Skip to content

Latest commit

 

History

History
113 lines (82 loc) · 5.04 KB

ReadMe.md

File metadata and controls

113 lines (82 loc) · 5.04 KB

yolov8_ros

ROS 1 wrapper for Ultralytics YOLOv8 to perform object detection.

Tested on Ubuntu 20.04 and ROS Noetic

Dependencies

pip install ultralytics

Installation

cd ~/catkin_ws/src
git clone https://github.com/Vamsi-IITI/yolov8_ros.git
cd ~/catkin_ws
rosdep install --from-paths src --ignore-src -r -y
catkin_make

Information

  • /yolov8/BoundingBoxes - publishes bounding box related information (xmin, xmax, ymin, ymax) along with class and probability of detected objects
  • /yolov8/DepthPoints - publishes depth/distance of center of detected objects from camera. It also publishes (x,y) coordinates of absolute center and offset center of bounding box , along with class and probability
  • /yolov8/ObjectLocation - publishes location of detected objects with respect to camera frame , along with class and probability of detected objects
  • /yolo_visualization - can be used for visualizing results of Yolo object detection in rviz

Test

Place trained weights and txt file having the names of classes in model directory of yolov8_ros package ( i.e. yolov8_ros/model/ ) and give their path in launch file present in sim_yolo package

roslaunch sim_yolo sim_yolo_demo.launch

Now test your model by bringing objects in gazebo in front of camera of robot/tank

Screenshot from 2023-07-19 11-29-09

Screenshot from 2023-07-19 11-27-17

Sample code for transforming object location from wrt. camera frame to world frame

#!/usr/bin/env python3

import rospy
import tf2_ros
import tf2_geometry_msgs
from geometry_msgs.msg import PointStamped, Point
from yolov8_ros_msgs.msg import  ObjectLocations

# Reference taken from --> tf2_ros_example.py: example showing how to use tf2_ros API
# Link : https://gist.github.com/ravijo/cb560eeb1b514a13dc899aef5e6300c0

class ObjectLocationConverterNode:
    def __init__(self):
        rospy.init_node('object_location_converter_node')

        # Subscribe to the ObjectLocation topic
        rospy.Subscriber('/yolov8/ObjectLocation', ObjectLocations, self.object_location_callback)

        # Publish the object location in the world frame
        # self.world_frame_pub = rospy.Publisher('/Target_Position', PointStamped, queue_size=1)

        # define source and target frame
        self.source_frame = "camera_link"
        self.target_frame = "base_link"

    def transform_point(self, transformation, point_wrt_source):

        point_wrt_target = tf2_geometry_msgs.do_transform_point(PointStamped(point=point_wrt_source),transformation).point

        return [point_wrt_target.x, point_wrt_target.y, point_wrt_target.z]

    def get_transformation(self, source_frame, target_frame,tf_cache_duration=2.0):

        tf_buffer = tf2_ros.Buffer(rospy.Duration(tf_cache_duration))
        tf2_ros.TransformListener(tf_buffer)

        # get the tf at first available time
        try:
            # Get the transformation from the camera frame to the desired world frame (or robot arm base frame)
            # Setting rospy.Time(0) gives latest transform. Timeout = 2 secs
            transformation = tf_buffer.lookup_transform(target_frame,source_frame, rospy.Time(0), rospy.Duration(2))

        except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException):
            rospy.logerr('Unable to find the transformation from %s to %s' % (source_frame, target_frame) )

        return transformation

    def object_location_callback(self, object_location_msg):
        
        # Check if any objects are detected
        if len(object_location_msg.object_location) == 0:
            rospy.loginfo("No objects detected.")
            return

        # Find the object with the highest probability
        highest_prob_object = max(object_location_msg.object_location, key=lambda x: x.probability)

        # Get the object location in the camera frame
        object_location_cam = Point(highest_prob_object.x, highest_prob_object.y, highest_prob_object.z)
        print('Object location wrt camera frame: %s' % object_location_cam)

        transformation = self.get_transformation(self.source_frame, self.target_frame)
        point_wrt_target = self.transform_point(transformation, object_location_cam)
        print('Object location wrt world frame: %s' % point_wrt_target)
        
def main():
    converter_node = ObjectLocationConverterNode()
    rospy.spin()

if __name__ == '__main__':
    main()

Note : The code above will output nan when object is placed too close or too far, that's not issue with this code. It actually occurs when object is out of the range of depth camera. pointCloudCutoff and pointCloudCutoffMax is the minimum and maximum distance for points, respectively.Set these parameters in gazebo plugin accordingly. Refer : Here