MDI0aM4PnnnycwMPBMV+ustHDhQp544ok221etWkXv3r3JyMjgueeeIzc3l4iICB5//HHGjBlzBmp69mpv0if4LYaAiONJOBwOHnroITIyMqitrSUoKIiLL76YBx98kODgYEDEsCsSEhL45JNPGDZsGCBi6Io77riDPXv20NjYSFhYGJdffjl33XUXer2+pUxPxFEkBYIgCIIgAKL5QBAEQRCEo0RSIAiCIAgCIJICQRAEQRCOEkmBIAiCIAiASAoEQRAEQThKJAWCIAiCIAAiKRAE4RyyefNmEhISKCsrO9NVEYTzkkgKBEEQBEEARFIgCIIgCMJRIikQBMFln376KVOmTGHAgAFccskl/Pvf/8bhcADNyw+/+eabzJkzh7S0NIYNG8arr76Koigtxzc2NvLUU0+Rnp7OgAEDmDFjBuvXr291jaqqKp544glGjBjBgAEDmDx5MgsWLGhV5sCBA9x4442kpqYydepU1q1bd/pvXhAuAGLpZEEQXPLuu++ycOFCnnzySRITEzl48CBPP/00VquVhx56CGhOGm655RYWLFhAVlYWzzzzDIGBgdx2220APPnkk+zevZtXX32VsLAwvvjiC+655x6WLFlCbGwsFouFm266CaPRyGuvvUZERASFhYXU1dW1qss//vEP/vKXvxAZGcl7773H7NmzWb16Nd7e3j0eF0E4r6iCIAgnYTKZ1JSUFHXNmjWtti9atEgdPHiwqqqqOm7cOPX6669vtf/1119XR40apaqqqhYUFKjx8fHqL7/80qrMlVdeqT7++OOqqqrqV199pfbv3189fPhwu/XYtGmTGh8fr/70008t244cOaLGx8era9euPbWbFARBFU8KBEE4qby8PCwWCw8++GDLUq4ATqcTq9VKdXU1AAMHDmx1XFpaGnPnzqWxsZH9+/cDMGTIkFZlhgwZQkZGBgB79uwhLi6O0NDQE9anX79+LX8PCgpCo9FQVVXV9RsUBAEQzQeCILhAPbqY6ttvv010dHSb/T4+Pic87mTnPj7ROP7vHdHpdG22Hd93QRCErhEdDQVBOKm4uDgMBgNFRUVERUW1+dFoNABkZma2Oi4jI4Pg4GA8PT3p27cvANu2bWtVZvv27cTFxQGQnJxMXl6emIdAEM4QkRQIgnBSHh4e3H333bzxxhvMmzePgwcPkpeXx7Jly3j11VdbymVnZ/Puu++Sn5/Pd999xyeffMKtt94KQGRkJFOmTOHZZ59l3bp1HDhwgBdeeIG8vDzuuOMOAC677DLCwsK49957+fXXXykqKmLjxo18//33Z+K2BeGCI5oPBEFwyf33309wcDDz5s3jH//4B0ajkejoaK666qqWMjfffDOlpaVcffXVaLVaZs2a1ZIUALz44ou88sorPProozQ2NhIfH8/7779PbGwsAG5ubsybN49XX32V2bNnYzKZCA8P56677urp2xWEC5KkutLoJwiCcBLjx4/nmmuu4b777jvTVREEoYtE84EgCIIgCIBICgRBEARBOEo0HwiCIAiCAIgnBYIgCIIgHCWSAkEQBEEQAJEUCIIgCIJwlEgKBEEQBEEARFIgCIIgCMJR/x9WGacxs1FirAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAH7CAYAAABc7Oz5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eXxU1f3//7zLzGSyh6yEhJ2wJAHZgyK4oCAqWBSUr2it2tpaa2tbP221tVq39tP2p221n1pbl9YNBOuGW90VZF+SQICwhSxk35PJzNzl98ckQ5ZJZiaZBNTzfDzygMw9594zJzP3vs/7vN+vt2SapolAIBAIBIKvPfLpHoBAIBAIBIIzA2EUCAQCgUAgAIRRIBAIBAKBoB1hFAgEAoFAIACEUSAQCAQCgaAdYRQIBAKBQCAAhFEgEAjaueCCC/jrX/8aVJ+JEyfy2muvDdKIBALBUCOMAoFAIBAIBIAwCgQCwdcQl8t1uocgEJyRCKNAIDhDue6667jrrrt45JFHmDdvHrNmzeKRRx7BMAwee+wxzj77bHJycnjkkUe69Gtubuaee+4hJyeH7OxsVqxYweeff96lzYEDB7jmmmvIzs5m8eLFvPXWWz2u39LSwgMPPMC5557LtGnTuOKKK3jvvfeCeg8NDQ389Kc/5bzzzmPq1KksXryYp556iu5Cqm+99RYrVqwgOzubuXPncvPNN9PQ0OA9/vzzz7N06VKysrKYN28et99+u/eYr22Pu+++m+uuu67HXD766KPMnz+fBQsWAPDGG2+wcuVKZs6cydy5c/nOd77DsWPHupyrpqaGX/ziF5x99tne+Vq/fj2GYXDhhRfyt7/9rUv71tZWZsyYwSuvvBLUXAkEZwLq6R6AQCDonXfffZdrrrmGF154gZ07d3L33Xezf/9+JkyYwPPPP8+ePXv4+c9/zowZM1i4cCEAd911F/n5+fz+978nNTWVF198ke9+97u89tprjBs3jra2Nr797W8zadIkXn75ZRwOBw888AA1NTXe65qmyXe/+10AHnnkEZKTk9m8eTM//vGPefLJJ5k3b15A43e5XGRkZPCtb32L6Ohodu3axb333ktMTAxXXnklABs2bOCee+7h1ltv5X//93/RNI2tW7ei6zoAf/7zn3n66af5yU9+wjnnnENrayuffPJJ0HP59ttvc/nll/PMM894z+1yubj11lsZN24czc3N/PnPf+aWW27hzTffxGq10tbWxpo1awgLC+MPf/gD6enpFBUV0dDQgCzLrFq1ipdffplbbrkFSZIA2LhxI7Isc8kllwQ9RoHgtGMKBIIzkjVr1pjLli3r8trSpUvNyy67rMtrl19+ufnb3/7WNE3TPH78uJmRkWF+/PHHXdpcccUV5s9//nPTNE1z3bp15llnnWXW19d7jx88eNDMyMgwH3/8cdM0TXPLli1mVlaW2djY2OU8P//5z83vfe973t8zMjLMV199Naj3df/995s33HCD9/eFCxea9913n8+2LS0tZnZ2tvmPf/yj1/Odf/753nF3cNddd5lr1qzx/r5mzRrz4osvNnVd73NsdXV1ZkZGhrljxw7TND1zlZWVZZ48edJn+6qqKjMzM9PctGmT97VVq1aZ9957b5/XEQjOVISnQCA4g5k0aVKX3xMSEkhISOjyWmJioneVf/jwYQBmzZrVpc2sWbPYs2ePt83YsWOJiYnxHs/IyCAqKsr7e15eHm632+tm78DtdjNq1KiAx28YBv/4xz/YuHEj5eXluFwu3G43I0aMADyu+ZMnT3LOOef47H/48GGcTmevx4MhMzMTWe66Y1pQUMBjjz1GQUEBdXV13tfLysqYOXMm+/btY/z48aSkpPg8Z0JCAhdccAHr1q3j7LPPprCwkD179nDvvfcOeLwCwelAGAUCwRmMqnb9ikqShMVi6dHOMIw+z2Oapte93fn/vWEYBlFRUaxfv77HMV/X742nnnqKJ554gp///OdkZmYSERHBM88808P97288fR2XJKlHjIKmaT3a2e32Lr87HA5uvPFGZs6cyUMPPURiYiIAl156KW63O+CxrV69mm9/+9vU1taybt06srOzmTx5cp99BIIzFRFoKBB8hZgwYQIAO3bs6PL6zp07GT9+vLfNkSNHaGxs9B4vLCykqanJ+3t2djaNjY04nU5GjRrV5Sc1NTXg8ezYsYNzzz2XlStXMmXKFEaNGkVRUZH3eHx8PCkpKT0CITsYN24cNput1+Md56isrOzy2v79+/2O7ciRI9TW1nLHHXeQk5PDuHHjaGho6GJgZGZmUlhYSHl5ea/nycnJITU1lbVr1/L666+zatUqv9cWCM5UhFEgEHyFGDlyJEuWLOG+++7js88+48iRIzzwwAMUFhZy0003AXDZZZcRERHBnXfeyYEDB9izZw933XUXYWFh3vPk5ORw9tln84Mf/ID//ve/FBcXk5+fz7///W/WrVsX8HjGjBnDtm3b2LJlC8eOHeORRx5h7969XdrcdtttrF27lscff5wjR45QWFjIc889R21tLREREXzrW9/iscce4/nnn+fYsWMcOHCAJ554wtt/3rx5vP3223z++eccPXqUhx56iLKyMr9jS01NxWq18u9//5sTJ07wxRdf8OCDD3bxDFx22WWkpqbyve99j82bN1NcXMwXX3zRJVtDkiRWrVrF448/jsvl4tJLLw14fgSCMw1hFAgEXzEefPBB5s+fz5133sny5cvZtWsXf/vb3xg3bhzgcaP//e9/p76+nquuuoqf/vSn3HDDDcTHx3vPIUkS//d//8dFF13Eww8/zCWXXMItt9zCxx9/THp6esBjufXWW5k9eza33nor11xzDY2NjV1SBQFWrlzJww8/zLvvvsvy5ctZs2YNn376qXfr5Ec/+hE/+tGP+Ne//sXll1/OjTfeyL59+7z9v/3tb7Nw4ULuuOMOrr32WqKioliyZInfsQ0bNozf//73bN68mUsvvZTf/e53/OxnP+sSd2C323nuueeYMGECd9xxB0uXLuW+++6jra2ty7lWrFgBwOWXX05ERETA8yMQnGlIZvfNOIFAIBAExeHDh7n00kvZsGEDWVlZp3s4AkG/EYGGAoFA0E9cLhcVFRX88Y9/ZM6cOcIgEHzpEdsHAoFA0E/efPNNLrroIkpKSrjvvvtO93AEggEjtg8EAoFAIBAAwlMgEAgEAoGgHWEUCAQCgUAgAESgIQB1dS0YRmh2UeLjI6mpaQ7Jub6uiDkMDWIeB46Yw4Ej5nDghHIOZVkiLq73tNkhNQree+89nn/+efLz82lububgwYN9tj927Bj33HMPe/fuJSEhgdtuu82bDwweKdPf//73vPrqq7jdbhYvXsyvfvUrwsPDgxqXYZghMwo6zicYGGIOQ4OYx4Ej5nDgiDkcOEM1h0O6feBwOMjJyeE73/mO37Zut5tbbrmF+Ph41q9fz/e+9z3uuecetm3b5m3z17/+lY0bN/Loo4/yzDPPkJuby/333z+Yb0EgEAgEgq8sQ+opWL58OQBbt2712/bTTz+loqKCV199lfDwcDIyMti+fTvPPfccc+bMwTAMXnjhBe68805vbfdf/vKX3HzzzfziF78gOjp6UN+LQCAQCARfNc7YQMPc3FymTp3aZStg3rx5Xt304uJi6urqyMnJ8R6fM2cOpml2kUAVCAQCgUAQGGdsoGFtbW0XLXbwaJV31I3v+LdzG0VRiImJ8R4LlPj4yAGOtiuJiVH+Gwn6RMxhaBDzOHDEHA4cMYcDZ6jm8Iw1CvxpKoVSc6mmpjlkQRyJiVFUVTX5byjoFTGHoUHM48ARczhwQjGHDkcLzc316LoWolF9uZBlGcMwAm6vKCqRkbHY7T2zDGRZ6nMhfMYaBfHx8V3qrkNX70FCQgLg8RiMGDECAF3XaWho6OFhEAgEAsGXE4ejhaamOmJjE7FYrF1KW39dUFUZTQvMKDBNE7fbRX19FYBPw6AvztiYgqlTp5Kbm4vD4fC+tmXLFqZNmwZAeno6cXFxXYIWt2/fjiRJTJkyZcjHKxAIBILQ09xcT2xsIlar7WtpEASLJElYrTZiYxNpbq4Puv+QGgX19fUUFBRw4sQJAAoKCigoKMDlcpGbm8uSJUuoqKgA4NxzzyUpKYm7776bwsJC1q9fz8aNG1mzZo1n4LLM6tWreeSRR9iyZQu5ubk8+OCDLFu2jJiYmKF8WwKBQCAYJHRdw2Kxnu5hfOmwWKz92m4Z0u2DDz/8kF/84hfe36+44goAPvjgAxwOB8eOHcPtdgNgtVp54okn+PWvf82KFStITEzkN7/5DXPmzPH2//73v09LSwu33357F/EigUAgEHx1EB6C4OnvnIkqiYhAwzMNMYehQczjwBFzOHAGOofl5UWkpIwK4Yi+fAQTU9AZX3PnL9DwjI0pEAgEAoHg68pVV13OW2+9MeTXPWOzDwQCgUAg+LJx223fYfr0mdx00y0DOs+TT/6L8HB7iEYVOMIoEAgEAoFgiHC5XFit/gMn4+LihmA0PRHbBwKBQCAQhIAHH7yXPXt28fTTTzJ//iyuuupy/vnPJ7jttu/w/PPPsnz5Yn7wA48H4U9/+iMrVy7nwgvPYc2aVXzwwXtdztV5+6CsrIz582fx+eefcNNN17Fo0Xxuv/27VFZWhPw9CE+BQCAQCAQh4Ic//CnFxSfIyprK6tVrkGWFV15Zx8GDBSQmJvHoo/+HLHvW4jExMdx334PExMSyY8c27r//HkaPHsu4ceN7Pf9TT/2d2267g9jYWB588D4ee+xRfvObh0P6HoRRIBAIBIIvDZvyTvJ57skhu978qcM5J3t4QG0jIyNRVRW73U58fIL3dVmW+dnPfklYWJj3tRtuuNn7/xEj0ti06VM+/fSjPo2Cb37zJmbMmAXA1Vdfy2OPPRLs2/GLMAoEgm64j2xFjklGSRh9uociEAi+AowcOaqLQQDwzjsbWb9+LSdPluJyuXC5XF0MCV+MHXvKYEhISKCurjbkYxVGgUDQCb2mmLYP/oY6Zib2i2473cMRCATdOCc78JX7mYLN1tUgyM3dw+9+9wDf//4PmTr1LMLDI/jzn/+IpvWtQKiqXR/ZgyEzJIwCgaATzq1rAROjsfJ0D0UgEHwJUVXVb0XD/Pw8xo4dz1VXXQN4Hu6lpSXExMQOxRD7RBgFAkE7WnEeekk+UlgURmMlpmkKeVWBQBAUKSnD2b8/n6qqyh4egg5GjEjj2LGjbN78OWlpaWzYsI6qqqohHqlvREqiQACYhoFzy1qk6CSsZy0Fdxtmm5C3FQgEwXH11dfS0NDAqlXLufHGa322WbDgPJYtu4Lf/OZXfPe7N2GzhbFgwXlDO9BeELUPELUPzjROxxy6DnyC89OnCVv0fSTViuOdRwhfdjdKyoQhHUcoEZ/FgSPmcOAMZA7zjtYQqTQwZtTYEI/qy4WofSAQDCGmuw3X9leQk8ejjpmFHJ0MIOIKBIIBYhhmv4Ph6pqc/O21fFra3DjdeohHJugNYRQIvva49r6F6WggLOcaJElCikoASRJGgUAwADTd4P5nd/CH53b2yzB48YNC3Jonrqe+2TkIIxT4QhgFgq81Rksdrr3voI6dg5LsyQGWFBUpMh6jMfQSogLB14WPd5dSVNHEp3tK+XhPWVB99x6uZseBSi4/ZzR2q4KjTRPegiFCGAWCrzXO7RvANLDNWdnldTk6GaNBeAoEgv7Q2ubm9U3HmTQylhkTk1j7QSGl1S0B9XW6dJ577yCpCRFcMnckYTYVWZaobxLegqFAGAWCry16dRHaoU1YshYhRyd2OSZHJ2KK7QOBoF+8+UURLQ43V18wgR9dMx2bVeHvr+/DHUCw3GufH6Om0cn1iyeiKjKyBNERVhzOr5a3wDRNWtrcVNS2Ut3gQNODDyQcDIRRIPhaYpqmR6jIFo5t+uU9jsvRyZjOZkxnYKsbgUDgoarewfs7ijk7K4VRKVHERYfxraWTKa5sZsMnR/rse6Kiife2F7NgWioZ6aeEfKLCrafNW6DpRkiVA92aQV1TGyWVzVTVOXBpOs0ON6XVLTS2uAZFpTAYhHiR4GuJXrwXvXQ/trOvRbJF9DguxSQBngwEJXHMUA9PIPjSsuGTI8iSxDcWnEojPGt8AhfOSOO97cVkjR1G1pj4Hv0Mw+TZdw4QaVdZef64LscUWSI6wkp9kxOnW8dmUQb9fZimSV2Tk8YWF4oiEWm3Emm3YFGDX0ubpklrm0aTw02b0yNlbLepRIVbsNtU3LpBbaOT2sY2mlrdxMfYCLOensez8BQIvnaYho5zyzqkmGQsk8/32UaOPmUUCASCwDhS1sC2gkounjOSYdFd1fxWnj+OEYkR/PPNAhpbXT36frS7lGMnm7hm0QQiwiw9jg+lt0DXDSpqW2lscRFpt2BVFRqanZRWNVNe20pLm7vPFb1pmrjbPQA1jW0UVzZTVe/ArRnERtpIS4okeVg44WEWJEnCqiokx9lJjLNjmCblNa1U1Z+eLQXhKRB87XAf+ASjvoywi36ApPj+CshR7UZBg8hAEAgCwTRN1n54mOgIK5fMHdnjuNWicMvlmfzm2R08vbGA26+a6pURr2tysuGTI2SOGcbcyck+zz9U3gKnW6eyzoFumCTEhBEZbgVA0wyaHG6aHW6q6hzt3gMLkXYrJiYut4HLreN067g0A7NDEE+SsFsVr1egN+l0SZKICLNgt6o0tDhpaHHR6tSIjbT1MLAGE2EUCM4otOI8Trz0LLZlv0QOD31xENPlwLXzVZSUDNTRM3ptJ1lsSOGx/fIUOHe9hn7yIPalP0WSgnfGuY9up+3jf4Du7r2R1U7EN+7tESB5ptD2xYuYTdWEXXTbaakfodeX4Xjrj9iX/gQlNjXo/qbupmX9L2lq7FuP3jr7SmxnXdrfYQ4apmny3vZiPthZwi3LMxmXGjPo19x5sIrDJQ1cv2QidpvvR0taUiQrzx/Hi+8X8uGuUi6cmQbAC/89hG6YXHdxRp+fl+hwK40tLuqbnCQPCw/5e2h2uKhpcCLLEsPjw7sYHqoqExdlIzbSE/TY1OqmodlFQ3Mnr4ckYVVlIsMsWC0yVouCVZWD+g7IskRcVBiRdgs1jU7qGtvQdIP4ITIMhFEgOGMwDY22zc9jNlajnNiLddLCkF/DtWcjpqMR2+If+f2iytFJ/cpA0I7vxqg+jla4GUvG/KD6mm4nzs3PI0cl9Gq0mLobd+47aEW7sGYvDnp8Q4F2fBdmUxX6iT2oo6YP/fWPbsdsrkE7ugNlxrKg++vlhZgNFURmn4dLjfJ9jWM70Qo39WoUVNS2osgSCbH2oK8/EJxunWfePsDW/RWoisxjG/L41TdnDepqU9MN1n98hBEJEZw7te+yxotmppF/tJZ1Hx1m0shYKusd7DxUxZULx5IU1/eDXh4kb4FpmtQ2OWlqcRFmVUiMtaMovg16SZIID7MQHmZB0w1aHG5kWfIaAD/4wS1Mnz6Tm266ZUBjsqgKO794n6ee+jsvrXt9QOcKBmEUCM4Y3Ps/xmwoR1Is6MV5EGKjwGiuwZX3Lur4HJQk/1rqUnQyekleUNcwDR2jrgTwaCCoY2cjqbaA+7ty38FsrSds0fdR+6i7oBXtQSvJPyONAtPVitnkWWE7t6xFSc9Gkof2VqMX53v+LcmH/hgFJfkgKSQsvpmaRt817iVrOM6tazGaa5AjewbO/eWVPBxOjftunEOkvece+WBQVe/gsVfyKKlsZsWCsZw1IYGH/r2TP2/I5RfXzsRmHRyX+4e7Sqmsd/CjldNQ5L69Y5IkceOlk/n1P7fyxOv7aHVqjEiMYPGcnlsOvgi1t0DXDSrrHThdOlERVoZF2QJe2auKTExk4N/vYJEkCUmSsNvUftU+6A8i0FBwRmA6Wzxu/dTJRGSei1a6H9MIbU6yc/sGwMQ2+6qA2svRiZit9ZjuwAObjPpy0DUsk8/DbKnDlftu4H1b63HtfQt1zKw+DQIANT0bvewgptYzYOt0o9cUA2CZfB5GQznugk+G9PqmswWt8ghuyYK7vJBte49zsqYFI4hUL60kDyVlArKt91W+kp7d3ja/x7HaxjbKqluoa3Ly7NsHhiTNbN/xWn7zzHZqGtr44cppXHb2aNISI/nu8kyKK5v5x5v7g5qDQGlpc/PGpmNkjo4je+ywgPrERFi58dLJlFS1UNvo5JuLJ6H2sjLvToe3wOHUcLoGdo9wuXXKalpxuQ0SYu3ER4cNaLvrwQfvZc+eXTz99JPMnz+Lq67ypDu///67rFmzkgsuOIfrrlvFJ5986O3T0FDPL3/5My655AIWLZrPN7+5mvz8XHbt2sFDD91HeflJcnJmMH/+LHbt2jGg9xsIwlMgOCNw7dmI6WzBlnMN4WYDzbkfYlQd80oPDxS93Z1vnbYUOSohoD5yTHthpKZKlGHpAfUxaooAsGQuwnQ04dqzEcukBQHFR7h2vAKG1kNd0RdqWhbu/P+ilx9CTcsKaGxDhVFzAgDrjOUY9Sdx7XwVy4R5SNbQ7wH7Qivdj2QavNs6jcvCd7P5/Y/IdY8izKowMjmK0SmenzGp0ST7cFcbrfUYNcVY5/RtPMpxI5Ai4nx6tQqK6gCYl5nCF/vK+Sz3JAumBR/bEAimafLutmJe/vgwqfER3HZldpf3NXVcAlefP56XPjzMq58dZcWCcX2cLXje3Hyc1jaNleePD+qBOnVcAqsvnIBhmoxPCzzmwX1oE5YDnxLt1nFIErqlf2tbw/QYBZGAxaIgS9Dqo51l4gIsGecEdM4f/vCnFBefICtrKqtXr0GWFXbu3M6jj/6Bn/zkZ2RkTGLfvnzuv/8ekpKSmTw5kyef/BstLc385S9PYLfbOXz4EKpqYeLEydx++0946aXnePrpf6NpBtHRgx8bIowCwWnHaKrClfceasbZKAmjsEcCkoRWnBcSo8A0TZxfvIQUFoV1+mUB9/NWS2wI3CjQa4pBUZFjU7DNXYlWtAfXjlcJW3BD3/1qi3Ef/AxL5kVeY6QvlOGTQFbRivPOQKOgGCksCik8FlvOalr/cy+uPRsDMnZCgVaSTxtWTsTngFbAmmyNgpRJFJU3UVTexEe7S73Ket9cMpGFZ43o0l9vX/mradl9XkeSJJQRWWjHd2IaOpJ8yjW//3gdUeEWbrp0MvXNTl54/xAT0mIYHt9TE2MgOF06T79dwLaCSmZNTOTGSyf7zG+/aHY6ZTUtvLm5iNT4CHIyU0Jy/cp6Bx/sLOGcqcMZmew79qIvLpod2PeqO5Lkcd1ruoFhgJ8dix50GAQSpwyCUBAZGYmqqtjtduLjPYuPZ5/9JzfffAvnn78IgBEj0ti9eydvvvkakydnUllZwbRp0xk/foL3eOfzybJMfHzCkG0fCKNAcNpxblsPkoxt1pUAKPYo5MQxaCV52GZ9Y8Dn14v2oJ88gO2cNUGtVjsi+4MJNjRqTnhWkLKKFJOCJfMC3Pvex5K1CGVYWq/9nFvWgsWOLcD9b8liQxme4X2AnUnoNSeQ40d6HpqJo1HHz8OV9y6WyecH7KXpL6Zp4izK5aArhTmz01CrpiBVH2D+RTdz7lTPSl03DMqqW3nx/UOs++gwU8clEBd1al9YK85Hskcjx/t/YKnpWWiHPuvi1TJNk/1FtUweFYcsS9x82RR+/dQ2/v76fu6+fmbAbnJ/1DS08af1uZRWNXPVeeO4ZO7IPtPd1lw8kYpaB0+9dYDEWDvjRgx81bn+4yPIssQ3zvUfoxMqLBnnYMk4B8MwKalqxmrx5PgH6qVwuXXKa1uRJEgeFo5VHVwhpKNHD5Ofn8fjj//J+5rb7Wb69JkALFt2Bffccxfbt29l9uy5XHDBRYwcOWpQx9QXIqZAcFrRK4+gHdmKdepi5MhT+5FqWjZG1THMtuYBnd80NJxb1yLHpGCZfF5QfSVbBJItMuBqiaZpYtScQIk/FTBlm7EcLGE4t67rtZ9WnIdeko9txjKksMiAx6emZWPUlWI01wbcZ7DpCLTs/EC1zbkKkNpjOgYXo+EkiqOOQ1oqsycloaRlYTbXYDaUe9soskx6UiTfvGQSmm7y4geFp8ZvGuil+1DSsgJKJ1VHZHq9Wh2crGmlodnFlNGez3NclI1vXTKJooomXvn0aEjeZ3W9g9+9sIuaxjbuWDWNpTmj/D4UVUXm+yuyiYuy8pdX8qhpaBvQGPYdr2XHgUoumTuqi1E1VMiyREykjTanRml1Cw6n74DQzgy1QQDQ2urg9tt/zNNPv+D9ee65l7nrrl8DMH/+Qtate42LL76EgwcLuOGG1Xz88QeDPq7eEEaB4LThdevbo7FOW9rlmJqeDaaJVrp/QNdwF3yM0VCObe7V/YqAl6KTAtYqMB0NmG1NyJ2MAiksEtv0ZejFuT4D0kzDwLllLVJUIpbMC4Mam5Lu2TY4k7wFHYGWnQ0jOTIea/ZitMNfoFeG5qHYG9qJ9ofz8Ewi7RbvFkDnh3YHyXHhXH72aHYcqGTv4WrP+KuLMNuaAt6SkcIivV6tDvYf9xhpk0fFeV+bnpHIeWel8s7WE+w7PjAjzmMQ7Mbh1Pif1dPJGtsz86E3Iu0Wbr9qGm5N588bcmlz+X+Q+sLl1vn3uwdJirOzNCewrIHBICbC6k1jrKhtpbKutVcVwM4GQcogGgSqqmIYp8YwfvwEyspKSUtL7/KTmJjkbZOQkMDy5St4+OE/snTpMt5++02f5xoKhFEgOG1ox3eiVxRinbUCydo1yltOHAPWcJ8380AxXa24dr6GMnwiyqiz+nUOOSZwo6AjwK6zUQBgyVqEFJWAc8tazG5fcPehzzDqSrDNXYmkBJe2JselIYXHdnkgnW6M2o456Op6t551KZI9GufWtYMaid9QuJsKPZrsaRM944hORIpJ8WmQASyZO5LUhAiee+8gTpfu/bwpQcRpdPdqFRTVkRgbRmI3fYKrL5zA8Phw/vHmfpp8yPwGQodB0ObS+Ok10xmVEvw+/oiECL67PIuSqmaefKN/GQlvflFEZZ2D6xdPxDIEq+2+CA9TSU2IIDbKhsOpU1rVQn2zs8v76m4QDD7BxDgAACAASURBVOaYU1KGs39/PlVVlTQ2NnL99d9i/fq1rFv3IsXFJygsPMj69S/x0UfvA/DPfz7Bpk2fUVpawoED+8nL20t6umf7IDl5OLW1NRw4sJ/6+no0rX9GXDAIo0BwWjB1DefWl5HjUrFMPLfHcUlWUEdMQS/J6/dDxLX7Tcy2Jmw5q/udZiRHJ3vcz32pC7ajtxsF3WMHJMWCbc5KjNpitEOfe1833W24tr+CnDwedczsoMcmSRJKWlZ7+uaZUXZVrz4Bsooc21XARrLasc68Av3kQbSiXYNybVNzYak9TKE+gmnjTq2e1bQs9LIDPtM3VUXm+sUTqWl08trnx9BL8pETRiHbowO+bmevlm4YHDhRx+RRPVPzbBaF71yeSYvDzTP9SFMMhUHQQfbYeK65YAK7C6v5T5BbGqXVLby9pYh5mSneLZLTjSxJxEbaSE2IwG5TqG9yUta+pTCUBgHA1VdfS0NDA6tWLefGG69l/vyF/PrXD/DOO29y/fVXc8cd32fz5k0kJ3uCPRVF4fHHH+W661Zx550/YsqUTK/w0dSp07jooiXcdtt3ueyyReTm7hnUsYMINBScJtz7P8RsrCBsyY+7RG13RknPRju2A6OutM8gPV8YTdW48t9DnXA2SuLofo9Tjk4C08RsqkaK7VupzagpRopK8Fl1UR07BznvXZw7XkEdNxfJYsO1921MRwP2i3/Qb6NFTc9GO/Q5RtXRkKVvDgSjttgbaNkdy6SFuPPfx7l1HerIaSEXNHKWFKCaGubwTKyd5WnTs3Dvex+9vBA1LbNHv4z0WBZMS+XT7UdYMuwwtm5bWf7o7NUqs0/E4dSZMjrOZ9tRKVFcuXAcaz88zCd7yjhv+gif7bpTVe/gf1/YRZtLH7BB0MGiWWmU1bSw8YsihseHc3ZW359vAMM0+dc7BwizKlx94en/vHXHosokxYXT6tSobWyjorYVSZKQ5aExCADGjBnLU0891+W1hQvPZ+FC38XXbrjhZm644WafxyRJ4u6770VVZSFeJPjqYjpbcO56DWVEplcAxhcd+8HBqgoCOLevByRss6/s7zCB4KolGjUnek1dlCSJsJzVmK31uHLfxmipw7X3bdSxcwb0MFdHZAJSr+7xocZozzzwhSQr2HJWYTZU4N7/UcivXb5vB5opM2bazC6vK8Mne9I3+/gcrTx/HNkRlUimgTwiuBTPzl6t/cc88QKTRvk2CsCThpc5ZhgvfVBIWXWL3/NXDoJBAJ7P5LUXZTBpZCzPvH2Aw6UNfvt8nnuSwpIGVl0wnuj2QkFnIuG2U1sKVos8ZAbBVwFhFAiGHOfuN8DZii3n6j5XyHLkMOS4VLTi4B54euVRtMNbsGYv9ik/GwxSh4CRH6PA1JwYDeW9PhABlJQJqGNm4dr7Fm2fPQumMeDcfW+g2wBiL0KF0VqP6WhE6SOVT0mfhjJiCq6dr2E6/T8Qg0Eu30+RmcLEsV1z8L3pm318jiLCLCwZ2USbaeHTsuBrBCjp2Zit9VQcPczIpMg+H5iyJHHTpZOxWhTu/9cOfvf8Ll76oJAt+8spr23tshdeWe/g94NgEHSgKjK3fiObYdFhPLYhl+oGR69tG1pcrPvwMBPTY5mf7d+rcLrp2FIYHh8hDIIgENsHgqAwGisxNVfQ7vzO/d3576NmzO8Sod4bSlo27v0fYGrOgGoImKaJc+taT0ZDCKrXSWFRYAnzW0LZqC0F0+zTKACwzV2FVrQb/cQeLFOXhKTKoZqehWv3G5jOFp9bF/1BO3kQOSY5qEqVvQVadkaSJGxzr6b1lXtp++xZlNRJvbaVY4ejpk4O6NpNVRXE6TVUJF6I7EOJRk3Lwrl1HUZLHXJEz1W8aZrENx/hmCWdDZ8VMX1iSlAFhNS0bJyAvfYgkwOoRxEbaePOZaPYlV9Ebq3Bh7tKvVHzdpvCyKQoRqVEsfNgZa8Ggel2olcfRx0+MeBx+iLSbuGHV03lgX/t5M/r87jruhleASStOBcleQKS1c7aDwpxaTrXL5kY8HaXXnkUt2U4MDhFoUxDB92NZBmcYk+maYLLAdbAdRB6nMPdBrLaa5l2v/11NyYSQ/W4Fp4CQVC0bX4Bx7uP9jv4z13wMZ76AysCaq+mZ4OuoZcdDKi9VrQL/eRBrDOv6JHR0B8kSUIOIC3RG2ToxyiQo5M8kfiR8dimXz7g8UH7NotpopXuC8n59LpSHG/+1iMqFUw/7xz0LfqjJIzCknkB2tFtOD//V68/jjd/h15xOKBrH9/1BQDDp87xfc2OrahePCpmQzlmcw2pU+eiGyYvvl/os11vyJHDcEUkM1Et9Rlk2ON6hkbctse5oPp57l6VwV9/vIB7vzWbGy6ZRM6UFFyax1BwaUavHoK2z5/F8cbDA07bBRgeH8H3rsikrLqFv7/uyUjQ68pwvP3/4dzyIvnHatiyv4KlOaMCVmU0WupoffO3VL/99wGPr9drNFVj1J8Mqj5JUGhOjMYKzLamfnU3TQOjvhyzpf9pqEZTNVpjTb/7B4vwFAiCwmypxWyq9ojE9KNOvUe6eILP1ZovlJQMUCxoJXmoI6f2PTZdw7l1HXJsKpYQVliUo5PQa0v6bGPUnACLHSkAxT7brBVYZyzvNcAy6PEljQWrHb04H8tY3w/FYHBuWQumiV6Sj2maAa+QjJpipMj4gLwVtrPXYJ2xHHozLnU3ra/+hrYtLxG+7G6/Y3CX5NNEBKnjfBeSkod1pG/mY5m0oMfxjpiMuIwZLHO3sOGTo+wurOLixMDd9WWW0YxVt2Mf7n/V6t7/EWa798m181XC5l/PyOQoj1TwtPYxtXsOfCkg6lWeWh4Azi0voXzjXqRgtX67kTUmntWLJvD8fw+x4ZMjLB92xDPWg5/xzv4kkoclcOm8wJX2XDteAc1F24l9RGguJLW/MQgSpmn0EJMyXQ5weaoVGC21yDEpAypm5AvT5Tj1bxAZKV7cbYCJ6WoL6rvkvb6hg9uJFBm4x87b1zSA4OdDeAoEQWG2eoKR+tqf7Q2jtR6jtrjP4MLuSKoVZfjEXld4nXEXeG60tpxVIXvggscoMJuq+kz7M2qKUeLTA/7Sh3J8nkC3TLQBpG92oJXsQy/ORU4Yjdlaj+HHGOpMdzXHvpAkCdkejRwe4/NHC4tDnn4FRsVhtGN9V4arrG0m1X2ClrgJyL08GE+lb+7z+XfUivOQYpKRoxNZPGckIxIjeO69Q7S2+U9F7WBncxIWycBSfaTPdp6KoK+hpE7GMuVC3AUfo9eV9WinKrJPg8A0TZxbXkQKi8I2/5sYNSfQCjcFPM6+uGDGCM6fPoK3t5ygumAHUlQCbsnGAn0T3wxCk0CvOYH74Oeez5HmQi8/1O8xWa1h1NdXo2lu7+fbNE2MllqPWz5imOfh6+o9HqK/dBgFuNv69d3y9jd16EdFU7PdqJBtgcuzm6aJprmpr6/Gag1+W0V4CgQBYxqG142mleRjzb44qP6nCs0EF92tpmXj3PIiRlN1r9r5nW+0Svq0oM7vDykmGQwds6UGKapnDIBpGui1xQFXUhsMlLSs9vTNMpRhgaW5dcc0DJxbX0KKSsC+6FZaXvof9JI8v9sBcCrQUu2Hp8Ll1imubOZ4e8Gi4+VNlFW3YFHggdQUpG0vo46a3uuebMHOXcyQXVgnzfR5vAM1LcuTvll9DCXpVKVAU3Ohlx3AMsmjl6EqMt9cPImHntvJuvcPcelc/4ZOs8PNlsoorohX/Xq1nLvf9FYElSLicBduxrl1HeFLfuT3OtBRy+MgtvnXY5l8Hu6Dn+HcvgF13JyA4m76QpIkVi+aQFVNI2H1RylPmcsXlS6usO/ALpcA/j18HqNlLdjCsS/+Ia0v/c+ACnfFxSXS3NxAbW0FRns5ddPtxGxr9siCuwzM1kZobEQKjyVUzgLTNDGba0FRQdeQ2txIanACY0ZLfft/dKRWJ1Ifpbh9jqGtGVNzoZoKhhG4USLLCnZ7JJGRwde3EEaBIGBMZzOYBljCvGIwwbgEteK8gAvNdEZJz4YtL3oMkV7qF3S50YbYhehNS2yoRPZlFDRVg7vNb5DhYKKmewLd9JK8fhsFWuEmjJpiwi78HnJ0EnJcGlpxXg8Jal+cCrT0/G0PFNWRd6zvfdDGFhdF5U2UVZ+KuI8KtzAqJYqzJiSwp7CaZyuy+HbE+7j3f4DVRwCfaZq0HtuLCcRNmN7n9TwPpfbqm52MAr28EHSXJ36lnfFpMZydlcJrnx5l7sREEmL7vpkfKKrDhYoWP75Pr5bRVIU7/7/eiqAA1umX4dr2MlpZgd/AStPQaNu6Fjl2OJZJCz2Bm/OuwfH6Q7hy3/HU2hggqiLz7bkqfKDzymE7J9UMrogswrllLcqITL/bFHpxHnrpPmzzViNHxBE2cgrOkjxgdb/GI0kSUVGxREV5XOim20nL2p8hRQwj/IpfIUkSWlEtjnf/hO2cNVgzF/XrOt1xH95C20d/w770Thxv/wnr1MXY5q4KuL/RXEPL67/GlnM17sNbkVQr4cvuCri/aZq0vPATlMQxjLz2Lqqq+hfXECxi+0AQMB1bB+qY2aAH5xI0DQO9JPBCM52RY4cjRQzr9WZrNHbcaM/x3mhDiT+tAr26CPAfZDiYyJHxyLGp/dYrMN1OnNs3ICeN9a72lfQs9PLCgIK4OgdaujWDJ97YxztbT/Df7SW9/uQdqSEuKoyl80Zx24ps/nDr2Tz6g/n8eNVZrFgwljtXn0V9dAYHtVRat7/qszhWUUUTI7QiWiLS/RaTOlWnoOscaSV5IKsePYNOrFgwFlmCDQEo/u0vqsNmVYgcdxZGQzlGU5XPdt0rggJYsy5CiozH+cVL7fvAveMu+BjTW8vD48pXUzJQR8/EtectjNZ6v2MNBEvlAUxZpTV6DNcunkJYziqMuhLchz7rs59p6B5vU3QSlimeWh72sWdh1JVhNIcmWM6V9w5maz22eacWAMrIs1BSJ3tSXdvjDAaKVpIHtgiP9zFlfNDfrY72StpUj6pmxeGgxmbUn8RsqQ1KcjsUCKNAEDCmw2MUWMbNaReDCfxLYlQfx3Q2d1mNBYokSZ4StaX7MY2e2t/O7e032gEKFfV6/Yg4UNReqyUaNSdAkpHj+rdCDxVKWhb6yQOYWvCR2K7c9httzmoKiup48F87KHClgqGhnyzw279zoOWW/eU0NLu4Y9U0/n7neb3+PHr7udyxahorFoxlRkYiw6LDunh5osKt3Ln6LL6wzkdyOyj7+OUe192x9zijlBoixwW2ZaSmZ2FUHumikaCX5KOkTECydHW9D4sO44rzxrN1fwVHyxr7PG/B8Vompsdiad828KWt0VtFUEm1YptzFUZNEVrhF71ew1vLI3Uyysiu79c2dyXoGq4d/+lznIGil+ShDp/Ivd+ez6xJSahjZqEkT8C1/ZX2fW7fuA9+hlFXhm3OSu92T/hYT92RUAhsGa31uPa8hTp6JmpKhvd1SZKw5VyN2daMa/ebA76OaZroJftQ2z0jSlo2Rs0JjFb/Ak8d6MV5SBFxyHGpHm+naQSVKdIh2qamC6NAcIbS4SmQoxP9isF0x3NDkFBG9JSZDQQlLRvcjh5V9rw32mlLAs5oCBZJkpGjkjB78xTUFCPHpgwgujo0qOlZnvTNk4Glb3ZgtNbj2vsWRtp0/r7FyR9e2sPRskb+vVsHxRqQeFRHoCVIvLutmLTESDJDoIsfFW7lhv+3iHx5MuFFn3Fg36n3phsG9Yf3IEsm4aMDMwqUtK7VN42WOozaEm/KYneuPH880eEW1n5Y2GugWU1DGxV1DqaMHnbKq9XtAdhXRVAAddxc5MQxOLev79Wo89TyaPa5RSbHpGDJvAD3wU/9Zsr4w2iuwagr62LAd2xTmI4GXHvf9tnPdDlw7XgFJdkj0tWBJTEdKSIuoGBhf7h2/AcMzacbX0kYjTrhbFz572E0VQ/oOkZtCWZrvXcO1CArkpqGjla6HzUtyxPkmjzOs+0a5D1TjknxuWU5mAijQBAwHZ4CyR7jqQxXV4LRHFj+rV6cF3Shmc6oI6aAJHe5sZimSdsXL3putFMv6dd5A6WvEsp9SfsOJcrwSZ70zSAzQ9q2vYKha/z+wFj2Hq7mivlj+J//N516h0mtfaTfKowdgZZyfDp5R2soq25hydzAMzH8ERVuZeo3voUpyVR//AL57bEKBUV1jDJOoCthnrTMAFC86Zue9+QNfu3FgxUeZuGKc8dSWNLArkO+twT2F3m+A1NGxfXq1dKO7ei1Iih4DE9bzjWYLXW4ct/tcdxoqvLU8ugUi9Ad24zlYLHj3Lq2jxnwzym3d9c5UZLGoY6dg2uvR6a7O669b2E6Gru49aHd0+ct3KX3e1x6bQnug59imXIhcrvSaHc83kKpXea8/3SvlinHj0QKiwq4IqlReRRcrd45lGQVdcSUgDOEOoJfg8nUChXCKBAEjNHaAKoVLGEoQVjOpqsVvfJIv7YOOpBsEchJY7u4ILVjOzAqDvd6ow0lcnQSRkNljy+02dbs2fc7A4yCjvTNtqJcnnn7AM+/c4DdhVXUNTl7vREdys3HfegzPnVkkDxqFA/cPJdl88cwcWQcU8fFs7k2HrOhAqPR9wMRugZavrP1BHFRNuZM9n3T7i9RCUlYpl7CNEsRr//nA4+YTn45ky1lWNIzA07xPJW+6dFg0IrzkMJjkftQ6Dx32nBSEyJ4+eMjXu2AzhQU1REdbmFEokefobtXy9Q1nNteRo4b4bMiaAfq8IntsQEbe8QGOLdvALrGIvR4b2GR2GZcjl6cNyBXfWe3d3dsc1aCaeDc/kqX143mWly576KOm9sliLMDJS0bXK0YVcf6PS7nlpfAYsc2Y1mvbeTIYVinLkE7vKWHVzEY9JI85GFpXu+jJMme7bmSfX7jPqDdsJIkz2KmHSUtC7O5BqPhpP/rlx8C3e2t/zKUCKNAEDCmowHJHuPJMY87JQbjD610P5jGgANmPHXrj2O0NQV8ow0VckwS6C7MbjdrvbbYc/wMMApa2zRyW5NRmso5UHCYde8f5C8b8vjJ45u447FNPPryXl79zCPKc6Kiib/+J4/6T1/AaVoYc/FqfnDlVBI7RdkvO2cMe1s9dQT6WiF1BFpWEM+BE/VcNCvdZ379QImceRnYY7gycid/Xp9LceEhYuRW7z5+oChpWZgttRh1JWil+1DSMvv0aiiyzKrzx1FZ5+CjXaVdjpmmScHxOiaPHuY9R3evlnv/B5iNlZ5aH36Ml1OxAa96X/PW8ugWi+ALS+YipKhEnFte6lc57e5u7+7I0YlYshahHfrc+3cHcO7Y4KnlMfsqn+f1zInU7xodWnEeekk+thnL/AaUWqctRbJHe+agP9oCbid6eWGP+5Wano3Z1oRRfcL/eEvykBPHdhmrt8BbAJ48rTgPFBUldWAS1v1BGAWCgDEdjUjhnrxXf2IwndGL8zzeheSeK4hg8OzreQKAgrnRhgI52ndhJK/efy/VEYcC0zTZnH+Su57cwhvHPKvVuxfZWfvgpfxizQxWL5pA1phh1DS08cbm4/xlQx73Pr2dtuO5TLaWETX3CrIm9TRqxqZGkzJ6DHVGJK6iPtLsaotBknjngBu7TWHhWcErXQaCZLERNvtKUqngvLiTjJc9e+dB6160e6xcu94AZ0tAq7HssfFMGR3H65uO0dJJ0KisuoWGFhdTOlVF7OzV8lQEfd1TETSA65yKDfgEvba0Pee/91iE7kiKBduclRi1/jMFfOF1e/fh1bNNvxzJFoFz61pPQF51EdqhzViyLuq1locn82NswO73znj0M9YiRSViybzQb3vJasc68xvo5YfQju8K+nr6yQIwtB6fiw4jQSvO7Xu8bc0Ylcd6fC7l6ESkmJSAFlJ6SR5KysQB6070B2EUCALGbG1Atp8Sw1DTs8HZglHVu5vONE20knzUEVOQ5IHJYsgJY8AWgXZkq+dGm5aFmh7cKrHf125PS+webKjXnECye1T4TgfFlc389vld/OPNAuKjw7j52guRIoahVhQQZlOZkBbLRbPSufmyKdx/81z+esdC7lozkxuWZHBT6n6kqETCsi/q9fzLzx3Lftdw3KX7fGZ+AOjVJzCiUth6sJ6F00Zgtw2e/ImaMR95WDqXh+9icWodcmxq0JUwvembR7cBEkqa/+BXSZJYdf54Wts0Nm4+tULef9yztz55dNcgVzXd49Vq2/xCe0XQwPUzPLEBYTi3rkU7vgu9/FBQW2Tq2NnISeNw7fhPn5kCvjjl9u59TiRbBNaZy9FL96MX53qMFlsEtumX9T2utCyMqmM+U0v7wn3oM4zaEmxzVyIpgYkHWSYtQI5Lxbl1Habu+3PbG1pxHqhWlJSuktmyPRo5YZTfLVNPDRLT53apmpbl1XjpDW+g5xCnInYgjAJBwJitDV5PAdB+45D6tHyNhpOYzTUBrZL8IcmyZz+4aLfnRjv36gGfM+BrR8WDJPvwFBQjJwz91kFrm5sX/nuI+57ezsmaVm64ZBJ3Xz+TMakx7UFd+3wGddmsCuPTYsgJO4LcUOr3RjtmeDSO+EmohgtHsW9dCqO2mDI9DkmCRbP6Vz0zUCRZxpZzNTRXY68/2u9ALG8AWeJo5LDA6huMTI7inOzhvL+zmKp6j3xtQVEdSXF2EmK6PrA9q0wTrXATlonzA1KF7EAKi8Q2fRl6cS5tnz6FHJca1BaZJEmE5VyD2Vrfa6ZAb3jd3n7qV1gmn48Uk0zbR0+ilxVgnbncbx81vWvmRyCY7jZc219BTh7v0UcJEElWsM29GrOxAnfBRwH3A49hpAyf5DObSE3LRq84ckq+2Ff/4nywRSAn9gx+9WQI9a3x4g30PA1BhiCMAkGAmIaG6WxG6uQp6E0MpjMd+2ehyrXtsL4tE88N6kY7UCRZRYpK6FJC2dQ1jLpSlCHcOjBNk015J7nrya18sLOEhdNTeeg7OSyYlorcIeSSngUuByVP/JCWl+/y+ePc/ELAN9rp585HNyWO7uqZQ2+2NWM217C3Npy5U5KDKjfcX9S0LJR2D1F/V1Mdn8dg+39jwVhkWWLDJ0fQDYMDJ+q6bB10ICeMBlsEqFasswKrCNoZS9YiT3EtZwu2udcEvUWmpExAHTsbV67vTAFf9Ob29oWkqNjmrvLcE2KSsUw5328fOXEMWMODiitw7X0b09FAWD+USpX0qSgjMnHufLWLLkVfGI1VmA0VvQZFK2lZYOpoZb4NG4++QV67Z7Tn41UZPtmvxotekt8e6Hl6dE+EzLEgIEyHR2JT6pZSqKZn49r9OqazxedKQSvJQwphrq06ZhaWmhNYQ1R2OBi6l1A26k+CoQ9ZkOGJiiae++8hDpc0MC41mjtWTvNZUlcdOQ3LxAVYJTdOp++CPnL8KE/QVgA32tEjkym0DEcp34/DqXXZHugItDzhimH1nKHzmISdcx2ufe+j+JEF7g0ldQqWqUuwTPb/MOtMXJSNJXNG8vqm44wdHk2bS2eKDz0GSZYJm/f/QLH0Sz9DUizYL/we+slD/V4x2uasRDu+C9eOVwhbeJPf9n25vX2hjpqBdc7KdoEf/48SSVZQ0zLR29Py/H32jJY6XHvfRh07GyV5fEBj6nK9dkGj1g2/xrn7DcJyrvHbpyPmoTfDSEke3643kIdldM9aG0adR9+gt6BqyWI7pfGS0/O4aehoJftQR88MuVx7oAijQBAQHcJFUre9czUtC9eu19BK9/Uo2+vJtT2IZXLoyhhLVjthZ18bsvMFgxydhLvyiPeG5g0yHGSjoLXNzX8+O8aHu0qICLPwraWTOCd7uNcz0B1JtRG28EYSE6NCppceNW46EQc38snWAyxZcOqG567y7K9HpY4lPanvqPBQIkcnEjavf1r64FnpBvKQ8MWSuSP5ZE8Zaz86jARM8uEpAAZcIEtJGuczvS9Q5OgkLJmLcOe9hyXrYr+etb7c3r6QJAnbWZcGNSYlLQvt6PZ2D1vfW02uHa+AqXvSIPuJEj8SNWM+7vz3sU65sNdAyA704jykqASkmBSfxyVFRU2d7E1p7f7g9npG+9guVdOycG5dh9FS18NgNKqOgat1QOnbA0VsHwgCwnR4UvG6B9TJXjEYH7Ku5Yc8hWZOU8BMqJGjkzzlWdtdkXrNCVCsyL3cQAaKYZp8nnuSu/6+hQ93lXD+9BE8fEsO505N7dUgGCwSp3gU6kr2bsfhPBW4VXHkEI1GGAvm9W/F/mUkzKryjQVjMU1IT44k0h5c5byhxDb9crCF+03P8+f2DhXetDw/WQgdpZctmYu8Qb79xTZ7Bcgyzm09ZbI7YxqapyhVL+mYHSjp2ZhN1ZgNPWXPtZJ85LgRfaaOKt7UxJ5zoBXn9dA3GGqEUSAIiA7N784xBdBZDKanUpdW3FFoZtKQjXMwOZWW6LkZGDUnkIeNGJSbaFF5Ew8/t5On3iogMc7OPd+czZqLJxIRdnoeQHLCKAxrBGMo5v2dnlRAwzTRqouoURJ97qt/lZmfPZzssfGcO3Vw0i9DhUfQaBl66b4+H8T+3N6hQo4chhyX2qfqZufSy30JFQV8zYg4rFMvQTu6Db3icK/t9Ioj4G7zGxTdscjpnl5pup3oJw/6nUN5WO8aL55AzzF+tRgGE2EUCALCdHgKwnSPKYB2y7mlDqOurMvrekk+yvCMHoVmvqxIMaeqJZqm2a73H/qtgz2F1fzm2e1U1jm4celkfrFmps/YgaFEkmSs6dlkhZXz321FHqGkwgrizToiU8eetv3P04UsS9yxahoXzhzcbItQYJlyIVJ0Es4ta3uVGQ7E7R0qlLRs9PKDvdZ48JZenuE/oyFQrNMuQbLH0NaHx0QvzgNJRh3Rt9dLjk5Cik7uETCpnzzg0Tfw4/rvTePFbGvGqDp2WlQMOyOMf2YxUAAAIABJREFUAkFAmK0NYLX3kqbTIXl86ktiNNdi1JWe9g94KOkIljQaKjFb6jCdzciDkAGxcctxEmPtPPSdHOZP7T12YKhR07MJN1uJcVfywc5idmzNRZUMUicMveqaIHAkRfUIGtWV4j7oW9AoELd3qFDTsz2Fu8p6Fu46VXo5GcuUC0J2TckShnX2CoyKw2jHdvhso5XkoSSPR7KG+z2fmt5ekVQ/FcirleSDYkXpVL2x1/5pWR6Nl+pTss8e5dfAAz0HC2EUCALCdHQVLuqMVwymkztM9+bafjXiCcBTW0CKGIbRWIFR2xFk6Ls4TX8pKm/iSGkjF8xIO21bBb3RIfJzQUoDG78o8gYZWhJDOweC0OMtfbzjlR459oG6vUOFkpLhKdzlYzvDW3p57qnSy6HCknEuclyaT0Ejw9GIUV0U8ByoadmgudDLC72v6cV5KKkTA6qW6llIdZV91kvywBruSd08jQijQBAQ3YWLuqOktVvO7S5BraS90Ezcme9eDQY5OhGjsRK9Xf/cXwR1sHy0uwSrKnNO9uAELw4EOTwWOT6daeHluDSDUbZ6T8rdIAVaCkLHqdLHjbhyuwoaBer2DtlY2gt3dQ+085ZeTslA9ZHuN+DrtgtfmU1VuPd90OWYv2qZ3VFSJ4GseCWPjaYqjIbygIOqu2u8dBTn8gR6Dr5se18Io0AQEIajsUeQYWe8LsGTBzENA610P0pa9ldur1mOTsZsrMSoLUaKTgppdcaWNjdb9lWQk5l8xnkJOlDTsrHUHWPZ3BSmxTs8QVOn+SYmCAwlaRzquLm49r7TpeR5MG7vUKGmZ2M0lGM0VXtf85Zezrl60O4bano2SloWzt2vd5Fb1krykcKikHspS90dyRKGkpLhNSY6AieD0ZRQ07MwKo9gOlsw6ko9gZ6neesAhFEgCBC/noLhEz0uweJ8Ty0EZ0vIVAzPJKSYJExHo6eKWoiVDDflnsSlGVww48z1rijp2WDoXDbGSYyzckhVJQUDxzb7Kk/p4x2nSh8H4/YOFR0R/h0rZX+ll0OJLedqcLXi3P0GAKZpeIKi0zKRpMAfiUpaNkZtCUZLnUeFMDIeOWZ4UP07ZJ91r2iSMAoEXwJMzQluR5+eAq9LsCSvfZ+s76IqX1a8hZFa60Na88AwTT7cXcr4ETGMTD69mQZ9oSRPANWG++CnnkDLYae/ZLQgcDyljy9CO7QJvbooaLd3yMYROxwpYph3C8FbenmO79LLoUQZlo4l41zc+97HaKjAqCnGdDQG/UDuWPRoJ/aile7zq2/QYxxejZc8tOJ85LjUIQn09IcwCgR+MVs96Yj+KgGqaVkY9SdxF24+7bm2g0WHVgEQ0nTE/cdqqaxzcMGM06N3HiiSoqKkTvIUpYLTUgxKMDBs0y/zlD7e8tIpt/cQr1AlSUJNz/KskiuPniq9HCI5dH9YZ68AWcG57WVvwGMg1TI7Iw9LR7LH4NqzsV3fIDjDSpIV1NQpaMW56OUHh/xv0BvCKBD4xXT4Fi7qTsd+mNlUddrTagaLzupqvuSNNd1g7YeFPPVWAUYfCnLd+XBXKdHhFmZOHJh621DQ+W87lMWgBKHBW/q4rADX7jc8bu/YwN3eoUJJywa3A8d/Hwuo9HIokcNjsU5binZsB+59HyLHj0QOjw3qHJIkoaRnYTZVtesbBK9CqKRnY7bWgz50gZ7+EEaBwC9Gh1EQ3lO4qDNybCpShMf99VWRNu6OZLUjhUWBLcL7XjtoaHby+xd38+62Yj7PPcl724oDOmd1vYO9h6tZcFYqFvXM/0p2uFmlqMSQBloKho6O0sdmS23Qbu//v707j46qPPw//p6ZLCQQsrFEsgCCAUQIAhJAVLQi2rqgQq3l2yrHoqBA1davpWixYnGr2qrfFrSnisCvuKAUt6IoFrUFRTFRIIBsCYGEOAnZZjKTmXt/f2TRGCADmZnMZD6vczjH3HnmznMfIfnkWf0lKv1MsFgxa8t9OnrZ32KGX4YlPqm5DU5F078FW68Bp1T/5iBgiw7qRM8TCf3vQNLhzONscfx9FouFqL4jsMR1bzgToZOypmY1fBP4zjfSPYcq+f3zn3KgpJpbrhzKyOyerP73Hg6UtH0g0QdfHAILTBwR2kMHTayJvbEm9cHWO7ATwiRwGo4+vg6AqL4jOqYOsV2xpWVjTUzz6ehlv39+dCyx51wLgK3v2ad0D1vG0IYf6Kf4fmu3VKypmQ3BLIgTPU/EYp7olIwIYbfXYBj+aQZ/nkwXKlxbXsP9+Vq6/eLZNo9INT0uTJfjlI6LbRLqbdh0NnvTbwYb8w6x4p2dJHWLZc41w8jqnUCNs56Ff/+E2GgbC288h9iYYy/bq/d4+dX//YfszCTmXOPf7sNAtqPhrMJii+70PQWh/nexvYzKEizdewe0p+BEbdi0LLAj5x8ZlSXt2mvDqP4GS9ckn46PPub7nVVYbFEn3EnRn38PrVYLqanHb2/1FEibTGcVli7dfDszPSq2XYEgHFhiu2KJ7YrHa/DCup08/3YBgzKT+N2N5zSvHOgWF80vfjSE0nIHq97ffdx7fVpwhBpnfchPMPw+a1z3Th8IIoE1Ma1D9xKxdOnW4ROS27v5ljWhxykHAmj6t9T21srB4t99JKVTMp2VbQ4dRJqjNS7+8tpXfF1cyWW5WVx7wQCs1pbfXIf0S+HSsVm8vamQs/qnMmpQ65nV739eTFpKPEMi7JRBEQlNCgXSJqONjYsizd5DVTz9aj4Ol4dZVw1lzJDexy179Xmns31/Bc+/vYPT+3QnOeHbEyP3l1Sx91AV1198Rqfb+VFEwpOGD6RNDT0FJ155EClcbi9PvZpPlM3Kgp+NPmEgAIiyWbnlyqHUew2efX1bi7kr739WTGy0jXPPCv5yMBGRYwl6KFi6dCkTJkwgJyeHW2+9FbvdftyyGzZsYMqUKeTk5DB58mTeeOONFq+XlJQwb948cnNzGTVqFDNmzGDnztbHccqpM00T01GlnoJG//qkkMoaNzdfMZTMXr6NhaalxPPTi7MpKDzKvz5pOEipxlnP5h2ljBvam/gu6rATkdAQ1FCwevVqlixZwsKFC1m1ahXV1dXceeedxyy7bds25s6dy7Rp03j99deZPXs28+fPZ8uWb8/C/t///V+qqqpYtmwZL730EklJScyePTtYjxMZ6uvA6z7uscmR5GiNi7c3H2D04F4MzDi59jhv+GmMHtST1zbuZd/hKj7KP0x9iJ9zICKRJ6ihYMWKFcyYMYNJkyYxZMgQFi9ezKZNm9i1a1ersuvWrWPMmDFMnz6drKwspkyZwqRJk1i+fHlzmfz8fG644QYGDx7MgAEDmDVrFsXFxZSXl7e6n5ya5j0K1FPAaxv34vWaTL3g5PdgsFgs3HDZYLp3jeGZtdt4//ODZGckkuFjb4OISDAELRS43W4KCgoYO3Zs87XMzEzS09PJy8trVd7lchET03Izh9jY2BZlR4wYwZtvvkltbS1ut5s1a9YwdOhQUlI6/lCJzsLwcYvjzq7oSA0f5R/mB6My6JV8asuHunaJ5uYrzuRIhZNvKuu4aJR6CUQktARtMLOiogLDMEhNTW1xPSUl5Zi/2Y8bN46VK1fy8ccfM27cOPLy8li3bh1ut7u5zBNPPMFtt93GqFGjsFgsZGVlsWzZspOu24k2cjgVPXuG7il3J6umzIUTSE3vQ0wQnyvU2vCpV7+ka1w0N155Fgnxp77zWM+eCRw+Wsfmr0q4ZPzpAd/WONTaMRypDdtPbdh+wWrDkJ3hNHHiRGbNmsXs2bPxeDykpaVx+eWXs2bNmuYyTzzxBLGxsaxcuZKYmBief/55br31Vl588UWio6N9/iztaHh87tJSACrqbFiD9Fyh1oZf7bWzdVcZP/nBGdTVuqirdbXrfhOHn8bE4adxtKLWTzU8tlBrx3CkNmw/tWH7dcodDZOTk7Fara1WG5SXlx+3u3/OnDls3bqVDRs28O6775KUlER6esPObwcOHODFF1/koYceYtSoUQwbNoyHHnqIvXv38p///CfgzxMpTEclWKwdvutYRzEMkxc3fE2vpLiw23VQRORkBS0UxMTEMHjwYDZv3tx8raioiOLiYnJyco77PpvNRu/eDWvB169fz8SJEwFwOp3NrzexWCxYLBZ0nIP/NO1RYLFE5pYWH315mOKyWqZOHECULTLbQEQiR1C/y02fPp3nnnuO9evXU1BQwIIFC8jNzSU7O5v8/HwuvfRSShu7q+vr61m+fDl79uwhPz+fefPmUVVVxcyZMwE4/fTTycjI4J577qGgoIA9e/Zw7733EhMTw4gRHXPqV2cUybsZ1rk9vLZxLwMzEo+5RbGISGcT1DkFU6dOxW63c99991FdXc348eNZtGgR0PCb/759+6ivrwcafut/++23efzxxwHIzc1l5cqVzUMNMTExPPPMMzzyyCPccMMNeL1ehgwZwrPPPktSUlIwH6tTM51VEbvy4F+bC6msdTPn2mHahlhEIoKOTkYTDU+kZuUd2NLPIm7iTUH7zFBow4pqF/OX/pcRZ/Rg1lVndWhdTlUotGO4Uxu2n9qw/TrlREMJP6ZpYDqqsEbg8MFrG/dimCbXXjCgo6siIhI0CgVyXKarFkxvxM0pKCyt5uMvD3Px6Ex6JsV1dHVERIJGoUCOy3RUAUTUCYmmafLShq/pGhfN5eP6dnR1RESCSqFAjsuMwC2Ov9xrZ/v+Cq44tx/xXXzfAEtEpDNQKJDjMh1HASJmToHXMHhpwx56J8dx4dnaqEhEIo9CgRxXc09BhISCD/MOc+ibWqZdOFAbFYlIRNJ3Pjkuw1EFtiiI7vyT7ZwuD2s+3Et2RiJnn9Gjo6sjItIhFArkuBq2OE6MiI173t58gCpHPdf94IyIeF4RkWNRKJDjMiNki+PyqjrWfVLE2DN70/+0yFlpISLyfQoFclymsxJrBKw8eHXjXkwTrrng9I6uiohIh1IokOOKhHMPDpRU89+vSph0TgY9Ejv/3AkRkRNRKJBjMg0vprO6Uw8fmKbJi+/vpmtcND8a26+jqyMi0uEUCuSYzLpqwOzUoSBvj52CwqNcNaE/8V2CemCoiEhI0ndCOSbT0TG7Gda5PazbdICu0RayeicQFxuYv6Ier8HLG74mLSWeC0b0CchniIiEG4UCOaamjYusQT73YNV7X7Mx7xAAFqB3Sjz90hLom5ZAv7QEvwWFD/MOcdjuYO61w7RRkYhII4UCOabmnoIgDh/sKjrKxrxDXH5ufwb2SWB/STUHSqrZWXSUTdtLG+oDnNajK9dffAZD+6Wc0uc4XR7WfLSPQZlJjBiojYpERJooFMgxGUE+DMnjNVj2rwJSu3fhhh+dSXWVk+EDvv2BXVnr5kBJFftLqtm8vZTHX/yCaRMHMnlM5klvNvTWpgNUO+r58bSB2qhIROQ7FArkmExHJUR3wRIdG5TPe3tzIYftDm6fNpwusVFUf+/1xK4xDB/Qg+EDenDJOZn8/c0dvLTha/aXVDHjsiHExtja/Izaunpe3biXD7YWM26oNioSEfk+hQI5pmDuUVBa7uD1j/czenCvFr0Dx9MlJorZU87i7c2FrP5gD4e+cTDn2mH0Sjr2PgOGafJx/mFe/mAPtXX1XHR2hjYqEhE5BoUCOSbTURmUI5NN0+SFdTuJjrJw/Q/O8Pl9FouFH47tS1avbiz55zYWPf8pt1w1lLP6p7Yod6CkmhXv7GTPoSoGZiTyP5Oyyeqd4O/HEBHpFDTtWo6p4TCkwHevb9pWyo4DFUy9YADJCSc/VHHW6an87sbRJCfE8sRLeby96QCmaVLjrGf5up3c//ynlB11ctOPhjB/+kgFAhGRE1BPgRyT4ajEln5mQD+jxlnPP97bzel9unPB2emnfJ9eyfEs+Nlo/v7WDl7+YA/b95dzoLSG2rp6fjAqgynn9Se+S7Qfay4i0jkpFEgrprce3I6Azyl4acPXOF0ebrh0MNZ2rgKIjbEx66qh9DstgVc+2MPA9ESma6hAROSkKBRIK6azCgjsHgU7Cyv4KP8wl43NIrNXN7/c02KxcFluXyYMO41ucdFabigicpIUCqSVpo2LAnVscr3HYNm/dtIjsQtXntvf7/dPiI/x+z1FRCKBJhpKK4HezfDtTQcoKXfwP5cMIja67f0FREQkOBQKpJVvdzP0/+qDknIHb/x3P2OG9GL4gNQ2y4uISPAoFEgrZgBDwXufHcRiObk9CUREJDgUCqQV01EJsV2x2Py7jM80TbbuLuOs/ikkdgvO9skiIuI7hQJpJVC7GR4oraa8ysXZZ/T0+71FRKT9FAqklUCde/D5rm+wWCBnoOYSiIiEIoUCacVwVgYkFGzdXUZ2RpKWDIqIhCiFAmnFdFT6fTliaYWD4rJazs7W0IGISKhSKJAWzPo68Lj83lOwddc3AIw8o+2jkUVEpGMoFEgLTVscW+P9uxxx6+4ysnp1o0dSnF/vKyIi/qNQIC0YTbsZ+rGnoLLWzdcHKzV0ICIS4hQKpAXTcRTw7xbHeV9/gwmcraEDEZGQplAgLXy7m6H/QsHnu8rokdjFb6chiohIYCgUSAumswosFixdEvxyP6fLw/b9FZx9Rk8dZSwiEuIUCqQF01GJpUsCFqt//mps21eOx2swMltDByIioU6hQFow/LxHwee7yugWF83AjMAcwywiIv6jUCAtmI4Kv80n8HgN8vbYGTGwBzY/9TyIiEjg6Du1NDPdDgz7QWw9+vnlfjsLj+J0eThbQwciImFBoUCaeYp3gOnFljnML/f7fHcZMdFWhvZL8cv9REQksBQKpJn34JcQ3QVb7wHtvpdhmnyx+xvO6p9KTLTND7UTEZFAUygQAEzTxHPwK6L6DMFijWr3/Q6UVFNR7dKqAxGRMKJQIACYlSWY1d/4b+hgVxlWi4XhAxQKRETChUKBAOA5+BUAURn+CwWDspLoFhftl/uJiEjgKRQIAJ6iL7Ek9sbavf2HFh2213LY7tBZByIiYUahQDA9bryHC4jKOMsv9/ti9zcAnH2GTkUUEQknCgWCt2Q3eNxE+TCfwF3vpaLahWmaxy3z+e4y+vZOIDWxiz+rKSIiAdb+aeYS9jwHvwRrFLbThrRZ9m9vbGfLzjK6x0fT77Tu9O2dQL+0BPqmJZCcEEtlrZs9xVVcfV7/INRcRET8SaFA8B78ClvaGViiY09czjDYtr+cMzIS6ZUUx/6Sar7ca6ep06B7fDTduzbc4+xsDR2IiIQbhYIIZ9RWYJQfJGbMj9ssW1hag9Pl5aKRGeSe2RsAl9tL0ZEa9pdUcaCkmv2l1Qztl0x6j66BrrqIiPiZQkGE8zYtRfRhPsHOwqMADMpKar4WG2NjYEaiTkEUEekENNEwwnmKvsQSn4Q1JaPNsgWFFaSlxJPU7cTDDCIiEp4UCiKYaRh4irdhyxiKxWI5YVmvYbD74FEGf6eXQEREOheFgghmfLMPXLU+7WLYNJ9gUFZyEGomIiIdQaEggnmKvgIs2DKGtln2WPMJRESkc1EoiGCeg19i7dkPa5eENstqPoGISOenUBChTFctxpE9Pm1t7DUMdhUdZXBfDR2IiHRmCgURylO8HUzTp6OSC0trqHN7NclQRKSTUyiIUN6DX0JMHLZeA9osW1BYAcCgTIUCEZHOTKEgApmmiafoK6L6nInFamuz/M7Co5yWGk+i5hOIiHRqCgURyDh6CLO23Kehg6b5BFqKKCLS+SkURCBvUePWxj5MMtR8AhGRyKFQEIE8B7/EmnQa1oQebZbVfAIRkcihUBBhTI8b7+Gd2HzoJQDNJxARiSQKBRHGe3gneOt92tpY8wlERCKLQkGE8Rz8CmxR2PoMarPsgRLNJxARiSQKBRHENE28hXnY0gZhiWp7OGBn03wC9RSIiEQEhYII4tmzGaOyhOgzxvtUvqBpPkHXmADXTEREQkHQQ8HSpUuZMGECOTk53Hrrrdjt9uOW3bBhA1OmTCEnJ4fJkyfzxhtvtCrzn//8h2nTpjFs2DDGjh3L4sWLA1n9sGV63Lg+eRlrahZRA8e1Wd5rGOw6eJTB6iUQEYkYQQ0Fq1evZsmSJSxcuJBVq1ZRXV3NnXfeecyy27ZtY+7cuUybNo3XX3+d2bNnM3/+fLZs2dJcZtOmTcydO5crr7yStWvXsmzZMsaP9+234EhTv209Zo2d2LE/wWJt+3/7gZIaXG6vjkoWEYkgUcH8sBUrVjBjxgwmTZoEwOLFi7n44ovZtWsX2dnZLcquW7eOMWPGMH36dACysrLYuHEjy5cvZ/To0QA88sgj3HTTTfzsZz9rft+gQW1PoIs0Rl01rq2vY8vKISr9TJ/eo/kEIiKRJ2g9BW63m4KCAsaOHdt8LTMzk/T0dPLy8lqVd7lcxMS0HMuOjY1tLltWVsa2bdvo2rUr1157LRMmTGDOnDkcPnw4sA8Shtyf/RPqXcTm/tjn92g+gYhI5AlaT0FFRQWGYZCamtriekpKCuXl5a3Kjxs3jpUrV/Lxxx8zbtw48vLyWLduHW63G4Di4mKgYY7CggULyMzM5P/+7/+4+eabWbNmDTZb2wf9NElN7daOJ2utZ88Ev96vPdz2Q1Tv2EDC2RfTM3uwT+/xeg2+Lj7KxFGZHfYsodSG4Uzt2H5qw/ZTG7ZfsNowqMMHJ2PixInMmjWL2bNn4/F4SEtL4/LLL2fNmjUAGIYBwE9/+lN+9KMfAfDQQw9x7rnnkp+fz9lnn+3zZ9ntNRiG6Zd69+yZQFlZtV/u5Q/Od54DWzTGmT/yuV57D1XhdHnp27NrhzxLqLVhuFI7tp/asP3Uhu3nzza0Wi0n/EU4aMMHycnJWK3WVqsNysvLSUlJOeZ75syZw9atW9mwYQPvvvsuSUlJpKenA9CjR8O+/f3792/xGcnJyRpCaOQ5VIBn/+fEjPgR1vhEn9/XdN6BVh6IiESWoIWCmJgYBg8ezObNm5uvFRUVUVxcTE5OznHfZ7PZ6N27NwDr169n4sSJAGRkZJCamsqBAweay1ZVVVFRUUGfPn0C8xBhxDQNXJtfxNI1hZhhl5zUewsKK+jToyvdNZ9ARCSiBHVJ4vTp03nuuedYv349BQUFLFiwgNzcXLKzs8nPz+fSSy+ltLQUgPr6epYvX86ePXvIz89n3rx5VFVVMXPmzIaKW638/Oc/Z9myZXzwwQfs2bOHe+65h+zsbIYNa3tf/87O8/UmjLJ9xJ5zbfPuhYZpcv/zn3Lfc5+wYWsxTpen9fu8BrsPVmopoohIBArqnIKpU6dit9u57777qK6uZvz48SxatAgAp9PJvn37qK+vB8BisfD222/z+OOPA5Cbm8vKlStbDDXcfPPNOJ1O5s+fj8fj4ZxzzmHJkiUnNcmwM2rYqOgVrD36EnXGtxsV7T1Uxf6SapK6xbB83U5eev9rcs/sxQUj0umXloDFYuFAaTUut1dDByIiEchimqZ/ZtiFsc420dD1xRu4P3mFuMvvJqrPkObr/1i/mw1bi/nzvAkctjv44ItiPtlRirveIKtXNy4Y0Yfyahdv/vcAf5o7ocOGD0KhDTsDtWP7qQ3bT23YfsGcaBiyqw/k1BjOKtxb38CWNaJFIDBMky07jzDs9BTiYqM4vU93Tu/TnZ9cdAabt5fwwReHWP7OLgDNJxARiVAKBWHGW3EI3I7jvu7evgE8bmLHttyoaG9xFRXVLqZOHNDienyXKC4cmcHEs9PZX1LNR18eJjtD8wlERCKRQkEYMSpLcLz82zbLRZ/5A2xJLVdgfFpwhCiblREDexzzPRaLhf6ndaf/ad39UlcREQk/CgVhxHtkLwCx58/A2vXYeztgi8KW1vL8h+8PHYiIiByLfkKEEa+9EKxRRGefi8Xq+/+6pqGDad8bOhAREfmuoO5TIO1j2IuwpqSfVCAA+KSglCiblZzjDB2IiIiAQkHYME0Tw16INSXrpN5nmCaf7SzT0IGIiLRJoSBMmI6jmHXV2HqcXCjYU1xJRbWLcwb3ClDNRESks1AoCBOGvQgAa0rmSb2vadWBhg5ERKQtCgVhwmsvBMCW6nsoMEyTLQVadSAiIr7xORQ4HMffMEcCz7AXYumWiiW2q8/v2VNcydEaN+cM0dCBiIi0zedQMGHCBH73u9+xbdu2QNZHjsOwF2JLPbn5BJ/uaBw6GKChAxERaZvPoeDee+9lz549XHvttVx99dWsWrWKmpqaQNZNGpn1LozKUqwnEQqaNiwaPiBVQwciIuITn0PB1VdfzcqVK3nrrbcYO3YsTz75JOeddx4LFiwgPz8/kHWMeEbFQcA8qVDw9cGGoYPRg3sGrmIiItKpnPREw9NPP527776bjRs38qtf/Yq1a9dy3XXXceWVV7JmzZpA1DHieRtXHpzM8MGWAg0diIjIyTmlfuUPP/yQl19+mffff5/+/fszbdo0SkpKWLx4MZ988gmLFy/2dz0jmmEvhOg4LAm+/YDX0IGIiJwKn39ilJaW8sorr7B69WrsdjuTJ09m2bJljBo1qrnMRRddxC9+8QuFAj/z2guxpWZisVh8Kq+hAxERORU+h4ILL7yQfv368fOf/5yrr76axMTEVmUGDx7MsGHD/FrBSGeaBoa9iOhBE3x+z6cFR4iO0tCBiIicHJ9DwXPPPUdubu4Jy3Tr1o3ly5e3u1LyLbOqDDwunycZfntMsoYORETk5Pg80bBPnz7s27ev1fX9+/dz8OBBv1ZKvvXtToa+hYKvD1ZSWePWWQciInLSfA4Fv/3tb/n8889bXd+6dSsLFizwa6XkW4a9ECxWrMnpPpX/dEfj0MHA1ADXTEREOhufQ8GOHTsYOXJkq+sjRoxg+/btfq2UfMtrL8SalIYlKqbNsh6vwZZdRxh+eipdYjR0ICIiJ8fnUODxeHC73a2uu91u6uvr/VpotdUFAAAgAElEQVQp+ZZhL/J5PsG6TwqprHFzXk6fANdKREQ6I59DwdChQ3nttddaXV+9ejWDBw/2a6WkgVlXg1lbjjWl7VBw5KiTtR/vZ1R2T4YP0NCBiIicPJ/7mG+77TZ+8YtfcODAAc4991wsFgsffvghH374Ic8880wg6xixvOWNOxn2OHEoME2T5et2YrNa+Omk7GBUTUREOiGfewrGjx/P3/72N6qqqvjjH//Io48+SnV1Nc888wznnntuIOsYsYxvGlYeWFMyT1hu845Stu0r55rzTyc5ITYYVRMRkU7opGajjR8/nvHjxweqLvI93vJCLHGJWONbbxTVpLaunlXrd9P/tAQuGpkRxNqJiEhnc9IHIknwGPZCrKkn7iV4ecMeapwebrh0MFarb9sgi4iIHIvPPQX19fUsXbqU119/nUOHDuHxeFq8vmPHDr9XLpKZXg9GxSFiMo6/bfSuoqNszDvE5DGZZPVOCGLtRESkM/K5p+Dpp5/mxRdf5Prrr8disXD77bczdepUEhMTueeeewJZx4hkHD0Ehve4yxE9XoMX1u0ktXssV03oH+TaiYhIZ+RzKHjzzTe5//77ufHGG7HZbFx22WUsWrSI2bNns3Xr1kDWMSIZ9oaVB8cLBf/aXMihb2qZfskgbVQkIiJ+4XMoKCsrY9CgQQDEx8dTU1MDNByX/MEHHwSkcpHMay8EWzTWxN6tXiutcLD24/2MHtSTEQN1EqKIiPiHz6GgV69e2O12ANLT0/n0008B2LVrFzabLTC1i2CGvRBrSgYWa8u2bdqTIMpm4fqLtSeBiIj4j8/9zmPHjuX9999n2LBhTJ06lfvvv5+33nqLXbt2ceWVVwayjhHHNE289kKi+49q9dqm7aVs31/B9EnZ2pNARET8yudQsGjRIkzTBODHP/4xCQkJfPbZZ1x55ZVcd911AatgJDJry8FV22o+gaOunlXv7eb0Pt258GzfTk0UERHxlU+hoL6+nieeeILp06eTnt7ww+iyyy7jsssuC2jlItW3kwz7trj+zqdFVDvqufPHI7QngYiI+J1Pcwqio6P5xz/+0dxTIIHltTdsb2xL+XaHwtq6et7dUsTI7J70TdOeBCIi4n8+TzQ855xztPQwSAx7IZbuvbDExDVfe/fTIpwuL1ee26/jKiYiIp2az3MKrrjiCh577DGKi4sZNmwYcXFxLV4fOXKk3ysXqbz2ImzfOQSpqZdgVHZP7VwoIiIB43MouOuuuwD405/+1Oo1i8WibY79xHQ7MauOYM3+9uCppl6CK9RLICIiAeRzKHjvvfcCWQ9pZJQfBExsKQ0rD9RLICIiweJzKGhadSCB5S1vXHnQoyEUvPNJ41wCnW8gIiIB5nMoWLNmzQlfnzJlSrsrI2B8Uwgx8Vi6plDjrGf9Z0WMGtSTzF7dOrpqIiLSyfkcChYsWNDia8MwME0Tq9WK1WpVKPATb3khttQsLBbLd1YcqJdAREQCz+dQsG3bthZfG4bB9u3beeihh7jjjjv8XrFIZBoGhv0g0UMuUC+BiIgEnc/7FLR6o9XKWWedxe23386iRYv8WaeIZVaVgteNLTVLvQQiIhJ0pxwKmqSkpLB//34/VEWadjKs69aHd7cUMVq9BCIiEkQ+Dx+UlpYe89rTTz/NgAED/FqpSGXYi8BiY/1uL3Vu9RKIiEhw+RwKLrjgAiyWlofwmKZJnz59jrmhkZw8r70QEtN49/PDjB7Ukwz1EoiISBD5HApeeOGFFl9brVZSUlLo27cvNpvN7xWLRIa9kENRWeolEBGRDuFzKBgzZkwg6xHxDGcVpuMon7vOYPTgXuolEBGRoPN5ouGrr77KW2+91er6W2+91ebGRtI2w96wk+EBVxKXnJPZRmkRERH/8zkUPPvssyQlJbW6npyczDPPPOPXSkUio3HlQbE3mcye6iUQEZHg8zkUFBcXk5WV1ep6ZmYmxcXFfq1UJPLaC3FYuxHTLZHYGM3REBGR4PM5FCQkJHDw4MFW14uKioiPj/drpSKRYS+ilFTSUtSWIiLSMXwOBeeffz6PPPIIR44cab5WWlrKo48+ygUXXBCQykUK0+PGOHqYfXWJpKUqFIiISMfwefXBXXfdxfTp05k0aRIDBgzAYrHw9ddf06dPH+66665A1rHTM44eAtPLAXcSQ9RTICIiHcTnUJCSksKaNWtYu3Yt27dvB+D666/n8ssvp0uXLgGrYCRoWnlQ7EnhIoUCERHpID6HAoDY2FimTZsWqLpELK+9EK81mm+MbppTICIiHcbnOQXPPPMML7/8cqvrL7/8Ms8++6xfKxVpDHshVdG9sNmiSElUr4uIiHQMn0PBiy++SP/+rbfeHTBgAC+++KJfKxVJTNPEay+kxEyld0oc1u+dLyEiIhIsPg8fHDlyhLS0tFbXe/XqdcwTFMU3Zo0d3E72m4mk9dLQgYiIdByfewpSU1PZtWtXq+s7d+485k6H4htv406GO6sTNJ9AREQ6lM+hYNKkSTz44IPNKw8Atm3bxsMPP8zkyZMDUrlIYNiLMLFQ7ElUKBARkQ7l8/DBHXfcQUFBAddccw2JiYlYLBaOHj3K6NGjufPOOwNZx07NsBdSH9cDN9HauEhERDqUz6EgPj6e5cuX89///pdt27YBMHToUMaNGxewykUCr72QypheAJymngIREelAJ7VPQWVlJXa7HcMwcLvdfPbZZ3z22WcAzJkzJyAV7MxMtxOzuozS7kPoHh9NfJfojq6SiIhEMJ9DQX5+PjNnzsQ0TWpqakhJScFut9OlSxd69eqlUHAKvOUNOxnuc3Wnt3oJRESkg/k80fDRRx/lkksuYdOmTcTGxvKPf/yDDRs2cOaZZ/LrX/86kHXstIxvGlYebK/UToYiItLxfA4FO3bs4MYbb8RqtWK1WnG73aSlpfHrX/+axx9/PJB17LSM8kKI7cYhhyYZiohIx/M5FNhsNqKjG8a8U1NTKSkpASA5OZlDhw4FpnadnNdehLtbH8CingIREelwPoeC7OxsduzYAUBOTg5Llizhww8/5PHHHz/m9sfHs3TpUiZMmEBOTg633nordrv9uGU3bNjAlClTyMnJYfLkybzxxhvHLOfxeLj22msZNGgQBw8e9LkuHck0vBjlB5tXHigUiIhIR/M5FMyePRubzQbAL3/5S8rLy5k5cyZbtmzhnnvu8ekeq1evZsmSJSxcuJBVq1ZRXV193D0Otm3bxty5c5k2bRqvv/46s2fPZv78+WzZsqVV2aVLl5KYmOjro4QEo7IEvPWUmKnYrBZ6JsV1dJVERCTC+bz6YPz48c3/nZGRwZtvvsnRo0ebNzLyxYoVK5gxYwaTJk0CYPHixVx88cXs2rWL7OzsFmXXrVvHmDFjmD59OgBZWVls3LiR5cuXM3r06OZyO3bs4LXXXuPpp5/mqquu8vVxOpxhb1p5kEiPpDiibD7nMxERkYBo10+ipKQknwOB2+2moKCAsWPHNl/LzMwkPT2dvLy8VuVdLhcxMTEtrsXGxrYo63a7ufvuu1m4cCHdunU7xafoGIa9EKxR7KrsQlqyeglERKTjndTmRe1RUVGBYRikpqa2uJ6SkkJ5eXmr8uPGjWPlypV8/PHHjBs3jry8PNatW4fb7W4u89RTT3HWWWdx3nnntWsuQWqqfwNFz54JbZY5XH2I6J4ZlOx2M2pouk/viSRqD/9QO7af2rD91IbtF6w2DFooOFkTJ05k1qxZzJ49G4/HQ1paGpdffjlr1qwBGjZTevPNN/nnP//Z7s+y22swDLPd94GG/3FlZdVtlqs7vJf63kOp9xgkxkX59J5I4WsbyompHdtPbdh+asP282cbWq2WE/4iHLSB7OTkZKxWa6vVBuXl5aSkpBzzPXPmzGHr1q1s2LCBd999l6SkJNLT0wH4/PPPOXToELm5uZx55plccsklAFxyySU8/fTTgX2YdjIcRzGdVVRp5YGIiISQoPUUxMTEMHjwYDZv3syYMWMAKCoqori4mJycnOO+z2az0bt3b7xeL+vXr2fixIkAXHXVVS0mPx45coSbbrqJZ555hiFDhgT0WdqraZJhiZEKeEhL7dqxFRIRESHIwwfTp09n8eLFDBkyhIyMDBYvXkxubi7Z2dnk5+fzv//7vyxbtozevXtTX1/PqlWrGD9+PLW1tSxdupSqqipmzpwJNPQ8JCcnN987Pr7ht+1+/fq1mrcQarz2b888iIutonu8DkISEZGOF9RQMHXqVOx2O/fddx/V1dWMHz+eRYsWAeB0Otm3bx/19fUAWCwW3n777eYtlHNzc1m5cuVxhxrCiWEvxNItlaKjJmkp8T6v4BAREQkki2ma/plhF8aCPdGw9uXfYknoxb17zmFwVhIzrxjql8/uLDQxyT/Uju2nNmw/tWH7dcqJhtLA9Lgxjh7GTM6kotqlSYYiIhIyFAqCzKgoBtOkMrpx5YEmGYqISIhQKAgyr70QgBKzYTKkegpERCRUKBQEmWEvhOguFDm6YAF6a4tjEREJEQoFQWbYi7ClZFJa4SSlexdiom0dXSURERFAoSCoTNPAay/EmprF4XIHaakaOhARkdChUBBEZvU3UF+HNTWTknIHackKBSIiEjoUCoKoaSfD2rjTcLm96ikQEZGQolAQRIa9ECwWSo0kQCsPREQktCgUBJFhL8SaeBqHKz2AQoGIiIQWhYIgaphkmElpuYOYKCvJ3WM7ukoiIiLNFAqCxHTVYtbYsaZmUVLuoHdKPFYdhCQiIiFEoSBImiYZ2lIzKbE7NHQgIiIhR6EgSIzyhlBgJGZSVumkt0KBiIiEGIWCIPF+U4glrjtl7hhME05TKBARkRCjUBAkRnnDToYldgeA9igQEZGQo1AQBKbhwSgvxpqSSUl5LaDliCIiEnoUCoLAOFoChgdbjyxKy50kdo0hLjaqo6slIiLSgkJBEBj2QgCsKQ3LEdVLICIioUihIAi89kKwRWFNSmsIBZpPICIiIUihIAgMexHW5AxqXQY1znp663REEREJQQoFAWaaJoa9EJtWHoiISIhTKAgw03EUs6664cyDisZQoDkFIiISghQKAsxo3N7YmppFjbMegO7xMR1ZJRERkWNSKAgwb+PKA1tqJo46DxagS6ytYyslIiJyDAoFAWbYC7Ek9MQSE4/D5aFLbJRORxQRkZCkUBBgDZMMMwFwujzEa9MiEREJUQoFAWTWuzAqS7GmZgHgqPMQ30WhQEREQpNCQQAZFQcBE2tjT4HD5dH2xiIiErIUCgLI+03TJMOGngINH4iISChTKAggo7wIYuKwdOsBaPhARERCm0JBAHkbdzK0NK42cGr4QEREQphCQYCYptFw5kHj0IFhmho+EBGRkKZQECBm1RHwuLClNEwyrHN5MUE9BSIiErIUCgLE27S9cY9vJxkCmlMgIiIhS6EgQAx7IVisWJP6AA3LEQENH4iISMhSKAgQr70Qa1IfLFENhx856hoOQ4pTT4GIiIQohYIAaZhkmNn8tdPlBdRTICIioUuhIADMuhrM2vLmTYsAHK6GngLNKRARkVClUBAATcclf7enwFHXMKdAqw9ERCRUKRQEgNG08uA7PQVOTTQUEZEQp1AQAF57IZb4JKxx3ZuvOVweYqKtRNnU5CIiEpr0EyoAjPLCFr0EoC2ORUQk9CkU+JnprceoOITtO/MJoPEwJIUCEREJYQoFfub+phgMb6ueAodLJySKiEhoUyjwM3fpPqDlygPQ8IGIiIQ+hQI/c5fuB1sM1u5pLa5r+EBEREKdQoGfuUr3Y03JwGJt2bQOHZssIiIhTqHAj0zTxH1kf4udDJuuO10enXsgIiIhTaHAj8zacgxnTav5BPUeA4/XVE+BiIiENIUCPzIatzf+fk+Bjk0WEZFwoFDgR0bVEbBYsaZktLjetMWxhg9ERCSU6aeUH0UNyCW5/xnUxsS1uN50GFJ8bHRHVEtERMQn6inwI2t8EvH9c1pd1/CBiIiEA4WCINDwgYiIhAOFgiD4dvhAoUBEREKXQkEQODV8ICIiYUChIAgcLg82q4WYaDW3iIiELv2UCgJHXcNhSBaLpaOrIiIiclwKBUHg1LkHIiISBhQKgsChcw9ERCQMKBQEgY5NFhGRcKBQEAQaPhARkXCgUBAEGj4QEZFwoFAQBBo+EBGRcKBQEGBew8BV71UoEBGRkKdQEGBOlxfQuQciIhL6FAoCTCckiohIuFAoCDCnDkMSEZEwoVAQYI66egDiNXwgIiIhTqEgwBxNcwrUUyAiIiFOoSDAHK7GngKFAhERCXFBDwVLly5lwoQJ5OTkcOutt2K3249bdsOGDUyZMoWcnBwmT57MG2+80fxafX09Dz/8MJdddhk5OTlcdNFFPPnkk3g8nmA8hs+a5xRo+EBEREJcUEPB6tWrWbJkCQsXLmTVqlVUV1dz5513HrPstm3bmDt3LtOmTeP1119n9uzZzJ8/ny1btgBQV1fH7t27ufPOO1m7di0LFy7kxRdfZMmSJcF8pDY1rT7oEqNQICIioS2oP6lWrFjBjBkzmDRpEgCLFy/m4osvZteuXWRnZ7cou27dOsaMGcP06dMByMrKYuPGjSxfvpzRo0eTkJDA3/72t+byffv2ZcaMGbz55pvMmTMneA/VBofLQ1ysDavV0tFVEREROaGg9RS43W4KCgoYO3Zs87XMzEzS09PJy8trVd7lchETE9PiWmxs7DHLNqmoqCAhIcF/lfYDp7Y4FhGRMBG0n1YVFRUYhkFqamqL6ykpKZSXl7cqP27cOFauXMnHH3/MuHHjyMvLY926dbjd7mPe/9ChQ7z00kvcc889J1231NRuJ/2eE+nZ89tg4gUSusa2uCZtU3v5h9qx/dSG7ac2bL9gtWHI/go7ceJEZs2axezZs/F4PKSlpXH55ZezZs2aVmUrKyu55ZZb+MEPfsBVV1110p9lt9dgGKY/qk3PngmUlVU3f320qo4Ym6XFNTmx77ehnBq1Y/upDdtPbdh+/mxDq9Vywl+EgzZ8kJycjNVqbbXaoLy8nJSUlGO+Z86cOWzdupUNGzbw7rvvkpSURHp6eosytbW13HzzzWRkZPDAAw8ErP6nylHn0R4FIiISFoIWCmJiYhg8eDCbN29uvlZUVERxcTE5OTnHfZ/NZqN3794ArF+/nokTJza/VldXx6xZs+jSpQt//vOfiYoKvR++DpdHyxFFRCQsBHVJ4vTp03nuuedYv349BQUFLFiwgNzcXLKzs8nPz+fSSy+ltLQUaNiHYPny5ezZs4f8/HzmzZtHVVUVM2fObH597ty5lJeXc//991NZWUlZWRllZWXBfKQ2OV0e4mOjO7oaIiIibQrqr7BTp07Fbrdz3333UV1dzfjx41m0aBEATqeTffv2UV/fsAOgxWLh7bff5vHHHwcgNzeXlStXNg81lJaWsnHjRgAuueSSFp+zc+fOYD3SCZmm2bAksYuto6siIiLSJotpmv6ZYRfGAjXR0OnycNsTG/nxhQO5NDfLL/ePBJqY5B9qx/ZTG7af2rD9OuVEw0jkdGmLYxERCR8KBQHUtMWxVh+IiEg4UCgIIEfTYUgKBSIiEgYUCgLIoeEDEREJIwoFAeTU8IGIiIQRhYIA0vCBiIiEE4WCANJEQxERCScKBQHkdHmIjrISHaVmFhGR0KefVgHkqPNo6EBERMKGQkEAOVw6IVFERMKHQkEAOXVCooiIhBGFggDS8IGIiIQThYIAcmr4QEREwohCQQA5NHwgIiJhRKEggDR8ICIi4UShIEDqPV48XkPDByIiEjYUCgLE4fICOgxJRETCh0JBgDjq6gGdeyAiIuFDoSBAnI09BRo+EBGRcKFQECAOV2NPgYYPREQkTCgUBIiOTRYRkXCjUBAgTh2bLCIiYUahIEAcjaFAwwciIhIuFAoCxOnyYLVYiI22dXRVREREfKJQECCOOg9xsTYsFktHV0VERMQnCgUBonMPREQk3CgUBIizTickiohIeFEoCBCHS4chiYhIeFEoCJCG4YPojq6GiIiIzxQKAsTpaphoKCIiEi4UCgLEUechPlY9BSIiEj4UCgLAMEzq3F6tPhARkbCiUBAATre2OBYRkfCjUBAAOgxJRETCkUJBADSHAg0fiIhIGFEoCACdkCgiIuFIoSAAmk9IVCgQEZEwolAQAE4dmywiImFIoSAAmuYUaPhARETCiUJBADia5xRoR0MREQkfCgUB4HR5iI2xYbOqeUVEJHzop1YANGxxrKEDEREJLwoFAdBwQqJCgYiIhBeFggBoOCFRoUBERMKLQkEAaPhARETCkUJBADhc9Ro+EBGRsKNQEABOl1fDByIiEnYUCvzMNE0NH4iISFhSKPAzl9uLYZoaPhARkbCjUOBntXX1gLY4FhGR8KNQ4Gc1zoZQoOEDEREJNwoFfuZw6oREEREJTwoFfqbhAxERCVcKBX6m4QMREQlXCgV+5qhTKBARkfCkUOBntU09BZpTICIiYUahwM9qnfVE2axER9k6uioiIiInRaHAz2rrPMTHKhCIiEj4USjws1pnPXFdoju6GiIiIidNocDPap31mmQoIiJhSaHAz2rr6jV8ICIiYUmhwM80fCAiIuFKocDPHHUaPhARkfCkUOBnNU6PQoGIiIQlhQI/8ngN3PVe4rRxkYiIhCGFAj9yuBpPSFRPgYiIhCGFAj9y1ikUiIhI+FIo8KOmngINH4iISDhSKPAjDR+IiEg4UyjwIw0fiIhIOFMo8KPmngINH4iISBgKeihYunQpEyZMICcnh1tvvRW73X7cshs2bGDKlCnk5OQwefJk3njjjRavezweHnzwQXJzcxk5ciTz58/H4XAE+hGOy9HYUxCnngIREQlDQQ0Fq1evZsmSJSxcuJBVq1ZRXV3NnXfeecyy27ZtY+7cuUybNo3XX3+d2bNnM3/+fLZs2dJc5i9/+Qtvvvkmf/rTn3j++efJz89n0aJFwXqcVqxWC127RBEbo7MPREQk/AQ1FKxYsYIZM2YwadIkhgwZwuLFi9m0aRO7du1qVXbdunWMGTOG6dOnk5WVxZQpU5g0aRLLly8HwDAM/t//+3/ccccdjBs3juHDh3PPPfewdu1aqqqqgvlYzSaO6MOTv7oQq8XSIZ8vIiLSHkELBW63m4KCAsaOHdt8LTMzk/T0dPLy8lqVd7lcxMTEtLgWGxvbXLaoqIiKiooW9xszZgymabJt27YAPcWJxUTb6JUS3yGfLSIi0l5BG/yuqKjAMAxSU1NbXE9JSaG8vLxV+XHjxrFy5Uo+/vhjxo0bR15eHuvWrcPtdgM0z0X47v1sNhuJiYknnKdwLKmp3U72cU6oZ88Ev94vEqkN/UPt2H5qw/ZTG7ZfsNowZGfETZw4kVmzZjF79mw8Hg9paWlcfvnlrFmzBgDTNP32WXZ7DYbhn/v17JlAWVm1X+4VqdSG/qF2bD+1YfupDdvPn21otVpO+Itw0IYPkpOTsVqtrX6LLy8vJyUl5ZjvmTNnDlu3bmXDhg28++67JCUlkZ6eDkCPHj0AWtzP6/VSWVnZqjdCRERE2ha0UBATE8PgwYPZvHlz87WioiKKi4vJyck57vtsNhu9e/cGYP369UycOBFomI+QnJzc4n6ffvopFouFM888MzAPISIi0okFdfXB9OnTee6551i/fj0FBQUsWLCA3NxcsrOzyc/P59JLL6W0tBSA+vp6li9fzp49e8jPz2fevHlUVVUxc+bMhopbrVx//fU88cQTbNq0ifz8fP7whz9w5ZVXkpiYGMzHEhER6RSCOqdg6tSp2O127rvvPqqrqxk/fnzzvgJOp5N9+/ZRX18PgMVi4e233+bxxx8HIDc3l5UrV7YYarjtttuora1l3rx51NfXM3nyZO69995gPpKIiEinYTH9OWMvTGmiYWhRG/qH2rH91IbtpzZsv0450VBERERCm0KBiIiIAAoFIiIi0kihQERERACFAhEREWmkUCAiIiKAQoGIiIg0UigQERERQKFAREREGoXs0cnBZLVaQvp+kUht6B9qx/ZTG7af2rD9/NWGbd1H2xyLiIgIoOEDERERaaRQICIiIoBCgYiIiDRSKBARERFAoUBEREQaKRSIiIgIoFAgIiIijRQKREREBFAoEBERkUYKBSIiIgIoFIiIiEgjhQI/Wrp0KRMmTCAnJ4dbb70Vu93e0VUKWe+88w433HADo0aNYtCgQa1ez8vL45prrmHYsGH88Ic/5N///ncH1DK0/fWvf+Wqq65ixIgRnH/++TzwwAPU1ta2KKN2bNuTTz7J5MmTGT58OOPHj+dXv/oVZWVlza+rDU/ObbfdxqBBg9i8eXPzNbVh237zm98waNCgFn+ef/75FmWC0Y4KBX6yevVqlixZwsKFC1m1ahXV1dXceeedHV2tkOV0Ohk7diw333xzq9cqKiqYOXMmI0eO5LXXXuOqq65izpw57N+/P/gVDWFbt27lF7/4Ba+++iqPPfYYH330EQ888EDz62pH35x++un8/ve/56233mLJkiUcPnyY3/zmN4Da8GStWbMGp9PZ4pra0HeXXXYZH330UfOf6667rvm1oLWjKX4xZcoU889//nPz14WFhWZ2dra5c+fODqxV6Nu0aZOZnZ3d4tqyZcvMCy+80DQMo/naT3/6U/Ohhx4KdvXCyltvvWWec845zV+rHU/Ne++9Z44YMcI0TbXhySgpKTEnTpxoFhcXm9nZ2eamTZtM01Qb+uruu+8277777uO+Hqx2VE+BH7jdbgoKChg7dmzztczMTNLT08nLy+vAmoWn/Px8cnNzsVi+Pfd73Lhxass2VFRUkJCQ0Py12vHkVVdX88YbbzBy5EhAbXgyFixYwC233EKfPn1aXFcb+u79999n7NixXHHFFSxduhSPx9P8WrDaUaHADyoqKjAMg9TU1GQE6IQAAAcoSURBVBbXU1JSKC8v76Baha/y8nJSUlJaXEtOTtYcjROorq7m73//O9dee23zNbWj79auXcvZZ5/N6NGjOXjwII899higNvTVqlWr8Hg8/OQnP2n1mtrQN+effz5//OMfWbZsGTNmzOC5557jySefbH49WO0Y5de7ifiBaZodXYWw4na7mTt3LpmZmS3maKgdfXfRRRcxfPhwDh8+zFNPPcXvfvc7nnzySbWhDw4dOsTTTz/NqlWrjvm62tA3P/zhD5v/e9CgQVitVn7/+99zxx13YLFYgtaOCgV+kJycjNVqxW63M2DAgObrx0p20rbU1NRWPSwVFRWtemIEPB4Pd9xxB7W1tTz//PNERX37T1rt6Ltu3brRrVs3+vXrx+mnn87555/P119/rTb0wfbt2/nmm2+45JJLWly/8cYbufrqq9WGp2jo0KE4HA4qKipISUkJWjtq+MAPYmJiGDx4cIslOEVFRRQXF5OTk9OBNQtPw4cPb9GWAJs2bVJbfo9hGNx9990UFhby7LPP0rVr1xavqx1PTdNvZFarVW3og7Fjx7J27VrWrFnT/AfggQce4Je//KXa8BTt3r2buLg4kpOTgeD9e1Yo8JPp06fz3HPPsX79egoKCliwYAG5ublkZ2d3dNVC0tGjR9mxYweFhYUA7Nixgx07duB2u7niiiuoqanhD3/4A3v27OGZZ54hLy+vxfIcgXvvvZfNmzfzyCOPUF9fT1lZGWVlZXi9XgC1ow/q6+t54oknyM/Pp7i4mC1btnDXXXcxdOhQ+vXrpzb0Qbdu3cjOzm7xByAjI4PevXurDX304IMPkpeXx8GDB3nnnXd48MEHue6665onFgarHS2mBnz8ZunSpSxfvpzq6mrGjx/PokWL6NGjR0dXKyS9+uqrzJ8/v9X19957j4yMDL744gvuv/9+du3aRWZmJr/5zW+44IILOqCmoetYmz7Bt20IqB3b4PF4uP322/niiy84evQoPXv25Nxzz2XevHn06tULUBueikGDBvHCCy+Qm5sLqA19cdNNN7Ft2zZqamro06cPV155JTfffDMxMTHNZYLRjgoFIiIiAmj4QERERBopFIiIiAigUCAiIiKNFApEREQEUCgQERGRRgoFIiIiAigUiEgY2bx5M4MGDaKkpKSjqyLSKSkUiIiICKBQICIiIo0UCkTEZ8uXL+fSSy9l2LBhXHLJJfz1r3/F4/EADccPP/HEEyxYsICRI0eSm5vLo48+imEYze+vqanhd7/7HWPHjmXYsGFcc801fPTRRy0+w263M3/+fMaPH8+wYcOYPHkyr7zySosye/bsYfr06eTk5PDDH/6QDz/8MPAPLxIBdHSyiPjkqaee4tVXX+W3v/0tgwcPZu/evSxcuBCXy8Xtt98ONISGG264gVdeeYX8/Hzuu+8+evTowYwZMwD47W9/y1dffcWjjz5Knz59+Mc//sGsWbP45z//yYABA6irq+N//ud/6NKlC3/84x/JzMzkwIEDVFZWtqjLww8/zK9//WuysrL4y1/+wh133MH7779P9+7dg94uIp2KKSLSBofDYQ4fPtz897//3eL6a6+9Zo4aNco0TdO88MILzeuvv77F64899ph53nnnmaZpmvv37zezs7PNDz74oEWZKVOmmL/5zW9M0zTNl156yTzrrLPMw4cPH7MemzZtMrOzs81169Y1Xzty5IiZnZ1tbty4sX0PKSKmegpEpE27d++mrq6OefPmNR/lCuD1enG5XJSXlwMwYsSIFu8bOXIkS5cupaamhq+//hqA0aNHtygzevRovvjiCwC2bdvGwIEDSUtLO2F9hgwZ0vzfPXv2xGazYbfbT/0BRQTQ8IGI+MBsPEz1z3/+M/369Wv1emJi4gnf19a9vxs0vvvfxxMdHd3q2nfnLojIqdFEQxFp08CBA4mNjaWoqIi+ffu2+mOz2QDIy8tr8b4vvviCXr160a1bN8444wwAtmzZ0qLMZ599xsCBAwEYOnQou3fv1j4EIh1EoUBE2tS1a1duueUWHn/8cVasWMHevXvZvXs3b775Jo8++mhzuR07dvDUU0+xb98+Xn/9dV544QVuvPFGALKysrj00kv5/e9/z4cffsiePXt44IEH2L17NzfddBMAl19+OX369GH27Nn85z//oaioiP/+97+89dZbHfHYIhFHwwci4pPbbruNXr16sWLFCh5++GG6dOlCv379uPrqq5vL/OxnP+PQoUNce+21REVF8ZOf/KQ5FAD84Q9/4JFHHuGuu+6ipqaG7OxslixZwoABAwCIi4tjxYoVPProo9xxxx04HA7S09O5+eabg/24IhHJYvoy6Cci0oaLLrqIqVOncuutt3Z0VUTkFGn4QERERACFAhEREWmk4QMREREB1FMgIiIijRQKREREBFAoEBERkUYKBSIiIgIoFIiIiEij/w+8pgyCKmi0zQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# summarize history for loss\n",
+ "plt.plot(history.history['loss'])\n",
+ "plt.plot(history.history['val_loss'])\n",
+ "plt.title('model loss')\n",
+ "plt.ylabel('loss')\n",
+ "plt.xlabel('epoch')\n",
+ "\n",
+ "plt.legend(['train', 'test'], loc='upper left')\n",
+ "plt.show()\n",
+ "\n",
+ "# # summarize history for accuracy\n",
+ "plt.plot(history.history['accuracy'])\n",
+ "plt.plot(history.history['val_accuracy'])\n",
+ "plt.title('model accuracy')\n",
+ "plt.ylabel('accuracy')\n",
+ "plt.xlabel('epoch')\n",
+ "plt.legend(['train', 'test'], loc='upper right')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:55.409681Z",
+ "iopub.status.busy": "2021-12-15T11:04:55.407049Z",
+ "iopub.status.idle": "2021-12-15T11:04:55.430563Z",
+ "shell.execute_reply": "2021-12-15T11:04:55.430017Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:42.144094Z"
+ },
+ "papermill": {
+ "duration": 0.217054,
+ "end_time": "2021-12-15T11:04:55.430687",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:55.213633",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "model.save('model.h5')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:55.806981Z",
+ "iopub.status.busy": "2021-12-15T11:04:55.806308Z",
+ "iopub.status.idle": "2021-12-15T11:04:55.810542Z",
+ "shell.execute_reply": "2021-12-15T11:04:55.809881Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:42.174295Z"
+ },
+ "papermill": {
+ "duration": 0.193159,
+ "end_time": "2021-12-15T11:04:55.810655",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:55.617496",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import joblib"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:56.192241Z",
+ "iopub.status.busy": "2021-12-15T11:04:56.191391Z",
+ "iopub.status.idle": "2021-12-15T11:04:56.196955Z",
+ "shell.execute_reply": "2021-12-15T11:04:56.197506Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:42.180072Z"
+ },
+ "papermill": {
+ "duration": 0.198597,
+ "end_time": "2021-12-15T11:04:56.197679",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:55.999082",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['scaler.pkl']"
+ ]
+ },
+ "execution_count": 94,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "joblib.dump(sc, 'scaler.pkl')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:56.572870Z",
+ "iopub.status.busy": "2021-12-15T11:04:56.572166Z",
+ "iopub.status.idle": "2021-12-15T11:04:56.576819Z",
+ "shell.execute_reply": "2021-12-15T11:04:56.577482Z",
+ "shell.execute_reply.started": "2021-12-15T11:02:42.197846Z"
+ },
+ "papermill": {
+ "duration": 0.19418,
+ "end_time": "2021-12-15T11:04:56.577638",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:56.383458",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "sc = joblib.load('scaler.pkl')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 96,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-12-15T11:04:56.987253Z",
+ "iopub.status.busy": "2021-12-15T11:04:56.986443Z",
+ "iopub.status.idle": "2021-12-15T11:04:57.165568Z",
+ "shell.execute_reply": "2021-12-15T11:04:57.164984Z"
+ },
+ "papermill": {
+ "duration": 0.376665,
+ "end_time": "2021-12-15T11:04:57.165682",
+ "exception": false,
+ "start_time": "2021-12-15T11:04:56.789017",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 177 ms, sys: 2.59 ms, total: 179 ms\n",
+ "Wall time: 178 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "array([[0.]], dtype=float32)"
+ ]
+ },
+ "execution_count": 96,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "from tensorflow.keras.models import load_model\n",
+ "model = load_model('model.h5')\n",
+ "model.predict(sc.transform([[42.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.00,132,1.00,1.00,109.0,1.0,0.88,.100,110.00,0.00,0,1]]))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.7"
+ },
+ "papermill": {
+ "duration": 55.668603,
+ "end_time": "2021-12-15T11:04:57.457990",
+ "environment_variables": {},
+ "exception": null,
+ "input_path": "__notebook__.ipynb",
+ "output_path": "__notebook__.ipynb",
+ "parameters": {},
+ "start_time": "2021-12-15T11:04:01.789387",
+ "version": "2.1.0"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
From ec8aa1c6902312b276170f5ee1a4c3a922135f6d Mon Sep 17 00:00:00 2001
From: Varunshiyam
Date: Mon, 4 Nov 2024 14:01:45 +0000
Subject: [PATCH 2/2] updating Project-Structure.md
---
Project-Structure.md | 2 ++
1 file changed, 2 insertions(+)
diff --git a/Project-Structure.md b/Project-Structure.md
index f87e0d9e36..f10fa1e3d6 100644
--- a/Project-Structure.md
+++ b/Project-Structure.md
@@ -529,6 +529,8 @@
* [Cal Inference](Deep_Learning/Terrain_classification/cal_inference.ipynb)
* [Load Model](Deep_Learning/Terrain_classification/load_model.ipynb)
* [Transfer Learning](Deep_Learning/Terrain_classification/transfer_learning.ipynb)
+ * Thyroid Detection
+ * [Thyroid-Disease-Detection-Using-Deep-Learning](Deep_Learning/Thyroid_detection/thyroid-disease-detection-using-deep-learning.ipynb)
* Traffic Accident Prediction Model Using Deep Learning
* [Traffic Accident Prediction Model Using Deep Learning](Deep_Learning/Traffic%20Accident%20Prediction%20Model%20using%20Deep%20Learning/Traffic%20Accident%20Prediction%20Model%20using%20Deep%20Learning.ipynb)
* Yolo-Drowsiness-Detection-Main