From 50bf117830456792093f44b4b10321cea6f25e95 Mon Sep 17 00:00:00 2001 From: VARUNSHIYAM <138989960+Varunshiyam@users.noreply.github.com> Date: Thu, 31 Oct 2024 15:00:36 +0530 Subject: [PATCH] Fixes Issue #972 --- .../Sign_Language_DL/ASL_Deep-Learning | 4543 +++++++++++++++++ 1 file changed, 4543 insertions(+) create mode 100644 Deep_Learning/Sign_Language_DL/ASL_Deep-Learning diff --git a/Deep_Learning/Sign_Language_DL/ASL_Deep-Learning b/Deep_Learning/Sign_Language_DL/ASL_Deep-Learning new file mode 100644 index 0000000000..3000ca6a5d --- /dev/null +++ b/Deep_Learning/Sign_Language_DL/ASL_Deep-Learning @@ -0,0 +1,4543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e5c8aa43", + "metadata": { + "papermill": { + "duration": 0.01602, + "end_time": "2024-05-09T15:42:47.474193", + "exception": false, + "start_time": "2024-05-09T15:42:47.458173", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

American Sign Language Classification ✊🖖📷 🚀

\n", + "\n", + "- American Sign Language Classification is the process of mapping images or videos of American Sign Language (ASL) into specific sign language expressions. To accomplish this, CNN models are employed to detect and extract important features from the input images or videos. Subsequently, through training on large datasets containing images or videos of various ASL expressions, the CNN model learns how to accurately classify different sign language expressions. This process is particularly useful in developing communication support applications for the deaf or those learning sign language.\n", + "\n", + "![hand signs.png](https://www.frederickinterpreting.com/wp-content/uploads/2021/04/asl.jpg)" + ] + }, + { + "cell_type": "markdown", + "id": "4f13285e", + "metadata": { + "papermill": { + "duration": 0.014445, + "end_time": "2024-05-09T15:42:47.504051", + "exception": false, + "start_time": "2024-05-09T15:42:47.489606", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# **1. Data visualization**" + ] + }, + { + "cell_type": "markdown", + "id": "10c3bca6", + "metadata": { + "papermill": { + "duration": 0.016122, + "end_time": "2024-05-09T15:42:47.534540", + "exception": false, + "start_time": "2024-05-09T15:42:47.518418", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

1. Data visualization

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "5daa57c4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:42:47.571564Z", + "iopub.status.busy": "2024-05-09T15:42:47.571149Z", + "iopub.status.idle": "2024-05-09T15:42:51.045746Z", + "shell.execute_reply": "2024-05-09T15:42:51.045002Z" + }, + "papermill": { + "duration": 3.493401, + "end_time": "2024-05-09T15:42:51.047883", + "exception": false, + "start_time": "2024-05-09T15:42:47.554482", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.cm as cm\n", + "import cv2\n", + "import os\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "85701461", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:42:51.079857Z", + "iopub.status.busy": "2024-05-09T15:42:51.079418Z", + "iopub.status.idle": "2024-05-09T15:42:51.083449Z", + "shell.execute_reply": "2024-05-09T15:42:51.082670Z" + }, + "papermill": { + "duration": 0.021465, + "end_time": "2024-05-09T15:42:51.085420", + "exception": false, + "start_time": "2024-05-09T15:42:51.063955", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "train_path = '/kaggle/input/american-sign-language-dataset/asl_dataset'" + ] + }, + { + "cell_type": "markdown", + "id": "2ae9d38f", + "metadata": { + "papermill": { + "duration": 0.014223, + "end_time": "2024-05-09T15:42:51.114072", + "exception": false, + "start_time": "2024-05-09T15:42:51.099849", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

1.1. Number of training data

" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0bc3a824", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:42:51.144494Z", + "iopub.status.busy": "2024-05-09T15:42:51.144231Z", + "iopub.status.idle": "2024-05-09T15:42:51.906459Z", + "shell.execute_reply": "2024-05-09T15:42:51.905674Z" + }, + "papermill": { + "duration": 0.7801, + "end_time": "2024-05-09T15:42:51.908595", + "exception": false, + "start_time": "2024-05-09T15:42:51.128495", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Get the names of subfolders in train path\n", + "class_folders = os.listdir(train_path)\n", + "\n", + "image_counts = {}\n", + "\n", + "for class_folder in class_folders:\n", + " path = os.path.join(train_path, class_folder)\n", + "\n", + " # Count the number of images in the folder\n", + " image_count = len(os.listdir(path))\n", + "\n", + " # Get the class number from the name directory\n", + " class_number_train = class_folders.index(class_folder)\n", + "\n", + " # Save the number of images to the dictionary\n", + " image_counts[class_folder] = image_count" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "191385fd", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:42:51.939344Z", + "iopub.status.busy": "2024-05-09T15:42:51.939022Z", + "iopub.status.idle": "2024-05-09T15:42:52.603271Z", + "shell.execute_reply": "2024-05-09T15:42:52.602408Z" + }, + "papermill": { + "duration": 0.68191, + "end_time": "2024-05-09T15:42:52.605511", + "exception": false, + "start_time": "2024-05-09T15:42:51.923601", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABds0lEQVR4nO3deVhU5f//8deACCiCggqaG+57GpXiknu4pKZmZRlqmvXJ3cy0cs3cPuVWpmbmVmq5VVYupeaW+1Ka5q74ScEVUExQuX9/+HO+TqAyMMcRez6ua67Lue8z73kzMw685j7njM0YYwQAAAAAAFzOw90NAAAAAADwoCJ0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAO5Lv/zyi2w2mxYsWODuVtIkJiZGzzzzjIKCgmSz2TRu3Dh3t3Tfs9lsGjx4sLvbyJBjx47JZrPpgw8+uCf3V7t2bdWuXfue3BcAwDUI3QDwLzZjxgzZbDb5+Pjor7/+SjFfu3ZtlS9f3g2dZT69evXS8uXL1b9/f82ePVsNGza87bY2m01du3a9h939O7Rv3142my3Vi4+Pj7vbu6OYmBj16dNHpUuXVrZs2ZQ9e3aFhYVp2LBhio2NdXd7AIAMyOLuBgAA7peYmKiRI0fqo48+cncrmdaqVavUvHlz9enTx92tZBp///23smRx7Z8i3t7e+uyzz1KMe3p6uvR+XGnr1q1q3LixLl26pLZt2yosLEyStG3bNo0cOVJr167VihUr3NwlACC9CN0AAFWqVElTp05V//79lT9/fne3c08lJCQoe/bsGa5z+vRp5cyZM+MN/YtYsfqcJUsWtW3b1uV1rRIbG6sWLVrI09NTO3fuVOnSpR3m33//fU2dOtVN3QEAXIHdywEAevvtt3X9+nWNHDnyjtvdPH51xowZKeb+eXzu4MGDZbPZdODAAbVt21YBAQHKkyePBgwYIGOMTpw4oebNm8vf318hISH68MMPU73P69ev6+2331ZISIiyZ8+uZs2a6cSJEym227x5sxo2bKiAgABly5ZNtWrV0oYNGxy2udnT3r179cILLyhXrlyqUaPGHX/mI0eOqHXr1goMDFS2bNlUtWpV/fDDD/b5m7voG2M0ceJE++7Mzrh5/PrXX3+tIUOG6KGHHlKOHDn0zDPPKC4uTomJierZs6fy5s0rPz8/dejQQYmJiQ41pk+frrp16ypv3rzy9vZW2bJlNWnSpBT3lZycrMGDByt//vzKli2b6tSpo71796pIkSJq3769w7axsbHq2bOnChYsKG9vbxUvXlyjRo1ScnKyw3bz5s1TWFiYcuTIIX9/f1WoUEHjx4+/6899u9fMoUOH1L59e+XMmVMBAQHq0KGDLl++nPYH9C7Onz+vPn36qEKFCvLz85O/v78aNWqk3377LcW2V65c0eDBg1WyZEn5+PgoX758atmypQ4fPpxi208//VTFihWTt7e3HnvsMW3duvWuvUyZMkV//fWXxowZkyJwS1JwcLDefffd294+KSlJAwcOVFhYmAICApQ9e3bVrFlTq1evTrHt3Z6nq1evasiQISpRooR8fHwUFBSkGjVq6KeffrrrzwEAuD1WugEACg0NVWRkpKZOnap+/fq5dLX7ueeeU5kyZTRy5Ej98MMPGjZsmAIDAzVlyhTVrVtXo0aN0pdffqk+ffroscce0xNPPOFw+/fff182m01vvfWWTp8+rXHjxql+/fratWuXfH19Jd3YtbtRo0YKCwvToEGD5OHhYQ+h69at0+OPP+5Qs3Xr1ipRooSGDx8uY8xte4+JiVG1atV0+fJlde/eXUFBQZo5c6aaNWumBQsWqEWLFnriiSc0e/ZsvfTSS2rQoIEiIyPT/ViNGDFCvr6+6tevnw4dOqSPPvpIXl5e8vDw0IULFzR48GBt2rRJM2bMUGhoqAYOHGi/7aRJk1SuXDk1a9ZMWbJk0ZIlS/T6668rOTlZXbp0sW/Xv39/jR49Wk2bNlVERIR+++03RURE6MqVKw69XL58WbVq1dJff/2lV199VYUKFdKvv/6q/v3769SpU/YTxf30009q06aN6tWrp1GjRkmS9u3bpw0bNqhHjx7pehyeffZZhYaGasSIEdqxY4c+++wz5c2b117/bs6ePZtiLGvWrPL395d044OUb775Rq1bt1ZoaKhiYmI0ZcoU1apVS3v37rW//q9fv66nnnpKK1eu1PPPP68ePXro4sWL+umnn7Rnzx4VK1bMXn/OnDm6ePGiXn31VdlsNo0ePVotW7bUkSNH5OXlddtev/vuO/n6+uqZZ55x5iGyi4+P12effaY2bdrolVde0cWLFzVt2jRFRERoy5YtqlSpkqS0PU+DBw/WiBEj1KlTJz3++OOKj4/Xtm3btGPHDjVo0CBd/QEAJBkAwL/W9OnTjSSzdetWc/jwYZMlSxbTvXt3+3ytWrVMuXLl7NePHj1qJJnp06enqCXJDBo0yH590KBBRpLp3LmzfezatWumQIECxmazmZEjR9rHL1y4YHx9fU27du3sY6tXrzaSzEMPPWTi4+Pt419//bWRZMaPH2+MMSY5OdmUKFHCREREmOTkZPt2ly9fNqGhoaZBgwYpemrTpk2aHp+ePXsaSWbdunX2sYsXL5rQ0FBTpEgRc/36dYefv0uXLmmq+89tb/6s5cuXN0lJSfbxNm3aGJvNZho1auRw+/DwcFO4cGGHscuXL6e4n4iICFO0aFH79ejoaJMlSxbz9NNPO2w3ePBgI8nh8X/vvfdM9uzZzYEDBxy27devn/H09DRRUVHGGGN69Ohh/P39zbVr19L0s9/qdq+Zl19+2WG7Fi1amKCgoLvWa9eunZGU6iUiIsK+3ZUrVxyeO2NuvLa9vb3N0KFD7WOff/65kWTGjBmT4r5uvtZu/p8ICgoy58+ft89/++23RpJZsmTJHXvOlSuXefjhh+/6s91Uq1YtU6tWLfv1a9eumcTERIdtLly4YIKDgx0ex7Q8Tw8//LBp0qRJmnsBAKQNu5cDACRJRYsW1UsvvaRPP/1Up06dclndTp062f/t6empRx99VMYYdezY0T6eM2dOlSpVSkeOHElx+8jISOXIkcN+/ZlnnlG+fPn0448/SpJ27dqlgwcP6oUXXtC5c+d09uxZnT17VgkJCapXr57Wrl2bYnfo1157LU29//jjj3r88ccddkH38/NT586ddezYMe3duzdtD0IaRUZGOqyKVqlSRcYYvfzyyw7bValSRSdOnNC1a9fsYzdX/SUpLi5OZ8+eVa1atXTkyBHFxcVJklauXKlr167p9ddfd6jXrVu3FL3Mnz9fNWvWVK5cueyP6dmzZ1W/fn1dv35da9eulXTjuUtISHDpLsj/fH5q1qypc+fOKT4+/q639fHx0U8//ZTicuuhE97e3vLwuPEn0PXr13Xu3Dn5+fmpVKlS2rFjh327hQsXKnfu3Kk+Pv88hOC5555Trly5HHqWlOpr+lbx8fEOr29neXp6KmvWrJJuHDpw/vx5Xbt2TY8++qjDz5KW5ylnzpz6448/dPDgwXT3AwBIid3LAQB27777rmbPnq2RI0em6ZjctChUqJDD9YCAAPn4+Ch37twpxs+dO5fi9iVKlHC4brPZVLx4cR07dkyS7AGhXbt2t+0hLi7OIRCFhoamqffjx4+rSpUqKcbLlCljn3flV6ql9lhJUsGCBVOMJycnKy4uTkFBQZKkDRs2aNCgQdq4cWOK45/j4uIUEBCg48ePS5KKFy/uMB8YGOjw+Eg3Htfff/9defLkSbXX06dPS5Jef/11ff3112rUqJEeeughPfnkk3r22Wfv+JVpd/PPx+FmbxcuXLDvIn47np6eql+//h23SU5O1vjx4/XJJ5/o6NGjun79un3u5uMpSYcPH1apUqXSdIb1O/V8J/7+/rp48eJd69/JzJkz9eGHH+rPP//U1atX7eO3vs7T8jwNHTpUzZs3V8mSJVW+fHk1bNhQL730kipWrJih/gDg347QDQCwK1q0qNq2batPP/1U/fr1SzF/uxOE3Rpa/im1r2q63dc3mTscX307N1ex//vf/9qPX/0nPz8/h+u3rgrfT273uNzt8Tp8+LDq1aun0qVLa8yYMSpYsKCyZs2qH3/8UWPHjk2x0p8WycnJatCggfr27ZvqfMmSJSVJefPm1a5du7R8+XItXbpUS5cu1fTp0xUZGamZM2c6fb+Sa18fqRk+fLgGDBigl19+We+9954CAwPl4eGhnj17puuxktLfc+nSpbVr1y4lJSXZV6yd8cUXX6h9+/Z6+umn9eabbypv3rzy9PTUiBEjHE72lpbn6YknntDhw4f17bffasWKFfrss880duxYTZ482WGPFQCAcwjdAAAH7777rr744otUT1p1c/UuNjbWYfzmCqoV/rmrqzFGhw4dsq++3TyZlb+//11XOJ1VuHBh7d+/P8X4n3/+aZ+/HyxZskSJiYn67rvvHFZc/3kG65v9Hjp0yGEV9Ny5cylWZIsVK6ZLly6l6THNmjWrmjZtqqZNmyo5OVmvv/66pkyZogEDBqRYVb8fLFiwQHXq1NG0adMcxmNjYx32wChWrJg2b96sq1ev3vFkaBnRtGlTbdy4UQsXLlSbNm2cvv2CBQtUtGhRLVq0yOFDsUGDBqXYNi3PU2BgoDp06KAOHTro0qVLeuKJJzR48GBCNwBkAMd0AwAcFCtWTG3bttWUKVMUHR3tMOfv76/cuXPbj+e96ZNPPrGsn1mzZjnsfrtgwQKdOnVKjRo1kiSFhYWpWLFi+uCDD3Tp0qUUtz9z5ky677tx48basmWLNm7caB9LSEjQp59+qiJFiqhs2bLpru1KN1dZb11VjYuL0/Tp0x22q1evnrJkyZLiq8Q+/vjjFDWfffZZbdy4UcuXL08xFxsbaz+e/J+HBHh4eNg/EPnn15rdLzw9PVOsQM+fP19//fWXw1irVq109uzZVB8fV626v/baa8qXL5/eeOMNHThwIMX86dOnNWzYsNvePrXnfvPmzQ6vWSltz9M/t/Hz81Px4sXv2+cRADILVroBACm88847mj17tvbv369y5co5zHXq1EkjR45Up06d9Oijj2rt2rWphgVXCQwMVI0aNdShQwfFxMRo3LhxKl68uF555RVJN8LDZ599pkaNGqlcuXLq0KGDHnroIf31119avXq1/P39tWTJknTdd79+/TR37lw1atRI3bt3V2BgoGbOnKmjR49q4cKF9pNxuduTTz5pX8V89dVXdenSJU2dOlV58+Z1OClecHCwevTooQ8//FDNmjVTw4YN9dtvv2np0qXKnTu3w0rpm2++qe+++05PPfWU2rdvr7CwMCUkJGj37t1asGCBjh07pty5c6tTp046f/686tatqwIFCuj48eP66KOPVKlSJfux7/fStWvX9MUXX6Q616JFC2XPnl1PPfWUhg4dqg4dOqhatWravXu3vvzySxUtWtRh+8jISM2aNUu9e/fWli1bVLNmTSUkJOjnn3/W66+/rubNm2e431y5cmnx4sVq3LixKlWqpLZt2yosLEyStGPHDs2dO1fh4eG3vf1TTz2lRYsWqUWLFmrSpImOHj2qyZMnq2zZsg4fQqXleSpbtqxq166tsLAwBQYGatu2bVqwYIG6du2a4Z8TAP7NCN0AgBSKFy+utm3bpnpM7sCBA3XmzBktWLDAfmKmpUuXKm/evJb08vbbb+v333/XiBEjdPHiRdWrV0+ffPKJsmXLZt+mdu3a2rhxo9577z19/PHHunTpkkJCQlSlShW9+uqr6b7v4OBg/frrr3rrrbf00Ucf6cqVK6pYsaKWLFmiJk2auOLHc4lSpUppwYIFevfdd9WnTx+FhIToP//5j/LkyZPizOejRo1StmzZNHXqVP38888KDw/XihUrVKNGDfn4+Ni3y5Ytm9asWaPhw4dr/vz5mjVrlvz9/VWyZEkNGTLEfpK3m+cA+OSTTxQbG6uQkBA999xzGjx4sFs+lEhMTNRLL72U6tzRo0eVPXt2vf3220pISNCcOXP01Vdf6ZFHHtEPP/yQ4jwGnp6e+vHHH/X+++9rzpw5WrhwoYKCglSjRg1VqFDBZT1XqVJFe/bs0X//+1/98MMPmj17tjw8PFSmTBn169fvjqG3ffv2io6O1pQpU7R8+XKVLVtWX3zxhebPn69ffvnFvl1anqfu3bvru+++04oVK5SYmKjChQtr2LBhevPNN132swLAv5HNuGr/KAAAkCnFxsYqV65cGjZsmN555x13twMAwAPl/tgvDgAA3BN///13irFx48ZJurHHAAAAcC12LwcA4F/kq6++0owZM9S4cWP5+flp/fr1mjt3rp588klVr17d3e0BAPDAIXQDAPAvUrFiRWXJkkWjR49WfHy8/eRqdzpDNgAASD+O6QYAAAAAwCIc0w0AAAAAgEUI3QAAAAAAWOSBP6Y7OTlZJ0+eVI4cOWSz2dzdDgAAAADgAWCM0cWLF5U/f355eNx+PfuBD90nT55UwYIF3d0GAAAAAOABdOLECRUoUOC28w986M6RI4ekGw+Ev7+/m7sBAAAAADwI4uPjVbBgQXvmvJ0HPnTf3KXc39+f0A0AAAAAcKm7HcbMidQAAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwiFtDd5EiRWSz2VJcunTpIkm6cuWKunTpoqCgIPn5+alVq1aKiYlxZ8sAAAAAAKSZW0P31q1bderUKfvlp59+kiS1bt1aktSrVy8tWbJE8+fP15o1a3Ty5Em1bNnSnS0DAAAAAJBmNmOMcXcTN/Xs2VPff/+9Dh48qPj4eOXJk0dz5szRM888I0n6888/VaZMGW3cuFFVq1ZNU834+HgFBAQoLi5O/v7+VrYPAAAAAPiXSGvWvG+O6U5KStIXX3yhl19+WTabTdu3b9fVq1dVv359+zalS5dWoUKFtHHjxtvWSUxMVHx8vMMFAAAAAAB3yOLuBm765ptvFBsbq/bt20uSoqOjlTVrVuXMmdNhu+DgYEVHR9+2zogRIzRkyBALO7VOA4/WLqv1U/J8h+sRfu1cVnv5pZkpxhoF/8cltZfGTEpZu0gvl9SWpKXHxqasX6a/a2rvG5FiLKLyIJfUlqTlO1O+rhtUG+aS2j/9+m6KsXp1U/486bVyleNjXKvxaJfVXvNj3xRjNVp94LL66xf2cbhe9cUPXVZ705dvpBh77OUxLqm99fPeKcYe+U/K13967ZiU8v/lwz1dU/+3cSlrl+/rut73jHasX2aA62rvey9l76Xec139/QMc6xcf7brah/qm7L3oBNe93o90d3y9F5nsuv+nx17rk2KsyHTXvM8c65DyPSb0S9e9Px59MeXvoJIL3nNJ7QPPDEgxVuE71/1e2t3M8ffS48vedlntLQ2Hpxirsyrle2Z6ra7r+Npuvr6ry2p/W+PjFGPttnR0Wf2Zj09zuN5jZxuX1R5fea7LaqXp/v6sf/eN0qhH6Z9TjM0+mLY9Y+/mpRKbUoz9eLS8S2pLUuPQPQ7XNx8PdVntKoWPphg7+L/8LqtfosBJh+vnThZwWe2g/P9zWS13u29WuqdNm6ZGjRopf/6MvQj69++vuLg4++XEiRMu6hAAAAAAAOfcFyvdx48f188//6xFixbZx0JCQpSUlKTY2FiH1e6YmBiFhITctpa3t7e8vb2tbBcAAAAAgDS5L1a6p0+frrx586pJkyb2sbCwMHl5eWnlypX2sf379ysqKkrh4eHuaBMAAAAAAKe4faU7OTlZ06dPV7t27ZQly/+1ExAQoI4dO6p3794KDAyUv7+/unXrpvDw8DSfuRwAAAAAAHdye+j++eefFRUVpZdffjnF3NixY+Xh4aFWrVopMTFRERER+uSTT9zQJQAAAAAAznN76H7yySd1u68K9/Hx0cSJEzVx4sR73BUAAAAAABl3XxzTDQAAAADAg4jQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFsri7AQAAAAD3p8F7mrumTvlvXVIHyIxY6QYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAibg/df/31l9q2baugoCD5+vqqQoUK2rZtm33eGKOBAwcqX7588vX1Vf369XXw4EE3dgwAAAAAQNq4NXRfuHBB1atXl5eXl5YuXaq9e/fqww8/VK5cuezbjB49WhMmTNDkyZO1efNmZc+eXREREbpy5YobOwcAAAAA4O6yuPPOR40apYIFC2r69On2sdDQUPu/jTEaN26c3n33XTVv3lySNGvWLAUHB+ubb77R888/f897BgAAAAAgrdy60v3dd9/p0UcfVevWrZU3b15VrlxZU6dOtc8fPXpU0dHRql+/vn0sICBAVapU0caNG1OtmZiYqPj4eIcLAAAAAADu4NbQfeTIEU2aNEklSpTQ8uXL9Z///Efdu3fXzJkzJUnR0dGSpODgYIfbBQcH2+f+acSIEQoICLBfChYsaO0PAQAAAADAbbg1dCcnJ+uRRx7R8OHDVblyZXXu3FmvvPKKJk+enO6a/fv3V1xcnP1y4sQJF3YMAAAAAEDauTV058uXT2XLlnUYK1OmjKKioiRJISEhkqSYmBiHbWJiYuxz/+Tt7S1/f3+HCwAAAAAA7uDW0F29enXt37/fYezAgQMqXLiwpBsnVQsJCdHKlSvt8/Hx8dq8ebPCw8Pvaa8AAAAAADjLrWcv79Wrl6pVq6bhw4fr2Wef1ZYtW/Tpp5/q008/lSTZbDb17NlTw4YNU4kSJRQaGqoBAwYof/78evrpp93ZOgAAAAAAd+XW0P3YY49p8eLF6t+/v4YOHarQ0FCNGzdOL774on2bvn37KiEhQZ07d1ZsbKxq1KihZcuWycfHx42dAwAAAABwd24N3ZL01FNP6amnnrrtvM1m09ChQzV06NB72BUAAAAAABnn1mO6AQAAAAB4kBG6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLuDV0Dx48WDabzeFSunRp+/yVK1fUpUsXBQUFyc/PT61atVJMTIwbOwYAAAAAIO3cvtJdrlw5nTp1yn5Zv369fa5Xr15asmSJ5s+frzVr1ujkyZNq2bKlG7sFAAAAACDtsri9gSxZFBISkmI8Li5O06ZN05w5c1S3bl1J0vTp01WmTBlt2rRJVatWvdetAgAAAADgFLevdB88eFD58+dX0aJF9eKLLyoqKkqStH37dl29elX169e3b1u6dGkVKlRIGzdudFe7AAAAAACkmVtXuqtUqaIZM2aoVKlSOnXqlIYMGaKaNWtqz549io6OVtasWZUzZ06H2wQHBys6Ovq2NRMTE5WYmGi/Hh8fb1X7AAAAAADckVtDd6NGjez/rlixoqpUqaLChQvr66+/lq+vb7pqjhgxQkOGDHFViwAAAAAApJvbdy+/Vc6cOVWyZEkdOnRIISEhSkpKUmxsrMM2MTExqR4DflP//v0VFxdnv5w4ccLirgEAAAAASN19FbovXbqkw4cPK1++fAoLC5OXl5dWrlxpn9+/f7+ioqIUHh5+2xre3t7y9/d3uAAAAAAA4A5u3b28T58+atq0qQoXLqyTJ09q0KBB8vT0VJs2bRQQEKCOHTuqd+/eCgwMlL+/v7p166bw8HDOXA4AAAAAyBTcGrr/97//qU2bNjp37pzy5MmjGjVqaNOmTcqTJ48kaezYsfLw8FCrVq2UmJioiIgIffLJJ+5sGQAAAACANHNr6J43b94d5318fDRx4kRNnDjxHnUEAAAAAIDr3FfHdAMAAAAA8CAhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEadD98yZM/XDDz/Yr/ft21c5c+ZUtWrVdPz4cZc2BwAAAABAZuZ06B4+fLh8fX0lSRs3btTEiRM1evRo5c6dW7169XJ5gwAAAAAAZFZZnL3BiRMnVLx4cUnSN998o1atWqlz586qXr26ateu7er+AAAAAADItJxe6fbz89O5c+ckSStWrFCDBg0kST4+Pvr7779d2x0AAAAAAJmY0yvdDRo0UKdOnVS5cmUdOHBAjRs3liT98ccfKlKkiKv7AwAAAAAg03J6pXvixIkKDw/XmTNntHDhQgUFBUmStm/frjZt2ri8QQAAAAAAMiunV7pz5sypjz/+OMX4kCFDXNIQAAAAAAAPinR9T/e6devUtm1bVatWTX/99Zckafbs2Vq/fr1LmwMAAAAAIDNzOnQvXLhQERER8vX11Y4dO5SYmChJiouL0/Dhw13eIAAAAAAAmZXToXvYsGGaPHmypk6dKi8vL/t49erVtWPHDpc2BwAAAABAZuZ06N6/f7+eeOKJFOMBAQGKjY11RU8AAAAAADwQnA7dISEhOnToUIrx9evXq2jRoi5pCgAAAACAB4HTofuVV15Rjx49tHnzZtlsNp08eVJffvml+vTpo//85z9W9AgAAAAAQKbk9FeG9evXT8nJyapXr54uX76sJ554Qt7e3urTp4+6detmRY8AAAAAAGRKTodum82md955R2+++aYOHTqkS5cuqWzZsvLz87OiPwAAAAAAMi2nQ/dNWbNmVdmyZV3ZCwAAAAAADxSnQ3eLFi1ks9lSjNtsNvn4+Kh48eJ64YUXVKpUKZc0CAAAAABAZuX0idQCAgK0atUq7dixQzabTTabTTt37tSqVat07do1ffXVV3r44Ye1YcMGK/oFAAAAACDTcHqlOyQkRC+88II+/vhjeXjcyOzJycnq0aOHcuTIoXnz5um1117TW2+9pfXr17u8YQAAAAAAMgunV7qnTZumnj172gO3JHl4eKhbt2769NNPZbPZ1LVrV+3Zs8eljQIAAAAAkNk4HbqvXbumP//8M8X4n3/+qevXr0uSfHx8Uj3uGwAAAACAfxOndy9/6aWX1LFjR7399tt67LHHJElbt27V8OHDFRkZKUlas2aNypUr59pOAQAAAADIZJwO3WPHjlVwcLBGjx6tmJgYSVJwcLB69eqlt956S5L05JNPqmHDhq7tFAAAAACATMbp0O3p6al33nlH77zzjuLj4yVJ/v7+DtsUKlTINd0BAAAAAJCJOR26b/XPsA0AAAAAAP5PukL3ggUL9PXXXysqKkpJSUkOczt27HBJYwAAAAAAZHZOn718woQJ6tChg4KDg7Vz5049/vjjCgoK0pEjR9SoUSMregQAAAAAIFNyOnR/8skn+vTTT/XRRx8pa9as6tu3r3766Sd1795dcXFxVvQIAAAAAECm5HTojoqKUrVq1SRJvr6+unjxoqQbXyU2d+5c13YHAAAAAEAm5nToDgkJ0fnz5yXdOEv5pk2bJElHjx6VMca13QEAAAAAkIk5Hbrr1q2r7777TpLUoUMH9erVSw0aNNBzzz2nFi1auLxBAAAAAAAyK6fPXv7pp58qOTlZktSlSxcFBQXp119/VbNmzfTqq6+6vEEAAAAAADIrp0O3h4eHPDz+b4H8+eef1/PPP+/SpgAAAAAAeBCk63u6r1y5ot9//12nT5+2r3rf1KxZM5c0BgAAAABAZud06F62bJkiIyN19uzZFHM2m03Xr193SWMAAAAAAGR2Tp9IrVu3bmrdurVOnTql5ORkhwuBGwAAAACA/+N06I6JiVHv3r0VHBzs0kZGjhwpm82mnj172seuXLliP1mbn5+fWrVqpZiYGJfeLwAAAAAAVnE6dD/zzDP65ZdfXNrE1q1bNWXKFFWsWNFhvFevXlqyZInmz5+vNWvW6OTJk2rZsqVL7xsAAAAAAKs4fUz3xx9/rNatW2vdunWqUKGCvLy8HOa7d+/uVL1Lly7pxRdf1NSpUzVs2DD7eFxcnKZNm6Y5c+aobt26kqTp06erTJky2rRpk6pWreps6wAAAAAA3FNOh+65c+dqxYoV8vHx0S+//CKbzWafs9lsTofuLl26qEmTJqpfv75D6N6+fbuuXr2q+vXr28dKly6tQoUKaePGjbcN3YmJiUpMTLRfj4+Pd6ofAAAAAABcxenQ/c4772jIkCHq16+fw/d1p8e8efO0Y8cObd26NcVcdHS0smbNqpw5czqMBwcHKzo6+rY1R4wYoSFDhmSoLwAAAAAAXMHp1JyUlKTnnnsuw4H7xIkT6tGjh7788kv5+PhkqNat+vfvr7i4OPvlxIkTLqsNAAAAAIAznE7O7dq101dffZXhO96+fbtOnz6tRx55RFmyZFGWLFm0Zs0aTZgwQVmyZFFwcLCSkpIUGxvrcLuYmBiFhITctq63t7f8/f0dLgAAAAAAuIPTu5dfv35do0eP1vLly1WxYsUUJ1IbM2ZMmurUq1dPu3fvdhjr0KGDSpcurbfeeksFCxaUl5eXVq5cqVatWkmS9u/fr6ioKIWHhzvbNgAAAAAA95zToXv37t2qXLmyJGnPnj0Oc7eeVO1ucuTIofLlyzuMZc+eXUFBQfbxjh07qnfv3goMDJS/v7+6deum8PBwzlwOAAAAAMgUnA7dq1evtqKPVI0dO1YeHh5q1aqVEhMTFRERoU8++eSe3T8AAAAAABnhdOi20i+//OJw3cfHRxMnTtTEiRPd0xAAAAAAABmQ5tDdsmXLNG23aNGidDcDAAAAAMCDJM2hOyAgwMo+AAAAAAB44KQ5dE+fPt3KPgAAAAAAeOA4/T3dAAAAAAAgbQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFgkTaH7kUce0YULFyRJQ4cO1eXLly1tCgAAAACAB0GaQve+ffuUkJAgSRoyZIguXbpkaVMAAAAAADwI0vSVYZUqVVKHDh1Uo0YNGWP0wQcfyM/PL9VtBw4c6NIGAQAAAADIrNIUumfMmKFBgwbp+++/l81m09KlS5UlS8qb2mw2QjcAAAAAAP9fmkJ3qVKlNG/ePEmSh4eHVq5cqbx581raGAAAAAAAmV2aQvetkpOTregDAAAAAIAHjtOhW5IOHz6scePGad++fZKksmXLqkePHipWrJhLmwMAAAAAIDNz+nu6ly9frrJly2rLli2qWLGiKlasqM2bN6tcuXL66aefrOgRAAAAAIBMyemV7n79+qlXr14aOXJkivG33npLDRo0cFlzAAAAAABkZk6vdO/bt08dO3ZMMf7yyy9r7969LmkKAAAAAIAHgdOhO0+ePNq1a1eK8V27dnFGcwAAAAAAbuH07uWvvPKKOnfurCNHjqhatWqSpA0bNmjUqFHq3bu3yxsEAAAAACCzcjp0DxgwQDly5NCHH36o/v37S5Ly58+vwYMHq3v37i5vEAAAAACAzMrp0G2z2dSrVy/16tVLFy9elCTlyJHD5Y0BAAAAAJDZpet7um8ibAMAAAAAcHtOn0gNAAAAAACkDaEbAAAAAACLELoBAAAAALCIU6H76tWrqlevng4ePGhVPwAAAAAAPDCcCt1eXl76/fffreoFAAAAAIAHitO7l7dt21bTpk2zohcAAAAAAB4oTn9l2LVr1/T555/r559/VlhYmLJnz+4wP2bMGJc1BwAAAABAZuZ06N6zZ48eeeQRSdKBAwcc5mw2m2u6AgAAAADgAeB06F69erUVfQAAAAAA8MBJ91eGHTp0SMuXL9fff/8tSTLGuKwpAAAAAAAeBE6H7nPnzqlevXoqWbKkGjdurFOnTkmSOnbsqDfeeMPlDQIAAAAAkFk5Hbp79eolLy8vRUVFKVu2bPbx5557TsuWLXNpcwAAAAAAZGZOH9O9YsUKLV++XAUKFHAYL1GihI4fP+6yxgAAAAAAyOycXulOSEhwWOG+6fz58/L29nZJUwAAAAAAPAicDt01a9bUrFmz7NdtNpuSk5M1evRo1alTx6XNAQAAAACQmTm9e/no0aNVr149bdu2TUlJSerbt6/++OMPnT9/Xhs2bLCiRwAAAAAAMiWnV7rLly+vAwcOqEaNGmrevLkSEhLUsmVL7dy5U8WKFbOiRwAAAAAAMiWnV7olKSAgQO+8846rewEAAAAA4IGSrtB94cIFTZs2Tfv27ZMklS1bVh06dFBgYKBLmwMAAAAAIDNzevfytWvXqkiRIpowYYIuXLigCxcuaMKECQoNDdXatWut6BEAAAAAgEzJ6ZXuLl266LnnntOkSZPk6ekpSbp+/bpef/11denSRbt373Z5kwAAAAAAZEZOr3QfOnRIb7zxhj1wS5Knp6d69+6tQ4cOubQ5AAAAAAAyM6dD9yOPPGI/lvtW+/bt08MPP+ySpgAAAAAAeBCkaffy33//3f7v7t27q0ePHjp06JCqVq0qSdq0aZMmTpyokSNHWtMlAAAAAACZUJpCd6VKlWSz2WSMsY/17ds3xXYvvPCCnnvuOdd1BwAAAABAJpam0H306FGr+wAAAAAA4IGTptBduHBhq/sAAAAAAOCB4/RXhknSyZMntX79ep0+fVrJyckOc927d3dJYwAAAAAAZHZOh+4ZM2bo1VdfVdasWRUUFCSbzWafs9lshG4AAAAAAP4/p0P3gAEDNHDgQPXv318eHk5/4xgAAAAAAP8aTqfmy5cv6/nnnydwAwAAAABwF04n544dO2r+/PlW9AIAAAAAwAPF6d3LR4wYoaeeekrLli1ThQoV5OXl5TA/ZswYlzUHAAAAAEBmlq7QvXz5cpUqVUqSUpxIDQAAAAAA3OB06P7www/1+eefq3379ha0AwAAAADAg8PpY7q9vb1VvXp1K3oBAAAAAOCB4nTo7tGjhz766COX3PmkSZNUsWJF+fv7y9/fX+Hh4Vq6dKl9/sqVK+rSpYuCgoLk5+enVq1aKSYmxiX3DQAAAACA1ZzevXzLli1atWqVvv/+e5UrVy7FidQWLVqU5loFChTQyJEjVaJECRljNHPmTDVv3lw7d+5UuXLl1KtXL/3www+aP3++AgIC1LVrV7Vs2VIbNmxwtm0AAAAAAO45p0N3zpw51bJlS5fcedOmTR2uv//++5o0aZI2bdqkAgUKaNq0aZozZ47q1q0rSZo+fbrKlCmjTZs2qWrVqi7pAQAAAAAAqzgduqdPn25FH7p+/brmz5+vhIQEhYeHa/v27bp69arq169v36Z06dIqVKiQNm7ceNvQnZiYqMTERPv1+Ph4S/oFAAAAAOBunD6m29V2794tPz8/eXt767XXXtPixYtVtmxZRUdHK2vWrMqZM6fD9sHBwYqOjr5tvREjRiggIMB+KViwoMU/AQAAAAAAqXN6pTs0NPSO38d95MgRp+qVKlVKu3btUlxcnBYsWKB27dppzZo1zrZl179/f/Xu3dt+PT4+nuANAAAAAHALp0N3z549Ha5fvXpVO3fu1LJly/Tmm2863UDWrFlVvHhxSVJYWJi2bt2q8ePH67nnnlNSUpJiY2MdVrtjYmIUEhJy23re3t7y9vZ2ug8AAAAAAFzN6dDdo0ePVMcnTpyobdu2Zbih5ORkJSYmKiwsTF5eXlq5cqVatWolSdq/f7+ioqIUHh6e4fsBAAAAAMBqTofu22nUqJH69+/v1InW+vfvr0aNGqlQoUK6ePGi5syZo19++UXLly9XQECAOnbsqN69eyswMFD+/v7q1q2bwsPDOXM5AAAAACBTcFnoXrBggQIDA526zenTpxUZGalTp04pICBAFStW1PLly9WgQQNJ0tixY+Xh4aFWrVopMTFRERER+uSTT1zVMgAAAAAAlnI6dFeuXNnhRGrGGEVHR+vMmTNOB+Jp06bdcd7Hx0cTJ07UxIkTnW0TAAAAAAC3czp0P/300w7XPTw8lCdPHtWuXVulS5d2VV8AAAAAAGR6TofuQYMGWdEHAAAAAAAPHA93NwAAAAAAwIMqzSvdHh4eDsdyp8Zms+natWsZbgoAAAAAgAdBmkP34sWLbzu3ceNGTZgwQcnJyS5pCgAAAACAB0GaQ3fz5s1TjO3fv1/9+vXTkiVL9OKLL2ro0KEubQ4AAAAAgMwsXcd0nzx5Uq+88ooqVKiga9euadeuXZo5c6YKFy7s6v4AAAAAAMi0nArdcXFxeuutt1S8eHH98ccfWrlypZYsWaLy5ctb1R8AAAAAAJlWmncvHz16tEaNGqWQkBDNnTs31d3NAQAAAADA/0lz6O7Xr598fX1VvHhxzZw5UzNnzkx1u0WLFrmsOQAAAAAAMrM0h+7IyMi7fmUYAAAAAAD4P2kO3TNmzLCwDQAAAAAAHjzpOns5AAAAAAC4O0I3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARt4buESNG6LHHHlOOHDmUN29ePf3009q/f7/DNleuXFGXLl0UFBQkPz8/tWrVSjExMW7qGAAAAACAtHNr6F6zZo26dOmiTZs26aefftLVq1f15JNPKiEhwb5Nr169tGTJEs2fP19r1qzRyZMn1bJlSzd2DQAAAABA2mRx550vW7bM4fqMGTOUN29ebd++XU888YTi4uI0bdo0zZkzR3Xr1pUkTZ8+XWXKlNGmTZtUtWpVd7QNAAAAAECa3FfHdMfFxUmSAgMDJUnbt2/X1atXVb9+ffs2pUuXVqFChbRx40a39AgAAAAAQFq5daX7VsnJyerZs6eqV6+u8uXLS5Kio6OVNWtW5cyZ02Hb4OBgRUdHp1onMTFRiYmJ9uvx8fGW9QwAAAAAwJ3cNyvdXbp00Z49ezRv3rwM1RkxYoQCAgLsl4IFC7qoQwAAAAAAnHNfhO6uXbvq+++/1+rVq1WgQAH7eEhIiJKSkhQbG+uwfUxMjEJCQlKt1b9/f8XFxdkvJ06csLJ1AAAAAABuy62h2xijrl27avHixVq1apVCQ0Md5sPCwuTl5aWVK1fax/bv36+oqCiFh4enWtPb21v+/v4OFwAAAAAA3MGtx3R36dJFc+bM0bfffqscOXLYj9MOCAiQr6+vAgIC1LFjR/Xu3VuBgYHy9/dXt27dFB4ezpnLAQAAAAD3PbeG7kmTJkmSateu7TA+ffp0tW/fXpI0duxYeXh4qFWrVkpMTFRERIQ++eSTe9wpAAAAAADOc2voNsbcdRsfHx9NnDhREydOvAcdAQAAAADgOvfFidQAAAAAAHgQEboBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsIhbQ/fatWvVtGlT5c+fXzabTd98843DvDFGAwcOVL58+eTr66v69evr4MGD7mkWAAAAAAAnuTV0JyQk6OGHH9bEiRNTnR89erQmTJigyZMna/PmzcqePbsiIiJ05cqVe9wpAAAAAADOy+LOO2/UqJEaNWqU6pwxRuPGjdO7776r5s2bS5JmzZql4OBgffPNN3r++efvZasAAAAAADjtvj2m++jRo4qOjlb9+vXtYwEBAapSpYo2btzoxs4AAAAAAEgbt65030l0dLQkKTg42GE8ODjYPpeaxMREJSYm2q/Hx8db0yAAAAAAAHdx3650p9eIESMUEBBgvxQsWNDdLQEAAAAA/qXu29AdEhIiSYqJiXEYj4mJsc+lpn///oqLi7NfTpw4YWmfAAAAAADczn0bukNDQxUSEqKVK1fax+Lj47V582aFh4ff9nbe3t7y9/d3uAAAAAAA4A5uPab70qVLOnTokP360aNHtWvXLgUGBqpQoULq2bOnhg0bphIlSig0NFQDBgxQ/vz59fTTT7uvaQAAAAAA0sitoXvbtm2qU6eO/Xrv3r0lSe3atdOMGTPUt29fJSQkqHPnzoqNjVWNGjW0bNky+fj4uKtlAAAAAADSzK2hu3bt2jLG3HbeZrNp6NChGjp06D3sCgAAAAAA17hvj+kGAAAAACCzI3QDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYJFMEbonTpyoIkWKyMfHR1WqVNGWLVvc3RIAAAAAAHd134fur776Sr1799agQYO0Y8cOPfzww4qIiNDp06fd3RoAAAAAAHd034fuMWPG6JVXXlGHDh1UtmxZTZ48WdmyZdPnn3/u7tYAAAAAALijLO5u4E6SkpK0fft29e/f3z7m4eGh+vXra+PGjaneJjExUYmJifbrcXFxkqT4+Hhrm3WBa+aqy2r98+e9ZpIsqy1J15JdUz/12ompbOnC+tddU9/K2retf+3KfV87tfrXrlpX2+r6Vvd+Pcm659RVtW9bP9HC3l1UO7X6VtaWpOtXrKufbGFtq+sn/21x7y6qn2rtyxa/ZlxUP/Xa1v1eup5g8e88C+tfTbD276SkS9bVT7xk3d+PrqyfWu0rl665pPbt6v/tovqp1b588bpLaqdWP+FismW1JemShfUvurC2VybIbzd/fmPMHbezmbtt4UYnT57UQw89pF9//VXh4eH28b59+2rNmjXavHlzitsMHjxYQ4YMuZdtAgAAAAD+pU6cOKECBQrcdv6+XulOj/79+6t3797268nJyTp//ryCgoJks9nc2FnGxcfHq2DBgjpx4oT8/f0zVX16v/e1ra5P7+6pT+/3vrbV9endPfUza22r69O7e+rT+72vbXV9endf/XvJGKOLFy8qf/78d9zuvg7duXPnlqenp2JiYhzGY2JiFBISkuptvL295e3t7TCWM2dOq1p0C39/f0tfoFbWp/d7X9vq+vTunvr0fu9rW12f3t1TP7PWtro+vbunPr3f+9pW16d399W/VwICAu66zX19IrWsWbMqLCxMK1eutI8lJydr5cqVDrubAwAAAABwP7qvV7olqXfv3mrXrp0effRRPf744xo3bpwSEhLUoUMHd7cGAAAAAMAd3feh+7nnntOZM2c0cOBARUdHq1KlSlq2bJmCg4Pd3do95+3trUGDBqXYfT4z1Kf3e1/b6vr07p769H7va1tdn97dUz+z1ra6Pr27pz693/vaVtend/fVvx/d12cvBwAAAAAgM7uvj+kGAAAAACAzI3QDAAAAAGARQjcAAAAAABYhdAMAIOn3339XcnKyu9sAgPtaVFSUUjsllDFGUVFRbugIuP9xIjUgDYwxstls7m4DwD+sW7dOU6ZM0eHDh7VgwQI99NBDmj17tkJDQ1WjRg2nanl6eurUqVPKmzevihYtqq1btyooKMiiziFJLVu21IwZM+Tv76+WLVvecVs/Pz+VK1dOr732mgICAu5Rh3CV2NhYTZs2Tfv27ZMklStXTi+//DLPpUX+/vtvGWOULVs2SdLx48e1ePFilS1bVk8++WSGat/6Xnmrc+fOKW/evLp+/XqG6lupU6dOatu2rWrXrm1J/cjISNWpU0dPPPGEihUr5tLaq1evVp06dVKdmzJlil599dUM1W/Xrp06duyoJ554IkN1UlO3bl3VqlVLgwYNchi/cOGCWrVqpVWrVrn8Pu839/1Xhv2bnT17Vp9//rk2btyo6OhoSVJISIiqVaum9u3bK0+ePG7u8N/D29tbv/32m8qUKePuVpAOp06d0qRJk7R+/XqdOnVKHh4eKlq0qJ5++mm1b99enp6eLruvvXv3KioqSklJSQ7jzZo1c0n9m5+TuupDoBEjRig4OFgvv/yyw/jnn3+uM2fO6K233nK6Zu/evdO87ZgxY5yuf9PChQv10ksv6cUXX9TOnTuVmJgoSYqLi9Pw4cP1448/OlUvZ86cOnr0qPLmzatjx45Zuup9u8fIZrPJx8dHxYsXV/PmzRUYGGhZD/eDgIAA+2v5buErMTFRkydP1oYNG/Tdd9+l6/7mzp2rNm3apDr35ptv6r///W+66t4rV65c0e+//67Tp0+neH266j3GCtu2bVNERIR8fX31+OOPS7rxf//999/XihUr9Mgjj7jsvlz5Hmnle9nVq1fVsGFDTZ48WSVKlHC2tbtq3ry5WrZsqddee02xsbGqUqWKvLy8dPbsWY0ZM0b/+c9/0l37dgsRly5dko+PT0battyZM2fUsGFD5cmTR88//7zatm2rhx9+2GX1s2bNqhEjRqhjx4566KGHVKtWLdWuXVu1atXK8PPcsGFDde/eXcOHD5eXl5ekG1mhQ4cOWr9+fYZDd1xcnOrXr6/ChQurQ4cOateunR566KEM1bzpl19+0e7du7Vz5059+eWXyp49uyQpKSlJa9asccl93O9Y6b5Pbd26VREREcqWLZvq169v/17ymJgYrVy5UpcvX9by5cv16KOPWnL/J06c0KBBg/T555+n6/Z///23tm/frsDAQJUtW9Zh7sqVK/r6668VGRmZ7v727dunTZs2KTw8XKVLl9aff/6p8ePHKzExUW3btlXdunXTVfd2v2DHjx+vtm3b2le9MhIUbpWQkKCvv/5ahw4dUr58+dSmTZt0r6zt2LFDuXLlUmhoqCRp9uzZmjx5sqKiolS4cGF17dpVzz//fLpqd+vWTc8++6xq1qyZrtunxccff6wtW7aocePGev755zV79myNGDFCycnJatmypYYOHaosWZz/nHDbtm2qX7++ihcvLl9fX23cuFEvvPCCkpKStHz5cpUtW1bLli1Tjhw5MtT/kSNH1KJFC+3evVs2my3FH34Z/eR/2rRpGjt2rA4ePChJKlGihHr27KlOnTplqG6RIkU0Z84cVatWzWF88+bNev7553X06FGna/7zk/gdO3bo2rVrKlWqlCTpwIED8vT0VFhYWIY+3a5cubJ69eqlyMhI5ciRQ7/99puKFi2qnTt3qlGjRvYPK9Oqc+fOmjVrlvLly6eoqCgVKFDgth/IHDlyJN19Szceox07duj69espHpfSpUtr//79stlsWr9+fYr30LRauXKlVq5cmWpAc/a9vXfv3nrvvfeUPXv2uwYRV70/pmbv3r167LHHlJCQkK7b58yZU3PnzlWjRo0cxnv16qV58+bp1KlTTte8Vx8yLVu2TJGRkTp79myKOZvN5pLVRVe+Zm5Vs2ZNFS9eXFOnTrW/j1+7dk2dOnXSkSNHtHbt2gz1LVnzHlmnTh3t3LlTV69eTfH/9NYPCmw2W7rey/LkyaNff/3VktCdO3durVmzRuXKldNnn32mjz76SDt37tTChQs1cOBA+x4Hzrj5Wh8/frxeeeUV+yq6dON33ObNm+Xp6akNGzZkuP+hQ4fecX7gwIHprn3hwgXNnz9fc+bM0bp161S6dGm9+OKLeuGFF1SkSJF0173VX3/9pbVr12rNmjVas2aNDhw4oHz58ul///tfumv++uuvioyMlJ+fn+bMmaOjR4+qY8eOKlWqlGbNmqXChQtnuO8zZ85o9uzZmjlzpvbu3av69eurY8eOat68uT3op4eHh4d27typV199VQkJCVqyZImKFCmimJgY5c+f/77eO8JlDO5LVapUMZ07dzbJyckp5pKTk03nzp1N1apVLbv/Xbt2GQ8Pj3Tddv/+/aZw4cLGZrMZDw8P88QTT5iTJ0/a56Ojo9Nd2xhjli5darJmzWoCAwONj4+PWbp0qcmTJ4+pX7++qVu3rvH09DQrV65MV22bzWYqVapkateu7XCx2WzmscceM7Vr1zZ16tRJd+9lypQx586dM8YYExUVZYoUKWICAgLMY489ZgIDA03evHnNkSNH0lW7YsWK5qeffjLGGDN16lTj6+trunfvbiZNmmR69uxp/Pz8zLRp09JV++ZzWaJECTNy5Ehz6tSpdNW5nffee8/kyJHDtGrVyoSEhJiRI0eaoKAgM2zYMDN8+HCTJ08eM3DgwHTVrl69uhk8eLD9+uzZs02VKlWMMcacP3/eVKpUyXTv3j3DP8NTTz1lmjdvbs6cOWP8/PzM3r17zbp168zjjz9u1q5dm6HaAwYMMNmzZzf9+vUz3377rfn2229Nv379jJ+fnxkwYECGant7e6f6mjt8+LDx9vbOUG1jjPnwww9N06ZNzfnz5+1j58+fN82bNzcffPBBhmr7+vqao0ePGmOM8fPzM4cPHzbGZKz3pUuXmo8++sjYbDbz3nvvmXHjxqV6yaixY8eali1bmri4OPtYbGyseeaZZ8y4ceNMQkKCad68uXnyySfTVX/w4MHGw8PDPP7446Z58+bm6aefdrg4q3bt2ubChQv2f9/ukpH3x7S4du2a2bVrV7pv//3335uAgACzbt06+1jXrl1N/vz5zb59+9JV806Physfm+LFi5vXX3/dREdHZ6jO7bj6NXMrHx+fVB/fP/74w/j6+maotjHWvUda+f5ljDE9e/Y0b731VobrpMbX19ccP37cGGNM69at7b8Ho6Ki0v2Y3/o3UbVq1Rxe308++aTp3LmzOXDggEv6r1SpksOlXLlyJlu2bMbf399UrlzZJfdhjDEnTpwwo0ePNqVLlzaenp4uq5uQkGCWL19u+vXrZ6pWrWqyZs1qKlWqlOG6Fy9eNC+++KLx9vY2Xl5eZuTIkalmBVfYvn276dq1q/Hx8TG5c+c2PXv2TPfza7PZTExMjLly5Ypp06aNyZ07t1m9enWGM0FmQui+T93uF9RN+/btMz4+Pumuf/OX0u0uY8eOTfd/gqeffto0adLEnDlzxhw8eNA0adLEhIaG2t/8M/ofLDw83LzzzjvGGGPmzp1rcuXKZd5++237fL9+/UyDBg3SVXvEiBEmNDQ0RWjPkiWL+eOPP9Ld800333SMMebFF1801apVM7GxscaYG2+k9evXN23atElXbV9fX3Ps2DFjjDGVK1c2n376qcP8l19+acqWLZvuvn/++WfTo0cPkzt3buPl5WWaNWtmlixZYq5fv56umrcqVqyYWbhwoTHmxgc+np6e5osvvrDPL1q0yBQvXjxdtX19fe1hzBhjrl+/bry8vOx/uK5YscLkz58/A93fEBQUZH777TdjjDH+/v7mzz//NMYYs3Llygz/os2dO7eZM2dOivE5c+aYoKCgDNUuXry4mT17dorxWbNmmdDQ0AzVNsaY/Pnzmz179qQY3717t8mXL1+GaoeGhto/aLo1dM+cOdOUKVMmQ7Xbt29v4uPjM1TjTvLnz5/qe8qePXvsr8ft27en+/kNCQkxs2bNylCPD6ovv/zS5MqVy2zbts385z//Mfnz5zf79+93d1t3lSNHDnPo0CHL6lv5msmbN69Zvnx5ivFly5aZvHnzZri+Ve+RVr5/GXPjAx9/f38TFhZmOnfubHr16uVwyYgKFSqY8ePHm6ioKOPv729+/fVXY4wx27ZtM8HBwRmq3b59e4cPDO+VuLg406JFC5e9TpOSkszixYtNq1atjI+Pj0v+Fujfv78JDw83Pj4+pnLlyqZnz57mm2++cfjgJiO2b99uSpUqZYoVK2Z8fX1Nhw4dzKVLl1xS+1YnT540I0eONKVKlTLZs2c3kZGRpl69eiZLlixmzJgxTtfz8PCw//1rzI3FFm9vbzNw4EBCN9yrSJEiZubMmbednzlzpilcuHC6699cubTZbLe9pPc/Qd68ec3vv/9uv56cnGxee+01U6hQIXP48OEMh25/f39z8OBBY8yNAJUlSxazY8cO+/zu3bsz9Atly5YtpmTJkuaNN94wSUlJxhhrQnfRokXNihUrHOY3bNhgChYsmK7aQUFBZtu2bcaYG8/BP1eDDh06lO5Pt2/tOykpyXz11VcmIiLCeHp6mvz585u3337b/pykx62fyBtjjJeXl8MfOseOHTPZsmVLV+3ChQub9evX26+fPHnS2Gw2c/nyZWOMMUePHs3QB1g35cyZ075iXLRoUbNq1SpjTMYe95sCAgJS/XR5//79JiAgIEO1R40aZYKCgsznn39ujh07Zo4dO2amTZtmgoKCzPDhwzNU25gbYXj16tUpxletWmX8/PwyVHv48OGmbNmyZtOmTSZHjhxm3bp15osvvjB58uQxEyZMyFBtq2XPnj3Vx2X16tX2x+Xw4cMmR44c6aofGBhoaUDL7CZOnGi8vb1NgQIFMvTedS916NDBfPbZZ5bVt/I1061bN1OgQAEzb948ExUVZaKioszcuXNNgQIFTI8ePTJc36r3SCvfv4yxdq+R+fPnGy8vL+Ph4eGwEDF8+HDTsGHDjLbuNr///nuG/v415sbz16lTJ5MrVy4TEBBgOnToYH7++WeXrBjbbDaTN29eM2LECJd/mDdixAiTNWtW07VrV/P333+b3bt3m0qVKpmiRYvaP1TJiKSkJLNgwQLTpEkT4+XlZcLCwsykSZMcPmBZtGiRyZkzp9O1b/078qYFCxaY7NmzE7rhXh9//LHx9vY23bt3N99++63ZtGmT2bRpk/n2229N9+7dja+vr5k4cWK66+fPn9988803t53fuXNnuv8T5MiRw+zduzfFeJcuXUyBAgXM2rVrMxy6b/3D4NYVLmNuBLSMhqiLFy+ayMhIU7FiRbN7927j5eXlstB9+vRpY8yN52D37t0O8xnpvW3btqZjx47GmBu7kr377rsO88OHDzcVKlRIV+3U3iyNMeb48eNm0KBBpnDhwhl6TkNDQ83SpUuNMcYcOHDAeHh4mK+//to+/8MPP5giRYqkq3aPHj1M+fLlzdKlS82qVatMnTp1TO3ate3zy5YtM8WKFUt37zfVqFHDLF682BhjTJs2bUzDhg3N+vXrTWRkpClXrlyGanft2jXVVY833njDvP766xmqnZycbPr27Wt8fHyMh4eH8fDwMNmyZTNDhgzJUN2bXnrpJVOkSBGzcOFCc+LECXPixAmzYMECExoaaiIjIzPc+7Bhw0z27NntHxb6+PikeO3fj1544QUTGhpqFi1aZH9cFi1aZIoWLWratm1rjLmxJ09YWFi66vft29cMHTrUlS1nWv9cPbx5KVCggGnWrJnLVhatlpCQYBo3bmzatWtnPvjgAzN+/HiHS0ZZ+ZpJTEw03bt3N1mzZrW/z3h7e5uePXuaK1euZLi+Ve+RVr5/3QunTp0yO3bscNgjbfPmzek+lOJ+sG7dunSFvpvy589vfHx8zNNPP23mz5/vktffrXbt2mXGjx9vWrRoYXLnzm3y589v2rRpY6ZMmZLhEB4SEmJ+/PFHh7GkpCTTp08fkzVr1gzVNubG4k2uXLnM66+/bnbu3JnqNhcuXEjX32PHjh1L9UONPXv2mBkzZjhdLzPiRGr3sa+++kpjx47V9u3b7ScYuHnyod69e+vZZ59Nd+1mzZqpUqVKtz1RxW+//abKlSun6+y9jz/+uLp166aXXnopxVzXrl315ZdfKj4+Pt0nTXj44Yc1atQoNWzYUJK0Z88elS5d2n5ylnXr1qldu3YZPtGRJM2bN089e/bUmTNntHv37nSf0OgmDw8PlS9fXlmyZNHBgwc1Y8YMtWrVyj6/du1avfDCC+k60cbJkydVvXp1FSpUSI8++qgmTZqksLAwlSlTRvv379emTZu0ePFiNW7cOF19R0dHp/h6kJuMMfr555/VoEEDp2tL0oABAzRlyhQ1b95cK1eu1HPPPac5c+aof//+stlsev/99/XMM8+k6yREly5dUseOHbVo0SJdv35d4eHh+uKLL+wnnFuxYoXi4uLUunXrdPV+0/Lly5WQkKCWLVvq0KFDeuqpp3TgwAEFBQXpq6++cvrkfreenOnatWuaMWOGChUqpKpVq0q6caKzqKgoRUZG6qOPPspQ79KNx2nfvn3y9fVViRIl5O3tneGaknT58mX16dNHn3/+ua5evSpJypIlizp27Kj//ve/9jOYZkRSUpIOHTqkS5cuqWzZsvLz88twTatdunRJvXr10qxZs3Tt2jVJNx6Xdu3aaezYscqePbt27dolSapUqVKaat76mklOTtbMmTNVsWJFVaxYMcUJcKw82dn95nZfsfNP6T0Z1r0ybdo0vfbaa/Lx8VFQUJDD2aNtNluGf+f16NFDs2bNsvQ1c/nyZR0+fFiSVKxYMYcTcWVEt27dNGvWLBUsWDDV98hbfxZnfo578f6F1E2YMMHhujFGp06d0uzZs1WrVi3NmTMnXXWnTp2q1q1bK2fOnC7o8u5+++03jR07Vl9++aWSk5MzdMKws2fPKnfu3KnOrVmzRrVq1Up3benGCXhbt25935+BPrMidGcCV69etZ+tNHfu3Bk6e+BN69atU0JCgj24/lNCQoK2bduWrv/AI0aM0Lp16277dT2vv/66Jk+enO6v45k8ebIKFiyoJk2apDr/9ttv6/Tp0/rss8/SVf+f/ve//2n79u2qX79+hn/BDhkyxOF61apVFRERYb/+5ptv6n//+5/mzp2brvqxsbEaOXKklixZoiNHjig5OVn58uVT9erV1atXr3Sf7T40NFTbtm2z7DuLk5OTNXLkSG3cuFHVqlVTv3799NVXX6lv3766fPmymjZtqo8//jhDj/+VK1d07dq1exrIzp8/r1y5cqXrq2selKBwU0JCgsMf2/yxesOlS5fsYalo0aIZen0+aK8ZOAoJCVH37t3Vr18/eXh4uLz+nV4/9/trxurXPu9f997ND8Zv8vDwUJ48eVS3bl31798/w984YhVjjHbu3KlffvlFv/zyi9avX6/4+HhVrFhRtWrV0tixY93dItyE0A0AAHCfCwwM1NatW1WsWDF3twLgNnLlyqVLly7p4Ycftn9Hd82aNe/ZyjruX4RuAACA+1yvXr2UJ08evf322+5uBcBt/PDDD6pZs6b8/f3d3QruM4RuAACA+1z37t01a9YsPfzww//64/QBILMhdAMAANznMvMx1wDwb0foBgAAAADAIq4//SUAAAAAAJBE6AYAAAAAwDKEbgAAAAAALELoBgAAAADAIoRuAADuUzabTd9884272wAAABlA6AYAwA2io6PVrVs3FS1aVN7e3ipYsKCaNm2qlStXurs1SVLt2rVls9k0b948h/Fx48apSJEi7mkKAIBMiNANAMA9duzYMYWFhWnVqlX673//q927d2vZsmWqU6eOunTp4u727Hx8fPTuu+/q6tWr7m4FAIBMi9ANAMA99vrrr8tms2nLli1q1aqVSpYsqXLlyql3797atGnTbW/31ltvqWTJksqWLZuKFi2qAQMGOATi3377TXXq1FGOHDnk7++vsLAwbdu2TZJ0/PhxNW3aVLly5VL27NlVrlw5/fjjj3fss02bNoqNjdXUqVNvu83hw4fVvHlzBQcHy8/PT4899ph+/vlnh22KFCmiYcOGKTIyUn5+fipcuLC+++47nTlzRs2bN5efn58qVqxo7/Wm9evXq2bNmvL19VXBggXVvXt3JSQk3LFnAADuN4RuAADuofPnz2vZsmXq0qWLsmfPnmI+Z86ct71tjhw5NGPGDO3du1fjx4/X1KlTNXbsWPv8iy++qAIFCmjr1q3avn27+vXrJy8vL0lSly5dlJiYqLVr12r37t0aNWqU/Pz87tirv7+/3nnnHQ0dOvS2YffSpUtq3LixVq5cqZ07d6phw4Zq2rSpoqKiHLYbO3asqlevrp07d6pJkyZ66aWXFBkZqbZt22rHjh0qVqyYIiMjZYyRdCPMN2zYUK1atdLvv/+ur776SuvXr1fXrl3v2DMAAPcbm7n52w0AAFhuy5YtqlKlihYtWqQWLVrccVubzabFixfr6aefTnX+gw8+0Lx58+wrxP7+/vroo4/Url27FNtWrFhRrVq10qBBg9LUZ+3atVWpUiWNGjVKpUqVUseOHTVgwACNGzdO48aN07Fjx2572/Lly+u1116zB+QiRYqoZs2amj17tqQbx7Pny5dPAwYM0NChQyVJmzZtUnh4uE6dOqWQkBB16tRJnp6emjJlir3u+vXrVatWLSUkJMjHxydNPwcAAO7GSjcAAPdQRj7r/uqrr1S9enWFhITIz89P7777rsOKcu/evdWpUyfVr19fI0eO1OHDh+1z3bt317Bhw1S9enUNGjRIv//+e5ru09vbW0OHDtUHH3ygs2fPppi/dOmS+vTpozJlyihnzpzy8/PTvn37Uqx0V6xY0f7v4OBgSVKFChVSjJ0+fVrSjV3lZ8yYIT8/P/slIiJCycnJOnr0aJp6BwDgfkDoBgDgHipRooRsNpv+/PNPp263ceNGvfjii2rcuLG+//577dy5U++8846SkpLs2wwePFh//PGHmjRpolWrVqls2bJavHixJKlTp046cuSIXnrpJe3evVuPPvqoPvroozTdd9u2bVW4cGENGzYsxVyfPn20ePFiDR8+XOvWrdOuXbtUoUIFh74k2Xdzl26s4N9uLDk5WdKNMP/qq69q165d9stvv/2mgwcPqlixYmnqGwCA+wGhGwCAeygwMFARERGaOHFiqsdJx8bGpnq7X3/9VYULF9Y777yjRx99VCVKlNDx48dTbFeyZEn16tVLK1asUMuWLTV9+nT7XMGCBfXaa69p0aJFeuONN+54grRbeXh4aMSIEZo0aVKK3co3bNig9u3bq0WLFqpQoYJCQkLuuOt5Wj3yyCPau3evihcvnuKSNWvWDNcHAOBeIXQDAHCPTZw4UdevX9fjjz+uhQsX6uDBg9q3b58mTJig8PDwVG9TokQJRUVFad68eTp8+LAmTJhgX8WWpL///ltdu3bVL7/8ouPHj2vDhg3aunWrypQpI0nq2bOnli9frqNHj2rHjh1avXq1fS4tmjRpoipVqjgcY32zr0WLFtlXol944QX7anVGvPXWW/r111/VtWtX7dq1SwcPHtS3337LidQAAJkOoRsAgHusaNGi2rFjh+rUqaM33nhD5cuXV4MGDbRy5UpNmjQp1ds0a9ZMvXr1UteuXVWpUiX9+uuvGjBggH3e09NT586dU2RkpEqWLKlnn31WjRo10pAhQyRJ169fV5cuXVSmTBk1bNhQJUuW1CeffOJU36NGjdKVK1ccxsaMGaNcuXKpWrVqatq0qSIiIvTII484+YikVLFiRa1Zs0YHDhxQzZo1VblyZQ0cOFD58+fPcG0AAO4lzl4OAAAAAIBFWOkGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAs8v8AVgZnofl6ogEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Choose a color map from the matplotlib library\n", + "color_map = cm.viridis\n", + "\n", + "# Sort the keys (class names) of the dictionary in alphabetical order\n", + "sorted_keys = sorted(image_counts.keys())\n", + "\n", + "# Create a color array based on the number of photos in each layer\n", + "colors = [color_map(i / len(image_counts)) for i in range(len(image_counts))]\n", + "\n", + "# Draw a chart with the created color array\n", + "plt.figure(figsize=(10, 6))\n", + "bars = plt.bar(sorted_keys, [image_counts[key] for key in sorted_keys], color=colors)\n", + "plt.xlabel('Class Name')\n", + "plt.ylabel('Number of Images')\n", + "plt.title('Number of Images in Each Class')\n", + "plt.xticks(rotation=90)\n", + "plt.tight_layout()\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "2dc6378f", + "metadata": { + "papermill": { + "duration": 0.014769, + "end_time": "2024-05-09T15:42:52.637251", + "exception": false, + "start_time": "2024-05-09T15:42:52.622482", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

1.2. Types of sign languages

" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1ff0eb88", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:42:52.668773Z", + "iopub.status.busy": "2024-05-09T15:42:52.668145Z", + "iopub.status.idle": "2024-05-09T15:42:55.871353Z", + "shell.execute_reply": "2024-05-09T15:42:55.870501Z" + }, + "papermill": { + "duration": 3.222867, + "end_time": "2024-05-09T15:42:55.875171", + "exception": false, + "start_time": "2024-05-09T15:42:52.652304", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAMZCAYAAACAlpzpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebCl113Y/X7XWs+4xzOfHtST1LKwZEm2sbEtENjgMNtMsRlCgk0GfK8J5CV5b5FKvW+4VC7DhTepmxDqXoJTGbATEpuEIQwJlQmChW08YFvWrO5Wj2fY8zOu6f5xZIhiC9ug7n2OvT5VrdI+fc4+v9W11/M8vzX8lvDee4IgCIIgCIIgCIKlkMsOIAiCIAiCIAiC4AtZSMqCIAiCIAiCIAiWKCRlQRAEQRAEQRAESxSSsiAIgiAIgiAIgiUKSVkQBEEQBEEQBMEShaQsCIIgCIIgCIJgiUJSFgRBEARBEARBsEQhKQuCIAiCIAiCIFiikJQFQRAEQRAEQRAsUUjKgiAIgiAIgiD4vPIjP/IjCCHY29tbdiiflZCUBcER8Ja3vAUhxPP+uXLlyrJDDIIgCJbo/e9/P9///d/PPffcQ7fb5fTp07z5zW/mscceW3ZoQRB8FqJlBxAEwWf2fd/3fbz+9a9/zte897ztbW/j7NmznDx5ckmRBUEQBIfBT/7kT/I//sf/4E1vehP33Xcf169f52d+5md4+ctfzkMPPcRLXvKSZYcYBMGfICRlQXAEvOY1r+E1r3nNc772u7/7u5RlyV/4C39hSVEFweFUFAXdbnfZYQTBLfVDP/RDvOtd7yJJkj/62rd/+7dz77338hM/8RP8wi/8whKjC4LgMzmUyxc/uQb0iSee4C1veQsrKysMh0Pe+ta3UpblssMLgkPhXe96F0IIvuu7vmvZoQTB0nzyfvHwww/zXd/1XayurvJlX/Zlyw4rCG65Bx544DkJGcCdd97JPffcwyc+8YklRRUEy7e3t8eb3/xmBoMB6+vr/OAP/iB1XS87rE9xqGfK3vzmN3Pu3Dl+/Md/nA9+8IP8/M//PFtbW/zkT/7kskMLgqXSWvNv/s2/4YEHHuDs2bPLDicIlu5Nb3oTd955Jz/2Yz+G937Z4QTBoeC958aNG9xzzz3LDiUIlubNb34zZ8+e5cd//Md56KGH+If/8B8yHo/5F//iXyw7tOc41EnZy172Mt7xjnf80ev9/X3e8Y53hKQs+IL3W7/1W+zv74eli0HwrPvvv593vetdyw4jCA6Vd77znVy5coUf/dEfXXYoQbA0586d45d/+ZcBePvb385gMOBnf/Zn+Vt/629x3333LTm6P3Yoly9+0tve9rbnvH7wwQfZ399nNpstKaIgOBze9a53Eccxb37zm5cdShAcCv/r/SIIvtA98sgjvP3tb+c1r3kN3/M937PscIJgad7+9rc/5/Vf/+t/HYBf//VfX0Y4z+tQJ2WnT59+zuvV1VUAxuPxMsIJgkNhsVjwy7/8y3zN13wN6+vryw4nCA6Fc+fOLTuEIDg0rl+/zjd8wzcwHA5597vfjVJq2SEFwdLceeedz3l9xx13IKXkwoULywnoeRzq5YvPdxEJ+wWCL2T//t//+1B1MQj+F3meLzuEIDgUptMpX/d1X8dkMuF3fud3OHHixLJDCoJDRQix7BA+rUM9UxYEwad65zvfSa/X441vfOOyQwmCIAgOkbquecMb3sBjjz3Gr/3ar3H33XcvO6QgWLrHH3/8Oa+feOIJnHOHrlBaSMqC4AjZ3d3lt3/7t/mWb/kWOp3OssMJgiAIDglrLd/+7d/Oe9/7Xv7tv/23n3K2ZRB8ofrH//gfP+f1P/pH/wiAr/u6r1tGOM/rUC9fDILguX7xF38RY0xYuhgEQRA8x9/8m3+TX/mVX+ENb3gDo9HoUw6L/u7v/u4lRRYEy/X000/zxje+ka/92q/lve99L7/wC7/Ad33Xd3H//fcvO7TnCElZEBwh73znO9na2uL1r3/9skMJgiAIDpEPf/jDAPzqr/4qv/qrv/opfx+SsuAL1S/+4i/yf/6f/yc//MM/TBRFfP/3fz8/9VM/teywPoXwoWpGEARBEARBEATB0oQ9ZUEQBEEQBEEQBEsUkrIgCIIgCIIgCIIlCklZEARBEARBEATBEoWkLAiCIAiCIAiCYIlCUhYEQRAEQRAEQbBEISkLgiAIgiAIgiBYopCUBUEQBEEQBEEQLNFnfXi0EOJmxvEcKop47eteyfd+2zdxariNsha9qKhMy9y3/Pvff4j3vOc3aarmpscSjnELns+t7BOfjpKK//tb/zx/86u+mjgbYPan/MfLT/KDP/0PKIv6pv3e0CeC57PsPnH8+Al+9K/9TU4ON9F1ReUW/F//9l/y/o98+Kb+3tAngudzs/vE2vqQt3/rt3FXehsicmTS8d9vPMbP/Ot/h7X2s34fIeCF/BiHPhE8n5vdJ1ZWV/h//9/+Fl/UPYZxmtrX/H9/9zf5lf/4Wzf1934mn02f+KyTsltDIJXk5a96Cd/8VV/OisnB5Rhh8cqSRTHCxHz1l7yaSVHxH3/tP2O1RShBp9shUhJjLWVZ4Q143LIbFAQ3jZCCk4MVppenZJHBac3t2Qqnjh/j0ScuPO/PSSGJ0pjt4xs0dc3ezgT3Ody8g+CwOn/qJPbaVa488wwkjiZLOHVsmw/8oQgPicHnpV6aEzWeNrFIrTBGc9fKJt1uzny24LP51Pf6Hb74JV/EyY01PnbhaT72iYs4Y2567EHwQhCAFAIvBR5BP+tgJ2OujiuMMbTecefqJkmaoKQkTmKKeYH1js+qg9xChyopE1Lw4vvv5M1f9zqGjaGsRphCo4YrxHkPYxq88nQjxTd/5ZcjLPzhxz/OV33Zq3jN/XeRA3uzER9+/DK/8Z8fYu/6/gs68hMEh4kHyrpiNJrQ9TU+STHSksXx8/5MhGD95Bp/93//AV7z4rupFgt++p+/k3/3a7+Nt6GzBEfbMOnQ7Q64/a4Xocs5T11/GmcaBAJ/2O6+QfACsN7TNDULt09XZUgl8K4lSyLmn/GnBZ1ezlu/6Rt52dYphgi+88u/lB9/97t57+9/PPSY4EgQSvLKl7+Cb/6yr6Sezfi9T3yIel5SSU9TV2jTMuwmfNkrX8lf+upvZiVVvOeh/8Yv/vqv0zZ62eE/xyFKygS3nT3BX3zT13ImG6IaR2xTMiWJIkW82qcpJXphiVSHHvCmr3mQb3zdyzmVr3CsdxtFNWNNdFi/q8faoMs73vmrzGfVshsWBDeFx1MbTdnUeG2hbqlVixTieR9CvZR859e+jm86cQ5ztcQYwXe+9nX85//2EJPJZ76FB8FhJYSgN+iS5zmjvRlOCLZPnid/+KPLDi0Ibpq6aWi9xZkK2zQQJagcBp0OO0z+5B8W8NLzt3PXcBvZSrw1HGskX/Xy+3jv+z5+6GYRguDTuf3UaX7ojd/Jbek67WrJnXGPa5cuU68oFB6pW3qF4y/c/SruVKtY6/iOB7+Op3eu87v/4/eXHf5zHIKkTACC3rDHt37zV7GtFPNLlzBFwaC3Re/8neQrGTKNibN1bBKRzAtoDMJBmkgMEY2I0CZCRD3STHPH5jpf/qVfzG/8p4fCNHzw+ck5JuMpJtmibjVCCFzs6fXz590gkPdyXnX6LMWVKaWBomnwuqHb6zCdzMM9ODiypJII4dnZu07sxkT9HrJMOXvsLHES0zQ3fw9yENxqxlmsN3hncQKEMAgBJ7ZXeeLSNf6kzCqKFfeeOUdsE7z3yFiRaEdfCISQ4F24JwSH3pnNTZqnnuZyvIvME0Z7u+xcucjJLCNGoJ2nXdQ0ZocbeR+UQva6fOmL7+f9H/jwobo3LD0pE3iEkrz29S/lfD9l8tEniGiQMqZRO8yuR/hE0ct7dDY3Mb0OIhkjZ4J5VVC6kgbPtfElej5HxQmx79PVli++7yV85BNPcvnCtWU3MwheeN4zXywoBwW5j1FK0WrDIE/h0+ynFMBtx9bpG8W1a/tYodDGsmhmOBtuvsHRdTC0J3DGsLu3S1/1EG2FLFNW0pz1jXWuXrm67DCD4AXXNA3VYorLJFbGgMXXsJZ3PuPPrg56nOgPELpCGE8cJ8jIcW0xxfswURYcDa3RTGdTlCtoTcvCFIzKOQNd0c16qE6XclLSjPbor25i4wg/n3AiGXBia5sLz1wCDsfnfekl8b2Q3H7XaV79ki8ibi3HTt/B8dtfgUg2mE1bhHZUO3ssru/RThckaZe8v8Kgv8aws0IWDxBEoDy1b1BJQqc3ZDBY59j6kNe/7tVkeYZcflOD4AXlASElSZqQZilJlpIkCZmMOXhM/V8Jzp89Q9II2qKinCxoy5ZFuaAuD89IURB8rjwgI4k1B/trmqqkGE8op1OkcZw8fuLT9oggOOq887hIEWUxUbeH7PZIen36Kz2Qf8KnXghOHdumLyOE1ihniIUnig0Xr+9yOB5Rg+AzWzQNDVAVFbpqkELRtA1p0mGwtsnW1jZbJ05T1BW6rXBao5uayDnuOHUSLw7Pp33pM2VplvDa195PX7ds+zU2o00M4PMhT1y4zI59hv5mi28VqrWwtYXMclyUkg0kHRFjCwGmxcoWjyRNMnCeNd/jvjvP8dir7uW9//0PPt3kQRAcXV4wr2pEkuKsxAuBkJJ+r/tply8KKTizuordX+CdxEqFU4pZvaBp2yU1IgheCIJOlnFie5tyMic2AonCR6DamPVe/2Cc4rDceYPgBWKso5GCVoJwLVIoIqfod/Jn9xZ/ekLAqfU1Mg0kErxHWI3JHZd29gmdJTgq6rah8Z5OFBMTYWiQecTa5oDhRo9OkpNtrbJ36VGqYoGyDiscxhuObawfqkJQS0/KTp7dZqufY/Yb2maBybpkvZzNZIjdPsPHPvg+zr/Ik4qY0jS42Yh8bRU1GOCTnG7aw3nHopwSOU1dlwzSIWmi6bVDVmTNV77yXp545El2ro8JF5rg84l2ntJo0AfnlpnIICR8us+5VIJVL5gvFiQqw0qPVoJJMUebUBI/ONpW+wN6SPaqOappSNMMqRxiAavZ8++zDIIjzYPB0zqL8C0SiW4F/SwjUZLGffpre56nvOjMbaRxDiLClTXeGsZCPztTFgSHWxRFnNzeZn1lBdXNiLsptBqzaDBSIqTHtwWtdTjh6Q+H3Lhyjf76BiJPiV1EP8mQSmIPyTPQEpMygYoVr3zlvVAZpvszumVNLDX9vEuapmxnayyOn+Xyo08SpzlN21LNJjTzCZ2NDcTqGiJdIVEJSiY4X+NMQ1XukSUZaZrTTYYc61S86pUv4dd//fewNhT9CD5feKy3NK4i9RFYj1Ee+TxTwoNBjxefO8tqHdFWlrYsqBYLLo1GGH24ysIGwefGM+jleF1jTMN0saBjB6QI4l5K3uuglMK4cP0PPr94PGVb0aR9lHAoGyGcJ808KpbwaS7tAjhxbJtjvRWsEaANSRaTr8RcmjVMxiX4MLUcHF6Rivmeb/1W/vJXfD31dMyTjz2GkzEq7SDrGT5SCAWN1dR1Q6ZiesNVrl94hts21+msrNJbXWUoNf/hAw9x6cLlZTcJWGJSJhCcu/ME546voyd7VOM99qcJkagxeYfV7oBokHP65Enatmb/6av0j7VU/ZRqPKaZF+RlRb7hSXodEudZNI5UwmT/KsP+NmkSk0YJKSn3nj3NQ+sfZXdnvKwmB8ELznuPMS1FWZHFGVZFSCkQ4lOn44+vr9JTEuc9LpZE3Q7O1+wtQtXF4OgbDAcI7yARRGs9kqTDYG2N1WMn6HYVm5u/y7Wr15cdZhC8oJxzTIsFbX8d1Toi6YiUQgBxHAGful9YSLj99HEUAu0M3kIcO3rrQz568Ul0a8IezOBQW13p8tqtM/grExwtnSgi39pC5X26x/pc2r+M9x7daqqqpk1SVJ6TDQekGwN6wxWiJGHDx3zFK1/NL1x8D/4QrKRYQlImQMD26U3e+I1fQUdbitoym85pr5Q0bo/1/pB2Y4Nudwu1sUmnfwdP/P77KC/P6G5vE0WSqpgxrBY4Y+msr5AQo+qG2ewqk8kuflWztrGNUoCTDKMu937R7fyX3Q8ein/44AuHFIIkS+j3+8xnM9rG4vyffarcw7NFDSqoDEiBtwKFQAnxP82XHbx+0blTyNZRG0ftwLQNrfLcmE0IG26Coy6NYty8xleGle1j5N0BcdbBOUtHR9xz/ou4fu1GuP4Hn3emVU3TtkQGZCQwkUBKRa/fZTot+V+v7SpKOHtiG2kd1jqcscQJqFzw3g89DKHyYnDIra+uUM/nPDl6kqYqmZe7DGPBehaRZxEbwyGmqonjDF3VNEbT7XQwrsLOJzip0CiIU1555938+upvsz+aLLtZtzYpExwUGzhxxzG+6htezeZKgqg9tumy/eI7SM94VojJpYQ4Rqyn+EyzttHn3q9+Nc984CPsXbrCYH0DLwzeWFqpKKsptfPMplOq6R5NUyAXnmHehSwljSKUVdx3/nYe+uDHqRZ1uOAEt8zqxpCf/KG38/KXvIyH/vDD/L2f/TmuXtn5M7+vQLCYl9RlTbM/odPUxGtrxN6hIvncfWJCcnx1iNUWbS26MTR1wb4tuX4ILkRB8GchBHTihHI6xU6nyMEGKkrBQqU1ielx1+mz/Ff1u5hwbmXw+cTDfFZSrpfYQpOrhGzYI81j1ld6XLn8qfvDBsMuJwZDbONAOwSWXi9jJC0ff/TSEhoRBJ+bSCmMtzSTCYvZjFk9ou1EdAdDoliwsbbObDZl/fiA7mAFjUMIibaOqixI086zVdkdq1HMi+88z+9+4AOw5K1ltzYpk4LzLz/Hl3/lvazGitl0RqpiuttDumdO0ItyOiJBek9fJEgPeSfHScn6yZi108f4yK/9Dk//wcdYXeljy5LSCrJ5TkPNZDShnNVYV1MkM1aHK3TWtnDlHNsael5x5sQWn3j8UhgGCm6Ze++8nVcnm6y0Pb75rpfT/Wvfyw/8Xz/DbLb4M30MPQLimM7WFp3uGspDrWtk2yJjCfXB9wk8cRpxan1I3bbY1mK8xcZwZTplOi+fvTQFwdEkpKSbpPSSBK1LjDHYVuONR3qHUJJj/SGDfp/ROCxhDz5/CASLaYERjsg7BKBbQ1I6jm30+UPxqdNex7bW6DuBd+CtJ448nW7ME/v7TGf1UtoRBJ8LYSzONHhhEH1FbUBZKLwk9oLB+irPPPEU22lGlkis8CRZQtLpMprOyHsrHCzydSAULzt9Ow/9wYcwS87KblFSdnC05/aZLb7y9S9nJZJgIJKSWClSpUikQMURjoRIxiiZk3d6dLY2KGcVZjSmKi3DO45hH3mUG/v7NNaSGo0YeWpdM20qtAG0g6Jhvb9Kv2kxeGxdoGcjulkSNrAGt9T+eMrTl69zvDk4yPbBrTt56xu/gZ/5V+/G2M/mAqA4+Lz+r2mTp2papIjophJjDKYR6Koges6OAMFw2KEnYpqiBhRWCqyHa8UCa9yhKQcbBH8acZJybGuFoevik4hG12ivEd4itMOWkKmI28+eCklZ8HnF46lbjet0yRXkKsVKRV0XnFrrI6XA2T++vkspuX1jHTctiUjRzpJHgl4v5pnLV7AmDM8Fh5/1nspalPLINEOPBFGa03iDbwRJt08iInpZTqeT47A4KbntzGkuPfIEzbAgjiOiViCihFPdPr1Oj+lsutSnoVuSlEkJK5tDXvfnXslGkuG8I8lSumlOJ45IpKKTZKQqJ5UdYpWhXEwUdak1VKZleuMasxtXKSYzuse3eWrvE4higShGaKNxSUTlJY0zuKolKzSjZ65gkwwVSxbzCWU1B2Hh04wcBcHN8sTFK/zutad5oPbUySrDjR7f/coH+P1PfJyH/uBjf/JHUQpW1/qcve04ZVny1NM7aF390V8PhwPu+qK7SKYHX8sXCy7oG0Tqjw9L9whu29wkqz2ubXFJipOK1lmuTcZhj01w5GVpynp/wHa8ilIJl689iW5ahBAk0h4s240kZ45v8QcfOjxn0gTBC6ExGt22pEmPLM4QUYxpHRtDQZrFVMUnz6EUZFnMHce3ybsDlBPYyYxcOTqDnAujMWHNRHAUJFmCVQo3HKJtS9MYlFVs5H2GUtEIz4Wmop3PUHWFtwYnBKmxLMY71OurJINVkiyh0x9gdcKpE8eYzmYsM0G4uUmZEPRXurz29a/ijrPHGOQRcZSQJBmdNCVREYmIiVBkUU6mYhKZoIjx2lLujiivzSiLKcWVfRaTOUXdooWi9oLd3REqhsZbRKqwTmCFx9cOYS37413MtRSVdZjVCxbNhLatPnPcQfACqsuG3/zgB7jtVR2MXaDrPmsn1/iBN7yRR59+hulohv20FwHJl7/uFfw/f/Cvcu7sMRajCe/6t7/J/+df/DvKeY3Hk3VStrY2SFYUxbxkNCvQHur2j/fNRLHiVfffxSDvkKRDah8znU6pjGY0L2/dP0QQ/Cn90byvkEilkIA25o+O/EwSRRorTF2zuHoFsxjhXUonyxGxxNsU30ScGK4SpxFtE46ACD5/GGNIu13Wext04hiDo6kd+4sRuv2f91BKbj97G7f1Vok14CyJhy6eOFFcuLIXBumCI6HXH7B52ylknmN1SbVYsLm9ydaJY2TOYk3L5voas8keppMTa4OxkrauQAqyfpfBsE+apiRJxloSc9/5c3z80ceX2gduWlImkCSdmG/59q/krts2UUaQxAlxkhJHObFSKA/KSZRXOOvQTuMwRL6kKSraqqatCorRHlXZ0mKovMamMf3bjrH7iSeQrUMqgRASORhiXIutCiKgrBr8eAK9kqatKKsZZWXDLFlwS3k8j1x6ho/fdZVe9zhpGxOPRtx9bJW/8i3fwN//5/8azMF3/s/yTszbv/X1fFE2QPZOk0xjvvdLXs2jTzzNe/7je8GDBGgaEjIaY1DOIJTE2D8e7Tx5Yotv+dIv5bhLWExKnrl0A9MULOop4/H0Vv5TBMGfWtbNeeWrX84rX/ES0ijmV//Df+Jjf/g4wnnA473BtI56fx/ha9JeSp5Ad9AhyoeIrIOLBFmWhqQs+LxijUNLgU8l3ltcW+O1xTb+OeelSwkvvetF9LI+eSwx2pB4zWAADZad67PlNSIIPgdRGpMPcryQWBGxvbZCJlv0fBdhLFpb+p0uz1x+mtXtTSIR0Wgom4q96ZSqqKjTEtM2NFGLSyNObG4iInmwBWpZ7bpZbyyE5/zd53jRuRMM4i6ybKhHC+JOBJRYBN55rHVIJzAOKttimxZpHFZb5lVD3RiM1dRS4HE01iOAte1N9i5fo5ktiKOI4dYJkuEW1AvG86cRxtDqFtE2RJWidh4d5UjRfqbQg+AFp2vNf3vkEe54+ZBuLeit9sjSHt/54Jfy0Ec/we+8/yOfMjrTG/RYEyluvyI5ZqgqQ1p6XnX+i/iV//w+tLas9vuY+QIvDKqpEd7SyWOiRNI2B1XpvupLX8HZuEcvHdBLHK2PaGPBY0/vMCs+9QybIDhshFK88Ru/jm/86tfRy2KyKOLu08f50Z/+OZ54/BLOOlqtKZqWYjGhEg3d4SZRnOG0x4oWZIKUEZFSy25OELygnHUUusEIgzUenMEbQyYj4iTCmhYQdHsZt29uIJsK7w4OjR7kkq07NtnL4fr+hHA8SnAkOIOsS5z2KBx5ErPY26daXaHGoRtLZVt2rl0m6saIJEfUgrasGM/nlJMpZZLS7eVoY3A6Yi3OydOUhV5ehd6blpRJpbjnvjsZxhmDKCFb61Jowc4zV0lVhNUGYd1BCQOtsXWLmy8wxQK0Jo46NHGKSVOaJKYRDifA4rFAnCWsHd/mxrym11+nM9gkijpoamyjUV6iohRBhFcJ23e8mKm1bO1d4/Ere3gXLjrBrePwPP70FR46/hTHX/RSKmGYzRf081V+6Dv+PI9fvsy1q/sc3AwPPptCCKaTFhMb2t09ok6MW804fWyDbp4xMxXDXkw52kFFPSygYkWMQnhAwqDf5ete+hJSpzCVYTqdUi8W0GqulYtQHjw4EvJOxh23H8fZFm8F1mq2un2++1u+gZ/8x//84IDQosLsT5lN9nFKUHVmqLI9KBzV0UgE5APiKA6PncGRJ/jj9Mk7z3w6x29ughc4L2hsReotcSQ/WYiXM6eOsR7H2MpRthplHVEWkeeKR554mmpehb4RHAnCgak1trZ4Z1A+YjQakY/WEdJhW82iKJjsz1g7MYO2wleCsiqZY5mPR6x2BmgvcYnCKk+WSFb7AxaLYmntumlJWXeQc/7YClFrMbal1AbRT1k9u0WMJIljRKSQSCIhiR1E85J2OuXa05d48sOP0O+toTbXIY2I4ojWGrzwECmc8KysDxnLiJ7qkagIIQyzqsA5jxCKruiiZId84zSqd4xuNaXf6SERz7OHJwhuHmss/+2Rp7j/zjuJbQ+1ONhLdnZlwPd/2zfz937+n1NVmk/eake7Iz7w1NPcv3mOSHpsW5Dcts0Xn1jnfytLfubn30WW5bStp9AaIkkUZ+DlQbl8L7jrRWe5o7+KtZa6WlBM5zRFQesrLu3th14QHAlSQju9QTNdo6fWIckx3vGyM+d48Eteyu994CM0swXTCxfZn06RcUSa7hOlK0TRwR5lKQWDLKOTpOFzHxxpUkpWVges9QfsjMfMZwW7u3vYc2ewTqKNRrcalCZJni36JDxntteJTY23Et8alHcoIVGZ4gOPXUG3hCI4wZHgjGU2naFUTA+PkpL5bMpoOkFlEmks02LB7mLOsUUFqSNuLE21oOplzMs5pprTWEfc60BHIaxmddDjmWvLa9fNScoEvPgl59iIMuyiZiZrpAdvLcJ7jIrxIiaWAiEEQiV04py0v4E8GbH6orsZ3naah//rQ+h5iUgS4iTBRxLTHpQ51kYjo4goFsQYlLagLEUxRXmPBLouIe4MyFUXPAjfMshTlIqwLixjDG4tj2d/d8Kvvu9DrLzmNVjtaStDNp7wqmMneOPrvpR3/9Z/xz67H8wYxwcffYLv+dLXsnjmacy8IktXyNbWecsDr+f+U3dydf8S3qSYyqHSDOcFzmmEEEgEX3LHHchpTSE8ZdlSVSVaN8xNw5XdCWFPd3AU1FXL5YtPMYwSUqUQvQSVRHRUwje+5lVcvrZDNau59sxlGq3xVtPMxrSpx8cDIqkwusE1DSvDPlxedouC4LMnpKLXz4iEorWGb/zar+C199zHqcEm82qXv/cL/5rxeEqrNdbF2KqlLStMUpJkBwekqDji7NYaTmtoBEZbIjRRkmKc4YnLNw4G84LgCIikJMpzVroDctcQeVhZWWUyHZP5LllrKIuazqmTHL/zHorJLrJqQUrmz1xi2kqK/Dpt3CVuBsRsIXsxW+sry23XC/2GAkGcx9xz9x14bdGNwXpLYTQoSSfLyeIIGUmki5+dghfINKc72KAezzFtSzocsvXiczzykUfoxZBka8gkQUaKuijxukE5Q6w8QsywVuDahLpckAlB5B2JEiR5gjQVUV1S1+3BBtgwEhQsifeODz3yOLcf2+LLj5+j8QnH19bptIq/8rqv4uKNXX7/gx9/NlkSPPnMFZ6+doGu8UifkyeKrlYkvQEv2zzLS7fWaPZHmBpKKzCLBUJmCCSDlQ6vPHEcO56jM8vCOWo8JvHsTOeMZgVhoUpwFBjjeOrCVVaEZCXPWe1vkecDZAvHsi5/6cu/jNEzV7muJMNhn9rDrKzJdYHLI3wvwQtHY2qyJF52c4Lgs6YiyQOveRlf+2UvY7M/oKgMJ/N18jamuV5wdmuTv/3mN/B/vPM9zL2nZx11WdFOK5xYMMhTrgvJoJOzZiWuMLTWY6wjlZY8h8LNuHF9jMA9m5iF+0JwyMWKPM+Q1hE5j/GGKI2p9vbpRCkqktz5knv4krPfSLOYk3V7ZFIhpOSrN9bJr004vXUb8/0pbW1ZXLmGOD5kc9hHSolzyyn28YInZf7ZkqunV4cI49Bti4skPo3pdfv0sg6JSohFhrcOrx2Rj4iTnEqbg2qLu7ssRhNEr0Pcy5js7dLvJMheD5zHtw2ta8A6Gi+obAk1FLuWjhZoITDeYUxNL1bYdoGfCUw7p2pmOL/cE7uDL2xGW377Qx/hRDfn9myTSgkyEjqLhr/04Kt44umL7I3mCODa7j4fe+pxzqicXv8kbrCGq6A7cKyseNSkRA0TzHbOMFlnRRvKpOLLd3a59/bTPHDbi2jnFbvFjMbKgyqnpuap/RvUoQJdcASoSPHS+1/MV33pKzkGqMJzfOsMtoqpWk8vO852VnPhyodZPX6cteMnyFdWGV28hL14jbYqaPcteT/DrLSsDXvLblIQfFYEgpfdfzdveM0DnKgVq9k6cS8ndg7rW2azEWPpeMmJY3zba7+EZlZhmghXtTipyFWPblqTpTGvvudOjssOxWiOwWEcuEFElkuuzSr2dos/+q0hKQsOO+0MuilJ4pxWgWkcTXtQ0ObE+duJvUOqiDXV4Vpxjch4SB3g+aYvfg3DZEDaKoqiYDIZURQFI19xMlWkaUJV1Z8phJviBU/KZCS5794zpM7SIrB5RBQldKOMTpyRipSYBOEVXsRY4agry+TqHqkU6LpgOh1RNQXaK1ZOn2by8CdIFzMSJdHOYb3FOgulZr81TCvNcKSJHXTSHjbtYooxk8WIzmSMX0nQUlO6Oc9M9rChtkGwZPv7U37nkcc59qpNWmeZlTNS13BKJXz9q+/lXf/xfRhjqOuGJ3fH3LaVM9kfYxhgB31W1zK8KYiyAaojMabCtlO6os8Dd7+CV7/sS5BtjZzVRGeHpPsTrl65xt50RKlbHr5yA2fDIaHBIScEDz74Kn7grX+ByES09QJ/ZcZ8UhEZiVrfxlgYbknuedmEy9efJOsMOXPmRZw//UWYl8y5/OST7N+4TjuradYa1jodlJJ/tEw4CA6rKFLcdWwbt1dSqS7el0QJKGvpRC0nTw5xziGJ+eb7X8IfPH4dVXWIousMsg5Jv8N3SE37GliznqTSxOs5s2KOnk4RxtIZ5Hzi8lMsFs2zq4hCQhYcfrppcd5iMTRAWx9U3z1++g7WN7YoJ2NsVVPeuI6yBuU9UetIkoTERfjCUM7mgCNPu2jt6KqI41HEykqPpmpwS+gLL3hSlmYxg2GPWWOQSpCoiFRIMieIG49oLEJZkB4pIkzTMptMmXlP6gxttaBYzGnxlFGG6Hbpbm4y29+np2KsjPDuYLZBWc3xOGF1dR2iCFvWdOI+rdbMo4J9XdM8/Rj5eheO5TxaWR65tBPGgYLl8/Cxp69w74tHrHX76EaRmJYk9rz+zBk+dPYiH3vyGt55diYzRtkKt20fI+8ndDpgFw1+sE6zAuQOYSzRfA7jCdJk+LaLVzFutUOjUhILg6plXMzYrQouX/tkpcfQG4LDK04UX3znacykQGwcZz4aY/d2YHiBeNpBra3TdHLcoCVbj3nRxu1oExEnHnNtyuLamCjJGWxtU0WGTncFH1vSNKYsw3EQwSHnYf/6ZSYiJ904TVtalLTEqafVM5pa0unGFKQMkpTbVleph+tkMqJezFClo6dSkm6CQ9DaBVIKulFMnqcMshqrBO978vJBKf0gOCKEUhgcDmhLzWI2wTSau++5D9FYdFHjnaVczDjR7+M3TjCdjfG1xk5LXCpxsaKua0zkUcOcmIikablte5vr1/aX0q4XPClL0pjIOkzT0M0SUgWRU0ihMLXGC4MVGi8V3guc0ZiyZj7fpy3meKuxXuLzDlparLf0t9fYv3oJORbIfo6xCmsM0ii2V45x7u67iJOYJM5oS01dFTRmweWnnmQ0HSFNQ9rd4Pc/9iRNHabJgsOhblp++30f4MxXDzmhO9TOkiawmuT87W/6en79qYvkW5u89sX309mZcuXpC6y2Fl0VNIM+q5trDDeGpHlCO5lDq2ldTVmN2dg8jRIx0ki80Tjn8N4hlefKfMxkVhKSseBwE/R7OSt5hC5K5KAlijP25zdg7HDXE6K9DeT52/HuBp1MkQ6O4bMEYR10JTUNYkej8pw0lhgfkecJvU5GWbaEPhAcZsY5rk2nnMuuI2tJf10y7KXIDETSp7SashVU84J1C6m3tG1DLD1NXSKNgH4PYWOElPhYIZOYWEWIRHDi1BYuhycujkJXCI4UARzM0HgSIVHAA6/9Sm47fSfXn3qUtiwR1uLKlsWkZfVMj7UT52irlsVsl9HoCZRKsIlDRAqVZuAgqS2njm3zAfHwUvrEC56UdbopiTOkIiFLUmIR47RFuxJqi3AHZ5hJAc4dbDbVxZxiOqYp5rRRhMhylPDgLd5ZoiQm6XVYTGZkssa4GOcE+IjhcIU869BfGZKQEG9k+DihMo6Tt9/Doxc+ShXX7KQe3Ya9ZMFh4rlyY4/3P/UUr9s8R6IdwuTE/Q1eubnOa1/+Zbjt2xhfnzIqr1CuzLh643Fm9Qa9ao2intKOB2x0hzRFRYNjv50wKxYgE46vbOHaGtk6tHDUTYWxmmnVYsLSreDQ86yvDih2dtitHMPW0D91jjpXOFczOLZCM9Ewu4Zrd8k3b8NlGZgG7zUuhu4dm0wjQ24PqjbO9vcROqaTZcBs2Q0Mgj+R957Hr+5zx8ZxTnYzvJtj5gJLTptGCAGu8oz3F8SrOeuDLlndcGVaIZwmz3uknQSVJ1SLCuUdom0RSLRuGa6eRKyljCZhsDo4WvqdnCQfsjrYZGXY5ez996KSdcrZgkU1ZqELXGGor1yj1pLpzg79syfpbp0mXTlGK0qUbEn6A7ySRF5C1eCFZrPXI4okWt/6nOEmlMT36NjROoP0EcJGtJMpul6giHBCgfUIxMHZSeWU4tozxFmO9h4vY4QUWG2QHpywNE6TZl0m0+soK3FJB60hUR2SYYY0nkympJ0eaZxQ1y39SFL0u9x+z31cnl3l4v4zuFD/OzhkvHE89PFHOf9l65ySXY5vb7N26hTxICOyMXo0R1YNMYqVwXFmzYLRYhcdORo9p7h+nZFRxGRUqWBmCmbeQXqRVRGjahBph6KpcN5T2paqbsOoaHD4CTi+scrVJ59ErFVInyCkIhms8PhjH+P2bM7a6nnm4+s0bUU5WCXtpkTPfrbLsmJRVGjX0jzxNNY6spUhxnfpdNLlti0IPktVafndxx+j7wXnh6dZNDXlWBJ3U/I4JRM53nnGrsE5x3oXhqln1pZE/QFSenAGYQ2R90RC0OiGWEm8N2ijwiBdcKQopbj99GmOnTjLWr5CGoMwhtlol3LnOtMbVylGE+bjCXY6Yu/aPoMrA7oXLjA8eYHO+fN0jq9BZGlqQ2s1XhdgaozQnN7eYG1tyM6N0S1/VHrBk7K2bWmFp9cdUk0rEjPDmZbZ/h7VaEx3MESICOEErW6ZXr8O0wW909u0yqN8jUeCEzitcVKg2xalBKYxtF4gsgZlJFnqiGSEQ1BXBVGiEElCdzCkaud0VJem9aTdDnuPl3gXnkSDw8UDo/0ZD114insf/HOsbG7Q63bxTqOtxVUNaINQoFLJcGWbsp0xK0ZYO6Csa/aKkqgGGyVEqwOS/oAr166yohSnsm1MWdI6R6tbGueZNNWymx0En1GSRGx2Oswu7zO78nGsFJzAImXKzsURtdtjLblOsnGMNvLM6oJ00GGQJdC2tG3DrKkobMvg9HG++MVfgsu6fPz6k6yuPg7imTA4ERxyHo9nb1LzscklUmFZEyfwRiJLR99nZDomySRmReGswtsO/WNd+qMYpyukTbGzAmU90lviWKJbQ399hXjQpxENoSB1cHQI0jzlztNnSY2HokJbj3UtjW3Y373O6NoVJnv7NF6gsox2kHDx6gW60z6dsqC/KBnc2CBZ7eAyQdEscHpB3snwStLpdbjjzGlu3Bhzq28SL3hSVpUtRkvSLGFr4wTNaMbOhaeJTIxsPLsPP4mQMUkao7VmvD8hzXMSL/BCHuwpaxYHxUDwGCfQWtPqBu1AVI5EWwara6T9HqrTQXU7kMa0uiXSNVGaEK12sI0m9pLYRgeV5sINODhkBCC845FLVyhyRZImWOPwSmCMw9BirQXhUDgyIVjvrjMdj6nnC2QkMJHDi4puGkMicb5ECMmTu1fpnunS7Q+IiBlfuM7MlOzOFoQCH8Fht9rv4ca7zEcj2onmox/6GNJAP1tlNVrl4T/8EFvxLt3hZVgbILKYNFN0Ol26nS4ugtK0mEjCsdPUccTe5cs43TDoh7L4wdFx6sxxXvEVX8zo4Yex+5fo9tdp25bRoqJjFVkSkdQ9tk5sknQSIt1y9t5T7D01wtWapqrwwpLkKUVV0B32oB3RzDOsdEDIyoKjY3N1jY24R1QLHAZdljSJYzLdYzzZY3/3GtNrN4hXV/DdPk3eITp9ivHlK1TXn6aYj5nurpGtrSAHEW3kML5m88xJcpkSC8/5U1u89wMH29ZupRd+pqxumZcNWrfEScL2uZew0j/NpQ//AcWFa9hpybxqaL3HAqV35M6TVS1xnGFNA8aBaIhUAkLRVBX7+zO081ghyJKcOMnI+muoJEHFgqTXQ6gIEytkZBFeEEUCLx0qTvBShkfQ4ND5ZAHiYl6zV0yxgxo6PZxI8I3DoDFtg9UtXjuU8SRGMBQxES2j+QynJHG3R5tYIlkRJx1imWJNxZiKQWeD0Y0R2XCFyBfMypqQkAWHmUQwXFnhtuN3cb1I2a+uMN6bs7tzA/oWV7VYBxfmUwb1gng+xseCSHm6a32SfodOf4garpLkKaPxVT5SFPTkOiL2eN2GYYngSJBK8ZpX3MvtW7ezITd5+Dd/i/m1EarfQ4iWua3JRZehixBFgcwUnSxBphknXrTBM4/tUowrkl7O5onjnF4ZImXJbLyPq0t8Jp+tmhAEh58Ajq2vouYtrVrgZITzLcV4TrEYUZYLWmPQbYWZeMy8pLN9nK0Tpxh3uuw/+jD14jplO0ZNcuh1aZXj5Itvp9EHM8nKw11njnHyxCZXLu8+e1TErSFf6Dd0xrG7N6VtDU1VUZcLqBt6/QGrW2fIeytIJdHOo73HAHXVMH9mBz0p0UVDPV1Qjkc08wmurihGc0Y3xjjhSWREr9ul2++T5R0QIKWASJJ0O8g0RUQR1nh03eC9o9WaVoeNrMHhZY3h2t7eQZnXoqJalFRlRV1VWN1ircbYFtM2CDw+ihgM1jg2XEfXFY3TqCRDpgcDENYbROS5dvUZ/vAP3sd4b0GtPfrZs8+C4DDzwrO9MSRLM7a3buPY5glyLxnvjVksZhSLKUpBpSRt2sFFMbPZgum8ZD6dM97ZYzGaYpsGZx1RojCiIR8kKMBZQ3gSDY6CKFH0YoWfazZWj/PiB16HjFL2n7rE6MaY1iqaLKaOLG3cMrcVo2JOUVuUzDhz5wZbp4fcdf5utvsrZE6zmBaI7hr9M+fw/ST0hOBIOXfyOMoYmqZkVs6YVXPmxYxyNqOtKlrvqLWmWBQkgz5SwXy0Q60b7OYWYymYNjWT2ZjRzg1ylRHTJVFdoiRDqJT1NOPrX/sK4jQC1C1r2ws+U+YdTMYLtHOIqqG4doH9S08wuXKdan+OMoZO0sG6mspqci8QAsyiotoZEw8jjG9p6gqbJMioYvfqDPdsFRQlFZ31NdL1IWmaEicxCIGxFmUtUZKiHXilaJSgaDUISVGGfTTB4eWBedOyqKqD6lhK4LzFO42QisZpqqrAYFCDLvmgD9oijeX0idu4MhtTG4doHTKSxJFCoJCA7mVEaUrejSiuzbEubOoODjkJmyt9OmmHtJ+wYJcUyWQ0Z62/iTGKzdN3ExUlttjHxxEWSRbHeAttbanmJWo6I04ThMjQsmCvuIwyEbESCAQ+zJcFh1yvl9KUO7h6jTTvcfrc7WRxzMd///d4+PHHWJtrNmtPmuc0zlB7wbixiLLAx5LVbo8zd/XIG4MdzynwQERdlswnDpOUpOlNqPkWBDeBkLDW6+Dqmlq4g1V3rqGsZown+8ymY8rZFNFJ2DpzhjgdstjfJdvYZPP8nUw+9lHSNMHUDXjHShyhtMNVDZGLydWAWEqcMtx/+jQvvfsOPvChR7lVT00vfFIGjPYm3Jjus6YjjskVts99EZu33YP3nlk5Y+eZZ7hx4VGuXL9KWzfEgPEWXZS0xuOwSBxtG9GIirox4CUCR5ylyDxDJBFISxxH4CVeH5yNJmV0sB8HKKyncZbCaGy4+QaHmffsjEeMFiN0HRMpEMIjpEfKBJSgv7qKj2OapkHXDe1ihEzhjjN3Mn/sUQrT0GiNqGpknhHFCo9AAkmnYdBP0X6GNmHWODjclJSs9VaItGA+m1AXU1qgrGsm8xnr3S2yk3ewqlse//hD7O7tEwuwtUGlOSJL0B7asqEpaohjksgxbSZ4L0kTj5AibKUJDjUBxKlnZ+8iJ7vHWUlWyDoRq8MBd77oPDs3dnh0PKbdHRF1E+K8g4xahJCIuQQLgoReJnBRic8rEt9lkCZ0VIz1BY6aOHrBF00FwU0hVUSEo64bdGwRkcIosBEQS6J+l9XOGVSSEWUpTdUQdVPO3nM/48kMV9esrQ/xVct0OscbB22DqyrsfIHNOmRxDxVldJXiz33p/Tz21GUm08Utad9NGR6ZzWpmreGZ4iouWjDIVolFjooykk6X1e3jWF+hbcPu9eu02tE68JXGV54oEnQ3hsTrm7RSUrHHfG9ERwj6/RzpLcJqHALv/UGuZSzCeoS1aAQ1htZrKilZ6IamCDNlweE2Gc8xpgElyQZDhhsbpEkESIqyxBhDWdV402LbCpxh+/QxIu84sTLkycuXcNbRYkF6eqKHUorEKVJj2R1fpbEl2oYn0eBwi1REJhTFaIf9qxeZ1hOMNOAEo+mYjW6fQUdhXU5vbYWdyQ7GOyygyoZ+t0+cdLDOURczZJoTZRFxrLAJeOUQwhEG6oLDbjFv2L/huN6/wkY0pG8iBijEYJMXr21xZTrhGd3CxesoHxE7RbyuwMUI04Cfstbv0ssUg/4Q37RIXyO9J44lRirCaUHBUZGkCasrq6wNj5P3+1gBZVvBOKInJFQLEm9J8yG6LqnmFzlz972kq6v43V0GK322tjdwpaZTVOxcvEBsa4gFSkqkcdBo0iwnjTqc6a3w6vtfxG/9zocO8o2b7AVPygSCsqwoWo1LMyZtgW0cw2yF3DtoIO4IuuvrrDcFUhnmowlaG6I4QiWKNM/pbh+ns3oMIwR14zCjCVkCKo8gBovDeouzLV61OCmxJqJtI3SsMMqincZay7yqKYryhW5qELyghmsDtm+7jTOrxw+OjkDhXcN8NidOEpqyAqcx2h8sybKCTm8NihG+buhkfZJOD2EFum6o2wU6TVCmx0qi6A9yGt1il3AgYhB8LvJOxsZghcHgOCtn7mBrMmLn0kXmo+tU0wk7+5eJeym69SyqKUgQBryAeVkTVwuiOELaCKxDNzUqzYl8Ri/usLGqQXz8YH9mSMyCQ6wuHUrl7F7bYdE9xbBNyPtr9Dtr3P3SL+b6fMZHd6+w17SkT1+CpkSeOQtrq/gspTGGedmy1u+CWmF7Y4Mo1oyKGVaAtwkuTBkHR4QUELmIpjHI2GBxOKvx3uMFpFHEoD/EZR2a/ZZTd7yI3voaqRJE0nH6zjNEUUQ6TLmtv8oXvewVPP3wx2iLgsi05MLTEYJUKrRSxNpz/7mT/I8Pf4LFrL7p94ubcni0az2jvTHnzpxGJn1ikeEsNK4mjWIUnry/gjsuUUlM2r+Btw1Jb0Da6aOiBNnpkWV9pIyY709YpBndnkJlMXGeHoyKOotuG5y3uAga6RG2wQhJ6wV166mahp3plLpqX/imBsELKOvkdAd9Ot0+wgMYjG4BB05j2wYvIO9mFDvXWD+2TpJIyiYi6q7QtRFKCtKkh4k8bVOhpaAUjpk1pKWjE3dvyWhPEPxZdDsd8iijp9aovcUPJZ27V7n29CNcnX4QsTrkxmxEW2tmsxmRcWRCkSY5Ks2wVYvPW1Ss8C1QF/hU4JMM2xi6MiKJI0pjwmRZcKgJIRj2VjC7E27sXqW/muJkQm91m63bVrn3JSWXfuc/sDAtc2dwqSLrZ2Tdg2W8jZXoUtPagthCbhuOv+QEnbhE1zXaW7QMSVlwNESxAmdpbIM0ER6PaWosDiEgTVK6vQGNPtjutHZsi/H+HivDVaIsYW3lFF571le26ffWWD+2zRe/6itY3LjOtQuPE1nL+vZxvIpZVDNirzjW73HXuRP8wUeevPnte6Hf0APCC8bTmhpBq2tqoVFRFyljvI/IkxQZtdDrIOUaWS8Ba0iynCQdEOddyDOEFXhjWF9ZYb6xjjMVWbeHSjOSOMWUDVp5GqOJWoOLHV75ZxMyR20ayrZgZ2cENtx5g8PNO0/dttRFTZxEeCxaG7QxLIopkQJPhDUlIobe2hbOCzQdeutDyuoZlHA43VJOZhjrkb0cKzXzxZzFqKKYFOEZNDjUBIBzVOWcLJE0XpF0usx2d1hcvkR/e5N8fZ3RhQs4FK5q6EYJw+6Q1ROnGGxushjt0h12sErgXIOkwbUtuq6JI4VuayQ+JGTBISdI04ThYA27V3HtwhXWu1sokdAbbGBUzOnbz3Pq48d57MZFBvkA6ROkF9A6dFnQekGUJsRKUhQVM1WwsRigFyMc0JgFtg0dITga0jTCe01RL3DKHVSsthpvLd5B3Mlx0uPRrG4cw7eayFpa3TJMM1b7q+RZj/5wk1x2EDoiybrkZ1Y5du4u9m9c4tqTjzJc3STtZXSzAYUtefHtt/HBjz6Fd0dwpszjmY4XWOkRMsLK5KDQRqIQSY41B4dEx6kiTjfwgyFOt8QyRqmYvNtDJzGeiLap6A27rB/bYnT1Gr1ODxGnqDTFG4H3GucMbasBgxNQGWhaS6Vrytawe30fH+psBYec857atCx0RS/tYazD+2cTtbYFJ8ijiNn+mM1zJ2nxxCpFphFKe46dOsPVRx9lvrOH05ZokB0MkjhJVZTMJ9d56tpVjA69IDi8PALrHUVbEhlF2utTVXPmly8ic8Xxu+7j+sXHGa6uc/3ydbpZzLA/ZHXzDo7dcY5+v4c4fZqrTz5Kt5fStB5d11i3QFtH7TSLtsCEGePg0BNsDDPE6DrV/h6LRnB5/RLZ8YRkvEP3+Dls1ufFd9zLleku5++7h43BOvX+Lu10gbQO0e2jTYeFs+RdSduD2cXHKdWceDhgNBtTFqH4U3A0yEhS2wbjHWVriKTFuYNzJzvdATKS6KKhk+c4ZzFNgxIevShYWxkSpylp3EXXnkqXJHFM1jZ451GRQiR9Nk/ezuL6ZYxtqGkoZgX9RBFF0bO5xs1z0+qgTvZmTKoZg1QhRUSeKGwU01qLahukhP5gCDLCthasJiFCSHdQUVGAF5K406Ht9ZnmKXU3JcXiEo9SirjfwRUjnNGYyGFdgTcKIwVV09A0NTOzYDKfAiEhCw43LwUoiVUC7S3ee0Qas7i+oK1q0l6PZrEgSxOirIuVCiNTnDTocowzDVE/I57EzJuaxd6c1LVUucS1C8aTGzyxsw8unEoTHG7GWhosMlbYVlPs7oBsOfOKV9GOpnS7Oa1OsXXLcGvIan+bE7edYX1tEyklAjh3/sXcuPw4670V9Moao+klynKONjUTrzGh4E1wyHnhuP32M5zb3qTafBGz6YjrV55hI98iVQP6UczW5haqLLk4ucTWxhaDfAW3PmC6tw+tYTEbY2ZjVKyQfclm3meWN5i8pSxars72qZub+6AZBC8UZy3GaLTU+BpwniiLUJEkimMa3aKkxCuJaVqK8T7dfgerK0S3jwSMaaibmlhmUAts6dBO0zqPFRLbLBCRoJ2PmZUzxmbMjdkUa29+YfyblpS1rWYyr9lIDBGO0howDQhLriRpt08cRThnybsdlEiQTmJsg/MOWVU4aZBpRJ5lxBLW1tdo6wU9v0qcpbRtSZxkWG9BtDgyGt1SG3dwSK6r2dkb0VThsNzg8HPG4L3BC3dw4G2aMB3tUk+mCCFQMmW0d5HTd5ynURFeSbSxmMbitWc8mVIXCwyGgop8vUtRzqgWc3S7YNcXXB9VeB/OKQsOM09d19S6pPEZrrTISLJx/nZWj21zaX+X1VOnufzwR4kTwXB1k0x16XUSIu+xWlMXJT6G1dtOM93fYbG/Q9RPsAImi3126hZrwjBdcLgJIdna3GT91Hma1Yb2Qk2v6LKz2GFtcIxmvM9w0GW4vc7pYyfx1tM2Nb6pifOI/d1rGK1JVjLKxYhRVbA33KA73EYlMW1d8czeFNuEe0JwNJSLikU5oVUdiGKiLCWKUlQSEycxVjiSTkZZzxFtQz2fMFxZQXlHqy3tYo6TFY6ISC9IREQsFLXTtMbQGI0VDqcLtLAU3jC1mo888czRTsq88Vy/tM+51VVaq6mcRCEOzsNQKc4ZbOvodnKkUCipIJJgImzbgvcHh9w6RZSl5FmXyHuKRhO1LWkiQSiUzKnaFu8tTdseJGNNTdGUlLHn2rUdfNhPFhwB89kcAG9aRJKiq5J2Osa6ltXtk5R7I5JU4rrJwbkc2qOrClO3GGfQzlFby6idk2xmTOa7GFNSLsa0tmEcexaVCdXmgkOvrjWTxYShkqR5n2jQZW1lk3Jvn+HKGqVuMYv5QRWtbo7yEuM1RTGnrius8zQzTdxJcFFONljhxugyLra0wrM3b0LBm+AIEFjTYnSLdYaN06dQK5tcfvgTXLz0EXAFdbmHmd5g/8Kj5MdO09nuM5ouKMoF2jvEQDEaXYFiDmsKE6U4kR4s6bINjz01x+iQlAVHQ9MYRuWcY3GB7PTQKkUazbDbwRpDqmKEF/j22QJpTYOSCmcPtoKUiwJJjJAJsjJESYQQgqZtsAKcFNRaY2xDo2t01PLUbM6FK/u3pH037xh3D/vjBaVvSFyEQaKFQztP03owMWme47XGKwCLtS1CCZzyiDxG4LBSoIxgOFzj2miP/to63hliY0g7Q4r5nLybUbUtIk6pm5bWNZR6wU5ZcuPG3k1rYhC8kIw5GFhofEW308EUJabQbG/fRmtq5jeusn3+HDqJ0EJgjKXVFU1b09Q1Dk9jLCKKuHb1EirzNLqgxWGUZGJaTNjQHRwBxnh25lNOrg6JhSfyHtca2roEEdPO5tBa8jxHpDGmtVRNiaxb6rpi0ZbkWYZuGkgkravBW7zw2EgwKVqED8MTweEmACkV3kl6vVVqXZL4hjhSfOyxT3DxySfpWkcjLfva8aJ8QNpfIcm7VHVDYzzXH30Gpwy5snSMpajGWDcg8gml8zx5YXJwlkToDcERYLRjv1xQD1uE1fiqJh7ElGWJQpCkMbaxoD3lfEbczTDS44w/OO9VOHQ5xRlPV2ZYlYCUNLrGSA9K4CJPoWuIHFNf84dPPYOt7S2pS3HTjnH3eOaTgkVVY12NdX88i1W3Fa3W1G3NopyjTUPbVvi2AiURUqKimEjFSKdRSjLcWkfgidsaEcU4DkZ2oiRFyZgoynDOg3A0TYWJBTcmU6oyLF0Mjoa60dTaIKXALip8a9g8dQIZxxT7N4jzlGxlDSsV2gpqa6isYVFXzOs5lW0QaQxph/5gjcVkhNElTkW0EnbnDc6EEdHgcBMA3nNlf0FlG7S1JCKmmu5jGk0cSWIB3c0N4lgdLIOPLPPZPrPZmKIpMbZlMhujIkWSxKSdjP7mBiqLaTGURRseQYPDTwics1itsbpBGIn0EmU9rXVcr0ueERWXe5ppahnrMbNmRmVbVJ4hIsXW6ZOIKGMxt7Q1tNbReI+1lr2qYX+uw6xxcGQ4B1dHCwpbHuQSTUvbNAcr5azBNDVSObw31NM5adbBaoOuWrRpqZqK1ltab6mEY1FXVE2NjSQtFt22aOeRSmBtw1694NrVMZ5bM2xx05IygLYyXL8xp7UW7SyNaah0SdksqMoJ0+kOdb1Am4amLXHKgW2JEQjniYUiT3vkvRWywTrHz93FfH+EqBp8a9BG4yQUbUOLp24KnGshhqmuuXBxj7B9Jjgq5uXBrJZvDG1Vk+QZ1kvK2QzTNgxObOEigbMWbQyVaZg1JTWGymmmzRR6CpFLtLNsHj+FSBNU7DFRy3juwmBocAQIvHdcuz5mbBfgW9AWV7UkTqJqDTgGm2sk3QQVCWScUGtNUc2oqgWgiJKMxWxCW1d4pRBZgsoiZhqqOhT5CI6AZ5Mnby1OG4Tx+HmJmc5ZH64QS8g6MekwpbfVxUaSeVUwnU2w0tM9tkbdLNhYSbnzvrMM1tZIVQRW4JxgMtaUk1B5MTg6BJ5rezMmfoq3DdKD1wf9w1lLmiQoIBaeOO+gZISpG3R9sIxRa43xHountZrWGmp9UOHaCXDC07QV2tS0WB67eh1zC/dc3rzli4DzcGN3n9tP9IgR4CRYT2RrBDn0u7g4pjWaRCicU0jdAgJhIUoyfJJycHiuZ+3EaZq6YLZ7GbHYwwuDiGOKcoqPJYu2wrSWqS65cOMG1aIhPIUGR0W5KFg0U2oykljS6AbdWqr5hGxziyjOsLZFe0FZVdRtQ+MN0/kY4cFISTMbk/USsmiFyfVnSNOEpi6Z25bZNNx8g8Pvk4sKi0XLxf3rbMVdign4xpP2uuimYWPjOE1dYDcNtm5Iu12KusBpi/OeqpoT5TlJlFCWDTLzqAyMjLi2X+JCkY/gCPDeMp9XtKstcZai24q2nHPi/HmuXb7CfG9MZ9hDdFK8VmhiKmNJRUw9nZJnMbfdeRfTnQvMxpc5sdUhkn10URPnOTvTCts6JAIXnpWCI8ADs3nNjXLMZpqjibEJiEigGk9tFxBDHEWkvT5tWxIhqGmIVI8s7aCdxzmNN5am0cg4wkmB9wIlJdY6GjxzV/P003vcyonkm5qU4R27V6fs3jFHJSBsgncOKWJk1qOTJjRNi9QehEQiiDKFs5pUxCjhwFuEACktdGKOnz1LU8/Ae+rFHJ9FzOsZVsOiKimt5npVc+niKEzJB0dKU2nGi4MCNR2ncI2nmI8xCjqrK+jJAt9oClPTtC2zWUmtK+qmpGxqVJrgfEs1r4iEJ+n1KEe7tKbkRulpQ4Wt4AjxzvPU1Rm3r01wpSVCEnVTfKRYHQ6xAiSStpwj+l1EF6w+qEZq9MFKCuNzZBQjnSERklnTcGOnXnbTguCz46HULVY5fNPgmprt8+dZtBXy8kXSLCZfGWBTRVs6nBAsTImNcoT3mKpkXo5ZX+2ytn6enlyQZ4A0GGN5endxsO2DcExKcFR4TGV5an/G2RMDoibGTzVxXUO/T+Qzoigj7eTk1jPTmsaUqEjRNi0CgRAO51qaqsaLCGcMCIE1IJMIKx2t0zwzmTGbldzKyZ2bm5ThaUvLpSsTusctyncPRvuVxFpDOZ6icLQohp0BaZLR1C04Q5xIpGkR3iFV9OwojkKlXYab2+ztXibqx9TO0izmNMozNy1TV3Jt2lCX4QE0OFrqquHK7og7+5t0XIRyUJVzBsc2MK1FKcm0nDOtF5R4mragrGYYO6cpFpjCkuQdaqtJhMHUM1oHc2G4MbUII0LlxeBI2d9reXoyQyrL+mADHVnyLKWqKoyX6EVFXYyhG+NEhFcCIy2aBt1OSRYJpBGpP1h1cW00oggH5QZHyKwo0UajrSBbGSBlQlSVxB3J9vkTmJUOsXO0bYPFg4BZXSItWFMjY4+fFKwkJXnPI9I1vALvHddHzbPPm+G+EBwh3nP1csXsNkfuK2RhSKKY1reIxjMYDKgbjUxTXBPTtiW+aPDyYC9m61pM09A2Dcb7g8rvSLwUSB9B5KgiwycuXMG5W5tL3OSkDLz3XLs05eR6ShYJVHuQobbthNSA0o7BcJ3+cI3aW1TZEEtJKzRCKiIlwduDA6J1i8fT6faJJjFt2SD6A0SaspjvUKUOn8B00oRrTHDkeGN54uIzvOr0KWzUw2qNUIokSZnsjOimCbYqsVozrxc01hBFEXPjULGimk5xuiLtDambAmULmqZg6mAydmF5SnDkWOt56vKE9ZOeTCdELiGSCfuzMd4e3F/aVqN3bkCcHFQadVBrg3cG2zYoJ1FUlEpx+cYUFw6NDo4MwXS2oLaaLMrJUAej+tYw3NqmrRYHlXgjzyJucdogpUQ3mmY+x2OJE0VsNCvrkHZ7KBWjYkmNYzxql93AIPhTKRctT43HdDOD1znKdhBRB2UMVbFAAMIZ9HiKTaFuW6w/OIfMe0fbGLQ1gMO2Hi8FIoqIXAR4nt7Z58qVvVu+4u6mJ2UAzUKzMyvJuyXepBitSEWE0Z5u3EN1upRa46YTYlq8ipC+h/QSGSdoU9FUNcZoiCOsFMQra4xHV7H1DB9Zoiyh10kpmpZivAOEmbLgqJE8c+UG87pEZzXSe/LekGZSY+dzGt/FFBopPVJbyvkIYypWBz0W1tF4hW7mzOwC5RYoXVK6mmsLSTsPCVlwNO2NKmanhmy6FlOXzFsDpJjW0sQCFyfopsJVC5xwaOExKLASq1ti71GpZW5i9scNB/Wtwv0hOBrmszllWdLvdmjqmgiJ9DBY32LnqTkqFmhTk0QCU1U0RYF3YNuSyWSBSmLkIGKWesqBwooeznsW3lPUISkLjibn4KnLc15y3wpUgqqaI6oIn/WoFxMiL8G0VEWB8wqLZb4YY+oWbz2N8zilsBictshUoFSEExHXipr3f+zCUs7vuyVJmbeeqjI0A0UHgfOgsSRxStzfwApo5mO8cOgswscpaVwjoj7GGGpT0LYa58F5Q9UWtN7hk4RFs8CYmiyJMSpldzTH6lvRqiB4YXk8OzfG7E9n3KaGZDLHK0VdV0RZjDGWuilxkUK2mtQJynLGpb2rrA9WWO91uLY/xekZjVkgUdQCrk9cqEIaHFEOq+GJqxNOvCgmmU/RrUcmOdgYh0B2uojSUNclCIGPPEJYkCCVQ+YRdHNa42ibW1XYOAj+7DxQFS27iwlD2SOJDoYT4iTF+ZYkVlgZoWyBWcwQKGIZ0RQLlIEsilg0lss3WmITsb1S0jqDAxaNpQ3bPIKjynvG44q5qFnJIqT22LKgbCxCdnDOIa1De4ed19jEY4Wkqmq8d6hYIqzDYzHSgBEIJdmbWN7/8A7zyXIGLG5JUgaCSKVI6VksSkTUJc1yoqyHcQ2L6YLMO1qp6LgV8n4HkQ8xSuBtg0XglKJqD84iaK3DCwUyxsuUJE6w0jIVhhuXx7hQ4CM4kjx13XJhvMP5wRoIBU2DM5o0SZlPZxTFBJ3FtO2CphofrHeOJJeuPE03ixh2V7h8TeO8RyWaKpHMxzrsJQuOtBs7FY+fGPGiTheBxBVzlFY4Lyib+iABS2LaukJIMBhEBCKGJI3J8gTmFd59sh+Ew3KDo8DT1JonL19j41yXLF0jVhEqjrBFQRzHeC9R2iG8Z7Q3wbWKbq7o9rpYA86W1EawKKCuNVrX1E6yN0toqrCUNziaBGBqx5V5zdmNHOlamkWLEy1x6vAiPjgTPZa4xmO0pq4LRCzx3uGlRQpPnipkYllow2PXFzx+oaCtlndvuDUzZUBbejq9dZLME7kYV1vaRYmnJXMejGfQ36A3WCcbDDEkuMZinMZKqNqaWje0RmOcpcXTOoGPBCiPFrC7s6CY1ISbbXAUecAbz6UbE+YnWqCg1S2RUtDJqZsa7R2LcsJ0sU/blqAiiAV5P6YsF0zGBd1Bgq5ahILWRdg2TB0HR5uznqcvaTbPVsSVQCKRxuJRyCxDJDE4hW4KFJ4oEahEoRJJ3knp5AmqPKi85W/ZMaBB8MK4fH3KncfH9EVMP1tBWEerNbKf4+sGZT2yaEiMZrRoGE8kWVYwSBXDbkq3o0mdxVmJNS1Sdbk+qvDhaIjgKPOCS9cWvPRYQidNAIEzNXVVIGSOkxLTGPAOlUXEUmCzCOUFxpS42OEjgZAlT4xrPvFYCXa5s8e3aKbMUxeGSHYR4tlzyJQjHwxRRAhtyFRGnq9hpKCqKqL2YLTfAdo7arOgNjW11vg4opERRiq8yHFo5lXFU0/u4my4yARHmWdnZ8SkHmFdQmQlSZxTmi5lPcVECt0IVJSRph2wDb6FVkESe0zdMp3UpIkkjSS6dP/T7EAQHE3ee2bTlloOQc/BeaTwSJUQxRClCklOZ2WFplngvEY0lsh7ZE+gcP9T1e/QH4KjpShrLk93WYsy4ignFRJkjooyhK0xTYl1LU1pcC0YD6PCMy8M3Viy0hOs9mO6eYLwHuFidqeLZTcrCP7UDq7ijnrhaWVCJOzBaXsCjG3wXmOdwkqBc47ERjjfYp1BKUWcgo8cXhpaYi5emuCsX/rhELcoKYO6bpCA8hFKOFSvQ+0NSWVIpcIngkrPacsp3hiiSKHiGK2gdZbWaFqjUXmGiBJqayitgTxmUba878NPsntjdquaEwQ3zf7ujHE9x9QW12iUTPDWIyNJnA2oTI2KU/JuD9XMMboCI7CtA2tJY0ESe6T0iLBKK/g8YTUsTMTGsU2K/THGaOIkIR8OifMMrWtkZMkMWNPgWov3Bmst1tpnZ8mC4Ohx2vPM3pzbh1O6TRecBxmTxAmLGmzRUJeWujrYsy/xpMpjLSy0x0w8Ua3pdS29gaA3LBkvqrCsPTjyiqqlEhGZcFhdIVAIFeFFjRARUkY45zHPnk3m2wVSJTgVITxEAmYioaocHIIeccv2lNVVS9Masgi8i0GkOOvwEbTGYssFsa/wVQ3aorAYGUGcQifHRykiiTBeo6sZcy8onOPy09d55PFLjEdh1Cf4/DBbVDx1/TqnRYyZV2jboFvHYHUVGc+pTUN/ZZWYDiISxJ2UVieoRpGR4p0hjiUqSdFjHZKy4POAwDvPzn7J/efuIJUZTT1HG4+1mthHREoSdTJwCucyPA1tWSMRKCfBqoOSXUFwxAhgNm64Vk7IXYe+tkRxF6cc9aLC2QgpD4qACDxKQCQFjfc4f/D/cVehkgglDMK3VI0jnFwZHHVNa6k83NYb0HpFqyuscxgvkBJiJRAuwnqDEo44inEcDNYp6UhExrxuMOZw3BtuSVIm8DjrmRWG9eNdnIGmaehGCV56UBLhwbkEi8DH0JoalyR4BRaDMAcXnFZICqe5PFnwyGOXmUwWB0sWw5Ul+DzhjOPqXsFqL6MdT1nUNdp6Gi+IswShImTZ0rY7NO0cT4uXMXF3Dd8WCAFSScbecnmvWXZzguAFIADHaFzh04zh8Q623qJtK1pd4YQnimKshjhSJHGK8xlNlIOxaATX9spbfuZMELwQPB5dOa4UBUO/gxUVSuaIsWMyuo5XgiSKiIWj0+fgOUo5XAW2kfRzz7EtwfHjMavDiCiKaFtDKHgTHHW2cdy4UnPnizfo0EE2M7TRCG0R0iMwKOfwwiKVIo4lDoM0IJVBKsHVSYU3y27JgVtW6MNbz9UbI84e6xA7gZYCrUustkRAUZW4xRznD0ZurGshTrFEkOQUUcSsKbm6O+PG3oSibMMhoMHnrZ29gts7EfFKRmI6xF7hlEJ2crqDFayHej5mvHMVvEdEGT6J0F4w145pa3h6d8Z0HG64weeDg89xVWiK0tAf9JDSo1JIjULXhiRNaVSNrSuUyMjzGBFX7BcTnrw45omLoyW3IQj+9LyFaxdruqcc1s2QOqKeVdjWIZIUIx0q8vS6Chd5vAK8pzGeXEGCJ5eSXOaMrGdRWsIYRXDUeQ8fefQ6Z0+vc77ToxMPabVGNSWtbfG2Ic4SaD0Ih1KSSIiDZY2y4XoteOpSyUGpxuV3iFu2pww8i7KhdpJBFKGsRrcNriqRApyzuPjgQGmDpZIZ47ljVJYs2jlFaSirFrfkyihBcLN577l+bcKTseH0oEOcdBFxhIxS4qSL9QJjDEmeo9Iu06JmYQzj0rA7KpkVLcYQ+krwecQ/+1/HpC04nqwibIvXAilTYiIQniiReCNwyjPz8PjVio8/vsd43OLD0sXgCPN4moXnyYsNs0zS0eBqhzeerCPwEWghaRcSMPgYaCU4z3zuuXAR9pqSar9lx6Ts79Rh8WLwecAz36/55d/8GC+98xgnt3rkKURWILRC+hSZJqQqwrQLpPAkcUaJ4/cfnvHU9YpicXgqVAv/Wa7nEOLPXpNEKcWx02uc3B6Qy4OylJESiCTGxwl167h2dYeiaJhNCuqyxTr77IXjf/79t+5CEpa7BM/nhegTn54E4UgSwXovoZelpHHOYNCj289pvaQoKhSG0WTGzrSiLFuccVjvEc9+ZG/WDTf0ieD53Lw+8UmSwVrGi24/wcawR5wqROzQ2lJXHtNa9nZGFFXLdF6xWNR8ckHFzdw/E/pE8HxuRp8QgFTiYJWEByUP9lxGUpIJgQUQHmsdWgiEAGef3VZ5MGHwR/3hZhXnDX0ieD4vdJ/45ByXlBKlBEku6eaKVEpSKdg8PqDTAalaOmlMVQkeeWLOM1cr8P6WHZPy2fSJzzopC4IgCIIgCIIgCF54ctkBBEEQBEEQBEEQfCELSVkQBEEQBEEQBMEShaQsCIIgCIIgCIJgiUJSFgRBEARBEARBsEQhKQuCIAiCIAiCIFiikJQFQRAEQRAEQRAsUUjKgiAIgiAIgiAIligkZUEQBEEQBEEQBEsUkrIgCIIgCIIgCIIlCklZEARBEARBEATBEoWkLAiCIAiCIAiCYIlCUhYEQRAEQRAEQbBEISkLgiAIgiAIgiBYopCUBUEQBEEQBEEQLFFIyoIgCIIgCIIgCJbo0Cdl/+yf/TOEEFy4cGHZoQTBofD+97+fBx54gG63ixCCD3/4w8sOKQhuuR/5kR9BCMHe3t6yQwmCIAiCP7NDn5QFQfDHtNa86U1vYjQa8Q/+wT/gX/7Lf8mZM2eWHVYQBEGwZP/1v/5XhBCf9s9DDz207PCCIPgMomUH8Jn8xb/4F/mO7/gO0jRddihBsHRPPvkkFy9e5J/8k3/CX/krf2XZ4QRBEASHzA/8wA/wyle+8jlfO3/+/JKiCYLgs3XokzKlFEqpZYcRBIfCzs4OACsrK8sNJAiCIDiUHnzwQf78n//zyw4jCILP0aFfvhj2lAXBgbe85S18xVd8BQBvetObEELw2te+drlBBcGSTSYT3vKWt7CyssJwOOStb30rZVkuO6wgWKr5fI4xZtlhBMHSXblyhe/93u9le3ubNE255557+Kf/9J8uO6xP69DPlAVBcOD7vu/7OHnyJD/2Yz/2R8tTtre3lx1WECzVm9/8Zs6dO8eP//iP88EPfpCf//mfZ2tri5/8yZ9cdmhBsBRvfetbWSwWKKV48MEH+amf+ile8YpXLDusILjlbty4watf/WqEEHz/938/m5ub/MZv/AZ/+S//ZWazGX/jb/yNZYf4HCEpC4Ij4jWveQ1N0/BjP/ZjYXlKEDzrZS97Ge94xzv+6PX+/j7veMc7QlIWfMFJkoRv+7Zv4+u//uvZ2Njg4Ycf5qd/+qd58MEH+b3f+z1e9rKXLTvEILil/s7f+TtYa/noRz/K+vo6AG9729v4zu/8Tn7kR36E7/u+7yPP8yVH+ccO/fLFIAiCIHg+b3vb257z+sEHH2R/f5/ZbLakiIJgOR544AHe/e53873f+7288Y1v5Id/+Id56KGHEELwt//23152eEFwS3nvec973sMb3vAGvPfs7e390Z+v+ZqvYTqd8sEPfnDZYT5HmCkLgiAIjqzTp08/5/Xq6ioA4/GYwWCwjJCC4NA4f/483/RN38Qv/dIvYa0NhdOCLxi7u7tMJhN+7ud+jp/7uZ/7tN/zyeJph0VIyoIgCIIj6/keMr33tziSIDicTp06Rdu2FEURBiqCLxjOOQC++7u/m+/5nu/5tN9z33333cqQPqOQlAVBEARBEHyeeuqpp8iyjF6vt+xQguCW2dzcpN/vY63l9a9//bLD+ayEPWVBEARBEARH3O7u7qd87SMf+Qi/8iu/wld/9VcjZXjkC75wKKX4tm/7Nt7znvfwsY997FP+/tP1l2ULM2VBEARBEARH3Ld/+7eT5zkPPPAAW1tbPPzww/zcz/0cnU6Hn/iJn1h2eEFwy/3ET/wE/+W//Bde9apX8Vf/6l/l7rvvZjQa8cEPfpDf/u3fZjQaLTvE5whJWRAEQRAEwRH3zd/8zbzzne/k7//9v89sNmNzc5Nv/dZv5e/+3b/L+fPnlx1eENxy29vbvO997+NHf/RH+aVf+iV+9md/lvX1de65555DeWyK8GE3dBAEQRAEQRAEwdKEBcZBEARBEARBEARLFJKyIAiCIAiCIAiCJQpJWRAEQRAEQRAEwRKFpCwIgiAIgiAIgmCJQlIWBEEQBEEQBEGwRCEpC4IgCIIgCIIgWKKQlAVBEARBEARBECzRZ314tBDic3rjvJvxj//OD/KNd7+ctr+K3d3hh9/1z/lXv/rbcISORgvHuAXP53PtE5/z+wMr60P+1f/r/8FLN+7G5Ql2f5/fePJj/I2//w+p5g2eW//5DH0ieD43u08cVqFPBM9nGX1CAMdv2+In/tpf5Q65Ql3X3NAzfvo3f40PfuQTn/5nlERJibUW7/7sn+fQJ4Lnc9OfnYTgxOkt/o//7a18ycY5ZFGw8IYitezWC979n36P3/yt9/L1f+7V/O9v/jZWSdiZzaiqglbXXNM1/793/wYf/PBjL+jn+LN5r886KftcJWnMWprQTlqico5rBa968d28+zf+C1qbm/Vrg+DIk0IhI5BIsjQmLwS1nZDJlNZ5Xrx6jDMnt3nkkYvLDjUIgiC4BQQQZzEnt7dwznPlxg62/f+z9+fBtmX3Yd/3XcOeznjnN79+PY9oAI2BIEAQBEUSEsVIDE2RFGNFtuWKU+VUXOVUJc5/cVUqzl+Jy1FsuVKKrSiWRZmUqdjiBBOcQBAgiG7MPU+v33DnM+1xjfnjPBAkAYig0G8AuD9V3a+r+t7z7r519tnrt9ZvWK+l/uxSLwL3X77EthrhZYqRhujhzNbG+oX+xDdIYLQ55qf/6l/h0QvnefXaW/zir/8Op7PVN3nlXu/e9bW3ts41f+dv/Qjvnm6TekUrEkSak4rAVqb4ub/yIS5vjfn+y5cZdpJSKVoErVRYlbKpFT/1Vz/IjcNjbl4/5U7eB7ctKIsBytowk0sy5YhKcGnzDJPJkJOTxe36a3u971qC9W7lj/7VD/FzP/NTpIuOT332kzTGsDIrvLJYEZE+sLOxCfRBWa/X633vE+SDlH/v536aj73z3XR1y3/z+7/DL/3aJ4gu8A2LRgEXdrZJYiDG9f931uA6g4jiT2dYaMXP/LUf4Wfe/T4y63jn1gZphP/iF38F7/2dvMhe7y9IILVma2vK2bNbpJni4OYxo1HOpUlGW5ao6QCTRJAeSSATgp005SOP3U/zxk2azQswniKkR6qIRGJ94Oxkyg9++N380i/9NsE6wh26otsWlIUYKduGUzcjF4akyJnojDN7e5yeLPr9l17vz4gIrly+wP/pZ/82D5x9EBePuTK9QiwtZuCRpsHHSAiOYTEi/tktz16v1+t9z5EC3v3Ox/nRJ55i2CSIVc0z5y/yK1lG7ZtvjMmk4Mx0inIWLzqC7fCuo6rrb3jtjfGId52/RLK0GG/pmpqL4ynDQc5yVd2hK+z1/qIEw0nO3/rZn+BH3/sMuyIhV4qFKXn+5a+g9ku63FJsRJIspfMW7T3SObxO2J3ucCM7ZVXNGE0KkkTioyQQkFIRYsLj9+0x3RxyenjnDpJuW6OPru04XVXYtsZ2S8xqwcAErlw4c2sx2ev1/iQBXLlygWLpWb16zOqo5uiwxJ+URNPRBYcLnhAjO+NRfxf1er3eXwJRwEPnzyKWLaZc0ZoWYxoQ8ZvWqeRFxsXtbVoX6EyHjY6o4vrr/9RXCq5cOc9OntNZQ1e3dGVH15TEv6T1ob17nFj/kxUp/+bP/01+7vs/xANqh1wMIWo29ZAPPvw0smqpjk+wbYOIEa1SlFREATJqtM44c+UKy3qFC2F9EhZBAVpKdFSMZIYS6o5ufd+2kzJnPYeLFbE4D1Lg6QhW8dCZHZSS/bF4r/dNJEJSLUq8BR8Dx2W1riUYb6KTiI8CGyzjPEWI76qeOb1er9f71yCEYFoUiMYQgyNGx79qV25zMmGYptg8I1pPZx1N2+DDn153SQnPPPwgYwux64jOEkTgZFXTNfY2X1Wv9xclSHSKVJEn33k/P/T4Q2Q+0qpAkKCUQkqJQvPoe5/hhc9+junWBnk2QOcDXHTIJMMHiYsemReIPMV7hw8RazwhQJpoJJEuBFyIfEMh5m1024IyCSzamq4xTMYFUgsYFDxw4SJpqmmabx2UKaXYPbPFYw9dRiO4fnDCK6+9hXUOEQHE+jyfeCs/GojcypPuV6m9714iRFwXCDFgnKNpDHJ3CzEZIIUihIgmY3tjG6klwfabG71er/e9TArBKM9wdYXUGhcdUYZv2n1XCMWjjz7ImZ0tUp2jfEArz1EpKKuadaL8uq5sMCp48sJ5Emfw1hK8x3Y1145OsbYPynr3BiFgOB3z0Q+/i/e/8zHGmwNyDHJxiE9TBlmKTBICDhkEREk6GXHh/gscvfk6k8kOKh8TdEEMgig80RiEX290l3WDUBm2MeugyAtUiHTWU9c14pveabfHbQvKiIKjxZL8HWN0MWSgUkKecTm9yGQypmm6b/ptSZbwd/+Xf4N/92d/knMyQa0aZnXFP/3k7/P/+Mf/I9WqZu/yLj/3v/hxrmxtEFrDF158lV/+l7/PfFZB7Bepve9ek+kYZy1NqOmcx8dIHS1VtKTWEkKgFQmjvEAnCa4Pynq9Xu97mwAVA2hL1KCFZBgyUq35s1ViQgqeeOgSmRIo3yJdIIaWNnQcz8uvvyCRs3vbbGQDVo1BOgcEjGs4WM7vyriVXu+b2T27zf/uf/0zfOTiY2AhpIJW1nT5jBtvfpXtyQ5bZ+5nMN3Ce0traiKRvSv3cdNYZvMDppsjoi7wETrjiK1H+8AgGRK9wHiHN4aESBIE1gZymQF39qjn9jX6IHI4W1DngZHvsASUUGwWOefP7XJwcPyN3yQEH3rfE/z7H/0hdhcRNEijGLaan373BzgtK/7Fb36av/9/+Q/4/kceRXQCczrnJx57gg8//hT/8X/5j7l6db8/LOt9FxIgBDFEnLcoobDOItOElkDpOlInECFgQkArida3b0+l1+v1evcGKRWJBE+LUgohBcM0ZTQYMJ9XfG3RIxBkheahvW3y6NBEogyE2FF1NWVrbr1iREjBOx5+mEE2oG4DwnVEW7MyFUflqm8j1bsnSCH4yIef4X27F1BC44sBJJJUJOgso0hz3vzyc7SnJ5y58gTT8xcJeoRpVxgn2H74EY7fvM5otiDf1HRdB7XBd259iNMFmrKk6Qyxq0FGVGpoG4vpWkS8s7WVt68lfgxcu3bArC2ZKI0UkcxqRqnkkSuXeO7z3zjAUArFEw+fxxzOWA4i+WSCDAHnA9pFfvKZd/L42U2eJkNdW+Kzgrb2mM7zrovn+Y/+N3+X/+Q/+6+5fu2At2H2Ya932wkAKdjd2eL87jZnJmOy8YhRMkG5yOjkhLabU7QWhEbFSBAWokX0BWW9Xq/3PU8qQdTQWEOHxEUJ3rE9GXDtxtfDp0hkYzphZzREGYGSAhfXzUBKY26lJK4XmXmR8f53P814NMKESA3Us4br1YrjWUkfkvXuOgGjYcET952lXlYIr0hHAqUmJMkU4XMY5jzy9PuZ33iL5fFbqDwh3TmLTIZYGoiCwXTM/OSInaJAK4kMBtfWmNYi25rOdBwenlDkA7ywGJY4nXNQLjDmzqbx3tat9tl8yf5izva0QPmcRAYUiscfuoLWGue+PkRaCoHSsJ0mEANJokgyjYiBGDUiKC6LCUkQFJVFDAwOiKknCon2Ke8+d5a/9/M/wf/1P/vHtI351j9Yr3ePECieeuph/m//h/8tl23k9TdvYKSgCRavFHqSc/RGxdA5PB4VIWqF75NLer1e7y8FazyrukNsT0iHUzKVEtoVWxvDb6h3OX9hl5HUhMYRNHjhccZyXJV4v55ZFhGcObvLhekITMcgRkQmcZMB5Sxh9S3KS3q9O0lEwe75DYa2orxxDTcYk44WFNt7jPfOMhhtYOsVCs+Z+zPq1YJVt2RsCoRMiID3kE1GHDczDmdvkciU+Y1DulVLNB5lHTFVnB5eY2MwxCc5k8EQkpxoHPEOn/Dc1qCsaztev3nIpXQTPLjGkA6HnM+njKcjVquSx558mA9/8N2c2Z1wfPMm53JFnkSSYUIiAgJBkqcY09EOcvT2JmaoiViED8joyRKJ1BmiFTyxu8vDD93Pl7/0Yr9o7d3zdKb49/6Nf4MnBxdYvvQqsomYiUSFgBOBkEvKqqJuDVoKEqkQShCjQMq+ZXGv1+t9rxMChuMxo8EYLSFKjxGBve1thPp6Kb0QkskgR1iL8SAVeO9pneF48bWgbP16Tz/6EBMlkNYQfAuuQ2K5uVzhnO/XT727TgrB+fMTwskxJ+UJw+EGRbbElB0xgtrdo9jZQMcJ1fE+OnU0R4eIfM5gMiGGSCIlMmqmm1u8+JXnGA2GVIclzawlGkeiBaOdTZSE2f5NhpNdgnEUUTFNUhKt6cydO+S5rUFZDJFrh0e0u5eZTiYkG0OUzjivNnnH4/fz0BMP8R/8mz/DpvQIt0Q2lsXNU1I9RhUjTOgIsUPhCNqSD1Mevu99JNk29Zs3yTpH3TmC9mjt13mi85LL53f5ypdf+qbzO3q9e8n29iaP75ynOWy5eWNOFWvkcIiPERMDQUTqpqKrKjrnSIQgGU9ItaQocpaL8s//S3q9Xq/3Xc3hkMGikTgcWkTObk+RShJujRgSAranI7rW0lkIKJSEEDxNY/44I1FrxeNXLpD5iHQWGxwuBlrXcfX4tF879e4JOk+4vF1gVxVX3zpme2OXra0LtCLFSUk9P2VwNEBnArtaspovmc9OOTi6ysNPvxPpM2JtkFoTEZRNzenhdWIHZhkJrSEdZoROU0xGvPXCVVSToCYTQqpJBgVSqTtaX3lbgzIR4drBMfaJgEo0eVGQi4xEev5Xf/0jPHXlfoZvHOG0ItvZAgFbZ/dwIWJlQEwHjDbP0x0dE+Ylfu6IjcX6GX7u6AisupZaG3a29rB1wC5rzkyGCCH7Toy9e97mdIxc1pzaE05mp5TCMpw6cIag1Xr6g04ohlMwjtx5XOeQ3jEeDji42xfQ6/V6vdsq+MBsuSCOxhAVAolWkt3pgCxLcaZZfx2RYZaQpMNbMywVpikxbYf/E+Uik8mEB87sII3HG4tQitg1NK7j+HR5dy6y1/sz9s6POZNq7AlYr3jlpVe4cKVjZDvq8hSZKXItKDZylNaslg3V4oRZc8RkY5NBOoZFi2gti3aFrC0333qL0WhENJro/XrUVpOiZYEcjgi5pmxrxCoj6OSON7y5rUFZIDCflaTTIdkgQQVQiSe0LWd8xvGrR5x0gQzL5n33kQ2mpGIEOiemjkTkrA4j9TWPqzy2rAjdDNu6depionFa04w8s/kpA5UigI1iiFSCWyf1vd49a2d7E1PVVMbSth2d60i7gPIRZEBECSFBIhkMBwxDoHOGVblkMsoRQhJj/0bvfbf51qm3AtZb/sQ/no4e/9T/VUBY/5deDwvNBinDUY4EYhQ4Z1jMKoz1t16j3/nv3UvEra703977MhI5Pl3S7loSIjGRxEQzTnNGo4JqtQ7KlFLsjCYoF5AyQymoo6esF+tsolvOn9tmZC1t06HwCKEJzrOynmXV3o4L7vX+wranAzKX0Jl6vc4JntdefI1zl2uiiUx29hjEhMnGADkZUC9Lmq6krGpef/4FNooRzBwsHcZ5Ym6oVwKdtkih0VmO0JrOeNQoYft972Zzeol2/wB7eBPl4h0/Nb7tPbVPF0sWxuG6mi46MFCvZlRtjZMp2sPNo6t0rmO6dY5huone3ELUgsW1Oau2pfMdrmtoFwu6piIAuIDKE7b3zqKFZlGuSPZ2GGxNkKfHCHm7r6zX+86d3dxGGEf0khgjpuvo2g5vHYXTKOfWM2mSnMkgJxeQWUPZzUmk+LYf6r3eXSfWi0YpJQKB1hqlJMbYP37wSSkZjQoGeca5vT2KPEEpiRSSNNFMJmMGecZgkKIjXDx3jvFgQJZl5HlG7DrQkpWZ8+b+Ec9+5SU+++xLnBwvCaHfvOjdGwaDjNFwwGy+xFr35359DJE3949pHn0Q0TVoUoJQ5FFyfnuTg5unAGxvTnns8iUKLVEKYnQkRuEILJoVAFIKHr50jiSsh0g3jQNlsM6ytB1t1zdJ6919UkkeOLOJ7BzOVFjXkCQaa2sO33iLNE2JSuHlgGgN6bzGdR0tNXXXUr/wOnWWkzYZ2kqiSoiDiG8EdbUiSUb4pEALiXctI+lJixSVZ2zunKeylht+jg13NuPutgdlTdNwsDrmAZ1D3dEqyXxxSpd6ilFOSsa1ax31i19he3DKMN0ikdm6piZP8LleNzxA0FYVbV2SDlKCj2ReMFutGCYTVKq5dvoW+6cHKCFIUo3p/vwPu17vbhFCkGcJUmpA4WLEtObWCUDGIEvBwXQ0ZmM8YToZooKnXSyJ3vP0fRd5/LEHSFLJs196nS9+5VVs97WuWf2Umd7dl+cpjz70AE8+9AC7wwnnt3fZHI6QSNIsJc9TmrIGBEEGlJSMi5wsCPKoGGYZKtFYwEdPogUyCIy1GO8QaUJTt4iQYY8s3jgGZ/eY5ptsX97g8Qvn+LEPvIc/euFFfu8zz3P92hHOBqAP0Hp3nkCwd3aL/+jf+jtc2TzHb3/pD/mHv/wrVGX7r+ynK4D9oznzrqGtLdMgkVIgnODxB87zxeffJHjH3s4GW0kKvkXLQCCgpKfzgeNFt84k2p7w4Xe9kyIbolIBwwmzo33auuR4scS6ft3Uu5vWWRTjScG5PCGeznHVEmdavA+IGFk0gdmy4YFhiZpIhAXXWbx32NThnOf4+oxkYxMnHSJGZJpClyCMxzcS2xZMNs6gugHSVMSRQGQNSVtRqILi4hl+5+Xrfyrt90647UGZc4F5WVIWHSEI8iyl856qM2RCYkzAkvPiS1/k/PaMUbZJKodEJ5GjIaQpKk1wMtBWK+rljI29HSKKSIHOEzKfodOEhJRoHdIZEqFu96X1et8RIQWXLp1jsDlExpRRu83J8pRxkjBKR+SpIJEpMkRsVWG1WDf+WM7Jbct/+BM/zPDSDiLPOK6W/Pe//Vn+03/wz1kua/qArHc3CSDJE/6dn/qb/PiT72XaalQXkVmCTDQ+OqIUhNZiUeg0xWMIwUMliEEQUFiX0IgWHy0hBFq5bgBeLmYgNV2I5LogzxWzV1/m4uX7UTFFhYRMSlRISNKUj7373bz/ycf54suv8hu/93muXT0i+EgfnPXuKCF49+MP8XQ6YVQLfuKhd3HywzW/8Ksf/3NPzBaLkspHdsdTooUuOISS3L89YjTWLOaOMzsbFES0ABk9SIEk4nyFDwGE4J1PPsLlrT1014E3aCUYjQoW1TFvHc7wvn929O6er6WvX7rvDBuiYHmyz/G1krLusCHQBYGNEU2kOi7ZUCldrvB0CBGJ2YjNMxd447VPU69azDCSSoVqW1zXIX3ALiWTwTaDuEkqBiTFBrKwtKYj6AahBH5jwPNv3YQo1g0y7tBtcduDshgD124eUk8vIqLCC4cLgnlZEbMlYzliONllZVI+9/xrbG/kTIshw3RE0k1I0xyZaqwLuEVJW67IU01IU6IA1Sp0oxjoDTI15tzFixx1LyP+FTULvd69QACJBqcdKRpdaPJEsTsYMRxNEDLgssggyzDVilZ6pHcsbt7gyqNnOXvuHG6yi09zzjSKf+cHP8rxUcU/+Ef/Yr247fXuGsHFc7s8M93Evn7AUkjSKFBKkaaaiCEoQeMcK2fxKiEETwgB0zRkMkEFwXhjA4PHBwNIpE5p65LF0T4XH32UbDjGlYbm6ABbN6SDMS4InG0RwpNYgVAJ2MCeEHzwkUe4/+Ie/9OnnuX3P/0Spu1TtXp3iiAS8F1DtdgHJuh8zE89/V5e29/nDz77+W9ZvxKBumo4rVoeGkxJtSadbJFKxakpmQwHLBaGC+e2Ec6ihUQSCC4irCXYGu88SZbwkfe9m0mqkDElBolvahQBOci4MVv1ORa9uyoSQQjObI/Y3Nji7DO77J1fcfON11nt71N1HY13KB8pVzXNaIhUGTGTkOYUowuMNu9j59IRqxuvs6kTulSiB0N8miJTjV/MmeRD8kyTaEjznMHmhNXJWzSiJowky3qfBy9P8e4sV68dYs2dOTG77UEZEY5WK9rYoUMORAbZlPZgn5CuSDdy0o0xDz7zfj7/yd/lldeuM9SnbE4H7AwnpHmOlBITHcuTJePBmNVijpoMaUxLMihQbQDVkOcJg3yT3XMXkamkT+Hq3etMCHRBovFkOoFEEYzBrFZIIXB4IpZZOUMLS+ha9q+/wYWHt6hLiwgOEWtUnaDajh976l38043f5PR0Sf/e790tEZAhMr9+gBILRmkCSlEoCQSijDDQOOdZLhqsyghu3ZSjOZ1TpAVpdERTYcU6dVEHRRccx/tXmWxssVwtSauO6mSO6jq6tqKTBumXhNjSxYaQeKquwomIDw4lI2eLEX/tg+9kPB7yG5/4PG3VD8rt3QkCInz5tbe49p538JAQaC/ZyQb8vb/6MU5nc1545Y1vWicsAKIkG+SMR0PyGLGhWzc50JqtScb1fcnOaIgWABYsCAehbeiqDtt6Ll46w+PnzqKCBW9RLiCcB+8oreHGyaIvU+7ddVrAmZ1t0qRAOkU+leycu0COZLg4oWkr6sZQOc/xfEGWadJ8D6k3kX5E6gVPPPokz735OjYE4nRKsnU/g+EGSbOP918hLRTCRKSIyCQQo+DG/k3K0Qkb3Q67gzE/+45nKJ+CL9y8wae+/BKvvHGdrra3lla350a5/UEZcHh4gtOR8XiDrdGENBG8fu0NmpNTqiRjmG+wvbfNI+95hpc+69jfP+CVoyVbJyVn5PoDqQVmLvLUOY1YzvDVgmIwpduzqGWLDI4Yc4bDDe7bPs/P/+SP8g//ya9Q1y394rR3r7LGUi5rhNB466i7jqqr8dGRKI2xHSFY5geHZDHSnB5x/dpVLhzdx/D6KdPpiDRqurqiw2CWFVsb01tBWa935wkhkFJyfDrnpauvcX+nmBSCSarZHA+JgwyhBCIovIqc3LxJWQtiPkBJRXc6Z5gPUbZltVgQBynjyRg9nTI8c4bRfdu4aBFDTVSCye4uSYSpTmhTixIdSgsG+SbRdXhnWDUl3lmEBqElE13woUfvI00kv/obz1KVfWDWu93W65D9wwWfeOU1rjz0IGnrUSpwaTjm7/74x/hP/9l/x8HNk2/5/VIItHfIGElUIKIYJxk7wwFppji7uYUPgeANwlmIAmtrFoslbef46DseZUNEZPAIPDJGvPNEHzhaLFhVHeJfWd3W691eAhBSMs0GJHJdmmSagCQlipxoBKqJFBGcEpRlS5UsGCUjUjUh9x5lLJuTbUZ7u3hrSNQWaTpmkOR4ucWpLIjCEX3A1BVq0PLKl1+nPVjw0Lse49zOBcb5FGs8m87wzO4ZLv/wNgf1ii989XW+8OIbrGbVbenMeAeCMkFVNkx3ttme7jKSCRHHlfse4LO//9uMRkN0SMhUzt7uHv7xp4itw89OmN8qsFOAQ9IJWFULgrC41rH53rN0zYpcKmIY4YOgE45Mpnz44Ucpf6rmn/3/fptq2dz+y+z1/jWsZhVONTRJTlU1LGYzytWSmGV0iaJtWkzTMDs6IcszmtMjVtWKo9mC8dECYU8xIaC7jrQoiA6KIr3bl9X7S2oyGfJj3/cBvu/yQ0hvyNqW7NoJi8N9jpYztD5C6UjEo0cZDDUnx0sOD1dcfPBBokwpRmNG27sMVGC0NUZMh4jBANFEBnJAIJAMM0SqQGu8kAgZISjQkiAiqBx0QlJk5BI6mWDqJc7XhNaQSMUoLXjm/ktkfx1+9Te/zOy4Yp080y9Je7fDrfEOAT7xma/woUvbPMV03eApGJ48c4Z/92/9JH//H/0Ci0X5Dd/tY6Rqa4SwSBwETYIkE4LtYcpgWJAkkaUxeCxFNMQAq3ZFXbckWcZTD1xBOYOMChED0VnA463h5nyOs5E+w6h3N0VAJYo0WlzToaJmkA9Id88TG0N3fEgXAoRIpiVeRPYXNYPRgnPjCVo7VGiIVqJcwC8sOvOkY4tOLUWaMTuqGDY32bivoJGOq2/dxFZL3v/+72frzEXSQYEQCqhw1oOLDKLnkfEGD37w/XzoPe/gV//gWV748ut0neXtvF/uQFAW0aliOhowzhTKO6rlnHwwYOfifTRdR5Z1JEExlAnb58+B8YjnPsd+uVi3Ub51VGgjvLRs2astTz58PzHPaOsOYRfkSU5eKHS3/gXmTvGxx55gIDP+0T//DcqyA/o6m969I0Qw1lKMCwqZoXVGPpwym82JGxOUhXpVslrOubr/JsUkw8xLOut44cXX2D5zHyoU7L3jKXSqCLObpG3C9sa0f6727oqf/OiH+bkrzzCJmiRJSJIU+UCGtQ5rPUJCYypMEmhcw7KtGS2XPKQi9z/1ICqktF7RBIn3JYNcUlYtoo7kK0NeVphCoYuC6CUojUwyYqqIUWG9w4UOGQSpTyjGA2SmcELRmohXGdK1mNjhgCwd8vh9l5n81Jhf/60v8eZrBwS/rv3p9W6PyGpW8c+efYGL73sHqmrJtGITwUcfepTu53+S/9cv/DLLWf3HMygj6/EnN06XuAtnSLxBxIAWgTwYNjLJe9/1MGOdU81PUdITE7Hufn18QmUiZ89tc2lzRLARHy0qRHwwuNiwsiteP5gTY+gfG727TgCjbMh2tgMMaG2DWcyQnSEpBDpktM0608hFwTLCycExjwrBueWKRap5fX+fjVnFNB2SBIu2FmEMUUIp4Is330IeH5JoxWPn9njn972fnYsXEckQGyJNXULZ4qoVQVgkYKKkGORcyQb87R96H39wcZtf+40/omvevtrkO5K+uLE9ZVSk5CgiAl8azKok1TlltcQVHWmSkQbFSCT4vT0uXrhI+dKKOgZqAV0EKSKHMbAfYbsuMddf49x9D7G1vc1oMGCQFQwHGaSa0iS4yvDRJx7CYPivf+E3sV3fbat375BScO7CWQbTAaNOsXQemWSczE6RRYKOnrZacHx8wGFXs12fkigPwwEvXb/OY4s52xsXKKSmmMC8qTlzNuf+y7v87qfFre5yvd6d89TmlProGIkgzTKKNCV1YX16JRXohEGiKQaSDTXkjBpSNUNEnlNsXiRxKTqmpGlG25wg6gXKtfimRARL1BIZBbF2qPEAJQe4YLGNxDvAenLpEaJBmxVaKAQW1xo2ipxVTKljijAt2tYkwqIouLyh+akffz+fevZlnnv2FZqqbwDSu31c9Hz+S1f5+KVNPnruMqNBSjAVSen56MOPI39O8//55f+R/RvHf/w9McIbN06wTz1IHtZNnzobsC7wwSfew998+FHCsiUkCYlISdIU4Rzn03O8b3KBH7hygYFNsMGRJOCtJ0RHa2uOuwVvHs1vpWN9e88NIb82l73fAey9fQQglUKrDOU82A5tWkKzxIaKBs9hZ1hZTxfBAYFAMIEvXb3JH4l99mMkR/A+nXFmXJANNSLzKFGTJJq/9iM/yGhzl1AqGBaMRym+PCLpHFE5rI8426FFh5AS30q8N6ggEbIi+oSxhh984ALmBzp+/TefJYS35x64I0HZzsaUQRSkMiGKiBQJrq3AdVQnCyZK4zKBDJroLaFpGOYDhmlK2TV0UeDFukB8ECVvWfiDawf82GAKPuLKOVGmpIMAZYeNDd4ZIhoZBT/02CM899RrfO7Zl/si1t694VZzUKnAeUdrHbbriKHj4PiAYnODxLYIZ8mmI97z1JOoaEm9Y3LhEuXLr3J0dMKTD0mKdkZ33eNKwVAU/J2/9uM8/8o+n3n2i0Tfb0L07px2dYTtKiwZSmuCVvjgMc5CmpGMB0g0olEEAcFbwmoO+QQhMjqrMD6lJiWlxpqKaCqUWyLcEtKcPB+hE01wDlnVSA+JD1gbSJRet0UOkKkElhYnJUmWkCaa1CmC1Nh0gFcCZVpSaRkJz1QN2frAkzz64Dn+p098gWvXZsTQb+T13n4RaDrDL/3uCzz0s2fZ0Q3GRXzXIWvLB/YukPz0/4z/5//3l5iflkCACNf3j1l0Hd42qBiJasT25fs5O92laysaZ5FqRJYNKYoRO1vbXHhE80hT0pQrQtMQmxWmXmGbCik9rTO8sZhxuvjWo1S+1jYtCNjenvCBdz7Ok1cuc7Io+fhnnuPNawfftEFJr/evY7RRUAw0xkZ8Oefo5nWuXXuLo6MjVnXN0jvacOtz+db7TgKeyCGCCIyIHNgWTo+YREMWZzz8yCM8+ORTnH/6CUIxxhw0VPOKzjXMXUdbzYnG05oW03VUTYNtGrq2gVQyKTYQThBjINhInmg++NQjvPTaPq++dv1t2Zu4I0HZue0tNrMR2kjqVYnyoGRCjB7fVNRLhZ6kJCLFG4OoGnSaMMwL6BpSJCkKHwNewLs2N3lye4+dzR0SJFKBwBKVJyAILpB4wSDJaTEUTcdTD1zkuc+/hO8zGHv3CJ1oimJIaxwxCMp6ialWLJcLQqqxUlOMt7iUjwjFkMXqlGSkydWAdxab4AOdqdh//TVa59Gbe4g8Z2MV+E/+3t/j72//Iv/Db30K09m7fam9vyQ+df1NtrcyaFO81FBkZCojek80GmEHSKWQKiEqSbCOJCypTg5w0pLpbbRPGAiNMYYQLbkGNRiidKCQYp26VbUoGYhhXaMTrCO4ACiSLCPVCcEGXDHASUlTVtSZJuQjNBIVPCaRyHxADA2+M2ROcCaVDM9tc/4nf4BPfvFlPv3pF+naQJ8P3LsdTk9r/stf+UP+j3/rI1xSUK8sSndMd/b4wQefYP43a/7hP/1l2mbdiOZkueJm17DrA+NkysZwB+EldrUiRIFKCpRKyNICKRW2aog+EmUglRqZDIm6oJMFnb1J285Z2pbXDle07bdeHAUgHyT80Hue5Gc+8H4e2NxmqBOskLz78iX+z//NL3LzYP4nvrrX+9cTEWxtDMk7z8kbbxDKBpWNufLoO9i9v2O5mHN4dJ2ToyPqssLFQAsYATZCQmSTSBahEvCabZEHHbvHc37w8fdw3/n70XKEmm7TyRatMsp5yWkyxjanEEoas6JtWqpyhWkbpIRitLFOo/QNUivQCi004yTjA+96iDfevElw33n6720PyoQUXHjgAsJr6rJltapYlSVI0HmKTBJWrWM41URj6VYVdB7pNaNsSCJm6CjIo8IKx87WDh/94Ec4d+EiWaopTw9YXruOuK+gPD2mmS9wZYsejWB7g5BnBGMplPhaKN3r3X1RkOQpiVI4E5DWU5crmoMjzl84x+65M7iyJFiDNA6MIbcOjabIJYPJNsY5ru9fpx0MkSKgrGT30qOQJ2yPDP/7n/nrPHHlLP/4V36Xa9ePCdER4p0bgtj7y+cTz73J/qURD28XXBgVbFvNpiwY4hiiGekpOsvRCpRWCC1JEkkqA039FogZg5gSXVx/bouASBVZlpJJR7tqWTU1NY5VY2hLQ5IIslyRpIpBqjHZECUHZMU2i9kKpzWDnR0SLemcQ8qcbDgmz1Na1+KtwAWP8xXBRTISzueKH3vfo4xGKb/5ia9gasu3n9jV6317Ygy89uYp/9VvfY5//4ffzcAn5IMBOhjSruEnnn4H3jn+8S//Km3VcvnyOTa3zzNwkVE2RCfpOvsIkEKjlUTEiDYG7Syha1A6ASVBSVSe4pzDZwlpPiBES9etuH7aftM393qQr2I0Svm3f/zDfOzBhxgnI5IwwNaBtpoTjk9ubYj0d0fvOycQJFKSeMW5S/dRTHZp0iFWClZdS3bzKjLXpFFw7K4zbzpUFMgYUMBO/PpSX0dJIBJEIBeRxZtvUl19k4lWKC8ZpkOETjk8meHKDpHmdE1L2xpWizllsyTESJImZNbRdAadStJBjlIRIRKUjVzZHLK9NebocPEdX/9tD8qklOzmI+aLEjtvWJycMD89ZFUt6ZxFhshsNmdj6xzSRmJUKK3xVpHqggxJRwQR2djY4gd+8ENcuu8+BskQLSSDh/e48OQztKcHhK4l29yEosWGQCICXVuybGacLObE0A+U7t07lJIID11tyKJglA7Z2T3D0x/7GMenC0Q7J3QdudJU3bowW3jQUjCZDnGk1KtDjubHbKRjBiIwP54xzs8yKaaM25p/633fx8fe+zQf/9KL/MtP/hFf+NJLOOP6x2fvtjBd4POvlHzxtRIlQYhIkigyrdgYJUxHCRvTnLMbBblQaNYLUy1gul0w5IALwwFSC+bVCu8CWZOjTcLixoLnX7nJou3oiJx68FEwEmAVDBT8wLlNLp3dQA3HpNmC8dmLDLentKFDMmBvuIFT0NzqPKeVRIgMa2sC0HqHCIEkeEZS8KFHLpBlgV/9+Is0K4uIvr93em+jSIyWT3/+DXamBT/32ANs6j0yESAsGBrFX3/sYQY/Lfj81av8z3/g+9nROZkUZFqhpSSESPAOrdZDd6P3BG8IaQJerEdWB4kMCkRAhYCOIISkai1la1jU7bf8CYuh5u/+6A/wYxevMIoDggNTLrH1ikV7ym+88mWO5gv6oKz3thCwsVnQmpZZB9YkiKGDNCETkkExxo63WBWHpEWCbFt0jHjWwZhiHditE8/XvXQ1gjY4jk8Oee0Tv8fu/j5nv+/9NEsoZxXdyTFFTBjuXGB/3+DdDBcFQWrAYE2JaxXpoCDJEoQCnUqygUIEgSwNGxsFh/d+UCYYDAs205TqeMZydkKzXDI/usns5lWaVcmibVhYjz13mUQNCVEgpMfJjojFCcGJ8DxwZpu/8iM/xrmzuwzyMcPxFNs5ZJLSVS2TrT26esHpyRFdIhFK03hLVc85rY959cYBsT9V791DpBAMnGJrus3WYICd1OxePMfo0jnmJzPmXYMgkKQ5iYsgNNEHpBIkCQxHA4KdMDs6xaxqdpzmzHCKOjzGN4qYKIrxLg8MFf/2Ry/wU+//Pv6rX/tN/vNf+B8wpk9p7N0O60dhCBBCRADGBiosp8uvL/zE17IBxfoBKgCUQCkoCg0STOsIwMUgeToKJs6jImzL9YN2S8ApARvBuMgND3+wrNm6ssnezphxPiZS064iSTFChwTaCpEX5InCCkNrLMo7CqGISmMjSCLKOzKhyUXK+y9dQvyo4tc/8VXq2fpEoF9+9t4e61p57wK/8amXefT+HS6oCu0j0URUklOEyE88/S5+/Jn3I9sOETwCSCQoKYAA3hNcCwiiX2dDWBVJUIQIItHgPMEGYggEG9AyQaoUC3T2m6cQSa346+9/ho/unKNoBMK0eOewzrHqFnzq+E1++4tvEvoMpN7bRcKoEDR2hQoK0ZZkiUQlA5xxaDyykBTbQ9IyY+wdnbG42uNujTRRSCQRR0Qi0BHq6Hnl4AZpa3GnCw5feZ3RQ5dxaGIsmAymnF67RnN6gu/M+iEVLLZZkGuB6zLINKEMBLdkKTzpJCXPR7R1zXiUI8R3Xlp524OyjemQ7Uyxu7HD7uWzdKsVq+UlFqdXOLy5TzGfMzCWxlqS4LDe4jT48QiTZOQyRYwzfuhHfoT7rtzPYDRGIkmzIToTNI2hGE85OLhO8B3F5hbRlVjsuoHCyYLDowNev3ZCjP0nR+/eIInsndlm78weG2rKKCj07hCXRlobwDS4rkFmGQkK7SVBpnhvAE9dLtEiIRUKERPmzRHWBOqVYby5RTIp2Dq7zVaaMpqMybRg0kZ++h3v43c/9yWe/erLd/tX0Pue9KeT/L7V8+mPH1zxT4Q4DrwD060/pwWwtZ3zw7ub7IZ83WUgGmSiEDrBGcvFusNVDU3V0DhHPWu58fqM7emQVkVEGKHJ1yleKQQcOlqMMSADIlq8ccToEFGQa0FoawokmbP4W2ve9+xtoX7sCX7t419lddp9/Yfv9b4jX9spjpjW8s9/+3ne87MXecAFlM+QdoXwAqES0BblIVECGSIyCoIPRO/g1nNBRIF3ASEEsY04maBSgXCR4DyytUTncQJM167TDmW6brn/Tdx/6Sw//vAjDJ1ABI8jYK3F+IrjuOBXn3+dVWno74Xe20VEUDHQtjNyJehCJFYB5RtCkiJEJMtS0kHGcHeXYjLl6OoNEuFRUuA9WLF+R4tbNWbq1mtfa2u0PKZ1FVNRMV8dk29soJIh+4sVdXQ00dJ2DcdH+8yOTolCoHSC1CUhVRRSsjkeMjmzgUoVi66k1Y6q++YpwH9RtzUoEwQ2d6fsbe2xdf4KerqFa2vOHB/TnJ6wc+4Cmyczbh4dc/rWPgkJRkayjS20GCAvKeYnC37w8fu4ePYMWmvSvEClObGDJMkwytPZjvGZM5wc3+S0aXDR0pgVzeqEZXXCVbNisfzWx/O93p0WBZy/cJ7poCCx0C6XyFShkjGr2SldtVqvUMnWnX6CIwSLEIEYA955yuMZaTpkNJjQNiuWZo5XKU0Xydox7kTinKOalQy0xi9XmMWMvenkbl9+r/fnisB0lLO7M2aYDIlunZqFStDjCUJrlA+I1mLrJd3xTZr9I7qbMw62Us48qBiMhiSyhRDWLcBFipD+Vq0MBLMenivxDOO6WZSXEE1EaIGSnqGQCJHynnN78DHBr3z8K5TH/UK09/YKRF5//Zh/8tmv8B9+8DEmQuIbj0zHAIjg1rVjRNStVogxBIKzROGI0aOkBjzWeWzsKPLRuvuBjYgA3lps8HQxUlYrVssFzhuklt/w82it+NF3PsoZQCmBiAHnPd43rMKKz5zc4JXrMySib+3Re1tJKYlE2naJiIHAlDxP8cET/bqxU5JknL18hdVqwcnpnG2dEJ2hWrVU67c8GQJFRN3KxqhD5MWyZGZazmGZrHI4PSJKibOBLnjKpqGuKqQITAYZ4+kOm2fOkO9sosc5VXnMxmSEyjXYjtbOaVzk6Gj1tjwRbvtJ2WgywhiHrVtUEREiI000IlVsb4xo2paTo8hqdsz2zgglU4bDCViBGBVsbk947zufJh+N0VlKxEPweOcxnSGkYGyLWzmKYki9KjEEGu8wwdKaltdOVnjXP0B795YrF88x8gkiSFrnMU1NbBvm8wWmWuKDRRDXp2PRI5FY59epYUJQNqckizkMRgyyKRFPJ1YEG3G1RUZHV82RnUO2LWnwHOqKw/np3b70Xu/bopRgcyNjMlxnTayqBodEFJpsMFnXhHmPsGM4X9DuCq69fMKrLx0x2pgyGrl1ECY80rcI73HOI9Mc6S25cOtjO+sQsqNtWrA5ySgligDRoaJHqQRhA+/e3cZ+5BF+/eMv0Cxtn8jYe9vEGPHe8/Hf/yrvun+Dv3LmAiRjknS4HpIuPDhL8B4lNDEEvLf4YHHBIbXAB0tlDegUmeZYLDIGvO2IwWKMo4kBKzWlCNQByramqTv+9CaDYDQueMfuBjo4BApCIHhLF0sOY8VvffU61ri79evqfY+KQAwOkkgI4HwkDBSNNOQR6nJBvVpy8cFHOK2WeBkYbgwZJAWL0xOCCqg20jSOgRagFYnWyDTBWkFZ1ZyaQHW4YKArkAIRHIR1qmOiFdPxkNHmJpPz58knE2zTMBkN0NsTRjtjlofX8LMTfJ6wjC2vHa+Yn67Th7/TzbrbHpR1xjKrS/bmC5KQIfKcGAQRTYhqvXtTNwxHQ6xtGORjchnx0eGxPPz0I2zu7CJ1ispydJJhW09aFDTVEtd22K7B1JZAIE0l5XxBNCVtV7Gg4WjeIPqmc717SJKlPH32EuOgkVFihMJ5T71sqFcLbNOiRYJmvRuqlMbQUoxSUALnLFErFidHqNUxXmdErQk4uqaGKLGtQckEosWcniKD5TT3nC5Xd/vye71vg2RWWtw05WymiUFiQoqQEpVIBllYt8sXEe8lvtjg9GiD/eUhTQe//pnX+X6V8cSVHVLhCbYjhASRjlFCUKiII+CMJXQtbb1iMt0km2aYZrWuu1QaL1JSIYlynT7zfefPs/pww+/+1uuYul+U9t5ebWX4B7/8HHs/P+WdO1uouK4/FutRZXgh8cFB9CAsUjmMq2naQJAZxWBMqgui9zjbIrxhWdUYlaCHG+hsgLMdpltS2paqWRL/zNtYAPftbDKynig7dJIiBPjgaJXn+cWc6wfLu/Hr6f0l4GIk+ohSGYlO8dagtaDzHVW94spjjzCvGsajCeV8n80zWwg0i3pOnuSIuUGHyMZ0RDLMkFEj8gFd68iLgtA2+HodFySpQqmEYaLJ8gzSBJUPSIcTkqQgHYyYbu1gupLZ9TdQwHBzip6c5fD4GvNW8vkvH946+PnOo4zbFpR9LUNZJwl107BMVuSqIEs1LkpsEESpIVGMtzfoJJy8fI1NZxAq4Fxkf/9Nnvmh70PmOSrNMQF806KlYNVZvJRUixaRJPg8UDctwkGRDnDNEqkEMys5PW36Hc3ePUMAG5sb3Ld3FmE9WIcUIIWCGHCuQyrIZIoIERM9NloGG2MGxYAoAraqkN4h84SubcgnYzbOX8YtG+azGxxef4WhHjI8t0c5n+F8i0okM+FZVM3d/hX0et+GwOlRwz957i1+9n0XuTLQ5MqSxCGFtmSZZVAUaJ2yf+2AV7/0GjdeP0LKlCzxrGrHJz/5AoW/j4cfO4vMMlAWYRxKDVFJjogO161QeM6eHSFCTVfdIHUZeZR0GMhHEBXEghg9soh85P4rdCvLH3z6Ks7c7d9T73tJYJ0K9RtfvcZjHzlL7nN0iOADArDWgQiE0OGDoWlrOpmghlOKNCUNEuEtCEtIPctFRSUz8s0LRJ1QtnMODo5pO8/k7Fm6wjOdXGOxrP/4Z0hTzV955p0MxIA6OmT05Go9NLeNjudPFnjXd7Puvf2ECHTSIIQlekvnFqTJJpnMmB8eceG+h3FaIbVE64TgHNs7mxwfnDDMc1wnsE3HzvYeKs/RxTqtUaYSKQeoVBPsgDBaIkILOkFnQ5LJkDRJmQzG6GKAShKih6qdUbeOJM8pNiZILYlAuzhlFit+90tvcXpa/7nX9e26bUHZ+iAw0nUGBjkh03QyomQg+EiytYvwDUl1zHg6olzVjC+e5Qu/93tkncF6z1MfeA/D7Q2ciGSphijRKsFax6qp8T4SU01ranSWoFVKXS6xLqLSAuuPOSorbNvvZvbuHRHY2phQSEnVdoS2w1QVrW3pugbfdVjZEaInVRMG4w3SrEAhkAi88+hsCMGzef4+BqMhPgZWVUsIJUVWMJpugIDjo2t4a0kGKTGVrKKj7fqGN73vDiF6vvz8Ea+8MePixYKdSUaK5snBgAf1NsEG5HBEMtjg/md+lMe/f4CoGqrX3+Dai88xOznijc+8QhJLLjx6P8VwiAgG2QRkMGQS8olG6ojpFhhjkDKQpQapBFqAFeBVQaFz8ArtwGebfOix+zheNrz4xcO7/WvqfU8RhBD5wy++wvPvvp93bmwRfYcIjkgHzuIk+NBhfSAZbiKjxgnJuiBSEFWkNYbORxhuU4gc5zyldUSVkY03EH5F1hrOTnfZ3hhx9dopsG6r//CDl3nvhUsMbMCamtJUCAEmGpai4+r1JX3Lxd7tIAIcLTvaTUhag0YT7ILF4ZLt3QuINKUtK4bjCVVdMRqN8KGlSFPcQGOaej3nTGmEEugkIcpIIhU6TREJxIFExC00AqInzzNUUSDRmCBxjQVnSAeSNM2I5PgY6FZL0JJEw0m7z7M3Z1y9unhb0/Bub/qigM4YhF7PkwlSQYTh1gZOSbrDhiwqXNOxfWYPka8Yb20wmgxQWnHlA+9Gj8ZIVWC6lmIwYNmuEDJFFWPK2SnW1vhg8W1FlmtkoolW0HQdrTdcPV71rfB795ydzSmxcZRti+0a2mZJW69Y1ksWqzkqHTDZ2WO6sfv1VvjWU+xskg82KYoRpl1Qnx6RGEMhMkTi0NMRHo9cVnR1jVY52faYIB3WWlpr8f3DtPddJMZI21heednyCoIsT/jBv/0Bzk8eJMQACWRKk+cjVJogmpZRkZAUC7Zu1BhhuHq45Pee/wLve+/9PHrfiCIRCFWQT4fE4GnbmtBFpEzxrqPuTolZROYFMYLzgkggiSkiFLRScy7d4sNPXWL/Zp/G1Xs7rVt+HhyVXC/h6bFFdoagwIiIcZHOO2Kq15sMUWGNI0ZJjAETPKWzyGyMysbImNKZms62jKdbDNIhYtzR5Scs9q+x2l/w7osX+fIL17DOo5Tgh9/1BDtphtQRlQhMAvN2ztKX7PuW2coQ+uyj3m3gI1x/c0V1acqGyvDO08zn7O3dTzGa0LQVwStSlVK2+2itiZXg7N55SNbZeavOk48y1CAHpbGtJR8UxGxMrFZE7dAigQghWJQQZDpHZgU6ySjyDJlkeBEQ0tN0LShBojMQjtaseH5p+dyXjvH27b0PbmP6YoQoic6Dt0hhyTQo6whpIJQGsegwy4rtrW2MzrFdx3s/9D6Ge2cBx2BjA9c2FFsbiERi2o6sKDhZrKjKE7RSmOBw3iIELOsKlCBqj4ktc1NysmjehtK7Xu/tNS4KtPfkxZB0lKMGOboaI9opxd5ZdJqhlCZBIrVGFZrN7V1knuNMRPqA9oHpMMf4jugigoitSwItu5cvE4SiaVaU9THWWZwIzOsO+y1m0vR696z4tT8iWaaY+JKsPSEpcqqmpg2eUKVkSUYiIjkVe2dyCj2knMPnnqtpref3fuNLfHU65KEHt3nknWfYTT2DImGapxgJy8bRdZH5rKMxNV7XpJOAzAOxbogxJyYRm6Rk6YjLw20eeGj3rv5qet9r1rvI0QfKeYXbLOmCwosUsiFprtDBEhUgBK5zoCUx0dRthdaabOMcUecILzFNS207huMN0ihQdUURNIPRDmK3xXcdD/iCJx84wxdfvsn25oR3nTtPKgWBAKlEqgQnU4zTvPDSnNWy4e1oatDrfQMB5dxwbCp2rSQ2ERUh0SlNVRG0ZDLdwjQdqY/ULrJ79jKmKtGkTLfOIk1EdwIpJPlkhBskJOn6xGwoM4gFQqXIRKNSRSo0iZI4oZFJRhDrmWcyKqQSDAY5IgaiitS24Y1mxqe+cI26fPvnvd7G9MX1nIC6bOisQQRPt1ySjBXp1gZyscJVczbPn2c4GnD96lucuo4HH30UOdigaZbowYCqKunaClVs4ISiPZ6TZAlKBE6PT3EqEtW6e1aSSmxrCb4mRMdRZamWtv/Y6N1bBFy6eJ6drW0mk3MEqWiritXyhGyZYazBh4AUAgIMNjfI0pRxMSAEQUgEpq0YppDqnLJpqUMg0TkayWAwwmiNaR0igtYZInaE6PAhfsfDDXu9O+1rb1kBNJ3hwNU8rfbRYkznWiKKXDRMkUxGKdNzCdXNCMsRb5w0ZKlgYytBosB33Ny/yetv3OTyQzl7ZyZc2trlzOVzbG1t4nWLdor50QGvv3gDOegYbu0hSBGZQw8CWTogSVNOOsH8pE+P7739IoFZVVEh0dMd0jRH+ADCYQEXPaDQeYp1Fisk+XSXRAsMmug9pq1ou47RYIB2FtmU+NbS2YggY5QOadKCeFry5M6Yl28c8eCFMwxvDaRWKoKM62eHjCxj5ItXTwnh1uT3Xu/tFsE2jhsLw5VxSZqOGOXblLYlT3IG6YRCQVVXpIlkFIcEB860DFLNZOMMA59gTcuiWiEywXCySZbmtHWJlBBCSjrICQQ0en1fKUmRZSRZhlARD/jgkUlCRODsitaXHHULfufLN5id3J7a/NuavhiJlKuKWbmiFBVJqtjbO4+rW3COjYcvw3BCc+0G2jo2RgMmkw2cHmBdg1IJ4+keB4fHDIKitZYoPYvZjK41qDylbSu8szjnoPOkiSRES9PV3Dit8V2fu9i796SJRkiNEurWDA1BSFMY5sQWsJY0K8iLIVJG6AzJJIXhCBss8rRkjEQ6MFphvCDJRrhhSYUjzQsyKSiDJkgwwtFFRzHIkFISfH9f9L77RMC2nv/+D1/g/h9/lMcSz2ahUCqQ5JGNLGc6Ah9q5icnXFstEPeN2NKRsZriRUrIA8VGgpYKYzq6ZMKbxx2vvvwlti8UnHlwm3yYY45SRD7Foak6h85yIimmNSwXDS+9sc+Lr91gMe8b5/RugwirukMNp8g0JeCRKhBDBL8eiyK0xtiASAvGwyFdvUSFCK4FleBtTTEokBFkcOh0gIgOa5Z0s31c1dBWJYVQnFWan/jge/jY0+9EVx0uyUlkRCkQPhBE5Pp8wY1rK0QU/WZ37zYRxCC4eWqpNxJk4rGhJbE5SZBgDDYs0S5QdoY8S/FYgnVcuvgIrQ0ku5KyqfCFQnmPcA1RGJROEEpgrUXqHJ0OUAK8cVjXETuDjAlITxTroyXrJC5YfKxZ2VN+/5WbXH1tedvKom5zS/yANY5V19FswvnxENe1KJ0iL5zH5QlhuUJ0hjRVnNnbRUsJChItbg3MFQw3Rpwe3aQYTCkbg8pSQutoqhIfLda3RK0IMYJpQHZUruHwpCL2BWW9e5CIgi54TOdItCIKEEqRCokXgrwYoHUO3uPbio29CySDEWI4gtUhg4EitxEvJMV4hFMGHzMG03PUi0PSmOF9xTBRCFGwapYELxmPBqRpQtv0u/u9704xwmuvnPIf/+IX+bH3X+Dp82MGUfKQHtPeOOEgODrf4JRj8ug5tEgJxYSh38R0kTgUNLFGJTmjicYKKHaGjPYUOjWcLhquHc85OClJN8/QLCukTHAa9mdznnvpBm8dnNI1pq9X7t1WTgi0EiA8AZCI9b9VglYSFwUyV5BAaCoSHxA6RYpIZ2vSJEEETYiBaCJReHQAKSAfT/F5Ttmt6HzLhfEZfuTpZ0i0xokO51p0piGCBGrv+MpbBzTN25+y1et9XYQoONpvOHxCMa0lVRPIRUas56hiRNeAlhJbNuT5kM53JGnBcLhJKCtciKSpIXcp+SClq1fIEJAq4GNAS4eigygRSqG0QCc5Wgq8N0TlESIQXMQHQRcMXSz5zP6CL3zhBO9u3wf/bQ7KoGsNZd3iMbRNjVUDVAFeKELjUY3DdpatzU06a5BJgkwkWZ5Rx4RqWUGWUAwnHB8do5SknNVEqUlSiasMvm0woUEN8/Vf2jbMm5bZvEMgif28+d49JgAmeDpnUElBEAKkxItInmcED6lUxGCQW1tMzpwjZgLpV2SyI5EemaSIYc6kGOFVzWLlSEdbiHJJ9J5xUVCWHhmg0CmNS8lxKNHfD73vbjFGjq5X/JN/8TK/oAVawff9wHn+xk7GO85uw6Ag0RmjmJFFixQpI7lJWzoaoaFJCUGgdIaOGnzCxs4EKUo+9ck3uHq8os4jG0VBOUp46+SU1w9WXL+2wHYe0Q9Z6d0BddsQpSDEiBICISVSroMsQSDRGi8FzrV401Jk2bpwJAai82g5BCQBCTJBq4RRnjHaPkOaFNT1jJinnH3gQTIv8VWF3pighhlNafGACw4bBTNT8/ybq76MrHfbRQLVUcebpyPOJguKMKRqjskESA1SJKyqFhRYX9EZw9kL9xGlQgpBIhS6g7gyiGlKURSUy1PSgSTTChAoWnT0eJMQhMJHSec6nK2IPiIICBmIEjrf8dz+CZ/+w32sub3rp9selDnrOFouKcuaRbZkkk1InSdWHVIEwqoCERhvbOOO9lEJdMISVEbXQescXbUgBslkOGA2O8E5R9WuiHVJPhqAazFuSQwrlBAQGm6sVtRVX0/WuzfFAD5AiOC8RymJ9gqlNN5alFIoCS54JhtThIok0kFZo51BygwvM2JaILxnMEio2gVtZ9FZjg4dq4N92q6hNS02dighccbj+7ui9z0gEokhEgxYBL/7iWu8sFewuXlKSDx7uzl/472XeGxaMFaRM6OCZVnRdCl5mRG9IleCTGqGmUblnj/6wot86bV9/Jkpb/mG8toh19+sWc2rW6dika//u9e7vdq2xYiODIXWGRFFFBERgRiR0iOFJHiB1BkeQQwaHyyJ1Lc2pBVKKYZZTiE1sXNUqwZDS3At26MNvA9YD20CaI1pPaQpxrYEKSlD4NppyfFJ3bf36N0R0UVe/kLDUx8pGAWHjB3et9iuIhtOaW3NeHcPpz3jYrDuEtpUqOCwpkPJSK4lWmi8UAzG23RdSabVegi7qcALhM5wMdLZSGdbfDAMRILUmhA9bVfz7HzFJz53QFfd/g3t2x6UhRC5eXDK/FLD0Gs284o0KRlEScBhmwa9OSUOC9TJEQnQLRtslJjGIkQCesji9ICurRlNJgw6hzCOLhEcv/YyozMbJFJRNiuksNhQcf140deT9e5ZIaxzmK2ypFojRMBbS7AWZwxSKZyzFKMBg+GIoCE2K4SpEarACGgri2ohRoXtAlpleCB4ydHNG9C1zA/38QKYaHxieWn/CNv26Se97zWR4OFgv+Fgv0VEwSui5tk/mnH5gQEfec853v+AZKeAURbYHQ5Qfj2wfZRJ0szwVrniD07mPJtJlscL5gcNvguEKOmXob27YVV3tMEykZEQAkiJkhIRIgJBjOuuu0Lodb2ZAh8ELgRSmSLQ+CjAeXzX0ERIAsgQ8TGsX0dJ9LBAJgW+LbC2Qxae6AMipHjR0TYdrx6eYtp+S69355QHHS+UY87mhmgcNjpSBK5tkDoSoyfRijRLUErRhAYpHUEEpJIkqSYRnqIYUrmUYZLSzY5IB+t6TJ1KVC4RnYFg0DLSenCxIY0Qg+KPDk/53S/M6ZaRO/EcuO1BGREW85pFWzMWkXrYMKhrUqFwwWCEYzTeIIgEmeeoPMef1njbgTHgAyoKdD6kNQ2HN15Fqcig2ECrIfHiRW5efZnJ3iaaSNctaGLHyYntn6O9e5aPHoIjRod3Hd5ZuqqmWZUorQhEJDDZ3CSGgKrniK4hOoF1EasTvIJ61RGlxDYdJ7MFtTWUrsamGfOTQ2IGnTfYYDkqVzz/+nUI/V5n73tUBAiEdesc6jm88NySl7604L/dTtjdybj//Ij3Pj7mHSPBg8OztDHhiyeW//uvfJnPvTDHNmFdnxy51UM40Lf/7t15gtmiog6GGAJCgZISBAgpiF4ixbrKTMmI9wKiBCmRQiNVSowC4QMiUVgZEUEghCbNRyRSolifOEsfMSpZb+rlA2LoUEHhywVdt6BslrxxNEfE/i7o3Tk+OF758oqnf3CTs84QxArrI/NZw8bOHsE2SJEx3JhS10sg4rwjRA8ikmYZ+IiIDp14nIkMt3ZxbkWw683pGAOp0iS5oHMNMTY4EWmi49n9lt959pR2defGCN3+oAy4ceMQGx1BRGrT4IKji4HYGXSqwARCMOhOEAcpEoVt63VLcBfWUXHwIDPiaIfZ0VVuXn2D7a0thpNdzt53H6+//hWKgUZEOPWWctmfBvTuURGqrsMYg1E1mQj4pqUtS9IiQwDCe/JBRpJpiJ7YNBix3gE1dUPjK4piTG09q8UC31kq2zBfzTmaXUeKQBxJqqqjjjXH5YpPXt9nsVi3D+/1vhd9vdLrT4x+iBFvYbFvWOwbXv1Kye/8/hHv+cCUn38qsjoS/L8/cYNXD8t1Z7s/84p/+s9e706JrJY187bm0mBCjI7gJdzqfChEghASgkUIgUbjvcBFR/SBIMERkEEggyBRCWmakLAO7DzgYlzXMkdH2zS0wuCtQdgGHVYYs6IpZyzaiqOjCtF3tundQTFKTt9q+fy+44c2JIlNSEgYZB66DkXGMB8TuhVdWZLKAdE6lBQ4ASrJ1qfJiUTaDi1YB2vDERhH187BBnQSQQWijCSZoBOGP3y95Xe+OKMr4x0d/nAHgjLB7HTF0XzJ3uaQ0lR07YpUpSSJRskEv/REVyPQRK/QCIJ1610b68B6pK3RtiV2JVIoyHJu3HiN8fKAydZZzp27zNHBq2jlmOGxpp+h0bt33Tw6pPWOGALGdETvGW5vEL3B1zVawtZ0jCQQg8W5QB08Oh9SliXLZcXNo2O0TmhMx3wxpws1xlhUkjOvDoCOKqw4tSd8ev+EV97qbi1U++HRvb+8YozYyvGZ357xhc8s8S5gukDsB/j17jFN1TKvDN3AI61DIlBKIaQgqEDwjugdyAQhBIRAZ2oEAWM7UAIpFQmQ4BAh4F1EeIVXEuM9zoPxDhc8XegIpiNVFt+cEFyJixVHTUm56vonR+8Oi3gHz39+yTt+bIeNYPCuI0dRiGQ9Ly9G2tMZ2kOeOzphsWJdsO+dRwuJ0hEtJcYbpPaoJAGR0BmBsBa0QoWIUg7jBb99reJTzy1wTbzjORJ3ICiLdLXl6v5NHt48Q2ssXWvJMkM62CCqBE/EdAFdpDjjcFEhpKKzDcY6rG2wbYVra4QzQEuSSZhus1qdYMwbDDZ2GAwGmFBysO8Qrn/A9u5dp/MFnbc0qwaVpIyKEUFBZ1oIkcF4iESCj5hocDFSLytM2eBdQmc9pfWU8znBO2pT01RL2rIE4eiocbQsaXhhOeO1aw2xPzzu9YD1Qzb6QFOu6wT6p0XvXuSd4+bxDHHmDNFLhBDrDKKoiD4SFEixnnO5Ph0TKCmJIcEJgSJCDIToMSEgpEB7j0VBXG9cex8wxiFEJMQOW88JqSW6EhsqvDC8ejCj6zzr5vj9aVnvTll/PpfHHdc6wVNDQdZ5CimxtkJLiabBtTXZYEzTzdYpvQ4SkdLJSCBgfMAJR5Rm3QzEKESqSYscskB0lhAd0re8Wgee/XKJbe5MDdmfdUfSF2MIvPDiTT7wwAO0HpZy3a44SQqSoUYliqgSbGtoY8eyXFCXSzosxnqsbXHBEoRHakmhxugkQeuUJJVUq1NieUiSSJZCcXSjw/d7Or172PHxjHlTMdUJTgm6YBF2PYMJqRGJonUNuU8x1lPXjs7AjcUxJkZikJRNi5Ge5WpBbCxeQRylNE2DEBIzX3KznfPltzq6tl929np/Vh+O9e5lIQhuHJ5i32EYRklEECLrQCs4XJRIqUCAiwFEsk5/lwopJZKAEpLgLCF6VASv4jrFMUAMjhDdOtUxrLMyLA3OWcDgRcNbTc0fPn/4p7qP9np3kgiBqycWfy4nW0KqPDF0DLOC2ByRao1tHEmiEUrjQ0RFT5ZIvMpwIoBUSCeQMuB9ixQJuQy4IOiCI4SIDZ5X5jXVKqCIdyWKuCNBGcDh/oKD4xN2twtqayjqCqESsuDJihyhE4TQ2NUMgaJpWmpf03SGYDuC9IhEo6VCEUm0oo2GEALFMMc0c6KQXK0tTRn6z47ePa1c1Zx2FefUkC56hOnQWuG6jslkSuc6klTRNBWNE5yuSlZlzWy1pFMBayJCKpaLGd47Gttgu5I8T5GZoitLGml5/rCmmjtk7Pc3e71e77uL4IWX3qL6oXewGRQiUcToUIh1sCUVQSUgBAGLxCMQ6740waG+1hxESQSKEC1WxlupugLH12rKwjpQw+CkRQiLkoZZ0/LLz77G6YGBO1pZ0+t9XQBufnVJ+cw59tKazpSIRBAw1KsSGyM6GUMjyQcFg2JAVBqvE6x3eGeIIZIoCD7grMdWjuA9MQYkEakFRhfcWK4I5u692+/MSRnQ1evZYQ9te+quQqOIWmJNQ1jlqOEQmeUErUClFJNNVvOWzlcE58hHI4RapzUKEfA+4NMhnW0JoUInCq8CN47b2zptu9f7zgnqquVgecpj2TbeegIBGzxaKdJhTrfosFGxKkuWneN0URKlBKBZdQSd0KxOcM6yXJU460kzSWMbBI4mVry6OODajfV8pX6Potfr9b67SAIHhytmteG+tEA4i4geEdfzlZQUeAExCJwzaCxaynWDDxxYCwK0UgQRiEAQAtBEIVBZynrQX4czgcY2OGWQZsmpW/HPP/sGX/7S6bobaa93t8TI6rTljdby4HBMEjXCtygZGCUpQg8R2QZSKUKweOcQAbABlSgylRNQKOkQiSIpoOtKjK1x1qK8RGpweGoT4C5Oc71DJ2WREODazQXufKARNTqs49BMJdRCI7uKJMuw3tC6GhM96BxVTMiHkjTLaE2NFI4oIs4FICClQCcpPkRKBSeHcyTi1qlA/0HSuxdFrLW8/tZ13rd9kcQmaB+QSpBPJnRNh7OBzgiWZcNptWTVWKquIR/kZKnmcHZICC2rsiQiEZlkXs/IhSDSMu9O+MqNClvHPkWr1+v1vgtFYLVo+dLrb/HUEyNSBNI5olRASnQBmQo6ZwnBE6Mg4glRAOsujevlZVg/BwRIKUA4AusmCcGth0iH0IHogJZ9M+Nffu46n3numOAEon+K9O4qQXSBN48q6ssFQ50gVMT59aw+7VqkbogyxQdLQIDM8TIgpCcGTfACHSJKKpAQdIaPHici0gDB0oaIuQMDov9V7lj6IsDh0YJaO8ZeUncVwXS0KiWkKapZkApFEBEfIiZ4HOvBnTEKgjfEaHDRAwIfO0L0JEoRlUZp6FyDC+spNb3ePS0KXn/zBrPHKwY6pdGRjISu6TCrCgg0pqWtKrzx4NZF2jfnR4yKIVuTIW+8eZ1gLMY7KrMg3xxjbMCbOc8fHnN8ZPmGDt+9Xq/X+66wLh+zfO7Lb/FTT16hcBkiCqL0CBmRUuIDON+BMwiZoIVAEtdNQZSCW2sqFyMBi3cgZEAQUMIjcITY4eyC4FtO2wX/4tNv8UefPyG4u9PsoNf7k26VUXLt9QXNhSlZIlHdAOMcwSlSBdo7BAEfI0KlSBVJBCAUUUhUokgQ6/siODzrjozeC0zwBAQuCtrmL1FQNl80zEPLrsywzuBNgyLFtAIRIiqCSPQ6RTFLEVoQGo+LIEQAIkIKbPB4BD44wK8/gKLCunUXoV7v3id468YRh1XFxnAASJSU1F2LtR1FnmKqjrprMSEQQ0T4wFClzGZHaDz3nbvE1ddfZXl6iEwDq5MVItEclie89GZNMP3DtNfr9b7bvfLGATe7jk2tEVojZUBGi4gKAqTBU9kOUpBSoiQktz7+rYi4uE5d9MLhbs3wUwRicOBbXKxobcW8WfLLn36NP/rCKcH1A9N794pIRFDOHKsYGXtBmmQkaUFwjhADKLlu/qdSgljXUcoAPkS8s0gpsDKgFYjoidHiXEdwDqU1Ao21Bmfv7nv+jgZlbdNwPDvk4iCiWw2dRegWK8Bah1ISlaRkxRDlIWqFKnKcaenaGoIjKojRAxElEgIerSIxOKJYz6fv9e59kapseOn6m1x8OEe7dWpJvq4EIDqHdYamazECWmOwXUtTr2jskqqec6NdsbFzhrQpWM2P8APDvDV88ZqjWfT3Qa/X630vWMwavnz9lAcvZSgRSaJGYtZ1M9GSRU+HIfqATBKkkoTgsC6sq8tCxERwQq670Am3TvOKBlyDMSVLc8Ivf+FNPvu5U8JdXpj2en9WjJHlScuxj+xJiFoz1BneQxcFMnik1uv397qtzTpeSBVJIohOEGPAC4FUKTIfIWJEI3HB4YPD4dC5Au7e/KA7GpR557h+MOOBS0MyJ8FaYhdxEUyMiEQzThPSVKPzDGsdobPYpsV2K1SMkEiEBlSCThRWaJxwKCKpSJFa4Lv+A6V3r4sEH3nt2j4ffOh+BiIQfYfzgURn68LWtqauSqyKOF9TVUvqpqYNBhcNBsObb77IcDAiyTVVs+IAmJ3Yfmui1+v1vkd45/jSqzf56Pk9xiiUFMjoUCKsZ5TJSKE9IXpE8Lfagnt8jLioMAFMEEgZUcKAMDjfrLvSdSWn3Zxf+8J1PvOpOc7144R696JItei4fmJ5dDvFC00gX/eU8B5BRMuEGAxCR7zWhBAIMa6DNSVJHLBu+UFAkyY5Fk1nK5x369l/d7nm444GZSJC4wSNs7TzGlqD6TpIU8RwyHg4otiYIKKga1t8jOtJ8zEg1TqIk0LdqpMJuODX1WO32r0WISFNE2xl7uRl9Xr/2q4dnLAwLbloUdIggyLRDtFGqrrGBk8baly0WC1wucZ3Fhk9Skl0oTgtD5AdkEsO9wPB9mknvV6v9z0jwktXD2hSwWaQeG9RKISIpFqAdXjlCYnE+AYvJD5GpNKoGEljIJUSlar1nCYCwRqMq6nsnN/+6nV+6/cPcd26FXj/9Ojdi6KLvHG4otvL2ZCKmCWopCBxHhEiMkYCCSqRCCnXXUOdQwiFVikiCAItSkGUCc5D3S1xQdLFhJkpMdXdLYG6o0FZiILDwxL/5INkViGGBq02iXqEzHNSldE2FiktSZYRlUamGhUEkCMsBLc+kgxSQZoRTEQGhcMQgyWqCEIgorxLo996vW/f6fGCVw8OGG0LdJAQFYiSGCLRB1yAFkmSjxhlntAs6WxH59eDP73rkOspErRpYD7r+j5ZvV6v9z3mxtVTXjw95OL2GQQpCodAApI0W88dM9GBhNq1hBgQWqN1TiIlWoITDXmRMl+UCF8j/IovXDvm45+8gWnWdfu93r3s5rWS1Ts22cPhRCBPPGkaUSFBeHBSImJAOXCsT76E8EhpUcqhUCihCEoQlMeGyHFT88qs4pNf3adb3d244Y4GZRBZnK442D9h3LQkNiB1jpSKLIMuNrgsJRmkRKkJMWLrBmErfGeIzoFSgFp3WbzV2MMbx7Jp+cLJKV3pIEZi34Gx913A+chzL7zGhXcmDIwmeonx61OwJMtovaOxltwOyJTD+pb1XqYgRoGSCXmiCYXipKywXXu3L6nX6/V6b6MItJXjF3/rBR75GwPOaVBygEAjhEbq9YihGCJKREappixXCDxpoijSnBgDi7KlqSq8rXBmwZeuH/NLH3+dcuHpA7LevU9wcr3i0EoeHAQQAYFHC4VIEqJa10zG6EFHhHWIEBBSEgUolaw3vFk3FuyE59mjI37/K9e5cb3GNnf/HrjDQRnMT1d89nOv8PjZKRvSk6UGET2mXS8mtUpIu4R0MEDqhGADigLSDJFaHA5vA533NFXDfLXgeFHy8v6M/eOK+Mf1eXf/l9vr/bmi4ObBnDeuvcVoCV1tMNGji4TRxoR8PMVJDV1D2Sxp2iVerMc+mFZS2oST1vDa4YLjRUvoD4d7vV7ve4pgPWnsuT96i/8i1fydjz7IhcyRSUnmNYko8EISpcC4QHQeJSVgiXZFlBbjLNG3VF2FaRf83hsz/umvXeP0yEK/id37LmGbwHEHbIBOBIR1Z0aUIAhJDBIpQSQQpUDAOntOary1zNoVp13Li0dz/vCV6zz/lUO6yhLjvRE1iBi/vVHtQoi37y8VMJ3mPLQ35sLGkCwZoHWGwqNkilCa4XBAXhSkekiKxpmS1WqGCYbjruR41bK/qrl5OKeqLM55vs1L+Qu5Ha/Z+97w9twTgkQL/v/s/XmQb9dZ2P1+17Cn39jjGfoMOpqPJEuWZFsyHmTMZIPBBDABMgC5ONzUDdeXVAhOiiRFEWLCm0oVqVsFSaoChtwEQpyXACYOYTA4YHmUPMiSdY6mM/Y8/KY9ren+0bLfl9hmstTdgvWpatXRbp1fr93aa+/9rOF5Hrz9BCtZQTWeMDWBrMgZDvoUg3mUzlDAZLTJaG+diYXtqWVsWnZmNXXr8e7gHqqxT0Rfygv5nHgpiX0i+lJe0Hcn9lPeDxYSzp7ssXK8x8mFHsc7HXr9BKwn7SYs9wsWOxn9bkYiPG5aU5uGykzZno75w2f2+C+/t8V4Z39l0Ysh9onoS/ly+oQUittfvcTfeMNN3JQvMvAFg3yIUftZRkvbMm0rqqphagxbVcVoMoNUcnFtk6ef2WNzfcaksmDBh4PbQ/an6ROHEpQ9/4koBd1uTq/XYTjs72dXRJJIyXy/oNtRdLodyrFhY32DKgTW9saMJxWtsf9XYUMh4o0lOnAvXJ8QzA0z7lhZoJdlVI2gaSpSLeksLGCVZjpt2N7bZXNri6oFbwMhuP/byM7BXaexT0RfSgzKouiPeqH7hNjPt0hA7d/1hUdJidICJQNSCxItGSxknDxZcHq5oJ+BSD2jrYaLz1ZcfK6iqT0hvHiDebFPRF/Kl9MnhBAIJVg8m3NmpeDWlSGLvYJmBtOZZGoCM+tYXxuxt1NRt5ZZWeGsBy/BW/whzYq9oEFZFEVRFEVRFEVR9MKTh92AKIqiKIqiKIqiv8xiUBZFURRFURRFUXSIYlAWRVEURVEURVF0iGJQFkVRFEVRFEVRdIhiUBZFURRFURRFUXSIYlAWRVEURVEURVF0iGJQFkVRFEVRFEVRdIhiUBZFURRFURRFUXSIYlAWRVEURVEURVF0iGJQFkVRFEVRFEVRdIhiUBZFURRFURRFUXSIYlAWRVEURVEURVF0iGJQFkVRFEVRFEVRdIhiUBZFURRFURRFUXSIYlAWRVEURVEURVF0iGJQFkVRFL3kXLx4ke/8zu/k9OnTdDodzp8/z4/92I9RluVhNy2Koig6Apqm4Z3vfCcrKysURcGDDz7Ib/3Wbx12s74kEUIIh92IKIqiKPrTunLlCvfccw/D4ZC/83f+DgsLCzz88MO8+93v5q1vfSu/+qu/ethNjKIoig7Zd33Xd/Ge97yHH/zBH+TWW2/l3e9+Nx/96Ed5//vfz+te97rDbt4XiEFZFEVR9JLyrne9ix/5kR/hscce46677vr88e/5nu/hF37hF9jZ2WF+fv4QWxhFURQdpo985CM8+OCD/Mt/+S/5oR/6IQDquuZlL3sZx44d44Mf/OAht/ALHcnli9/7vd/LuXPnvuD4j/7ojyKEOPgGRdEh+Nz1fuHCBf7G3/gbDIdDlpeX+Sf/5J8QQuDKlSt88zd/M4PBgBMnTvCv/tW/OuwmR9GBGI/HABw/fvyPHD958iRSStI0PYxmRdGhqaqK8+fPc/78eaqq+vzxnZ0dTp48yWte8xqcc4fYwig6WO95z3tQSvH93//9nz+W5znf933fx8MPP8yVK1cOsXVf3JEMyqIo+r98x3d8B957/sW/+Bc8+OCD/PiP/zg/9VM/xdd+7ddy6tQpfvInf5JbbrmFH/qhH+IDH/jAYTc3il50X/mVXwnA933f9/GJT3yCK1eu8J//83/mZ37mZ3jHO95Bt9s93AZG0QErioKf//mf56mnnuJHfuRHPn/87/7dv8toNOLd7343SqlDbGEUHaxHH32U2267jcFg8EeOP/DAAwB84hOfOIRW/fH0YTcgiqI/3gMPPMC//bf/FoDv//7v59y5c/z9v//3+Ymf+Ane+c53AvvrpldWVvjZn/1ZHnroocNsbhS96N785jfzz/7ZP+Nd73oXv/Zrv/b54z/yIz/Cj//4jx9iy6Lo8Dz44IP88A//MD/5kz/Jt3zLt7C+vs4v/dIv8VM/9VPcdttth928KDpQq6urnDx58guOf+7Y9evXD7pJf6IYlEXREff2t7/9839WSvHKV76Sq1ev8n3f932fPz43N8ftt9/OM888cxhNjKIDd+7cOR566CG+7du+jcXFRX7jN36Dd73rXZw4cYIf+IEfOOzmRdGh+NEf/VHe+9738j3f8z1Mp1Pe8IY38I53vOOwmxVFB66qKrIs+4LjeZ5//vtHTQzKouiIO3v27B/59+FwSJ7nLC0tfcHx7e3tg2xaFB2KX/qlX+L7v//7uXDhAqdPnwbgW7/1W/He8853vpPv+q7vYnFx8ZBbGUUHL01TfvZnf5ZXvepV5HnOz/3cz8W9+NFfSkVR0DTNFxyv6/rz3z9qjuSesi91A4mbVKO/jL7YPoAvtTcgJlON/jL46Z/+ae67777PB2Sf89a3vpWyLHn00UcPqWVRdPh+8zd/E9h/+bx48eIhtyaKDsfJkydZXV39guOfO7aysnLQTfoTHcmgbH5+nr29vS84funSpYNvTBRFUXSkrK+vf9FBOmMMANbag25SFB0Jn/rUp/ixH/sx/tbf+lvcd999vP3tb2c0Gh12s6LowN17771cuHDh89l6P+fDH/7w579/1BzJoOzmm29mNBrxqU996vPHVldX+ZVf+ZVDbFUURVF0FNx22208+uijXLhw4Y8c/8Vf/EWklNxzzz2H1LIoOjzGGL73e7+XlZUV/vW//te8+93vZn19nb/39/7eYTctig7c2972Npxz/Lt/9+8+f6xpGn7u536OBx98kDNnzhxi6764I7mn7Du/8zt55zvfybd8y7fwjne8g7Is+Zmf+Rluu+02HnnkkcNuXhRFUXSI/sE/+Ae8733v4/Wvfz0/8AM/wOLiIu9973t53/vex9vf/vYjuSwlil5sP/7jP84nPvEJfud3fod+v88999zDP/2n/5R//I//MW9729v4hm/4hsNuYhQdmAcffJBv//Zv5x/9o3/ExsYGt9xyCz//8z/Pc889x7//9//+sJv3RR3JmbLFxUV+5Vd+hU6nww//8A/z8z//8/zET/wE3/RN33TYTYuiKIoO2UMPPcQHP/hBXvGKV/DTP/3T/OAP/iBPP/00//yf/3N+5md+5rCbF0UH7pFHHuFd73oXP/ADP8Ab3/jGzx//h//wH/KqV72Kv/23//YX3RYSRX+R/cIv/AI/+IM/yH/4D/+Bd7zjHRhjeO9733tkSweJEDMDRFEURVEURVEUHZojOVMWRVEURVEURVH0l0UMyqIoiqIoiqIoig5RDMqiKIqiKIqiKIoOUQzKoiiKoiiKoiiKDlEMyqIoiqIoiqIoig5RDMqiKIqiKIqiKIoOUQzKoiiKoiiKoiiKDpH+0/6HQogX9AcLBAtLc/zwX/sebi6WwAtGruRXPvFB7r7jLu5buZH16R6/+D//Bx969GMEHziMgmqxjFv0pbxgfUII8k7G6VPL3HrraXa3xzxx8TKT3RneewAkgsUTS/zg/+ttvPLsjYRGYZsaK1pq6bi4s8fP/odf49mLlyGAThL6cwO0Au8Dk3FJ2xgI7stubuwT0Zfywj4nBOfvOMf/929+NyfCIju7IzZmE/7tx9/Pb3/0o3w5DwSBYH5xwLve/t3c3luialueGW3zf7zn/+Ty6hYE/2f6vNgnoi/lhX53+rOQUvKKB+7lO17/1ayYBFm2YB1V4vhwucHP/tJ7aI19UX527BPRl3IwfUKic8ktt53jrW99I6+/6Rbm8jlaL2lmM3brMVfHO3zgo4/y6cefYu3aBm1tvqznyp/kT9Mn/tRB2QstAImQtHsTdicWpSVlY7lv7iQvG55FN5IVOvz1h76Oy2vXuXrt2mE1NYpeNEIqbr/nBr77O9/Ey+aWSLynIvDM7i7/9X1/yIcffozgPGkn469881dwrr9IZRKCBi000nh0kJxamOM7vuvN/Pt/919RUvDt3/q13HXuBNQNtXOs75X89sOP8PGPfhZvv/zALIpebEIEHnrVXSxPZ0xLmE5n1LMxN3a7SCXx9s8WOP2Rz0ZwYnmR01KTlJa29sxP4a7TZ7i8uvkCnkUUHQ6JYHFxmTeevRn5yadY9Q68IyQJIVXkuScrclozPeymRtELTJAkiq/7+tfz//62b2Vh2KMclcwqQ4Mg7fdYHnZZXl7m7nM3sNeUPH3lGg8/8jiPPPI4m6tbOP/nf758OQ4tKAOo25bdaoysxuRCIZMMszViurVJf2EBJCzpnK9/4LX87K//V1x8mYz+gjl97jg//s6/xk3JSerKUVc1wTac6ju+7ZteRxssjz78JPfcewuvPHGS1FhUcHiVYoMm6EDpDQkpdx4/znf/ta9iWRfcd+t5fEgoxYy2nrC4mLP0ta9FK8WHng/0ouhICyCFwISayeYO5bShAeZ7HTp5znRafhkfHTh5bIEsSGxpMKXFNJYU+aKOlEbRQQkEEmUYX3oCNksSnRCyHHpdbCIwqsep0yf57OMXD7upUfQCC9x1/+1871e+kcWkR5rMYZMU5yrqdsq0tKgkIdGaPBmwovqcvn2JV912nutf/xC/8j8+wO/89oeoqubAZ3wPMSgLVG3LXjWh1yiwkPahnU2YbK6SSonWGU4K7l25geOLi1xf3zi85kbRC0xKxRsfupMbW4U1YPUA0emCa/B1yolE8ze++as5sTDHbUsZejShM5wnzyVkCc6lVGWFBoytUULw8rM3U19eo5oGfCfBpxlCOGzbMAySr3n9fVy+usa152Jfio62gOC5q6u0KydxfkpVz2hERqdIGfZ6X1ZQJqXgppNLFB5MM8PXFin4/HLhKHqpE8B4MmFt+wpu0pLKBNHt0ooOvsjIW8kb7nk516+uMR5PDru5UfSC6fRy3vy6+8E79vb2ULMZOi3odAuSfoYLFucs1hlmTQlOkCEphOKWuTP83b/yV3jFnbfyn3/1d7lw4VncAQ5iH2qiD9tadicTRIBmWlJPK2pTs7OxSjWd0E52cbMpuQ3ce/PNCBnzkkR/UQjml4e89fX3IKuGppzgXINLFSJJSbKcNBtwdvk43/uWr+JM3qEabxFkIEkTimJAJ+/RLTp0koxUZKiQkOiMbGHIbGcdJQW6k0MmUVkADXMdxesfuock0xzeToco+pMJ4PL1TeqkgdBg6xq3OyEdl5xcHCC+jCtYSMmxuS5aBpypcaambaf4UCFjx4j+AvBAVTtWVcu0a2lkS9VOcU1DO60RDSzqhDvvvB0Zc75Ff0HoRPP1b3mIm46vYJxmY2eLtWeeYu3i42xeu8JkUlLNHMJldNM5FvoLDPtdSDx70wnjjT3SRvH6G+/in/4//ibf9bZvYG6hf3DtP7Cf9EU457iyucGNyxnMpjCpsE3J9mTG4uAETkBAIfsFd5w4w+8kj9A0zWE2OYpeEFIIXveVt3PTsEBNHakQSOmonUMKQVZ0aVuNpiZRBXfc9yDPPPYorm4RTqKSDJ1lhKBoG4/RkmBbJA49gI1nLpLv9ukfP4NMPMIYvLDkOuP8jac5ecMSVy5u/JkTGkTRwQls740phUJph52OcU2CSDQ3Dxd4RD1DcH++pSV5J+Hs0pC2hZlpqDC0tsVaG1cvRn9hOOd5aqOlVyjmDITawXSXuflllJU0ZcPLzpzhE596jLqsD7u5UfRlEVLy8lfcxmvvPU8WFO1symRnHbb3cHWN7vZQi8coBgOKoqDX7ZJ3ChKd0ddzZIOU2XjE3t42mUiYJ+Gt994DsuY/v+f3MMbxYq9vP9SgDGB1a4edYkjXBIosx44d49k22xsbDBYWyDoZEsnK3DGOLS1y9doqh5OHMYpeOEWv4Fve8mo61uPTlEGa0SqFVDltUiCDRE0qQruHpCXpDLj5rpez9uTTzPVPQHeBZHERGzRJ68iaCiskiXMQHJ1uj63nnmVu8TRZbw5jpkjjyLxkXsKrXn6eq89sEl6cxFtR9IKYTit2q4pl7UE1mFDi/Rxn5xfodgsm49mf63M7/YJ+omhDyoyE0lRMxiPqahafL9FfKKMJbOGRU4OWgkFvCIliVtWklaHbSzh54hjPPnOFuKEyeqkSCJZOzPF1X/MAw6xLaBzlZINUGW588GXMLS1RTUp2tkesra4xrlpmeZdOd0A+GNAb9EiyjH5nQC09e9u7aJ/SKXJed+52PnbL0zz5xHMveg859KBsdzLFFhlnT9/McGkZYwyf+PDvsTfbY+H0aRbPnKXT7xPSwGvvv49fXl0n+JjwI3ppu/XuM9xxfJF8WiPTFBsMmcwhWNJEY9IuWuWM9jy2niK8QScdCILx6hqy6CJ0TpYNaIRGB6itQStBJhKK/pD1i88y27zO4KbbafUcVgoQFUFY7j6zwgcW+mxu7B32ryKKvqgAtI1l11uOSQ/KY32DczVJrTkxN2AyLvnzvEgeWxqwvLRMWvXotRJfdhCqZfKMecHPI4oOkwtQZxpbOrQNlNMSpxQ6SMSsZjDX5djcgGdjQBa9hCWZ4uvf/FrOzc2TepiVU4xpufWOuzh2w02oTp+8qckXp8ydPcdsMqYeTWhHU0bXn2a6qhgOjtGbP0Yn62I7ge3dDVwIDNIhb3jFvTz11GWseXHjj0MPyqwPzN90lpNLN6KloA2OUzfezHR3i7mVRbJM0Nop2MCDt57ntxceZmtr57CbHUV/bgLBrXecoGMN471d5pYWkLkkuIrcS2Z1hdQFaZahZUIbJAGFkinHlk/y3CceQyc5pvX0j50lCZLGBayxGCfRMpBmKZ1Oxt615+gtHyNJMnAQDGgSlouMl91xA7+3OYr1ZKIjy9nAlbLkdi3wwWKaitlOg6tm3HRsjqevrOP/HNfv6bMnUUpDPSOnoZKeouggsu6LcBZRdIg8NC2UTuA86Lah2vX48ZT+0jIrN5wli8vYo5c0wQ23n+Zlt58mReJMQ1OOGcwNsWiMlfgGsAkqHdKloEh7+CWDB2gb9ta2aK5tsLv2HMOTZ8iKDkXTZ7ozpsgKbl9a4tiJRa5f2eTFnFE+9N2d3nomTUU13cTMJoTZlH6/jw+eajalGY1oqynOtCwkA1732lejlDrsZkfRlyFw9uQSVFPWn7nExpNPI6VBz+cE36JnW4Tt64TJHlpAkCkzE7BGkg7naaxj9eKTTK5dYrZ2Bekt2EDqU2wFtgbRwHBpidHWDtPr6zCdEipL0zqsCfREhwfuvpXhXHwJjQ6LeP7rSwvB8fhnLzEzNbVrmLUtNkA+N8e5Y8coij/fuOLK3JDMAXhMU2JmU5q6ojItIsRMH9FfHCF4pk7gUkUDlAiMh4XBIidWzkJaIOM1H71kCdIi5bWvvY8BKcE4ytEYqTSdxWWy3pC2rKnWNmi2NgijTfx4jJh5klqStQlF6HH82FnOvvxuOseG7Fx7Er87oUMHlea0laXjNHfddjPiRc4EdegzZSF4dicjqt4SoWzJhCJB41qLbSuaIMAmuDwgpeY15+/iwx/7GGvXNuJke/SSJJRkeXGOan2DK48/yxPXa+6fwOmvXiIZFtQ711G+xIqSPOnROk9ZtcyEo+NhYXmZpz7+CXSqQWg61tF4R13OsNUMj8NUU6yzzCYTyvUN5rIuGHCN2Q/8VOBU0uXuu2/iD/7Xp+NsWXSghJT0ex0yrdkZjb9kymER4NLaHtkr72D++AiX9NhDQKaZTyQLc31m5faf6WdrrTh3Yg5pArW1NN5ivaN0LWXdEPfVRH/RjKuWYrFLv53hfUJadCnSAuH3XzC11vvjI/HSj15yAjffcYY7ThxDWzBtg3GWhRMnKBaPkXSHmMkEPx2jqhF+tEpn4TjIAUIrQpIgkw5ZkmHQDBeO0+ztsHH5AnPL5yiSjLEp6YouX3P/A1y5us5nLzzzovWVQw/KfPBs7u7RnnBQtjgUUqVIoZjMJuiOJtMOtCQ4z3ySce/5O3nf9U2IL5LRS5TH0ZYTbnzlq9m9ZPnob3+agoSlu2+kyCTj7V18M0Gl8yg0NI7SlLRNSRsC27s7LFy5itcJlamZOcNsMoHWI70jmHq/sPR4yub1Z5GdDmVtUZnGqRQfPJkRnFrqI5QkxMLs0QERwEMP3scPfM1baI3l1z/6Qf7bH3yIuvnCgCgguLa2x7qzDAYD0nJMNm0JTYOSnhuPLXJ1ded/G1QQz79gfvHnQ9EvODE3jzWBclJirCeohNY52hd5v0AUvdi01qSJ3t+TaSzOOawTzERgMUmRaPIsQQuBb1p827LY6yOlxB9gPaYo+nIJIZg7Nscb33A/fZkgfaBqDIOlIVm3SzfrQGgI9RhZTaAqufSZR7j5/M0k+TwyKLQuSPIhXgqMcwTVJV04wezaFurqBvmxYxAcNiu4oVjkb771rfzhZz9OkAkf+sNH2N3ae0HP6dCDshBgdzyltBalFcnz048JitFoj6LoIoxCBkFwATFT3Hpihd/NNE0dN2VHLz3eey5euMKbblukawqanqA4ucL//NWHeUM9Y/7WE0gHcmJpmZIN5hiNpuysr2OaCeVkjVkz4/q1a9BLScpdyqqmrjxBBJyzKCDJM0xt2X5ule78KbKlOcZ1hWk9Ngi8aVnIc/IsoYxBWXRAkjzhe173Ku7WA3Zmjm87ezejl4/4zY99gv+9dnNgPwPjxe1dXiEt0s/QzmIaiZSCW08u8PBnFMbspxFN84SbbjnDiePzOBe4fnWL5567jrOe/cpNgsWFPl0CO+ub7K7u4QkYrXDO0jaxH0QvRQIpFXfccSNveu2DzOcZaZ6xtrPJ+x9+lMcuXGbqAoKAMhY7mRHQ+KwgK0vyrkaqGJRFLx2C/SzW3/SNr+a2+UVyndPMGqTO0FmHvDMgz3LCdEJSW4INGGuxVeC5j36I215+K1LNI3SCrVe5fnWN7vFbCckySbdg4eQp1j71JCs6Z7i8QN3JEEnCPceOc9Pxr2Dp5rN86qse4J+/69+ws773gp3XoQdlABsb28xaS1p7hLVoIaG1bF7b2s+C4hSLwwWK7hAbBCu9BY4vH+PylevE+fbopUYEweOfucLOnUucoSVrGpJOYCwCv/Ge/8Xrv+5u5m88RdO01OUOe9cusLqxx2RaU5YVVbXLZDZDBUG+vU4yUdQGStMShMa2ILwkzxTlzohQVvS31shCifGKxnlAgasovKeTJ5SzWKMmOhhKKoq+pi23aUYteeV404238/TmOheeXeWP3tMD1ngefWaDu8/Ng/fYaoJLDUoPWZofMBh02N4ek+UZb37L67jnrhtJpUNKRfCBD3/scf7Hb34UY/aDsrl+TjWuyX2P7sJJJlXJbLZL3dSEEAhxHVf0UiPgzjvP8QN/7dtZFF2qIEiyhBuXV7jr9Gl++Xd+n2euXkbRoncdzhh82xCsI1hPJ9fkWcq0jTVSopeGrFfwprc+wD1nT9PJegiv8FR0hglJUVB05wnGIywQFAGFaUuKxZQ//PAubuUqN/cqlC649NgVuhq6neOoRFCERYa9OSZL8+w8dYHTvQdI+z1qX9FON9HVOvrEAi+bW+T8Daf54F+0oKyc1eyVJQt6gDJ+/2HqJFtr6xxfOcv88mm6/Tl6vTlUURDUmHNnV7h85dphNz2K/swCgScfu8bFr72ddDLByYLOIGfu3DGe+fAW/+2XH+Y1X303CycGlOMZm9fXWb+2w7S01K2nDoa90qIzR20Mk3ZG0xiatsEFgWsAr8hTQTtpCGXLbLJFk7KffStJsSKhKqc4X9PtpWxvi1ifKToQdVXzgYtPcceNd+HdGIXipOzwLS+/n3+z9X7Gk/KPXoshcOG5DSY3zxGCw9ma2npSXdCZWW49tczu9phb7riBe25fYZAXBCRaCCSOr7jrFi5cvMzFJ6/hRWDlxDGK7gmSvEC2gXRuSLvpmW5cxOKIm2uio00gtSDVCT7sZ90dzHd52+tfw0IFbahoOzkGj/LQyYa86VX38v6ORj3+HMHuIEIg1CVhOqGtFsh8zsrKMS4+eYVAnC2Oji6BIO9lvOVbX8eDt52jl/Yokg51VSNzidIJeTEkFRoa8CYgTYNsJyg/4/rM8d4dy6/+zlXuPzdGyQC7e3zHyRP0yhmdXoKsNR0WWT5xhqcuXmLy7AWGGjrHB8yqEn/tKtnpWyinY0yoeCGfGUciKGuahs1yyu0rZ+gXGq00SzdYLm9dwfmWNNNoneK9xbsZHQIvv+VWPviRR7EmjuxELz1t4yhDH788JNgUMdpGr0sq65jsVTz8h0/y6gdvZtqM2Lx+nb2NmqkNtEpQW0nbBmaTip3t6wQZCEHQNIHWS5xxpEqT6BTSjGbSMJvWaD1BJoqmKplNS7wIyCJlUPQI/NmSJUTRn1cI8OsfeIQ33XiagW6ghcQL7szneNN9d/NfP/gRnP2jD7jVjT2eGpWcTjyVd4y2RnRrx1yScmNP8/FUc/uZOW4fzIHqMm0DuU4Q3uLDmNvOnuDixVUInvlunyKbIwsaQU1tDVmaoTt96qZlf5ljFB09OtHc87LzPPTg/Zw9tsisKvn4pz7D9nTEYiqYliMouliVoGWKzlMy0WG5XeaVN91MTZ/19nGayQzjHKYaw/Y6vbmUG08sc/HCJQhxUCI6unSa8OZveIDX33GaLOT0iz6hteAtmU5I0nl6aZ+kBTUpCbNdZLXO7uY6j1y4yC986imu7NaILfiNqyUBweKS4v7lmmG1Sy41iU/oiBki63LDK1/J5oc+QcdUpNNFqs3LzHcS2Fjl6ug5nruywQvZX45EUBZ8oA2O/nBI12f4UDM0PXqDHtPpCCEcZTvBlQ2CBC/hpmPHOba8xPXrG8SHaPRS8bl10H/tr76Be2+4nZ5bZDyt6IQOJ27oMr7f8diHHmFtY8xjjz6F6lt2dmv2Sk8jBQaYVJY2CNrWEtoAGtraY7wmXVjeT/6xvkneOLLOPLOtMbZ1yKrGVgbRnae7chNVOcGNJ6wsLvCYuEKItWqiA7J6ZYv/9vhn+e6VUzDy2MaTFX1eefw4j505wWefW/0j9cfa1vHopess9js4IwiAqUrsdMriMKPbSbnlxJB5B+vTCdYleGnoJIrUCgZpglISERTL8/P7f0ZDmkJwBCHxMsE5iDNl0VGkpOCh172S7/7Gb6Rwikyn+H7L2Vf1uXjh04imwQ+XkXmBSjQ6z0iUJBGe3A3o7/YZnOlw7vh52lGJQ9AqqKRB5Qlnqk3yPKOqmsM+1Sj6oqSSvPYNL+er7r+dzAq0FjSzXQICnWqyTo/+/DIyKMzumOnadXavfZrnPvsZHnnsKk/Map6WEBx4/Odv89s7nt9arbgp36RDlzSkpF4ivOV4v0d63x1Uj3+E7uom2WRE3j9BuXeNj1y9xO529YKe49EIykJgd3ebdrbJpFUYZxEKVDdlY2uD1pSkIeArg9Q5SgiGQnHf+dtYXdsgvktGLw2S3nyX7/2O1/AdD95PV/aZtZ6qbPFWQt5jcOYGTk8nPPnIkzy9NmVxBnstzAw0BBAS1Umxk5baS0LoYquatk2Yv+E29MIpgtQk7hpqfAmVSKog0GkHISRC5izd+ipCvsy8K5muPsc5u02SfIa2bQ/7FxT9JeF94L//r0/xNd9zkuU+tKXHTmcsdnO+6/Wv5d80v8v11d3PDxR4D0+tjnh5qunP90EnNNOapFPQkymDBLoiIZvV9NM+RXeAL2uEsSRefL4OU5YmLHW6UDdY3yJaizANoW5oTfN8FscYkEVHi0Qwd2zI6+65k1A2jE0gzRxJosn6CwyKAaLTIRnOEXSK1Jpu0SPFk4qA6iUsLxtWq1WK+UWS3hJN1VLt7UAI1N4zmJ9j+dgily9dP+zTjaIvIJCcumGZN7/xXrKgkEhyrRBCYhCIvKA7v8wg65KNakRb41NF6QVXru8yndYoJ1DS0/5v93jvAg8/PeP43B5/K1mnnwicbdBmQjfrIHsZmyeGXH36UYa9HO2H7E5LLqzuYe0L+7w49OLRn3N1bY3V8S5t04Iz1Lu7mO09qu1tyq1tbFXSmprGGUzwiNZx7803URTZYTc9iv5EAugMct7+9q/kWx68hYELlJtbTK5dpZ7NmCFwWUb/1FluuPcVnH35eTYC7M4czgRaL2i8AN0hS+YpZIrwHtkquiFnaXCcuYVzDPMhC1mXpfkl8m4HVMAYT+4SBvmAuWyBvizoSEuRpswdO82JpWUGg1hEOjo4gcD2VsnvX71Om9W07S5BOoa9ee6YO8lff+NDDAedP/J39mYwSRWy32dueZnjN90IaYZb3WXJWDb3JjjhUEIgfQAUIQhc1eJbQxCC4bBgTivcbIqvS5ypqZuKxlRMZ9M4WxwdSR7F6eV5RFmxtbXNpKlogsElmmRhic7JFXzQSJWS6pxMpuRJQSJTsqRDtxjQ780jLOxu7FDtjZjsruHsDEegqSua1XWW5zqIWEc6OoKEENx82xl6wYKzKAHeeTwCXfQZDo+x2Fki8xphPNIrlBLkwyF33H8Xyyf6BAnuS5RKcY3lfZ/c5j+ON7jsNmjkCOH20OUaYvUC46cfR9iapEgwQVA2nqbeT9z2QjoSM2UQ2NwdsTfb5bgShPGU3fU15N4EYwxX11fJRYroZCSZIsk7KKU4nve46cxpHnvyYhzcjI4sISBRim/99tfwHa+8g6FImWzO2N2eMW0UVg8wKgGl0UIxv3KOO3TCaNKw99kLdBUQINGKPM1QOsHqlNYZnNUM+3OotEdXSZxw4D29LCGkPcrW0DqD2Rtx8sxpGhfQdYNKEoywJDi6qkO/32Nra/ewf1XRXyLOWX719z7F7W99JTevdDFqSBAK5eCehWP81a96Lf/xNz9AWTYIPGVlmLgElc+Rao/wgaZucZMJJ1uoRENdzajKBN9LkD5hPJ4y3ZviqwaCYHlxgGwMs2YPLzKC0pRlSd3U7M2mz8+UxeWL0WETCAH9+T79boF1joVhhheGkGpCIjAqMOjldPodunNz7F3aIZgaoTW2lRhrwbc4maA9aASuqrn+xAU6nQFWgc011bRie7zJYL7D6RPHeeTTT8XLPzpyfIAEibMB7y2gICmQnR5Jp0e3P49WGcqBTwvaqsQEg05SFk4c58bbzvKhrc/gLHyxXDaewHTW8st/sMqjZ8d8xblFbu/2WdoumV7doyl3OX4qgyzH7b9msTjIQfgXtL8ckaAMmrrlwvp1bjlWEILHS4FWik4IfLpaZ6k9QZeA8w0h76HzHkUv44E7b+eJp55+vg5NFB1BQXDry87wHW84z/FuAT5jGmYE3+CFpgkNLoD0QAClNYsnb+De172a96+tU+2OUFJCgCwEUBatHbaBum5IF+dR2qN9Q2g9GEcwBpXnNGUNBMaTMakTyCRBlBOUVhjX4EyJlVPwMeNWdPC2Vit+/g8u8o/e8hq6s5aq9tjKI0PKAwun2b7/5fz6Rz6GaT3OwJXxjFuTDspptA3YyYQwntJrLd2NiulSoL9ymtBdZHR9FdkGbOMRjUEIz6DoYmaOSShxwiJ0QtM2lFXF9qwmvMCjnlH0ZyfQWvGGhx7gLa//Co7N9SgnUy5+4hOkzpN1UpKij847SKXAG7IsZTLZoddM8UrhkZTVHlkQSGOpG4NvGiQtG9MrDJjHEjCbDYNjS9x9//3ITge3s0aWZtR1LJESHTHC40NNVdc4A7or6XQyQpLTyXpkXuNaiy1ryt1tmI2hasmcRCpN0e9SInB/QiIb2zqeeHrKhWdnJKnga0Tg1VpwbFmS5l1EktO6gLWB0/2Eoqsopy9c/HFoQZnSijOnT3H27GlWr63x7OUrPLW6QbjpDlKjSJ2gF1J0OsA5yY133clSd5GqmVBWFc4KpEx4+ZkbObVygsuX4zro6GhSqeYb33IvtwwLwDHauERiBINc4xsBwjJzgRAcQqYI61CJZPnYCW59+T08+YE/JAsBFwBT44QhtA4FjOsKBMiOJrgKXZY4KfAKgjBsb23Q63fYmuzS7O1QrByjme0gTYsLhsbOmCQVtYubu6ODF4LliSdW+Q+Ln+T7XnkbYpZQTwR1NaG/MM83vPxeptby2x95BB8CV7enjHRKMBrVttQ7Y+rGIH2g2G6Y7x9nruhRWU8rFUmeo5EUCE4dW+TVL7uHwfAYthzhmhZbVrTOU9kp47baTw1JDMyiwyMEvPKBl/Gdb/4G5mSPpqzIUZw5fhvPXX6CpbM3kSQJUgZMU2EEaJVQTRtMXeFVgdAJsqnRQdAKsJOWPC/oDPocf/lNDE4fI1EaaoOXChJPEA0n+jn33HUzH33kM3yJVV5RdCgEgjwJlKM9gupDX4GDFEGqEqTSaJVjW0+e5FhRYoxFVDXON2zuThhbjwh//MRWQKACOB8ojGehr+gsepJeTtbvo9OCNiiCdJzsdTlzeo4nP7v5gp3nwQdlAnqDHn/9W7+Nt977ehbmBuzWU37xfb/Ge9//W1RKcOb4CrnOWTx5Gu0MX3PzWU7dep5U5ZSTXWrrKNspU1OxoDSvuv02rlxZff4mEu8k0dEyXOzw2pfdQOYF9c4Wk2eeIUHSWTyFkYHQNhgrscYTJDQ4nN2vl3TjTTdw6YnPUq9vogkEUxKsBOcJCK44w4nJHufmLBJHaVucTrBasbO7QWogHw5pdnd56uJnuLNrsUlKcCUT2zD2Y56ox2xvjYnLtqKDFgDrHL/7kWe449wxXpekbO8YkBn4Pkt6nre96tVc39jk089dYXevYWcwRk1a3MThK0flAkLAgkhZVAmimqJcQiIMrbbU4xHLuuD/8+Zv4NTJmxlkPaQzTMebbG2uMaumVMEyrWKim+jwpVnGA+fPIzbHrDHGS4HSgmxpAfs0uMkEnXcwVkCjSKzDNS1taTBljUsMMkBwnkTJ/ZVa1qFICA46nR5zC8t0ul20lAgfEAiCAustX9P7Cq6sb7J2fZPg4/MgOjpM29Laikx1AI1zkAhF7YHWkYQa5RxpkqJ6Q2RoEWbKbNRw9eouUgiU2B/g/tJX9n6VzEwEbnKKpvIoEvJOTtobIBKN8IJMKhaU5s6bhlx4aovwAiX8OPCgTAjBW77u63jb/a8jncG4HCEIvOne13B18zohz1gcHGdu7jgUCUhDf3kJ3+8y2RvhqxEm7JfSCI2lGMxz90238r7Ohyhnhi+6WDSKDtHJs8ucHmjM9oR6MsEZw2hzi5uOn4JcYZoGZT3OlriQ7H8JiRACIRzF8gKPr2+xjEQSUJnCSsn2zCI9XF7dJLcNw6UxlYBWJowmNclMcee990K3w97OFlee+Cz2Y59k/tQCdHLGzvF0M+aD10fY+vm1k1F0oPYHAprK8V/e/zg3fv3LyNglqCWEtDSTHRbSAd9w311c2Vhj2hjWGktn1lBPPd6Bk4JBt8vy8WMI6XBUzMod9sZbVNMxSeKZXz7DHDmpD6RCIlRKr79MGxSN2nh+/3JAIAmxxEp0iBYXenRsyfr6c4S8i+4PUUIh8pzOYJHda9dY6GQI3cX5gK8NKlE4CVVZItMSZVISnVCk+wWmVZBU0ymr158hHyoKJ+nKHKH2kyEoJZFC4JTgzlM5f+u7vpn/87//Lhc++yzexYyk0dEQgqf1DZYG6zzWBqx1JHWNkBKMRzUG2TTgGzwNylaMd3d5dm2XFS9Y1IJVIZi19o+dDT6D5DyeTgOX1wOLx7tkuUIkAhkkqlX0hGQxl0gtvqC25p/XgQdlaZpw/sRxdte2CVZgE4/XBTLN+LbXvJ5u41k8vkJZzti2E/TiEH3LGXyaMtOWabmDLms0nu7cEN3rMT/tsDQ/x5XZWrx1REeOlIKdtU3qaxtIB7627Fwfc+LkLr1TJ5lMKkJb7qfFFw5vWqq6xbSG1k7JMKwRuIalWwmUEZQeeh5uJZAhub4xYXfDo5QErQFBb26IrBtO3HiO+ePHMK7l8ceeQG2P0ErQPVawutRhe6d+/jU0zpRFB+1z15vn+pVdfuPidf6f52+kGRcYZ3CuhbbmBqW56+QiDz+zxuqoZYUeyYImBEcnS5hfWMInHjNaZfPDl+nfdidnXv4g460pwzMTZrMpxgYm9RRPQ64zVBAoDSH1tDpg43qt6AiYH+aEyTaVHJKmKQ6HlglCeOZPn2DtUx+ne2IBlQo80IqGVEp0ktBOS9J0CiIjKQZIPK4taSpHXbZ0egVbVy7RD33UmUA2GKKLDiIopLSEECh0xs0rp/ibf/Ub+e3fe5g//OAn9rNiR9EhUhK6nQzjAz7sz+paLNZZlAskwiGtRTYV2Brpa4Kb0qo9nnr2GrppKXygawRp4tnqKqYiUM0ALwj4559GgWUpOQ+sZDAc7C9pvHhxByG7nLoppxWOVHpqM+LptQm+fQnvKdNaU9YV18UOedpFZzmZVkgVGHbn0fUeja/YNXtMZMuZ3grslTjd0iYF8pabMWtbDFtHR2u8E2RBcsett3Ll6tpBn04U/Ym8sQgfsOMpm1fWqcaOetTw8G99jDd+8+tJE1BthZsFUDneQj2dMptN2Nu9ws7aiBCgBZoAtI4MWALmE8nK8UWyLEU4T783oH/sGLLbZTi/xLGTZ9jb3sJVY1bOnGW0u8Xm5jaynxPO9CitIXhBnGGODpsLgg8+eo2vuudWbulY2p0W01iC1Pi25XWnTzN35jS3Hj/OTUmH3bWrzDY30MagU83u3piLT05Qa2ss3XsvthIMl87QlQq7uU7tLVNTcuXKJ5mfn0PnOSpV9I4NuX1Rc9/aJv/rg5/Guzg0ER2eovCIMEKSIXEoAioE2qZBdgumDmajMXk3wWtF0JJgBGmSUW5t0ht0kVoQdjeZBQO+xdSBdtYyGA5pu8e59OnHSXTKUp4iU4kIEvAIGUiShB6ac4MF/sobH2JpaYFff+/7qWNR6egQSSVIMvaXDyYaKzweS3AN3hswAlmWUE4xvsK7krrc5tlr63zmwjW63tFD4AjMG8Fx7ykHgq1lxdVpoKkkWngWguCOEFgCkkxz7HRGp5vT6Q1JRcJsMkUMUmaq5gM7Yz7y2NYLWiv5QIMyARjTsrGzycKJHnkyQGX7m1I1oLIuM3ZY3dmmTgVWp9RVi288PslJe13o5bjTXaajPfqTkrnBgH5zgvvvvo/f/9BHqauYNSg6SgRFmpJ4DWmGlinjjQ3Wnh2xObJMZh/gdW99NQpDvbWBkIrSGcpRw/bWHptrW1yaCqx4/kUxBEDSJbCMYK6bsXjmFMOlY+ikIMsypNb05ubpFENEVnDDnfews7fG9MlHWTy5gFxKkGmKV4JgdkHENODRUeCY7pb8yoce5++99jzJzoyqNVStQBrHHSfPcP8NN2Bn1X664+4AP50CM4T0GB9YHQtUd8jSZJ3m0yNcfhK9dJYsSUkXlhltP8Py3BzDYQ+0xjtoZw09k/CmV9zN2uYmFz57PfaE6NDMSkPrG0S7i0y6SFXgC4cTitYHirl5djd2GS4FRNpH5BlKJHR7PZ575gJF7lFS48ZTtLdQ5Fibkuoehc1YPH2cy48/wXh3g85Cj4WlRTq9OVw9o6xLamMITY0iYT7r84a77mFnd5ff/Z2Pxjp+0aHRSUJadBA6wUuJJ+xfj8EDDsF+srTSNkxGe4y3rnDt2iX+14efYla3SAQFAh0CSgR6Fo7vem4qPLcu5lyaBpgZThrBAp45LcDAeAOWbhvQn58n7XYQSCZulz/Y3OY3PrxJOX5hnxYHG5RJiVSKcTNBCIdSoKUieI9vPSE40k6P8aRCdfrUdc3a6jqJ1qhehyIYhBySZilmrs9OoWgcpEXOTelJji8tcOlKzMIYHS1LpxY5ftsrcOlZxORJ6vVnKJeuUbHNpQurjH7x93n1m2/HVxvUszEzY9jZhrVNx7jaH8E8CayyHzp5PHMCBkpy8vRpjq2coj+cJy0Kuv0eSqfAfj2/PM+pqwleJqzccAsm1cidTWrfUJqKtvIEHx+00dHggUc+eZ3H7jvDyzKP36po9ip6Sytkc8cIpcVVBnwgFYruYA7f64J1SCHxtcU6TbU3RrsJk/UJfmcX050nnS2RmS3mOgNSNDrrILOCiRwznc7I90rOn57n6WfX8E3sE9HhcEHTOoFux9TTDdAKYbvIrIPWmsXFRS5/5iqFDqTDZH9WTFqcnTKb7LH+iTXEwEEDUqagU9KkRzefI0klPu+xXs04vr7JYqdPM1yip4bIkNHNUlozxbsK6yqcD2hreMX5m/jgBz9JVcZB7+gwCFACVEAIgZKSgNzPSC01Qmick6ikT2e+iy7maJVCVZbKP40KAgFYAgkBHUCL/a8uOUu+z9muZHOySRECUsJwrs/8YoryKaMdS3EsASFxquWjkx3e88gWs214oQezDywoS7OUb33bN/H1r/0qjg0G7D3zDO3MkLiA8YFqOqWajfGhxslAt2modqbUAtJEI6s9jG3IvCHtDdBpSsg6bFcTVD9h0XZ54N6Xc/naaswYFB0hgU4ngxAIIcOJAiMFlWso2xYTPGvX99hYrSgGkslOzWQddnc8bSsxwpEAc0EwQ9Jhf9P1AnByeY4bbruNEzeco98bErRF5xqtCyDDWEdZjkiylFxljMuE/tIK9Adsbl5nNm5oqj8hP2wUHTDTGP7nx69wy73HEWHMcPk4izeeJ+nOEdqGNnjaqkS0DWkQSN3BpwHvA14Zqipw6doGNy/Ns1QM8N2MKvOIchsZHFnhSRMI9YTJ+gbjnT0m7YTJ9ibdZsZwmLG1UR32ryH6S0okmjxdxu5ukYgx7TRBtQ7aFll0SAJQt0wuP8fgZIWddggqpdxaRzQ1lzamzO8JpAaRtCgvKcWYKtuldS15cQ7ZG7C0fJaFE+cQusfu5iaqcVjpqJSlNBUuGIR3WGtQpiTPkxiURYcmyzUy8aRSkClJmqYIqQmAD4aAwCIQSiKzhG5vjsHcMp0io521KECLQCdAJiQq0yR5gu4NKIbzDHVKV3eZXL1OXqTYIic9tszi3JBOISkGHeqi5bPVDv/pkU12rlte0HWLzzuYoEzAm9781Xz/X/k2hm2OkQn9G+7iuccfo9rcJCQZ9XSX4AT5yjnaPKF59gq+bGiDweeaydYWotDYscR6g077yKJDpju0A421htd8xVfw+x/5CBsbO59b63UgpxdFf5wiy2h29pg9/lk2Pvsk9doOmegwvyDJuhWjUcnDv/c4L7/7GNKljHdrGiOQ7Gf58c/ng1vG44EEwZKW3Hr+Fm6761aWjp0kzXIM0BqDs5bWNQQR0KliWk5ogiTv5fsPVetReYqfJZg4gBEdMcEHHntilcv3HOP+286Rdm/A6A5IqEtH8BYlDeQKmSUEIUmkxlpP0zYIZ7l0eZW97V3uuLkm3Zui8gVcniGyBGEETAXVbEo1aSlnJXvTMXujKX5mGA402xvy+cTIEJ8j0UEQAFKysniMYbJIKCS13cVVI8ysJSv62NkEN6vQkynrO5skuiXNE6xTlOMZMjQYYHscGCiB0p6QaUwQbOyMSXdq0vVNlkTGwtwi6A5a5yRpgZ4rsMJTjtYxsxG1rUG02LZie2eHKu4piw5NIEkVidKkSYYWCUIIdKKQWkOS4kOKsubzCTukDKSJpJ/nTBgBkARIpQAhSLo9ekvzFMMBWueokNFfWCFLc5jOmL/jDOmcIhQJopMjteWaKflPH7vGc8+aF20p74EEZUmS8IrbbsdeHbEna5zOCd2C+Ztv5bMf/EOyrMex+SWE6jARPVIKGnOFRKZ4AlVVsbW+SWdxnsIYnB2SdzyJs8gsJ0tSQpKwsnID3/CmN/Eff/GXMcYexKlF0R9PwPzyIkne49gd9zE8ex9VZVlbv8bVa8+wsXoJf+k5NldLPvaxqySFYmwldQiAJ9XQDVC7/Q8zBKQInFpZ5Oa7buPkmdN0Oz281GAlLjRYX+MtOG9phcQnXYJp2N3exkmHCiCcwbgGL+IyrehoCUhmU89HN2q++rV34XcTEtvikNTeooLEqQLSHIXH1jXNeMpsb5fR9g6GQDJcpEw0j69tc8PCjJ7ZQasThKTANprWO+q6orFQ4yi9YRYCxlt6idt/Mtr91kTRwRAURcYrbrqVY6KgbAXsNcyqbWb1DmKUoHt9Jlvb1Ntb1BPD+PIW+cCTyATbCIKxdDy0QlBphfOWRCjK2tIYkMFiV3d49StfRb54jG73BJ1siA2WspxQtjOsa5BS4pyjaWuMGfP0lQ2aOr5TRYdDAFlHkyUajQApQCpCUAQvIUgQHnJBMB5bN4BHKuj3O8zk/mcIQBWaYjggKfpkRY9i0CPp9pFoJDknlu9m68JTyKJDZ76g202pqwmrfpf/9OhTfPLTU4IVL9q5HkxQplPMZMTW5g5isEw+EGRKoQYL9FdO0M065GGIdwI9nbG3eg0xnmK8YdaM2Lr+LHt72ywsH8OZgLX79WkKZ9Cui8gKhJMIqfmqVz/EaDTm137jf+BsvIlEhywInv7Mk/DK2/cLFwaHUx5dFPQXV6idwbYzVDqiNoFpVZNJj/cCke3vIOs0MJlB7QJ18ORSsnL6NPMnT5D3CpwS2KrF1xaHfX6EP8F5cDicbQgioegvsrl5jbpqcM4TdMA08aUzOoKC44mnNtl65YTjJqU/OMPWXks92aUqZxhXgwLvLaPtTarRmMHiKc7c/wAiV+zNxkx39pjszrhwbczZhZY5W6N6A8Kgx2h3j3x+QGUdVVnhgsUKQAq0dwgh/m8zZVF0ME4emyMZ7XF5e4vZeMR0c5NxucVwMSHpOcL2HnZ3RjD76evXdz0nQ8Brg2sFSSMpZKDxgUuNZRYEy21DEhxCBGwQnDx7Azff8wrmFlfodIcIoUEGXNolTTTVuMbZ/WdQYx3jtuKJK2sxyUd0aASCzlxGpjVKZogkQWQ5IskhCGxV4YucoASy9Qhn98v8aM1gYZ51+RyZCuhCo7odisV58t4inTSn058nGQwIrQXnEUXCsdtuZbpznSQsIkyFzgW//plrfPDRXZwJ+wHgi+RggrJMU/ma9XpEbziH0qAd+OBpVYKv9zCZpNob48YlzfoO21euMCtHjPZW2ZluIvOUnWvX6dYNfWMQQiIkZAISQHq1vwHQBB56xSv48Mc+xvVrMUV+dPiuXdtj1OzQybskRqJbQ7enqU0Pa4+R5oH6bMusbmmrEW1dUxvFrK2YjcYM+hl5NmM2a2iMQmcpg+UlikEfKQWubVGtxRhDCIHWBGoLrQiUjaG1ntY2GGfJioLRbI+qqnAhYNuYCj86WvbDocDq+ggzPMHCwik2Ll1j7dmn2Vq9zHhvTDut9rOCdDrMn7uB21/zVdigGW9sMCunSONRzu8P4GUd1mUPIzvk4xnZ7hapVLh5KEe71FWgdQk4j7eg8EgZS0hHB08lKSdO3cT8zSu0CDY3Nrh84VE2L3yGLpJAiWsF3U6XytZ82nhCqzmXKuZOLtNawfbmmNn2CB8CXSnxIhCkptvtce787dz/qgdZXj5Ft5gn78/jpMeZEqoS5yxCKjyK1tVY13B5b8LmzuywfzXRX2ZCMJgvSERGojtIlaGShCRLSHWGDAHpAtpLsA6vwdUaqXO6wz5ZKuj1MtJBn6zTJ5+bo9dfoNvvkfUHJFkHbzyhrAgyYHNPf1Agw4gky/j43jV+/7EN2np/oPzFHK87oD1lgZktmZgpWVtiq4LWSJCa4cIxHvutX6OQGlu32PVdVi9fYVRPKG2F9S1zi4tUdc3Gc8+yYBqUgrzfI/guwlpkXSOdIgAKRUdIji8vxKAsOnSCwOrqDnsq5bhOcaomzRx1gMHcAFUUdM0CZTmhX1UYbymrhrKu0eN1Ot0UFTTFoE8+mlKXNV4q+r0eUiUIIZHe4G1LcBaJQgQoTUvl/X5SBASVMZi2wpgGpEbqhLZqCbFgbnTEfO6K7HQK5rvz7D51ibXPPMbo2h7KCZYWTqNvWaAzP0+xuEhIU8zWJtWsRvY0vmpwzQw1TFk+fS/BG3w1Y3M25cbjJ1lILWlmWd1bxQVLGyyNqwleo5AkUqC0wMZZ5OiAbW3vsduOGeaLJEmX3sIcx28+T7Uz4tlrF5nrCLrdIaAYT2rGQXCxEix0UxIkKt3PvBuCZKAk58+epT8/T9brsXzDTZy56Xb6nQXytIsAynqClZrWW4xtKcsp03JMbWtcEJTeceHqJq6OQxTRIZKC4XwHjQa5n7kdPN7b/b1jQaBFgGDwwSODRCiPSgWduZxuP2X+5CJ6/jhZp0+3N2SQz5P1OogsQ+uMendKnuYYtb9frHviODO/hgslv/zoZSYbBpAv+qkeSFBmGsPly0+jFwJJ0iETCc7P8FlGKwOnbnkZH3nP/4/dzQ28c5TBYYJHKcUtN9/Oyo238sgjH2Rra4NgDFIJ0iwlDRqKFptlSK2QUuGkpJlN6GQHXhc7ir6o8e6MZ66tc/7UadIiI4SMnk4RbSAIgdY9kizDzynqpkJP99DljEBAL6xQTWckekaaZVR1TbU3RilwbYspJygkPlM4Z7GNwTQe5z2tdVSNxQEhSaiaiqYuadtyf/milDEdfnRkZblGTUdI4OxXfDVnO0vUdcNstoerGoJpaduGtp4i85Rev8tONSEdDFk8c5Ym0YxmLdXOBs14xDDXDLMCHaakiSDLM5LGI6oaUbr9AQ4FWdAk2tMSd5RFBycA02nJdrnLKb2A7gi0EuTdLsdvupGgDTvrq6yujmmMYeYDiwJyDxfXpuxWgUEnZ300weM5Mz/gtnvuYXDiLIPhIr2l42RpQZ4WBAPWNrSmwfiACQ11PaOqS+qmoW5bGtswqRuuXt17UbLMRdGfllSCXpGgAKklKI1Agvc4awg6xUsHYX8fGa1D+EAiFb3BgPnTy/QGA4qTp9DdOfIkJ0t7dLIOKlXY4FAJJDaQdgUTYZApeO/5709f5cLjk/1li7z4K4sOJHKx1jKZ7vH06BGEdIgQ6OkuRVWQF12MSOgsneCJ1Su0+P36A4DynsZ5nnryccpZyZkb76InNdplSOMxOzvYdIIoEkSWIsmw3jGebdMrcqSU+PjSGR2iALS15dnJGJMJEpWTqIJ6Z4Z0DZmCrOjjdIJpHEpphDVo69E9gUszEt3FqClJUpLqknY0o3GOUTUlSyyDtAtBEpSk9hWNc7QeWheobEtjLa13eAWNhLJtMLamNZY2Ll+MjiCBIC9yBifP0h92qaygbiWhnEFTE2a7BO8pej06xZByVmKVY+WGG5nMKtI8p9zbQTlDaEu6BZzoaGarlyGzLMyfZdiBaTtmty4JSYM3LQRJRsr8vGU68sSwLDpIxgQ2RnvYXovCkUrFsMgJSwsUvXtYPn0Ds8111tYu01eCYaeHUpLaOjavrVGZQBUcJ5e63HL+DuaWTtEbLlEsLJMkXbCe1hqsc7SmIghL2xiaakJlSipqqtBgQksbWjbGIyajOi7ljQ5VkmvmOh0yUmQQ+5kXCWRKoIIFx36QFvYLSntnSaRECUFS5CyeuxlfTej356A/R55piqQAF5DKkPoGnYHXAaE8WSIhTHh8vMGvfvAybXVw70kHtHxRMLdwEvvMNZ786Mexd1oWe4sspj2U9Wysb7O2fhVLoBL70WmCwOG5eOVpihC45fx93Pf6r2Oh6GLKKXuzLTrdLhbDtBrTjCd4IXECZk3JoOiSpgl1Hcc7o8MlfODC09eY3ncrS92UaVljmgqlFXmvjxMprVeEtqabZYisgxaCohhQBYFUCWmeo7ZHaJUyzveoGo8JimntSKnRThJsIHiJEx7nLU1rqK2jMhV1W1O3LQiH0RrbeFrv4wBodATtp9goJyW1mTAXHGIaCHWKbRokjmJhDpF28EDblHTm5mm0oBpPSEJAkZIiqK2hULDcH5BXJdPxLoObVnCNoZtlFJ2CouwgE4OtHKZtCc6xMgfrhaCN5cqiAxMI3rG+N6E+ZyjwiNbgW8/xlbOMJ7ukeQZtzUl5HNXt4L1ECsVABmga8qxgtrXLmVtuYenGOyn6c2AtzXSMbSzWOFQQeALOtVjf4IPFBUNLxcxUtKam9Q7rPJfXd/A2vj9Fh0MgCMBw2GGYpiihALE/I+Y9OIsUAuEdMkCw+zNkWgpQoEQgETBYPMFkw5KlGTLN0aKlk3qCV5i6RguQqUMJz7huCLJkpx3xKx97jr3Ng00YeEDLFy3jWcvtZ25j4+JTPPXwx9g5vcyGTFHjmp2tbXYme0BAesgQpEIgCRhrybOCk7ffStotEDKhN3+M+cVjTCfb7NU79IbziMaxNxnT2hITHGmW0OsX1HWsrREdLh/gkT98ltW3PMicaJAER77+IAABAABJREFUsiSFNCcESTCBXGnSoktbCWQhyDoFpQ2IssZ5j1A52YJG7GyRphm1aZnOSlTQCFfSVymmCXjvscZja4uZ1XgDwdTgDMG0zOoKay2tUzRG4mKC0uiIci7ghMRLQdAekVQUg5zQP/78de5wpiEruljrkeMG5QyD4ycoLaSyIfVwbNBhXkmCSAmVp+gvk3UzrCvJ8y5F1iVVLYiG/bmxwCBY5uZg4wBHSKMIAts7I0KooJ6gZUKytEBtA4PeAIyh7vYoOjltcLTGIuT+DMF8Z0iSpvRO5pw8dyNJkeHxWJkSJjNSUeOtpU4ULnisbbGuAQlOOVrbULUV3jkQnsqXrK7uEAgI4tB2dBgECM/i8S6ZlCjU/kyZDwRnkEEjvSCYCic1ymmwIJ1HOINwhuAtSVqQZn2kCOSJIjhJM91hfjhHZQONsxhhyQuBwDOrZ/zG08/yzDMzDnqx3YEEZSJA23rmji3hFkaMty6ydv0SW8Ij9vZvLGMPQuw3KAXAIwRUITAcDEl6Xeq2RiaBylT4xiCVpD88zqSaUNd7OFPjhSGI/dvHoN9la3PvIE4xir6kIDxbqzM+e22Tm87OkXfmEE5iK0tjDVqnWOcQiSTt9hFpRuIbKGtC62iFRuYJOsuwTUVPaWgNTdlQKYe3DTpN8VbSGoNpoW08rWkoa0sbPDbY50sqOtp2TGVLyqaOe8qiI8t7h5MG0gxdpKRKIEyCMxZMQ3AVSaJxHoRp0UqRL57CKYWoJkjfcqyvOZ4NKVSKyS1tGUB3KQZD6olANxaFIE0SstTQigTrBN4ZukkcsYgO3vrWLpNml2FaoHWC8y1KaQiSTtZBnlihqRuqpiT3DqSg3Nhibm4R0UkRWtOZnyM4T2uq5+szeaZNjQgSj6RtW6QIGNsS9P5zw3lH8A4fLEK0jJuGvVHF52auo+jgBaRW3HTLEplQqCBJxPOBWYDgLCAQQuGfzxqKtQQlsD4QFDi//+bTGcyj8ORKElRCMy4RraTICrwX1EIwCTU6cXz8uXU++PFruPLgB+UOJCgLeGgCZjYmL7rcfNsdrO6tM51u47FMAkgEqQjYAC0BjWR/1tyzsLyETBKMa5m1DmctSoE0lmqvwkvI+l1ERzEd7zGdTgjWMeh2II7xRIctQD2r+IOPX+LVKyc5lnYRShEwJEWOaw3KS5wRhJAgRYKSmiLRBGlJOgpSiXEBBvPML83TtA22NpiOQDjLxFlSlWFdoK5qmspiK0GwDhcMlamxrsW7Fi8D3rXUvtkfMYmiI8ibQBsAqXG2xVmNRyG0RChIgqKqa4SQFL0+AYVBgEgwrSMXLSvLXfpZQZb0aJvAtAqUONJ6gg+ScjyjnU3xzQwtBEmak+GYTRpsE1dZRAdvPK7YLqcckyVK5YimgQzQkPQSBAWpThgsL2Drlta2pICZVehOTp4XpGicBOcsUCGVxAWHMxUEhTU13hi8D3glQEusM0jp8Dh8EGyNx5jWHPJvI/rLLBBIUsVCLyMPCp1A8GE/IIP90lhCgpCE5+Mn4fdXDAmhkGhc6wiiIe92EKFBhQqdaGS3z2Q6Y7iUoLwjE5K6cew2I37no89S7thDiRwOLEXhzmRM71X3kZ8rmM1akvVjXPr0pxnZ6ySI/YYESAS4sF/DDCFIlGJ+aXG/wnzwBKWwraUdT9BKILWibBuq9T2MczTG0HhHa1t0omNMFh0JIQQ+9dhlNr/uPIs+RYucLEloTY23IGSKM4ZACkUPrEcrQXdpnhAkgkBZjghumfb4iNVLT2PKMWr5BGXt0AqMm2FtoK1nNKVhMjFUztHgaH3AhUBjphhXU7opdVs9v2Y7dpDo6AkETHA449BSEVJJ8I6mETSmwdYlJAl5f4CvLImQWGfxNCjfcPr4PP0shVQjZYZUnuO33cr6aItps0c12cFKT91avAkQBFprtJB4K9iJSxejQ9DWns9sbHNLZwllKrQX+3telETY/WRQw/kFQl7Qli1WwqToM928TpJpdJpgbIOQCc4FRPAY6/HWYU2DMR6vAl56hAi0ziKkJgiP8wapPLWzXL60E/ccR4cuySSdVJMgEVIiVUDKgJYS+fzydjwIIQjOI9lPBCKExFqL1IJgLIWSaF0gpUUGwyBNWJ8Z8tAglSNXgnE549G1q6yuzQ7treiAZsrg2UvX+eyVq9xz8sb9KfjjxxEusNnrsLN2Ddc0zFpDJgRJCCRIgpToXpf5+QUE4B240IAS6F6HejrBO4tVAaMTGuWobY3BIKRGa7n/PyrWYoqOgCtPbfDJy5ucOtulLxQYj2sCSmmMM2A9Itc4ZRFeoJRGZxqpUqxtKWpFsbBIEjwbV68grcFVhjQfMm0mFFlAJOCkoLYNiIZqtkdjPSQdjEywPuC8obI1zczifewb0dFkraOsG8QwwVb7eyGt1TSlxTYlOlWo/hxmVpMYT0uN6nUxtuL0sQ5znQyd5DQh4LQihJambknznJ2RoTYt26vPYlpL6wyuDQQTCEEyrix1HftGdPC89zz2meu84YZTrIQBAocWASU0MklJMoEwFp04vBB0+nMkXlAEyc5oE5Wo/ZInvt0viOsUIVgEHmsaZK6pvMU5gwqeIMFjESiUACE8VTtlbXNEHNWODpdgbrHDINdkWqCEQyqFFgIdQHiPDIFUSaSxBOcR7G+Bsm2L8JY0SXCmJqGhUF2UEIRQk3Yy0kbifY0VjtbUbDYj/ufDT1OX9tAu+wObKTOt5ZELT3H21ArLWZ9OnoFUoBxZnlBubaFHu2Q6IVQtRd7F+8DwzCm6Sws4EQgh4IPDGoMQGrIU69r9ekvG4LwHJfFe4AJIuR8xx1tKdBSYqeW9v3eBB79tiBKWzORImaATjTOgUfg2EEINThKcQnpPOihQ/QFJNwOdY9MOJ06tMNtdozc3ROYZjU9JpaRqStKiBzszbN2QJyl1XTEZ7yDSFJcHalHiaPaL48bOER1RrbFUTYO3Fp0pglNgU6wA2R8ipKKeWagr2sbQHfQZ72yydGKR+YEEKfFKEZzHS2isZVbPaFzN3nRC7RxTXTCbbuwv32qgrKeMypprsxYXs85Fh0KwvTHhka0NBif69I1C+oxMJzjncW1Ayf29M53BgKLTJWkcOk1oMo0ptxFuijfh8+9ChABO4EPAmgYRLN7WSK0QCKSHICRCBLw3XN7cZvL8frIoOjyB5eU+xfOzYwKP9AEZDCFI8I6EsD9j4x1CKITa7xsiTMi0I/EOZ1q0a0h1SgiGxpXIRDC/VLC5fp2knzF2Ex5+4jmuPVsf6mV/oBWWr15e47mNa/RPdeimfYaDATKcRHuLr2aoFLIkw5UtSydPQesZnjlJUuQQNMJLvAMrLU01JjRmP0OXD1jlMdJhvcOLgGc/LbgQ4iBPMYq+pBDgsY9e4ZGvvpHX9RxJskiuU6y1eAveNAjVokKGdRolC1Lk8yleE4xSCJ3SGQw4d8fdPPYHG0y3NsgyiUsTdiZ7pGnGtK7Iihw9SyhnDSGRJN2E6WyCMw3kdj8VsoM4EhodVc45plWN8IZEdXA4TFsitMZbgSlL2tEI50ryzjyj3RFKG+Z6GToNGCEw3uFCoCob6mZCZUs2d3apg2F99dr+wF7WZbyxQzkN7E491yeGDRuIxZmiw7E/Y/uRj1/i7q9fYOAzbAXOB5zXiDTHSUnwHi0lbWugU6BR5K4iEQuMtqeIdoxzHhKFkBpnLSiP955gLSJYrA0oqdEhIFKFVJppW/HEs9cJcVAiOmRCwPxcgg4WIfz+l3fYtiLRAS1ykqAQgCSQertfm9I4lAdh2B9oSMELQ6IMLR6pPLujNfrDjCAadkcjnptO+b2Hr+Hc4V73BxqUGWN54plnOD7MODO8kZ4eogcLJMYgncNYsz9FbxtOnjpLnvVwWlF7iUozjDEE53GACwLjLE3T4oyjwdDKgFIOh8eaFmtbQlwUHR0RAajGNf/zg89y59fl9G3FuG6wFdg6oNCk/QHOeaxLCGiECeha4myLSFJIPJrAcOkkN931AI8/8nt0kxa9cILpuKI3lFRNQ2NbQpbSTi2YirqskInGC0lbtxgBpg3EgCw6qkzj2NzZpu526XRPYEyLVwrrAqacUY339mta9ucIQTHevcad999Koh2ohBACja1xjWc2LWlczaSe0fiGndEWpZfsrW1hVMWobhhtO7YrWLWBJnaL6NAEHLB6bcQjz13hxA0ZiVPUVYWUHdICGlOTyQ7GWXRoEUiEt0hncMaQd+eZllO8nSKcR2YpWSZJpCDTGkuCMZayqjAmEEQgEQovNM9sb3Ll6l5MhB8dOikli/MdEqcJXuD9ftKOTKRob8mFR7kWIQVaCFQI4ByEgAoKLR1SBdCKoIDgsG1L2tXMWs/atadZnDvBlWs7vO/hy4x29//uYTrQoIwQuH59h+vndhhm8+SFJktyGM6R5QVtU5MGB7bh7Mopsv4817e2aYOhbWYg9l9OTd1QmxavUzwCpyqc9YimxZn9mgONbTGtiRtVoyMleHj49y/xFfeu0O06xFRgJg0pihNnbkRkmsleTWgtVgZklqLwICReaVCaIARSCBZPnmJx5QZ2t55EO6hDwqwtETKwN96mChIvJNNyhtQJrbGQKkKa4RsbM2tFR5sLfOqZ63zjzTcglUfJgFYwLUusa5FFgso6OA9tOaPo5hS9BKkEAUlVz6jqmslsStV6jGupg2drMmYaAttVxaRu2dkeU1eeWS3Ycp7JYZ93FAHBBT786BovO3uC8wxQIkEoj9cerRW+bbHVDC8apJLUswl+MkUS0GlGOrfAdFyi7AztLGmvR1Lk+3UsgVoqpEiojUF6R6IDe77io09c31/aHgOy6JCpVNIpcoTXCPZnfIWATAY62qNDQ65TQnC4JoBPkULghEek++9JoQGl1P6qOQHWOUJd7xcIMpLN8Rbve2SVRz+1h/TgD3kw4kCDsgDMJi1jB3tmRl/30Soh7xYUWYoMAxIJoR4xv7hMCySuRdoGo6C2AddYmnrGrCppvEcKhfcWM51imgqjLB5BYywmVsaNjpT9jl6PW977/guc++qbWK4cCkG/M0+SQ2sqgmvAC1xb4UJB7RuStIttq/0UxiEgkgyrNUsnz7B99Rlc1eIyz+baNfIiYdI0jCdTfEhw0tE0NTpJaJ2jFQ2VAd8GJOL5+mVRdLT4AJ/41FVWX7NL0WZkWZfZrKQtS6z36E6H1lpUkjJtZpyay1F6v55TXVcY4xg3LaV3NMIyLsfgwKKZlCVl0zAZj5nWgclEUPrAboD41IiOit3Nkt/+5CWOv7LLovEEJQlCQqpxXuLaGcEGpIDgQEv2VxR5hdIJ+dwi7QSCq56vSWnIMg3Gk0mJ0AlIR0AipOOxyyOuX5sSA7Lo8AnSIqWbKFASJyBFUCSCIhNI4dGJxAZLOSnJ6WC8IUWjkFjvsM5iXEuepGgdQFqUCLTG0LgdTCj5wMUZf/DIBq49Gtf8wc6UAdYYnnnyKif6cwzlhExmFEmKSiWpylHOgOtAojGzMXODAeP161SzkikB01pc22CbktlsSmNBpRnSVrSmwrcGIzxBK9q2jbeW6OgJgQuPbvORuwe86eQSaZ2Qdgc452hmI0LtcE6ByMBJnIWAoKqa/SQ3NqCygpCnyCylWDzB+toFslMn8CRcv3YVWeTUVUttJqBBZQovLUIKjGkpS/A2sL+nLIqOosDq1W0+ffkqJ8926SUFbTUj0YqiN8SoBBEkMgjq6Yz+6UVCcDSmxOKo2oCXAiNhd1JRO5jubeN8Q1nWlPUeo9YzqTzjAHsB6rhiKzpCfAg8/vganz63xAOdll6S4qYBPegi0xxTVkjk/mCdEzhvCCogrSHVKU2VkKXzpKEg4AlO43EEKqRyKAw5DiFhzwQ++ZlNfBs7QXQ0JKkm1wWeBCEkSkOuFcI7nLG0WuAc6KRAB0GoPV54pAso5wAPMpCmEqU9xtfUdsq0nbA+eZaLE/gvv7/7/FaOo+HAgzJC4NrlDZ49eRW11NBZzOmlKUmWI0RAGIeUCusdbVWRpjndvAM7m9RNSWla2rrCzhpsVeFxtEqAlEgpCCIluBahAk1rD319aBR9Mc2s5b//9hq3/dUOt8ouXgtm5QzfGLAWpXK81vhEEoSgriva1lG3Ld6AtAHpDU2oyPsdwkaXcmOXLFfY1lBNZ4huisMTWkuiEoQSWOfwwTMb83wBxtg/oqNJANXE8unVEV91k6Mcj5BY8iwlCEkIAp0kNNOaVCmEDITgqGzFpC2pbEYTJLNZQ1vVjCZjyqpiZ2uVNhimk4SmbmiCZOKhYj/Db3wljY4CASACzczyB59e5WVfOUfXlchGQpvigkcFsf+K4yU+gEoVzjtEU5OkCXmqMGggRauAaVuCtATJfuZfAcnzy7qub9RsblZx7UR0RASOnRjQTTOk0gghSKRE+v2s0cYEvLPknYx+GpCzKanO8K0lGFBS473Dh4DzHu8N65NNJvWMj6yt8clnRzxxyVDt+SNVNuvggzLAGscTTzxHcZdjoegxyLP9+gJaIaQiSIFtDba11NUWSS9l0OuxurlKWU+YlBOkSLDO0rQN1jt0ovFCIXSOSAQCQV3H4p/R0RQCrD8z4Xcv7nLT/X1m1SaiFqRuP8tolhXovMAITVVbTN1i7X7yDyMNbT2CymEDNE1AZwV7o1WsUCglCa1HF4JOp8B4h5AekEgBxgvaMj54o6MtAD44nrm+y6SasFgHEq1BCZxtkcLTOkfwFpUqxrM90iahNJ4mpOxM9miamvFkzKRu2BqPaNqGUWPY2diiVTDzgbENVITPJ1uM/SI6CsLz/wgEnn1qiw+d3+StJ3O014RpIJEZnhSdS4JyBOvxQSJbg05BBoOVDpUAIsPhaYLBWwdqf9m8SgQKjfGeZ9bGWBOH6aKjY3GhSx4UqdKkOkEJjXXQeoXUOR2pSVxNtTujQFGrgPAKqRWlM7QhYD1Mm5bV9VVWJ6tcMgm/8YebTHYluHDkBqYPJSgDGO9UPHV5k0Ge0ZMpx3qLJKILQuCDI5QzSteyt3WVztwcuuiwOJxnvL0GdclOaxBZglYK8JhgCCIgZYtSKQGBMXF3QHR0OSv41CdGXL1PMBQwWBiQkZLLDsFlNKXDtjNa19K0gabdr9HUekvV1NiyAh+wSqIH8xi7h3UzdCdBGoULFqE0iU6QEgIJtWmYNgJjjtaNKIq+lHpmaeoSZwVZNsR6j/cW17SY2kCW0el0mExGsG2YWY/XGYSG6d4Gzhl21jbwScL25ibGOVyWMNqdMPUwBUycH4uOMG8s7//QZV7+bcucl6AxaOVAOpSWqKSDxGN8g6dG8nwNJ9UipcfalkSDk4ZWgJAZHvn8pxuMd2xOKgixH0RHg5CwfLxPV0kSBInS6CxHOoESCTpVJNrj2hxZZEiVkAmNq2ucbbDOYr0lCMf13W2ubW4y8Zr3f3aT8c5+av2jeKUfWlAWAqxeHXOpv81Ad1HPF31LW4tLHVNfMRvt0Zqa0dVLNM7TmJq8V1DZEtla2ipQh4CUIJP9TC1kIFMN6nMrF4/irz2KAmDZfGbEc1dqbj+b4VJN3Uo0Hm8rjPGY2uwX0a0lta1pBVhnqKqWti4J3iKTFJXlpP0l2mkg6WpSJN67/VSwQtMS9uvTqEA5FbEGU/SS0TYeNegy0CvYWmJLS1VNmOzNEEGiZBfpwTnNbG/KdrmHTTStA49jXG6RJIK1jV2cgVE5ZVZbnP7/s/ffwZZd92Hn+11hhxNvvp0DgEbOIAACTGAWaEsyZUqUZSvQ9ngk62nmuVx+euOyyyLtkl2WxvbUqFx6tsf1PO+RUmlGz2bZljWkaEUGMRMgQQCNRqPjzeHEnVZ6fxyQMk3RIkWgb4Ncn6rbXX3v7XvXObXXXvu3wu+XMmhqqgOuSxNFf5IA7G5N+Y9PXODUI8dZsH3wUxAVzkoS7ei3JbWF4Bx1U2C9mj3ZygpFg7UVWZIidIp3gcY4vHUoKTAOyrI+6JcZRX9ECBaSHCUliVZoKUlDQEjwwvNi2XOSVkbbWNrWIF2DtQWD4R77RYnotjGuZnN/iCPnynTC1pXZZPb1etc/sKAMwFrHsxd2mFvK6CQaAXRkC1s21GVBPZ6itMR5xdbGZUaTMZW1GBxJpqByhEQhUjU73JdosiQjzzRWSKRSB/nyouhP5GxgbaPG3+gZT3fJQgutO7iyphhOqWpHYTyTRlA4sCiayjEaD3FlgdCKtNshpPNk7RYTm6EQJLXGhRSrU4SANFXY2mBqQx2LgkavEAFwGqrGUDT7+Epjp4F6WGNqA6kmdQbnHE1Vgg4Upadq9hlVY5RUlNWU/cEEITrs74+YWsu0DmyMG5oYkEWvAAHABZ54Yo3P3p7wqJzSNCBEgkpypnpAq5URRILSGVmvDY3FBk+e5tgmIKXDSUfiDSY4RPAE4QhB471Ha/knNSOKrhmdSHppIHEeKRyJDGghkHJ2Vl5rTZYo+qmg5QqkqyiKit3RlOevrNEoRTeDi5u7FAhq5Tl7YR/s9b2D7kCDMoBqbHj27D69WwWuKunLLipJqSYVUiqyJAWd0Vm+CdsZEeox1BVJVTNlhMoUTgJZjsg65LJDImar8Gly4C8viv6bPJ5nLu1SvfEEy0ITasGoGCOahqIa0jQN0yIwKQ3jpqb2CU0QVPUEHwx5awXdaaGyBC1a5K7Bm5J+P8cHqKSlrAsaa6iKklFZURXxrGX0yiACOB8wvmJrb4vUdWmaFuPSYRw0TiCbgmA8hIbqxQBtWAyZmilCK4aDEbUrWd8YYZ1kMrHsTT2TJgASKWeryFF0ffNUo4ZPPl1x2/1zdKVACUXe7dDudAnBE4yjChbjPUE6gvcEl6JkhkgC3tXgHBKPxOK8xyFw1qITcd2uHkTffYQApR0Yi7eATRGzDB6E4NFS0E8Suq4hBDBBMSktlzaHbIwbQgbPP7fNOLSwaYvn1jfY2iiv+81zBx61BALbO2MuHk6RsqHSU9pZC2kF6ARXgXcChKLV6iJbGTmBbppQFRVVXWJ8QyPAyQyBBAHGNxgTHz6j61yAtStDdi3MSz+rs5SkgCa0PUYYlA5kWWAyKrC1wwWL6s0jUk0VPNZNUMWsMK4LDTpvMbewQl1XmPE+IVQ0VcOkKhgODbYUf/TLo+g655xhPByS1Jb96TbFsGQyqWZJnXQfLyQ+SKw3OFcydRMqUWFEzd5ghKsd44kkKMv2XmBsBE4IEilwIWBNDMiiV4ZA4Pnz+1y9c54THrq6hRQWL2oa67Fe45MUoSXKBYK1hBCQMiC9RIccKxucFbPsjsHhxKz2pXEHXTY3iv5IAIwI1KIhDynBAzi8nyCDpJMGWsHhxjU+KMZlzZWdEZfWdtmZ7jO0NWG+hxOOuphy4eoE11z/McGBB2UAvoG1q2OWTrdxxZjJOEEaiUhSpEoRQuGShLkjR1iYX0GiSfHUrYppXVDaiso5GgnWBwb7Y85fXmOwPz3olxZF/20CBrsF5/dKTqxkSGMwk5JiOMRMpxg72+9fGEdZW6rG4EWClW0SL2fnAaxB6Zxebx6vJNbPBtggBSrV1MMpu4OCzaFjY9/j45at6BVDUE8CWbuHGQ8pqgKjPb6lcN5TN4PZYe4ApQtUpsFSkLUESgsSrRhPDGXjmYw9gtlqQGMCKgRqF+v0Ra8s+zsll4rAYlsTgiAYT15ZXJAgFUrNPoyYlXfwBDTixfT5FqUUOgScC4gQ8B5q4ZlObQzIouuGM569vYbpEYH0giAUKE2wjlQE/LSkajwaR20Dlzd3efr8ZS5ujhj6ivahRRoLpJ69wZDJnjnol/RNuS6CsoBjb6dkY1myKmuUUYRa0koWkXh0K2F+9TBJpwcogg+zGhttTZ5laGdIXMN+0XDp4iXOn3+Bum4O+mVF0Z8sgDeBZ9cGvP7EcexgSGMqysbhrMYLS1lOGU2nDPdrSiNIuvPIvEdrfokkS6jriiAE1kNT1QQZcJmiMoErw4KnL07Y2ppQ1yGW7YteUQIB01hCb5HFdBmZDtjbvkxTD3FCQa4RpBRlw7QpaKQnaS+h0gCiJkkcQc3KpjQenAkI68kRFF7gfewQ0SuLaRybu4bs8BJZEGgFaaoRuo1HIZQEBDhDoMELQQgCLyRBesAgpEUoR+oFlsBO7djdqYgZoKLrRQgwrmrqxtBLLD44nFRordFpSu08xlqcadjY3uHS+g4T4XDLXZJ0jkFZERBUhWPDeyyvjAm46yIoAwgO1jY98zcfoqWnBBy1CiwdOcLCynFwFu8FxnikVJC36LZzpGnY2t/lmYvrPHfuPMP94XVVCC6K/iQheJ778ibmDbdw9MQCdlVjqln9sbquGA92SYoKOSiwIUEkbWyiCSKhshW1r7BBEKTFBc/OxHL5/D7ra9tsbO5TV3GgjV65RpOCteGA+ZDihSftzdFSCcPxmMoUVLVlWpQUDlr9DrrVQkiH9wKkIQRN8B6hAyqFDIH3gjoWyY1eiUJgb6/BiBSVKJTSBJnOstmLgFQOIQJIgbOS4AzezlaJhZRoPVttSKSnSR2X9ko+/PHLFJPrOwFC9N2nkYHCeIwQeBFm5yYVWGlRWmF1wtTDKKSE9jygqScj9qc1W+OKjd2KybjGGEd4hSQ4u26CMoDxfk3t+iweWiQ1nkS1yHrzLxZFBK1TdJrjlGDP1uycu8ozzz3H5bU1imlJCPHhM3qlEbPioM9s8szamOUViVQ5SiUIWdGYBm8twTgSleKcxgG1a7CupGws+5Mp46ambAKb2yMuXN2lmDQvTk68Mm5EUfSNVEPLRz7+HN17T9GqBLWDKqTYpI8TjoBF+JRM5ywtL6ASBQjKckIdRhgnKG3AzfJ64IEqQNzFG70SCQQXL+8xtJq+khiXITOJVLM04QEIoiZIiU5SRBAY6QnOkUqPkAojJUMMH3tmnd//1DbDgY1DRXRdUVqipaIwhok1LEgIeGQI+MYhdcqwqNjYH7FVTFgrS57fGnJlZ8TWxoSqbGb5KIDZxf3KuMCvq6AsOM/62jYnjt6JFo40KEIVsD1Fqz+HMY4L6xucu/ACa2trTCfTmDUreoWb3Simw5pPPXeJ2+ZP0veS2sGkrhkWJdNaMmo8u41h6CwbW/ts7YyojWFS1uzsDmhqh3MC712cnIi+owTv+MhHnuPcuU3uuHGRE705MpXiA9jaY6uGBhBOUNc1CWCCZlxP2NmfsFsYdhvBZCqoTaBoPLWD2E2iV6qt9TEf+NDnePw1N3HDfJ923UIUAiEbfAgI5cjTnCSRJErjXU1NSVk2XNrf54lLWzzx9JDNzQpfX//JD6LvPsEGBhsThkqi84xMaaxWaGmZGsvmpOLLV9c5vzlgb6tmb7ehGNez+qx/9FMOrP1/WiJ8k3v9hLg2+zFb3Rb3PXQviZQ0k5LBYEhRG6qqYjopKcua4GZvergG+5/jVsjoG3lp+4Rk/nCLtzx+lKOn5vGFZH/dszNuWL+wy2hYMRiU1LXBGo+1jtkNR7z4EV5cc3v5xT4RfSMv3zghQIBSmizV5C1Nq5OQZSkKSLAoYGGuS6ub4YVmMBpy5fIW47GhasB9ZbgIL30/iX0i+kZejj4hACUUMpfMLSbMdXJSKen3cmztZzMO1pGmbXRLMp3UTFzBzl7JZGgxzVcmJfzLNmrEPhF9I99sn8g6CQvLXY6fXuDQaofh1pS9/SH7+xXTIlBMapyBEAQy2Ot+Peyb6RPfdFAWRVEURVEURVEUvfRiCfcoiqIoiqIoiqIDFIOyKIqiKIqiKIqiAxSDsiiKoiiKoiiKogMUg7IoiqIoiqIoiqIDFIOyKIqiKIqiKIqiAxSDsiiKoiiKoiiKogMUg7IoiqIoiqIoiqIDFIOyKIqiKIqiKIqiAxSDsiiKoiiKoiiKogMUg7IoiqIoiqIoiqIDFIOyKIqiKIqiKIqiAxSDsiiKoiiKoiiKogMUg7IoiqIoiqIoiqIDFIOyKIqiKIqiKIqiAxSDsiiKoiiKoiiKogN0XQZl733vexFCsLOzc9BNiaIoiqIoiqIoelldl0FZFEVRFEVRFEXRd4sYlEVRFEVRFEVRFB2gGJRFURRFURRFURQdoFdMUHbx4kXOnDnDXXfdxebm5kE3J4quuY9+9KM89NBD5HnOTTfdxL/4F//iq+cvo+i7ye/8zu8ghODf/bt/93Vf+5Vf+RWEEHziE584gJZF0cEaj8f8jb/xNzh9+jRZlrG6usrb3vY2Pve5zx1006LoQPzu7/4uDz744Cvi2UkfdAO+Gc8//zxvfvObWVxc5Ld+67dYXl4+6CZF0TX1xS9+kbe//e2srKzw3ve+F2stP/dzP8ehQ4cOumlRdM298Y1v5MSJE3zgAx/gB37gB77max/4wAe46aabePTRRw+odVF0cH7qp36KX//1X+dnfuZnuOOOO9jd3eWjH/0oTz/9NA888MBBNy+KrqnPf/7zPP744xw5coT3ve99OOf4+3//77OysnLQTftjXfdB2TPPPMNb3vIWjh07xoc+9CEWFhYOuklRdM39vb/39wgh8Ad/8AecPHkSgHe9613cfffdB9yyKLr2hBD86I/+KP/0n/5ThsMhc3NzAGxvb/PhD3+Yv/N3/s4BtzCKDsZv/MZv8Nf+2l/jn/yTf/LVz/3sz/7sAbYoig7Oz/3cz6GU4mMf+xhHjx4F4N3vfje33377Abfsj3ddb1/80pe+xGOPPcbp06f5yEc+EgOy6LuSc44PfehDvPOd7/xqQAZw++238z3f8z0H2LIoOjg//uM/Tl3X/Pqv//pXP/drv/ZrWGv50R/90QNsWRQdnPn5eT75yU+ytrZ20E2JogPlnOMjH/kI73znO78akAGcOXOGd7zjHQfYsm/sug7Kvu/7vo9er8eHPvQh+v3+QTcnig7E9vY2ZVly8803f93Xbr311gNoURQdvNtuu42HHnqID3zgA1/93Ac+8AEeeeQRzpw5c4Ati6KD8wu/8At86Utf4sSJEzz88MO8973v5fz58wfdrCi65ra2tijL8o8dD67XMeK6Dsre9a538fzzz3/NoBtFURRFMFst+73f+z2uXLnC888/zx/+4R/GVbLou9q73/1uzp8/zy/90i9x9OhRfvEXf5E777yT3/zN3zzopkVR9Ce4roOyX/zFX+Sv/tW/yk//9E/zK7/yKwfdnCg6ECsrK7RaLZ577rmv+9qzzz57AC2KouvDX/gLfwGlFL/6q7/KBz7wAZIk4Yd/+IcPullRdKCOHDnCT//0T/PBD36QF154gaWlJX7+53/+oJsVRdfU6uoqeZ5z7ty5r/vaH/e568F1nehDCMG//Jf/kvF4zE/8xE/Q7Xb5/u///oNuVhRdU0opvud7vocPfvCDXLp06avnyp5++mk+9KEPHXDroujgLC8v8453vIP3v//9VFXF448/HrPzRt+1nHNMJpOvJr6B2YPp0aNHqev6AFsWRdeeUoq3vvWtfPCDH2Rtbe2r58rOnTt33a4cX9crZQBSSt7//vfz9re/nXe/+9389m//9kE3KYquufe9730AvP71r+cf/+N/zM///M/zpje9iTvvvPOAWxZFB+vHf/zHefLJJzl79mzcuhh9VxuPxxw7doz3vOc9/LN/9s/4V//qX/HDP/zDfPrTn+ZHfuRHDrp5UXTNfaWE0Gtf+1p+4Rd+gX/0j/4Rjz32GHfddddBN+2PJUII4aAb8V9773vfy/ve9z62t7e/OutZliXveMc7+OxnP8tHPvIRXv3qVx9wK6Po2vr93/99/ubf/Jt88Ytf5Pjx4/zsz/4s6+vrvO997+M67MZRdE00TcPhw4fx3rOxsUGe5wfdpCg6EE3T8Hf/7t/lwx/+MOfPn8d7z5kzZ/jJn/xJ/vpf/+sH3bwoOhC//du/zd/6W3+Lp556ihMnTvC3//bf5umnn+af//N/TlmWB928r3FdBmVRFH1zvjKBEbtx9N3KWsvRo0f5vu/7Pv71v/7XB92cKIqi6Dr3zne+k6eeeuqPPat/kK777YtRFEVR9I188IMfZHt7mx//8R8/6KZEURRF15n/ejXsueee4z/9p//EG9/4xoNp0H/DdZ3oI4qiKIr+OJ/85Cd58skn+Qf/4B9w//3389hjjx10k6IoiqLrzI033sh73vMebrzxRi5evMgv//Ivk6YpP/uzP3vQTfs6MSiLoiiKXnF++Zd/mfe///3cd999/Jt/828OujlRFEXRdejxxx/nV3/1V9nY2CDLMh599FH+4T/8h9x8880H3bSvE8+URVEURVEURVEUHaB4piyKoiiKoiiKougAxaAsiqIoiqIoiqLoAMWgLIqiKIqiKIqi6AB904k+hBAvSwP++l9+Jz9z/+vo9VegbrjY7PJTv/QveOrsC398OxCcvvEw/+an/wpH2ou4umIkAn/zV36Nj3/qi7zUB+TikbvoG3m5+sTLRyCUJEk1h48ucfedJ3n0VTfx2rtu4Egm6AhN6kAaBwGEV5Sh4b//lf/Ib/77J/hK54p9IvpGunM9/pf/24/x1iP30VgY7e/wsb1L/MNf+zV2dob4l/wOfX2IfSL6Rq6HcUJIgZQS7/zXXKutbosf/Yl38Vfe+D0stuYxVY0NHmc9par59d//Xf71B/5PxvuTb/l3xj4RfSPXQ584CN9Mnzjw7IuT3RFXL2/QTyraWZt+N+NNr3qALz9/keD8131/AI6uLFBc2WMzrxFI6rLm1sNH+IT4IvE+EEUgESBBaE2rnXLy1AqLCx3e8tidnFlZ4OZjqyyrhB4aDcgaCB7rHUKkiERCVeBKQ+4kIgjCd+gDdfTSWV2d485+G7++QeUVvrHcna3wZx95Nf/7b/4WuFfmNSSAICRKSRbm27TSjO39MXVVEcJ35wNGdP36yhWps4Sb7z7D61/7EKePrHD5wiZ/+Lkn+dITT+Os5/G3vZZ333UfnaTHfppihSAUJU1VA563P/wQ1hv+t//3/0lV1gf5kqLou8KBB2Xnrq6zdXKMrwQe0HmH+8/cSLedMx4Xf+z/aaxluxhTjAypzjHeoVVCEBCfG6PvVgKJFKAzxdFTh3jtm+7ioQdu5Ia5LqfnOrStoiUhUxoZNEJpRCJxHpzxCKkQ3qOEoplMMFPD2DRkIvat6JtTTEsq5THNPmZsqYzECXjk+Ek+cnSVy5c3DrqJ3zIpIGtn3HXmJG9/4E5uXz1CpjTP7u/y//nwxzh7/tJBNzGKvoYEFg4t8kM/9gP84FvfxmreZ7y+TXloyjvf9Hp+57Of4f/6/d/nex66i9xLnJU0RmJdgheeMlRY65Eh5cE77uDCW17Hf/rN3yM4FyfnouhldOBB2XMX11i/b0rmA9I4shA42mpzyw0n+OyTzwFfu1omgFaa4RuLrQu8dog8w/8xq2pR9N1ACEHeyTh6wyoPv+Z23vCqm7j95AKH8pxOSMmTNlIJZEcjdI5TGlfVJCEHUYEJhFogUk0oKpqiJBhP4zWjZoT6Lt1qEH3rhoMpZ03JUp5g9xrKScAlmmWR8OY77+H/e3UL76/RvfolmEiQWnHHbSf44de/hvtXjrDoWvhGM6xKlofr3HWixwtXkpekuVH07RIv/nHj7Wf4Kz/xg9y7epR8p+LspbMkAmSeoeqU1525nXtOHiGbVqg8J7QzWmlCaWoKD8nCPL6pEdaQFjmve9WdfOmpp7nwwgZxdi76dn3lOu31Osy1uwjAhcBgMqYsK7z/7r3GDjwoGw4Lrgz3ONrSFGaCJ5DJDm98+D6eePoc1nzt9wcCwgRc4zGFQQqHtwEtQQhJIAZn0Xc+ISS9+Q5n7jzGAw+c4bFX38rp1T7zSZt5IUnbKYkWSJHiQgoavFbItIvUKUbWmKoh0MWpQNJRGFujVQquwaucWgSsGdPuZwhB3Boc/Yma0vHRLz7DQ3fcjvEF3nlcyBAy4aEjx/itQytsbGzhX/KLSZDkinvuvoHbTp9Ae48XmvNbu3zus1+mLAyEb3ZsEAgEOpG8/fUP8GOPPMgJMY/2OY0XTE3F8xee40vPfJI1MfkWfm4UvdS+MmE2609SSe544FZ+8sffzamkR9id8uzmC6jKcOzYURqrWWifwpYNvfYSpl1ilUanCSFLkHhSPN47glAvTmwo2jUcPrzIxRfWY0gWfdu6/Tbvetsb+UsPP8Zh3SWzijoENpoJT29d5bMXnuPpKxe4eGWdqamxjcU25o/GDS+BgBcBEWZX/2wO7pV/dR54UOacZbOosAsJdemRTYOvNHetrDA332V3e/i1/0FAp9chCIExFhEcQUGqA1JIfAzKou9ASmhkS7O81Of0DYd48OHTPPbIrZw5dJj5LKOlIREpQiagFD7RuGBwQqF8gkcgkwxjPcrVSOPxTUBoiRYCnENW4CtwXtGEBpSnDg5PmAVlB/0mRNc9geVjn3qGn7jvNvLcIwclrihxNmG+l/Lq28/wH7a28S/x2TKZKN7+tof5/sfuIzMSGjAi8Ijz3HR0mV//jY9SjCu+matYEBBS8roH7uDHXvWqWUBGi6KxFLVhbXedzz39JE/ubnO2cpgmjjnRtScFSC1p9TqIICimFaduPsqP/dDbOFYawnjC3nDM5oWrnFg+xM7GLgtHbwCTkEhNUQes8ugEqmKITJZQUqKERguBCg2Nr5E0CFsz124RR4HopfDux9/I//NVb6afHAGX4o2n7wOHRI/7Dx3ih1buYfpQzUDWDPqaoanZ2NzENg21qbk6HXB5Z4uNzS3WNnfY2NqlNua/3lj3inTgQZkPcGl7h9Gho1ihsSKh7WE+yTl+dOXrg7IgkK7B1jXGCUIwhKrChAky3jCiV5w/mukUX/2MADHLltXqphy/4RB33HOCxx68g3tuPs7RXptemqCTFC01QQi8gCAT8AIZBLIMeC8h8YTE403A1x6BwDmPCgEVAt7MMm0p4wmlxdaWatrQNIaagE8SzLXabha94nngytU9Pr+5waNaIURNXVcEn6PzHq8+cpw/mOuzszf4U/z0WfIaKeRX/vXiVkjJsRNLPHbvbcha4aXEJx7XNBAc995whOodj/Aff/OTFN/gnPJ/SSK48cbD/NCDd3JI9Un0/Kw/VIa96YCnzj/N59avcrY0VDaOOdG1JYSgO9/lngdv4y2PPsSZUzeAcFzZ2qEuJ8zvTbFCEhJBWdWUxZDRDqRpmyDaeJ+hszZGSWqT0UhF6hT19jrtbg8fwAaLbYbYxhKswduGLFUIIWJWxejb9sixk5QXd3GiwgqNR5KolFaqaVxFEiRpq8PJ5WOs4EkziThxioBAW4tIHDbUNPWUSe55Zn+bDz/zRX73s1/ghUvrNLWF4L/B7h7B9Ry9HXhQRoCN7R1CLsnSLonKSdsZWUdx56mTPPHEua/9fgGLhxfIjixjRp7gLCFY5LCBePYleoWZZXWbBVIqkUgtOXx0hbvuPsVjb7iLG1a63HKsz5zM6QiFyBNU2kWKBAs4JfHBI3wguIANkCgIpkF4gUDjvAJrEM68mCnOIoTEWosIElFZQmkwlaWuHUVZUbt69mEcPogXQ8Y4GEf/bQGwjeF3nnqBVz94B3qvgTHUtYXGs5Apbr/xOB/dH35rD3dCsLjQ4967b+LMyWP0kowmGL703BU+/YVnuPn0ITJhSdMUKQXWWqxOwAlaMue+206zNxjzn3/rs3/i7817Gd/70N0cYo407SB0QjOdMDUT1kcbfOziOZ6ZlJjYHaJrTQhO3HyU9/zlH+C1tz3AofY8ic8QUnLfkYb9vT2++Dv/maaV0lqcQ8mE8cY2iZyQtDq4oLHOo1s9ZLtP5/hxaGdsbm+SVuu4vI3qz+F1hgotfD3ATAuMtezuj2JAFr0kxltX2NjaBwJBKIRKyUWKSlNEr4WuAp12n2ldUWhHQiBPM1SSkSUaXYP3jm62SE+3WV1c5Q1vvpO9x/4cX9y6wsfPfolPP/MMz7xwmcFohLMWAvggr/stjgcflBEYTytkO0EKEM4SbIWtJLcfO0SSaIyxX/1uQSDTCi01rT4Ep/FC0lIVPtbCjl5JBLR6OXfcdwNHl+d53Zvu4YaFPjevzLPSmyMVCV5ZpJJgNUIJVKpxQhOkJngHQiBEQDiL9wItJFhH8AFvPQkCqgqdJLNtVi6Q6BxbTxEigBDY2uCKkqKpqRvHpKhpnKc0FWVdYZo6xmPRNy2EwDMvbFG+8QHolIQgaGqLH05RCy3ecf/dfPn8FXa/hdWyI8dX+O9/5Hu5beUwoZRIQGjB3Tfcyu03HkaMtxBVQ2cpQyhJ5Wfpu4PUBDx9NPfcdIRPf7rDcH/KN7qghRDcd+sN3JjlKJGgdE5jG0pfsm9GPLP5AmcHI0wsERFdc4L+Yo/3vOcHeejwaRZCm1TNY6YFdTEB4ZEuY2n1GFeffpYzh06Q9/uMt/YIdSDr9nBC0rOBpFMg8iluvkcrzBMmE0SoSKSEqUToGougGg8ohgOqqmZ9a++g34DoO8SHn3uaOXp0wzwejUozyqBIdYqc5jS1pd0e0QlTXCJoZKBptUDK2TXaQCtpIVck0CAShaxylmzGm1uneez+k5QPv5lNO+K50S5funyBy/s7nLu6web2gP3BmOFwjLPX34rZdRCUQW0NJQERLEIIhFGIBE4sLdLrddnfG351ABRKkucpLtSkNiAsGCkIzsRZnOgVQynFa95yHz/zk3+ee44usKDnUEkLYSYI34DKcV6hMeAC3kmcCyBTjBAoLfBOIExAegCFRBC8wzmPRM9qizkBrsE6j/AS4zwYj7QOHwzOSJqyoShqyqaktJ6RrSiLAusso/EuQTUIGfMZRN+8tSs7fG57jftNg6n2sT4lyVM63Tn6vR6PPXw3H/ytj+Od+wY/4Ssrs4IkU7ztda/ipoUjSDuHbKWYeoI3BTJIbj90jBfWN8lLRzsRqLSNFjlT0eCbCmkdwVu6qaTTyxnvT77B5hVB1sq496ajtHSOVAlVY2iqktI07JcFm7ZgUtsYkEUvo/9yx8+Lzz0I0k7Oj7znz3P38RvIi4Rie0K5OWEynlDj8AKsnZ25cdIhkWTz87DYZ/j0WZSZYlJFHRRpu0BnXcJcD9sfs5BW5GmOkilKpiSpxkjoHj9GogXn9i6xtT1glmw/DgTRt+ejZ6+Q37DEQ2LIXOHoiDlqlRAqAUlK4z2LR45QjAqUEGgvkVpjZEBLSWYlPuuhtcEpj15ZwkuHKKdQCjIlSXLFyWyFo8tLPLh4lFE1YOwqLJYdO+X87oAvnLvMU89f5sKldappgw/hwO/t10VQVpU14+mE0J8HY/DW4U1OL2txZHWR4d6QrwzdAtB+dpagrmowYBON9464eTF6pXj0Lffyv/zNv8Ahn6J3FWI+h7RL0zQkTuKFwAeLt+Gr+/iFTjATCBJcBhAIziKFxjaSEALBB5RSs69Zh/F+FqjZgPce1ZplLXIGzKSimVoKa5iamtp6imAYl1Om0zG+brD1FJ0GZCLx1+GsUnR9MpXl3/7Bs9zzpttYmnZJXB/f6aMEqGrK99x6M5/84rOsXd3+mkFQCIHSivn5Hq1UszsYs7TS4/SRZQqZYHC0pMcisVoTREJfL9HJuoiyohUciUoQWUZZTQFBkniy4OiQ0tL6Gw65UsCpE8vceuw4y+2jzM0dwRUN0+EupSspw5RxU8XyK9HLShBmxycTRbfXI8tzqqLmzG0nefjM7aSjQF2VjOsxpm5w1lOEgAmesikpdrcZjIecFg3OZazcfAvPf/kZ+ngaZ9nd3iFPp+i8i1js00kdHoeXGaQ5IusglER7DwIOHznBw+3X8cHf+zzPj68c9NsTfQcohob/8MUtPjGXcseRNid0w2EtmZeOtoFQgdub0vKLyBDIdYsgU6xQ2KIgMYKyM8c0FPSEYqmSyNUVAoIqlYyUZVJsgvGkaY5OU7TMWRFtDIauTzg0n/KGx07QvCXl3O6I/+tzn+P3Pv0Eg+0R7gAXeK6LoMw2jq39PW5q5YTCI0JCUBKhE246fYinn72ACuCRKCVJvSSYhtoYlEpwIpAIATLOXkbXN4FgbqXHf/euN3FobUozHWKFJp0vCfPzswPWrkQIgUxSQCBVIKCwjSOoBCkVzoJ3NTiDkhLnBVprgqnwiZqtQDQB5wIWQT0Z0slTgs9myXKaCtM0TJuacWWZBsvUWSbFiLIY4EyFrSy1qZnslXjzjVY0oujr+RB44otrfPqhG3jjyRXcIKEIEmdr3MQy3855x2sf4N/8u49gX9yeLqXi1OljvPPx13D7qWPkEq5s7XDlwkVa04pcJgQpqH2JFBZSTaokGQqVZEwG+2Dr2Rb40MZZg8AjBGgE/bRDO8u+rq1fmcxbObzMX/r+t3Fb/yj97iF80qExDtFv04wnVE3B9mg/loaIXjYCQZIq7nrt7bzhdY/w8O1302/32d3dZ/Pcl0kvr1Fni/jgGbswOyMjoKxKalsxmUwwVcVgPGVSTAlB01pYwLXbjEYjuv1llk8dpqgcItG0EgvFHpVVJEjylgAbkFgSqRBSY5zneLLCX/3BH+Af/NK/opiWB/02Ra9wPniwns1dy+ZejZSQJ4JeP2V1MeX0UsqJZMCRaky/drSEJugWtYXpsIRCsjS3SseMWEIxXtsj7fdp9+ZpLa7SWuii0tXZWGEDs2VkgWd2Pg2V0u+1SZMEoSWHj/a4//Ay3/voq/i3v/sxPvvUOXb2ptjGEF7cInStTtVfF0FZ8IG1wYjm0CoYR2EtuZ6doTmxvIAQEoQnEYIsUygUblrhixq6GkcgTxKSRGMb+yf/wig6EAIEPPL6e7g7ncdMQUjFtKmZDAaooiKoFOscOlOozCOzBPAYW6DTHMcsWUeQAldbhAgEaRACpJQoEaCeJfLwBpx1IAVSJggvCdMaY8E1htLCsDaMTcO0qZhWBaYpaYoSa2sa53CuwRRutg0ybtmKvkkCMMbyf/zu09z7gw/RrzzNyDApLS4IksZy3/wSZ04f4ZnnroAI3HjmCP/TT/4IJ/Jlgg+YpiFdzJjzsPbCBZIbDardxhiD9w5smK28KUFvoc/w3Ca2diRqtsLrpg24BpUG6smEUFuC91+XtEYg6C70+Cvv/l5ee/hmOkkfnaQUZYXDUmGZ2oqNwR7be/WBvafRdzaJJGulvOPdb+LxNz7CXUdvZbG7AgZOtw5zZWx59uMf48gNGp/30TqhdJYmOEpncM6iFIRUATAcDtBSEQC5MIcZDxlfvUjiBEfO3E7/0CKinlJvj7C9FkiFU5K0KcjShLzXIZeCREum5YSVXLGy3OdiDMqil1JweAeFg6KybG/XPCUgSSVz7YxDHcWNKy2OtAw9O8WODeXUM5gOaO1lbHVaLOk5stYc3YVVsv198oUF0k6OzhWkAiM8dbAI6el0cgQKV0uQsyzWaaqZC5rVYyu85i+eZHMy5PNXr/CJL5/luUvrXLiyxWB/Ct6/7LWQr4OgbDZAXljbYXLjSdqVwTUWJyW9JOGGpSV6/Zx77ryJH3z7a9jZvECytUNjO5jhFNl49HwPnWqyNKWcVgf9gqLoG5htLXzVbSdIhcd0WjjjoZ1Rmprh/i4iKBQaoT06A5nIWUClU7yoCUKhpJjdFqxHaIGTnuACSZKgtEZ6SBCY2lPXE3SSkmcptRdYUxEaqOvA0FqmCMbWUBQltilnD7PGMC1LyKCqJuxuD2I8Fn1LAgJ84Ozz2/zOlV3+3PI8euDwpaUyUDnQocPr7riRFy5vkaSK93zfm7hRzSHSeUwIeFXTBE86f5hUXaUcDFhaOIzWGRPvwQdcCFgkrfklro4/z3R/l3o0ZlxljEYlEkelBd4aJvUEY8zXtFMAMlO86x2v5U3HTzEv2ugkx2tFog0uCZTU7E32OLe9yWAQV4yjl0fS0vy5v/g4b3/NgxyyPcTAY0xNMa1JvaDVXiaIhGZ/THJsnk67jQiOqpoS8hxZg3YNNjiCM4x3duhnLSSCpD/HCEHbO4rNHbabp6gGS2Qr8+ilebSW1PUOo8EeeSuj3Zoj2ZKkXQVJynh3QLk74OihQ1y8uHnQb1X0HczjwENTObYqw86e4MtXJ+hU0G5pFudbLB2DFd/Q3RvTH0sWm3UO2zm63R3S3hztpSWSLCNtZYg0wecJpXA0TUGn12Lu0CpZq01dB5LM0el2SFOQKqWrMjq9PqduWeEdZ25niuXSYI//42Of4D/8508z/ibrXf5pXQdB2exEweUr22yPR6z6FC3BuEBlG+aD5M+/5VX8zNvfztGlY3xZp7xQXKTTPUI47Jl6w8TWNM0IETMRRNe5hZV5bjt8iKpxWOXxSlFOp3TyHKVSimGBThxNUSIVCJW+WIMMZKrxUiBQKK2/er0LOatpprUmyTIUEhsswjgUgTyR1Kai8uCDo2ka6saxP50wrqY4a/De09SGupwghcG6AmrJ5Su7XLowfNlnh6LvNLNByzWO3/jo87z1Rx4myIqmLKhKS6vTp5O1eaDT5aPHVzl8qM/9h5cppwXIgtDrEZIEGSxKKnrLR9m7ss7SkVtIOy3y1DIqp2gnsUiSvEXZOLavbtDpt9ndqRhN6tkKshYkSUKNpWyqWSH0MMvUGyTcd/cZ3n7zrfTJSTstlE4wzuF1oCgqBpM91javcG5jhLVxJ0b08rj3kXt46+seIq0SmtqzN91jR0wQrTaZV5STErKcre1NTp88jUpTfAjkjcUlFqEEzjU0QZJKzWBrm7Tfp5xOyDONb2WMi4rMDAkTixkI8lShlUfVBUmSgYYk1eh0gLSePFFU9ZRiOqFKMk4eP8YffuaLBB9n6aKXSfiav/AE8A5XQV1Z9vcrzktBq5uQyoRuoljqBG6cDLhrr6Iz3KK3t0aSttG6g5US0UrxWjIeD2gvdfGNoLO4wNzyEqlUuLGjSRtkmqCyhCRN0VqTh5y+NxxZ6XHmexe49fhR/un7/wOjwfRlC8uug6BsZjwp2KpKVvt9dCMRukXa6kE54E1pzhHXBjFPa+44njXyVgtvQQRHrro4qwixTll0nVtc6pGjGU8hTz0hOIJxDCY7nDh6gi25x/beLkUxwjlL8ApLICiPShUiSUAlaK1RQiGlQitFqiVJp0NVTGgl2SxVfnB4G2imHp0meARlZdjeH1KMp9R1PUuQowReglYJhXGIRGAD7O0O+PTZXfZMuHYbqqPvOGtX93l2VHErY1RVkNKn3e6RkpI3hgdPLnH3PTcwHzzTLFBREUJOkDk6a+O8o3f4CBc+8Snq3TUyv0rwgaZssFLQ8QlSaYwUfOEPv8Cx06tUJtDUghAEMglkWReX51SlYXYhS6QKHD2yzJ+7/z4Wa9BthVQpXil8cNTOUkzHDHe3Obexyfagit0gellILXnwwbvp+wxbBabDEUOhCXmHRCtyqTBS4NtdNi6+wElfIlyX4CCRs11CeEnIOtg8R2vJcDBgfjLAFROUbEg7mkEBQjg69Qi7bTFUJPU8oZOhWm1UK0FqgZeSBEkoCry11FlK73CfnqjptHMmk7iFMTo4wQeKcUMpHLaTcfSmI/Tnuoy+dJnJYJ+90YBEatohRYsEpyQVnpEtWG0O0007mOEYWVS4XoemlZPmOUJr2r0eut0mzTTohCAUEseyafEDZ25n53tH/Itf/zBN9fJM0F03QZm1jkFRky6k6ETR6eS08xbCNdQjj3OKJGnTWjmKUQpTTUnTDqkD7aCt27FKWXRdEwKOH1tCW4PHIEUKQWBt4MLZi5Rbe9x83x0Y7/DBc2XtKkmaURYTUB6VJCAVIk3I8hyJItEpWZYi25qq8UiVgNZIlRKsRwRJIKVpoLY1e6MBo9EIV9UIIJES6+2LRdhBtzp4UTOpRjz57Cbndw2N8/FJNPpTq0vDJ86uc/+ty8wNQNmctJWC81BOOL6+y61330CnBUhNqhMq7zESXJpibE57YZk0k+xePsecD4S0jW8qrNRIHDqkdBaXuPzJi9h6imwliKRDEAEItHOL8PNUpQVmJSVe++Dd/OW3v43bF5bJRQYoXBD4IDAIatcwnAy4vHuFpzf2ZnX+ouhloJQiRyJqT1um7NUVE+cgBBIJNm2j04T20iqNkFRlgZQjnEjAOjSz+oBOKbK8TZZpdrf3sHWFqWtc40jSjJBOWWs8cx5UWeK2N9B1hei3CO0M8hyRaqRWBA9KeJK8R2txhVFd46uSLEuYTF7eLVxR9CdRQXHs+BL/4w+/gzceOUWnkFT3jtja3+HS1gZPnTvPxctXaJsxiYNKBGoCen+LxCakaUZ9bJ/WUp/OYo9ut0e73UWXDe35gOx2EJnE6YSApjIVoYa3nDrFJ+88zWc+/zz+ZVgxvm6CMoJg2njydk5SeXANri6wZYkWimraoIYFi0vL9PoLbFy4wMriUXQ7IagUgUQlmjilH12vlFbccecpcq3JZYIwswQauUxZPXKE81/4LCmGI/fdj9eCixtraCkwwWImJRJJmrcRRhC8IU9ACAteEGyCV5JUSkLjaJoKKRToBFSgLAsmkwnT4RiaWcbGLM9wPuAaCKbBuBKVBpqq4uLmmCcuFdQuxO4UfVtECHzh2Q1464Mco2Zzs6Y2FltZ3LSASUW5t0emjyN0QyNmB7K9t9jSYhuPTjQrN5xi60vPkLS6+E4f6w1CtXHWoUzD3MIi54VmPGzQlcHJBicTskTRUYFGeHwIdDptHrrtDD/5yKOcSrq05Rwiy1EavNY4CZU1DKYD9vY2OLe5zfagif0gelkIITl16wk6Zkq5e4ne3Gl6nS5N2eBVOjtjLBOQgW5/Dp22GQ+Hs9UzL7BBYgOAoy7KWQCW5NiyoC7GeCFRWUqy2CcVjunuiLXKUQXIKsOq2ycrx5g8xecpNoF2v03S6RHyNrqV0VhDsA2qMYgXZ7/jk1Z0EAQQBPRX2vzE2x/m4fwoiVhBdBUr/cMcDqe5x1U89rqGJ164yL//rQ/z5NXLTEIgJRDcFDd4ga7Iqashi9NV7LSLa/Wosg75qdPY3hyhalBWofOUoCXIHGs1cyLnnQ+d4fzaFjvro5f89V0/QRmwN5zghCUXAUXA1FPK6ZDceIrRlFZvhOrnPPTQg3xi+yrT/V26uodPFUF4siwl3iai61WaJ5w4uoxUCcF4nA00RYNy0G53WDx2E5/91DO8ZuEoSb9Dr92bbUfsdKlNg3eBVCq00GQqJ080rUySpIJECxKZYNzsYVYKiUAQqpIQ/CwgK6c0pkZpRZJlCCkpiynW1TS2xoeaqioYFBWfe27ExIVZ6too+jZ4AWvrI57eHfNgt02+19AUNaZsMKN9aAw76/uUgzFzKz3GvpnVn3Q1vrb44Ako5o6fZPPps4y31pHLDu8Coi2pceRasbi4TH95hXpnHbIO3ZtuQ+Q9dFMhywZBxomTK/x3b3079x++CaYjcJIgBTJP8XKWMtk0JcV4xN72JhfXz3NufYhtDvpdjL5TSaV4+NX3kkzGbOxt0z6dIfUcaZphEMgQCNbiEcgkIV+YZ/P8C6yeCfgkp7GByjgClvCVRGkehAtMh3uIufbsGcl3yLqWfjFb8RoRGPuArx39xqIKBx1Dd7VPKjXOO0xTIaoKVIILDRKHUrNjIvFJKzoYApkI3vD605yaODbW19gfjVhZOozoL7O4sIoAFvMpb2wtcueRG/jfPvIb/PvPforaWc4Fz0Q0HPKWYlRhQo0Ly6TLmqXVw4g8pfIOVdS0lcZODTYVCBHQVqNJOdM9xpsfuo1/+5ufxRn3kvaF6yso2x3hQoNQOdIFbF0z3t/DjAomu9u0Oz26i23mFld45Pse5zMf+X1Go5J8rkXD7HxMFF2vjp5Y4fB8j9wkaBXIdJtc9tjf3sFOJvT7fVwr4clPf4ZTd92Btp5yd4fDN9/MZOLIMonONUmq6PQz8kTSbuUopUmznBBmD6qmtkgvIRhaSUZZl5TlBGMbpIJMK4J3FOWYSTHBeoEXUDcN07Lg2SsD1sfN7O4QH0ajb1eApjR87rk1HrznBqSqCfWEajShGo7x3jG4ssVgY5Ol40dIcOjBGFFJvAk4FN5ounnKkVtv5uoTX2K53WNiAzZI2ulsi0mucw4dO8blzV3mD52gM38c7z39uUOIasRCOeF//qEfZbU7R6baVHmPwlq0TkhRYD21LRlO99ne2WBt8wJPXV5jc6eMT6DRy0IiueG2kzxy5nbqZ84x3t1gp3OVThdku4sSIKwghEBoZn8vLSxz9ukv0lucw3fmqJuKaTWlMYaUhGAFjZ2NBZPNHTK1gA0S6S0tAWk7oxmVeAMeyF783PzqImG+hZcB4w3SASJgbQFWIm0D3rJ6qM/m5ij2iehABCHREo5ryCaWcbGLXXIIoVBBkGc5ndVVQtpGqgGHhOJ/ePwHONzp8R9//yNMnOdLwTMSnsOhZjLeonQltbE0viFfu8TSyjGWVk9gkwyda0IFop3RavUw2rOgLG84cxNfuOUq5768RngJi1deF0GZUhKpJHuTMbvTKW1AOkFVVow2thnvTtg7tker3UP3WqT5EbqHTnDra1/Fp/7zx6GZUtqaujbERfXo+iNQqeQNb7qf+SBJpEapQKISpEqZW1hm/cpV9sshrf4c5774Zdpzi6StNm5kSCy00ja50iR5QtrSdLstskTRzltkaY6WCutqjJnVYkpIEAKMcwQCwQekVCilsNbhXcPezgYm+NlsbJpQmIqiGPH81W2aOrykN5rou1sIgU89c4kfvf8oUpTUdkgzHdCMp+i6YmfDsXFui+M37dE9fpLJoEBVHu0UwoIRkiDaLBw9ydrZ89SDIVZIvJRMxhXeWPpZi/m5NhtJSqfdI0sCVJbMWbz1PHrXQxw9dDNYj3MepxVZW1ILjzQWV00pmzFNM2U0WOf8xlWeWZtgjUTMcoBF0UtKZ4p3vOX1LE2gbi0wtZrRzib4DCkcXuV4JARJMJ7kxSy7jUjY3d2mLaCsC4ytcUZSYsBLnLCQSnY2d1hNHUkrR7y486EmkANjoAIyKei0UnQrJSiFDQ60QiWaoDVCWFwzQTiQwpGG2Zbk2B+iAxOgmkyhMnhnmQiHE6BDQBmDC5b24hIizQm1Z64l+KFH38Kl9StcHeyzORxBU9M4S5J3yBdX2fQ1995xG92sQ7e3QNZeJBiobUmQEoHCNB4fNEnIOZr1+f5H7uL/dWWfybDkpYo7DjAoE0gluOeem/kr73o7p1dWubhxBbO1jp/U1OOa4d4uw/UNzH7F7uVLaO9pmobldgvdW+Tw6Zs4c/8uZz/3JfZ9TVU1xIAsut5I4OipVR654wxd0ULLFHxAKIWtCnA1WbtDubeLbQLGw/PPXeKmW88wLaHeb+ilOToRiEzT6fTJdUorE+RpSrvdRkmNqTVZaGbbsYRCCE813MPW5SzhgQdnGsbjfYIpGQ+3kGmCIWBCQlkMWduveWGzeDEgi30peulcvTrkcjnlSKjBTDDFPqas6fXmOHLLXTx39gUOH77AjZ0lMh1QFKhaII3C65TheExbSXoLi+xdOE9o97GuIU8UwgtMOaaVaHQiCdOSrCqoywIzHnLLiVs5eevdiCTBKYd3BqEgyRKctTRullynbhpqbxjXBc8N9hiPZ3XNYk+IXg5ZnnJSSczOFvVoQhoUxXhA1u0hiwQnC6rGQBPwJpCnLZyGzsoCu1sbyEwTQoOtS1AtnEhBBhCCLJNslA51Zchiu0DIWSmIZmIJDrZlYOgFQgnyIEm8IEg5GxM0CCkhCEQICO+RQWKFRAqNRPDSbtqKom9S8DjgfDnkruFVUtWFbIFQTJDeIkyNdQ0L04JW3kI6gQyQ6RY/8aY/g5OCSe0YFUM2Llyg2d7kLd/z/RShYnHlMO3uAk1laKqATDRpnmKaBlNanLaoVJOnbbpqnntXDvPIgzfx27/7FN69woMygeJV957hH//f/zIn8nkEipO9Pjudea5+4csM93cZrq0z2h1SmcCV8y8gEOjlRfrBgAuoVo/T993H5u4GTz3zHE0da8hE1yGpeNUDZ1jVEhUgURLvAgkKrGSyP0J7SSITyqoCHbh66QKLiy2aZkw5HtNdOYxzlkRpEi3ItWKu0yJLM9K0BV5B8FjvEEi8mxUeLQeWxoBKM+rpkLocMdjfwDQVRTMgUW2clgyLAaNpzWfPDZgWMSCLXnrjYcnTV0esuAoVSrL5LtnhGzl06g56J29k89wRvvzZz3P05CHUQhdlLbJp0CbFTAum3uK0Bgc7a2u02nvUWUaZpDSJot/ukAQIwtPsbWK0w1UVebvLfQ/fA50MFyRNpvBWEQg4qQjtlNFwAKbBESjrmv1mwuZeTTxSGb2cbGM4++QXqMYebE3whoqSqtdGh4xGKMqqxFWWICTG9/Ba0+602H5hRH+S4WTAmgrVkjgZZtsOfUOSJgwRnJ1a5qeOLhCQFMBuEFQh0GY2dKg8QQqFMTVBS5RP8dYSPDiTIBKB9wbShDzXs5nG2Deig9JIvvDlKYeOW15lPRkt8C2mtcU2JXU1ZToe0O/16fbnSWsJ04ZWkuJ9YDnvYGTCDTfNsd4+x/rVZ7j90dcyGTVMdkd4r7FK05hmdj5fSWo81jhSKWfxh9f06PC2u2/jy1++ytr6Pi/Fc9OBBGUCQd5RvONNryJMLfuNQaSOwgmyuSVO3n4Tn9nZRi/Oc+rQEbbWtrh8aZ3F6jA+U0zrAuUCmU5opSvc/dCjfGFzAx+3W0XXocVDXR697yY6LpBrRZpopAdqR5532ZfbTMYjlFbUdUMIMB6OmOzug6/Z2Vgj6ywQEsiFJDhHt9WilWZolaIReNcgTEUSAlIIPJKiNFTTGiMdla8ZDreppvuMR9sYCryUaJEwqWv2BgOe32y4uFVA7EfRyyBYePLikD971yqrc6cp1CpTJ+n1VxESVpYXKK/Mce6Jc5y49xTKQupAGUvaSKaTCQNT4kYj9nenFJMJJAIZPC5NcJ05BJpzk4IFDLdNA7L0vPbPfi96dYVGtVACpPc45Qlhto3RBwgyUNka8IzHEy5srbOzXR30WxZ9h2sah104wo133EW1u8v5p55g58oQPVfQFfsYoGkacAKvUqwRCJsRnMUWFc3uFuniImmqQHmcMBAc0htC2VB62AK2Awgh6OKZC4JVEehLRSoCXZ1gZCDVDqUVQkhwDmMtwXmCqKBRpFkHpwNz8xkykbg6nuGPDkIgBM9wx3Dp9CGWt0ec0oqO0jSppg6euiiYFlOGkyHdnV0W2vNooTClxdQNg2rC/vYG4/0SJwXD9QGHTt8GuoPzFbZ2hBDwYVYnVihB3m2h8w7elEgnwDs0mqNpl9c9fIZ/+58+gzWvwKBMIEDAHfec4VjeZn04pennZDonaaX0sg4qldzz6GPUqstodwv3h59kY1gxMgZblLjRGDkYI+YWEN1Z1rp77r+f1q/9AZNxXC2Lrh9SSV73pnu5sZeggZbXtGQXnSuMKQjGkLV7DNc3KeoKYRrKacleXXFxbYOVTpdiOqVeHePnNG3Zpt1po5WanTMIkuAFeI8IoBONRDOdThmPhhhhKX3DZDpifzBkOt1jMh2RdzsEKRk0E7aGFc+v1zx7ucDZGJBFLxfP5fUR7Xe9mmUOM9lL6QVFEJrp3i52MkFqePLTZ+l0UuRKD208snbUW1N213cQtsI3BbUxmMqREFAthTQWHSAYSeU8TwwqgoEf+/4/x9Fb76JRbbycZSS13mOFpJYCaz2mbrDeUdsaawuG4z1e2BxTVzHLTfTy8j5wcXsHfzpw6OYz9G+4mXNf+CKXz3+KtKNopMEYgVQZ0ltC0+BlgqgGSNNQ7ReIlkR322hRo3yKMRWhmLI9HLEXPAGBBFZD4BatOdTu0Z+fJ89SvDeYqqQ738MLgxICJSQugFIaJwWE2VZ70UpIUs2cgrydY+rpQb990XchgUBKxT33n+B/+N4/y3LZ4vMf/TiXzj3H/GKPpJfhZZvSVCTVlNxr6s6QVpZS7tZUwzFlOWBvb4cQOqAWGRcFu9s76NzQaqX4JiBIMabAJoI8ab84WTEbOwIKKXO0M7RkzqM338gXzlzh7DNr3/Zi2TUNyoTULC51OXPDCvfcssLcYock6UO3g2y1INWELCHPWyRXBzifIMYTQjHltsdez3B9k6qcEKoCUVdQNch+D9Ff4cH738A7v/9JPvCrv0nwcV09ug4Iyckzh3jH/bcxZ3u0sy656pKKDqnUIGqKpqCuG5q6pp6O8U3JeDRl4OCpnQGPtubInKcqp+QLfbQOpNqDKwlGoESKKWt8U2MdtDo5eEFVOwoX8FpQVQ37k232x+sIZzHG0gkZZWm4Mp7wqedH7Feepj7oNyz6zhbY2B6yn7RYmBbkoUE2OcPpmOnmJpP9berxmHIw5QsffYa7HzvDtBlR7g0Znt+lHNaEAB6HtQLhAwJwQSFFRjWpyYVkVQjmWzl//vG38chrXkvIe3idgJolE20CeKFe3J7laExFWY0p6glFMWC7GLA1KojDSPRyC8Fz/uIlhvfu0UtyhGyxcuww25uLTEZ7qMxAYxEqJ8t7WAu2bpjuDRiNK2TpQO3QqlN8omlqTTFqWBuUPDFs2EfQAo4LwW0L89x65hZWV46gdYadFpimYjKZ0tiChSNLFDSY6QilC0IAFQQIgVAaJRXKQSah18sYD6Zxl3t0AAJZT/Nn7ruZQ9MckSTc9fo3cOX5ozz7mU+Q7+/RnetD3qVhjKo9datN3jjc1FKWQ4yraCqH7s9T7uwynO6wvbdFnhjE/AJZK8faEmsbgoMSg/UlSZ5jEbhgabTE2BSl4LD0vOnBm7l4YZu6NN/Wq7smQZkApFa8/nX38DN/6R3cccNh9q5e5eJTF1m56ThkOV7MzsE01mPaOe3lOSbPbzN84QVaWpK1BJ25PusXL9Bf7NOdXyDrDqCdIZbmmZtf4q/92A/x9NkX+Oxnno5bsKKDJSBLE7737a/mCCkt2aYtcySgZYAgSFSG9AW+btheu8h0ustgUrBWNlwIgaJs6O3tc1e3xf7+FquHMrIkmZWLqBxeOLxocHWDqy1JnuOCQjhHY2qsc0zKKdNywLQcUVclUjnSjmZCweVRzWfOD9neswRikejo5SaYjkouXd7mxs5RdN5hPJ0w2Fhjd2uT6d4O1WBMYxwvrO1yfG0V16qphiNcWeJqjw+SygI+4AHd6TJ/5CSdbp9m8yoMd1hqtXnr934Pr3vto4T+IqaVYzOBrx1IRVAah8OFBkuN9w3WOkpjGYxH7JT7TKcVsUNELzcBbG7vcXWwzrLooTW08pyllaNsvLBFZ94ikxpXVpTTAU0RqAeW87sFz9SWJaPoXq7prTUoAVMHl11gwwtKYB44oiT3HT7BHa96NUurK3R1hm88tl1QTab0eoH1C2fJjUVlKaLXY+IlxjaoMMvYaH1DaBzBC6QL9Ns568QeEh0EwcJSmxWn2L66gcoVstPm5K23cOLmW3jyo7/H1vNP0+1NcFJinWa/3CNpAqGxeFvQNI4sXcBMCppywLQZsb6+xskTc0xGI4JpCEgQnoqAd4GWDYTCIdOEoGYhRuMDwUMqc25fXuHmWw/z5S9cxX8bBy6vSVAWEJy++Rh/4y9+PyfafWi6nDhzH6pKWV97no5UWJ1gXcCmGm075N0+5eBJdtbPk3XmYDIhSzWXXrhMT6UwHkE5YlHdBVohMsWNh47x//ipH+F//J/+V7a2t6/FS4uiP5YMcPiGZV516hTKOtIQUEEggyI0niBqvBOEoAk+AXJeOHuBfSc4aw1DwBP4xN4urWSRu6oxigAuUBYlSI2tAu3MIwigBCLRGGMpBgN2h/sMJ0MmzZTBYJuynECw2Komm+tydTzm0+slu0MbU99H10hgfnmOUzfeC3uW/UvrrF+4yPaly+wNhkyHU4rplLIxFAHOntvlzM0tTFNiQyAYcEJQO0GNIxOKpfll5vrLdNpdXBCsDwY8/ubX8bpXP0Sa9qmTDCvA+VlKe+ccjTPY0GAaQ2M8tZ1tX2xcQ2EKhuWUMiaNiq6BADS15ep0zM39gn7SRiUJvaUFdtfmWDt3gU7L4SvDpGhwxmMs7HjYEIFNbyFA4gJaCNSLc2saz1EhWAZuXjnEnfc/wJFTp2gl2awwtLH4RJElGmOBkyfZ2bvCUv8Qk9rRkjl5d46yqWhsicRh8fjgCLUh7yhi+aHoWhMv/tnrtcisxvrAtCxIgkNKSStv88ibH+PqrTfxxCc+jhjt0E1LhLHUpcR6g7WWahqozQ51VrEXKjyeo9vrTBdX8K02tS/JZIbKEnSa0FiH0wqlwFmDFwrrLBqPdZbGG+Z8i1fdcpxnn9kgVH/6EirXaPui4M6bTmCLKXuyzWrL4tqaI6duZWdtndHaC4T2Ek5qGgmqKugnGaIe0Uyn0FommT9CurXDo489BmXFjfffT3b0MFIqQjHB2RStJI/ccjd/7Se+l1/4X9+Pab69ZcQo+lNTije+4QHmhSQVAh1AoxBO4n0geIc1NWUzpXYVabfHM43gQmPYC7PBLgNaPnBha58llXGDS3C1YzSdMm4cIkAvb9FKc9rdPsEKiqJmf3+HvdGAaTVhVO0zqcbU1YSAB5lzdqvmMxcK9qee4OOgGl0bQsK999zAocGA3c89x+DyJnUdWFw4xPzxk3gPg+GA3Z111jc2uLS+w7FDJ0noEIIjWIfudsjbCXpnD42n11bMdyRaGkwiuPWeW3ntm1+HXFii0V280ngCwVocEhsCxjmMA+8djatovKMyDY2tKFzF3nhKWcYkBtG14a3n0v4+09WS3NaoRNFfXmT59ClGw20uXV5j6jyDAEpIJIEKwW0ItAj4AFbMEt6kQiA8GCFoC1hst7jh9ptZvOkGuq02CcnslwqPFglaBpTxyOQQtS0Z7+zSO3qIwWgdVw5JshZBplhj8KbCB0vwltIWB/umRd+VArPAbGtzl2fWnuFUchQ9N0eeKlQ1JviCppYsLeS84fG3cPHcBS4+8xR2PER6gXE5RePYa2rG1rBp99n0gTMI6mZMU+4RmoJEtnCtNsKlyDqFNKXEUZkaISQqT/HC41wDwiGCQbvA0Vwz10/Zrf70sce12b4oBStzOcVoigoZ7aARVpH6ipuOH+ezX3gS2zGErINXksw2tLI5Wu0+RqYcO3ocXU15ww+8g/HGFutPPUXY3Uf1FnB33UBjPaoxOA0y7fLONz7GH/zhE/z+Rz93LV5eFH2dbr/N3adPoGxASk2QGi8VQmi8YVYPqTEUjac0BYbAGoKdIMiEZxk4gqIfBMp5iskE7R2mtkzGBU1ZAo5Gt5nrL4JICWXF3u4eu4N9imCY1hOK6ZSiqvBVTWU8z+17nrg6pWp8XCGLri0Pc50WaYD2/fez+oZVXNLGekG1v4XZ3WV+d5v+1jxZP2Pt6oDnXtjj1KEW1CNarTYy76CdZYJA4WlLT0aFbAqUbXjLn3mcZGGJJs9BKryz4MSsPpn3OBuoraNqZufJau8wwVGbhrqqqcuCzf0JrokrZdE1EmBalEybEZlPaAuJkJL28jKrt9+KTxVbl9dIK0cRZkk7+gRSwMnZrgwfQASBCYAM5K2EJNEcO3qcQ8dO0m3ls8QdjUUIAc4hCAgJynuUh+Ujp3j+y5/Cb6zRWVlhPN2jmgygnYCcpcF3jZ/VeZrGJDjRQQmM9wxP7O+yONdlUffJspSgUhoPzlmsqfECjp46zMrRJaqyQktFORgzvLTF3pUNLq9v0nOWBSHohgB1RVUMCV2BKw2GGkxGojOgjSRBiwBaY5oCLwWileBweGtxztERCaurPXa3KuBPN7F3TYIypQRZpphMh8ggKSqPGU3od1vkMmd1fonnLl4kmV/Fpi0GZYnKp9RlTba8zNSWvObuh8juvQt9eIuFk8uolUUmu7vkl15A33gjoXSYqsIJQVtq3vH6+/jEp57ENI64xB5dazffepLjeULaKDKZoZMcqTIECrD4qmRaTJhOx0ymQ6bFhMZ7uiJwAskKMBc8AigFSKXo9Xo4a7FNQ2UNzjW0ZErtDPVgh2oyYTIeMGwKjIaJLZiaEa6ZsmsUT21aXtgqMA3EPhFda14K9ssKbjhCGGs8LYJLEM6TBY3KNemRZXqLfeaPHKG3cpGnP/MEV9aGhFoiJQhvCMbhAROgqEb0K42ZWu5/5GHmjx/GJykIRQgQCATnMc7T+EBpHA0e4w2V9VgnscbhXE1VlQyLCTuDKnaP6BoKDPcrjBK44PGuwgdBnuYcOn4jed6mN9+n2NyinJYED1IGZKaRaYpwYBpPXZRMJhXtfkprPkGqFsdvuYWF5RUSBzYYhLcopWa/J3hccEgd8N4TpOD0Hffy1Oc+jgk1ncOr2DRQ1UPqYLC+INiGgXcM96s4qRcdiACkecrhG07TnmbUL1xisjiht7RA2m2htMIDjSlppg0KTSudlUOpbElSFXSFo68VqVd0gwEC3jvqYh+hHMgcbQNJAt5ZfOPIZBuhBKpxOCnwWkBTgXqxuDqeFp5jR7o8/fTWnzYmuzZBmXee4WTCMMvwlSOXJb1Oh0s7grTdZe7QGfTZC9RrV3HdPru2pPYGNSlwwtJd6nPkzI24LMUuzJHfcIKmamidugWdaertAcGHWVrjumQ6GrCYatqtjGETl9mja0iAVgmvuu920lrSzlqoJAOpUUGjvMBXNXZaUU8LppMJdVlzdXcb4y03IVgB8hDQvJgkJ0B3rker26cwNSLRKJmjnUYlkulom3IypZpMGJcDJikYCbWYsF8UXNpt+PJWxd4oEGxMKRcdkBB4/pnLDIo9Dsk+Hg0EhJIkvRa6vYwzBuqKBZ0SvCcExdkvfJHR/iZNaFBFRenAI7BZzq6TJEXFHTffyA333E7IWjgkwXpCAl5LqqaiDoJJY3CeWTp976mtp3ENrq6oraWqCvanU6ajuO09unYCMBoWlKFGaoV0IBJBmuYklUDMrYBUdHvzVJMJSih8MNSuQScp3s4SR00HI4JZZ355ET+XsriwwtKJk7S6fXzdEGyNsBZUhg8W5yzGO2QIiFTTNCVpu8XJu+7h4jOfpskaxPwyUvSw431cUTEejjhvA8XYxRNl0YHIWynv+Utv5qde9zbyCWw8f4Vnn36Ks5/+PFpbVg4v0Tu8RNpqEeqaoiqwISGXnrC7hzYFWlgWF+ZpjIZ6wqSeIBKPradUqUK1xGyLe92gVIJSdrZNOCTYIAlSYmtLEgRBg/cW5yvaSnByoUWWa6o/5WrytUn0ETy7+yWTdIAPBUIXlKMpRueoqkblbW6661V84v/3b1FJYDjaQ9aGDI3t9rn1phvRSmLqGtptTPpiljmfUBuJ7M1TD7expmEynTCYjCiqKUqCmOWVi6JrI0C7l3HbSg+KElSPhUMnmFZjHLMJimo8pS4rTFVTTkomk4L19Q1WfWA+QM7s0LYPgSAEQUpuv/1mklSCcchEk2pJIlO8aZiMB0xG+0wmI8ZNSZ0FCm0Y1YHPXCq5sj97GMXFQTQ6QEGwtrbH2c0tDp3oI6xH4Ql5hs81otLIxNFu96DdI1tcpHfkBAvHj7J28RKXzr3A7vYuiYBX33wTN937APOHl0lcw8nVeXS3TxCS4CxCCnxV4TwEGzDe47xgWjsK5/DB0diAcTW1nVKZksobdsuSuonnyaJrazAcs1nucWhujo7qofI2zhpwFhk8LZWgsg5SSIQU1E1BUgW00LPzLcZR1p5uv0Pv8Crp8iLLh46Rz82hdEKwFm8NobE0PgCBqqnxUoC3CCnxOjCZ7JP2u+SrJzHNAF+WBBlQiWJQTrhoas4PIDSBEKOy6ADccu9hHj96lHprStUIOktHeOD1R7jrwUe5eP45rpx7lr0vXUK3oD+XkWiLaRzOBKrBBFcZGjy9hUM4A6ZRhFFNlnq8twgCMgQIDmsrpARFAq7GBofSKXVjMc5gArjG4oNDa4HSmpN5j6WFnKvXd1AGT3zpBW5rn6TaKrBLC9TtPsFK5haXEdxI59BN3PnwG/jIr/zvTBuD94IQBEurgsU0w5sGsTtGrCziigYC+Bx802AbQxOgFI7KGaZlQWMaut2M/f1Y4DC6diSCM7cdZ6XTop10MaaingxotdoEK2YHphtLXRaUxZiyHLO+vs54f8CRIOgK6M/yKdIIKAksLC5w+x23IIRDKo+WGVIEUh2oBlOKesK4nDCyUwrR4JzgahH49MWCwcTj3VeOx8YRNDpIAVM7Lu2MkTeCVxIbJM4EEAkqy0AIvHPoqqZlKlQro3v8GCfvvJsHdveZTgpqZ1lYPkxvYYFpucti5khbbUSaYH2DFAneW0LtwXhQGu/BOY+3BusNtXM0xmOswVhB1ViaumJvMMWb2E+ia6uuLXtjT51PsMmUltWzgEx4BBZhG5QIpHkyezBEg0hRIkOhsdMJYlKyfOII+eox+iuHWFxcJg0J3lgIAWsMNIZgDSJLsHicDyAD1jUondA0U4IdsXjiMM8+u0HPgwmOoigY1ZarRlDsu9lIErtJdI0JJTiz2qe6OOKyPItKO+i8R6fdIs/b3HT7fdx8yz3olmK/2OXpT32Wq889yVzHo1yDn9Y4EwjG4YohedKmAUaNZ/VwB+FrPFOC96ikDUIjRIqQ4G0DyuOUAOHwwWAbj8oUMvEIpUFqVkSbO25e5eraeHbY81t0zeqU7Q5KxkaybAQ7l68gjp+kky5grSLpHGf56FFWHpvn7DPP8nsf+wMIHo3g2PwcaauFD5DWDWY8RbRyRJoRGoNrDN4ajDE0QWF8oKwr6rpkbr7F5cvX4hVG0Yu05IF7b6YZjNhISu655X7sVJA7wFtqU1GZiqKuGNdjRtNdLl+5ROYDAkESQBJwBCzgpOD+++6i1+1RlBMUCUoqAhbpPXVZ0zhLQ8BphVeKbRt44mrJ/sj+F+X64ggaXQc8XNjaoVGOBPAGpAKfKWySEUqHCgIrGhKhyVpzOJ2QygyRdlhyepbivmlQHlpZBy0LZJpiPQihAUXwszT4lbdUwWOCoGo809rSGIMTFussZV1hm4bGVIxNyWBYxRqX0TUXXGBtb4dquU8VpiRVhscTggNbkYQGrx1CBETtUELgvUf6gBIOgUcIQ3dpnqzbIksVWmmCsVhbY42ZTUoIj7OzGn2BgA8BpKSxDSJI0vkWm1cvkKic5WNH2Dh/lnQuwVcVAx3YGQdCXEiODojUgu6Cpqx2CE2GZUCSdxlnKZnKUFqT6TbddkKee04fPcrm02d5+kuX8daRC4EVASEFQW4TXGBxPmf1+CKDyZQjixoXLImwgMG6WVIcKzxpIgnaE2SD8IZMG7SW6FzjRAsnZtuAFYp7jq/ysc4livG3vlp2jVLiw5nTp3jgjocoxQW2XjjL5lPPc/rue9AyY3L5IlWaMDff5aG3v5X//Kk/JBiHELB4eBmnE5owexiV1uPKmmACNszqA9jgaepZ3ZmiqSiamkk5JknjCkF0bckA2lmwmuGkZnttn9XuMrZ22GnBdHuHejRkOB0zmOxzZW2d4d6ADI9AoAR4IEGAgJXFRV7z0D3kiaaqU0gkQgRyJPX+EDuuMYBLAgbHnoGPnZ+wP3Lx2TK67vjgOXthk0p4EiHQQuCkJDSW4AUoDUaASnFSEUQgoBBpStAK4QSpSpnubiEd6E6KCw2IBB88Mnics4QgcN7REKicoawcIShCCITg8cHMpj58Q1ONKZuaYVUyGsWsctHBGIxKxqGmX09J6gSlJbiGxBiCFKQ6xVnDbPpOonQLrEQFD0JjpSLtdlBKoR3QGJwDa2a1mYwzIAMuBKyrCSJgjUOrFOvsrL8IRTI/x3BnjWSuRWt5ieHWZcqy5KoT1KM4qEQHxzeeC9sDqtUEMR5iTIJtSkrtSGVKIhMSkVNnikxbBju7LPYSmrmEpu7QlS1GruHccA+L5cR8huukyDylKBzbg4b5jkDrgFYBqy3IEikSVNJCJAJXF6QyoDON1jlCaRySWgVIEqwInGKeUycWefrLG9/ya7w22xeF4J47T7MkNeXiAom8ibUrF1l7/ku08zZFu82VsyPKo4exosFJqIVjYa7F3OFFvFLUziJcjW0gWE0jZjcnS8Xs/lNRliOqZkxlKspqSlXFATa69spJyTQ3COnZHVyi4zxptoiaCkQZGExGbA832N7fZOvyFRLvyYJAaE3A0VIaYw0Kyeseup/FXpdxXSGVIM/byODxxZjxdERTFNTMZnL2HHxqrWR3ZAlGHPTbEEX/FUkALl/YYnN/n87cPFIHmqJCJZ1ZwoJUEjKJUAnOOYRvwMzSd3udISW4yiK9xfqKNvMIJCJ4pE5n20WCpyoMdZBUtaW0gboxjKsxBon3HudrvDQIGqQP1KZhp5xg6pjAIDoYV18YsHvPhKN0CLLCWw11DcGhlcQ7RyIEstMiBIlCggkI4yjdmLzbJ00zlFBIH3B1jQ8C4Wc5872zONdgrMWGBp0kGOtwrsGGhhBqbNAEpbBJoNi5TEg1VqZcYsz2TsDHShHRQQrw7HO7PHtYcHpYoxpFrTOC1FRak6sWWdCEvqJuSWwzRISCXurpHjlGJufw2+vMlQNqF2jP90h6HUprkO0Wuzs1+9sFRw8plnJPqw0kHnRNJtPZCrWWKCleLHWk8CGgEsi0wguBUIK+0jxwyyHOndvFGPMtDSjXZqUsQOMsvWNHWTh8ktb+Hr7fZveZL3D12c/jphPMXJ/B3lmeP/scq1lAtBKOnjxMf3kVpwSlN4TxGJlaTJJQBbAI0AIbDNbWFEVJOZlQ1zWFaxiXZRxgo2vKAZuTPcYdSS5ayFYfvEImKaHlSPodtF3AjAdsrm3ixwVzCCSBrCVxLY1vHExgZaHPnXfeTqCFkgEtHSQJzbSgGo4xzYRGVtTNmAGGT1+dsr7TECzEqz66/syuyauXd3h6c5Mblo6Bz8m0wIcG6RW28QTUrKafZ5bYwBhUKggi4JzFExBK00wndObbSJmCF3jlZg+UXmKloLYeKyVNqKn9rDj0dDJFKoVDYKWh8QXOGpqmYn9UxmQ40YEpJjWXNwtuPlTQsilaKEJwCC1nSXE8pFLhEwUiIVU53oJGo0ho6gYlQHiLNzWGQAgKgSCEgPeWqqmxLyb9sN7j8Dhr8RKEDHhbYo0jb88z3t7BDrfYrkueH0KxN0sQEkUHJQD7Fwo+fmfJ4lHLqX0JVU1dOkqvsakm63VxtUZagbRj2mmF6rZJBIyKIePxLvPzOdZbuu2M9vwipioQxnPk0FEmexP2d3cor1QsLCnmlzWt3KF9jXIgPOA1ItE0QuEJEAICSKRASoFTkluPLLK40mZzbcS30m+u0fbFwBeefJbp6x5mSXfpt9tw/EYynTDeWqMMDZvTAW7i8GnGoVMrtHo9Tt76IPn8AjUgjCWIgHcVVdVQS0kjBEhNkIamLqmqhqYxNMZQGNjfi9M60TXm4DOfep5bvm+B2xd6ZK0ueaZJTIWtDJQGCodtwCtB2tPoyuEloA1KK5z3oDUP3Hcni8vzBOlQCIKThAD1eEI1HlFVFQaJDYHzg4rLezW2joNmdL2aXZumdnz5+TXeduomVJKjhUJUDXhJ4gSi0/v/s/fnwbped2Hn+11rPdM77vnsM0+aB1uSLU9YnrHxGNsYY8chTTrDDSFNp0I1uZWbSgpuoG8Vl9zcdKpI3CHVCaQDJk6luSQBYxtswPKIJ0nWeHTmc/a83/EZ1nj/eGUFYxmLcHT2lrU+VZLsvfe7z3pOPetZz28Nvx9N1iYAzoqn+gQEIZEkiNRhVYJpAraxZJ0+QjmCBIuc1SFD0ASHCR68w1YlQdcE1zAeT1F5F58GjG1oTEXTTBmOSkTsPtEe8c7z8GOb3Ht4jjnXzBIMZAkEiUXjhQApKfKCRKUEFyDPZ4ltdE6rlaBweGdwAQgeERLcrFofznu0NXjvwXl0NUHkYL0BkWGtReFxTTU7wz/XZbi5xeXgmWz6eNYy2heMgT/62Abje+d5x4sOcWuiSK6U9HdL0hxkyyErSbAJQbRwwTBpGiYbl3F5Rn6gz/xcF6endNvzZFmBcJr5dodOZ4GVxSO44zegMQy31mmcACcw0lEkHqUgT2arZAiJCx6BJxE8Va9MUKiUQ67L7aeX2bo6mvXHZ+m6nSnb3hmzbSqWOgu0RI4UglaRUa2sUI7HNNUUbRuyQjB/YJlifpF2/yBkUBkHIiBSQdU0VD6glUKH2TCvEolxDWVdMW00Wmt2RlOqqY3zOtF1FfBsbUz5/QevcPqNJ2mJlEIpZGPx1mFFIEhPXW+hOyVOOWhmsyzWepAeU0jSTo+X3Hs3eVZQaU1dG6ZVBVnGdDJgOt6hbioaV7NuG752fsys1HSsQxbtb8EHPvu5M/ylV93NkXQJb2qUMwRZENo9TJogntqWFYwFpQiJnP1vBAQBUiCzFtPBFFVkhCTBIHEOnAuzbIs+oHVNXTd45/DGPrVzQjAc75C0coy1TKopo8kuVVnH3hPtqfW1CZfKCat5RqYS8rTAOUGqIBESazxKKIR1swxxeUGCIiQ5GQWJFdRWE9KA1Y40a2GDx7hZ3xFqdqbShBobGlztcYDAgZAYXRJsg65LGl2yIz3rWwEfT4JE+0TAoit46DO7nH1gwtJizp23LvDuky0ODARiPDuHfPbKmIcevUQuPGmrYPHgAUQ7QauE/sJBjG7IsxQlPO1+j4X2AYIVLC4sARKfpMx15xmuX0apFshA4wy5mvUniSNVBSFTOOGRYTZeeSFRaU5PtrjnxsN86cHLTHbrZ3191y37YjWtWRuOubHvKVptiiLDND26nQWqYovR9gbTOsV4S95u020vY0xD6LUxIaB0jTeGxgVqBKUOGGa1nDwOlXq0czjjsK7mys4EZ2cvuzHZR3T9zAp56iBIioJCiadqxEhoDBiLcY6BCmy1JE0hUcYTAB8kdVAMneA1d91Be2kBnEcBwkuctozLEWMzZbcsUV4zDbs8sDlhOAiEEBPbRM8PFy/tcH64zgptUpcheksEn+IdqOmIEBKCKAhKzhJ8pNlTNcg8wQaKNCN05hlur8P2Lp2FHlYpjFcY46i1oTSGxhnAQSrwxuOMwScJuhxTT2uCEFTliM3BmGpoCTEsi/aMwNWOb5wfcPttGYWFTKYE2UIIRSIV3hucrQk+kKgcYTS+qcB7WrkiAVQQGK0RSLSa7SgyweGdJWBxwhMUaG1BSQweq0ukSnCuAacJ0jOsx5wdNoy3PCGOK9E+E7ynGjRcHBjWL03ZfdMKPyITbqwKRCdn4/KTrPYzirkOxdIBsu4cdT2lSAsycopuhySTNNMBvWyOTLaRhUAqSV70SJKcJEAmA40pSZRCSIN/Ko+FtUOknCKSFmnaIXiLc7Mt9MELUpFwY57zottWuf/zF5Hu2Y0t1yfRB2Ct5cKVLfTxW2lLRaJa5IlCpg1VmpAkGWowokxHKJEgjEHmEpllCAHOObQxTAlM/VN1ZYRDJDlBOYJp8KbBek/lLFubNQQfHyPRHgi0s5S+SkmkIiclEwqnAtJ6qBsu0PDpixXagEBAAGcDRlv6y13+yotuI5NdVAg4axFKItMEoz0mBMZ6DH7Kptec36jxIb5MRs8f40HJl89f5fabe6z0j6ODwY0npD6FNMf7DB8EPlFAa9Z3UJAogrNIlZOmhm5/kdKM8WWDcRafSFyQTKyhrCuMDTjrqUyDthrrDGVZYQKU0wFBBkbTHa7uljgd+1C0lwI+ODY2K0YnK/peYWWNKjISkSJFgskMxgmkEwih8FVNoi2JEzgVcN6QqZy6qRAuEHyDVhIbwLpZQVzhAz5JsCGHUM/ekTxYW4L3OOPQ1ZjLtmRrGMDFgCzanzwg8Fgt+PqXdrnw3pu5s9fhzB9d5ORqD7nUI827hHaf4FNcNaWVpxTtDFVkGKcJSUZChlSeIBwoQ5oqlA/Mt7vkOUzKMQJPsA6ZtmnsiFrPznqmiSNYP9tenCaEACJ4lPTMkXLX4WW+lF3FVs9uufm6bV/03vP42cvUL29wvoUEiiwn6fRRvT4+7+BYg1QRjCNYR6ZSCpninUN7MN5TmdlWLi0EXs22wojUE4TB2BptK7Sx1GU8TxbtnVYi6QRBETJSWuQymZ2DcQMqpmw2U4ablmAhPD3gBRBw44ljvDw9iLSCnZ11NjYvMRpuM5qUbO6OEL2CzvwSW0PH47tTprE+evQ8Y3Xg9z/7JG85eYz2YBs/Og+1o338NIZklnVROFKTPL1dMagETyAIgUsUqtMmSxKasSa4gFXZLJGBrmicZlrWGO3wPjC1DZPRCGsMujHUdY3WFbUesTsZsDuInSjaH8qJoUxzbOnQ9YhUO4RqkSYZWZ7ihUDiwRh8WWKbGtNo0qJAO4+wHik8jR2hXBuRJgQhcd4TnEUhcMJB4vC6wnuHJEV4sE2JriZcrcec2whUO7PzaAIRw7JoXwrMEqyV257fOrPF8g1jbr29TV/18ShIc1xRIHyKmVg6fUHRAiGhFgn5/Bx5kpJJidcepS0yGYFIQSmyJGF+bhHnLHU5xloDKiXrLSFwyASkKnAIDAHpQQSBCIJUZZya73P0aIcnH392Mcl1C8oAzp67xNZ4wHyvTUgz8I6QCDJZsLC4RJEXlOWUphpTDUYEYUhCACnQRtO4QKVrat1Q1xqZKNK8hXfgEgPeIJyh1g3GxAqH0d5QKuH08SN0VEbhE1pCIr3F1OVspt7DzsAQHN+yXUoiyNo577j7RayQ47WmnRccPnSc3lIff/ESLsnY0RM2N9eY2Iqzwwpv9vBio+i/gwiOB796hd972Rnesjym2KpYPLBKSCSzA2EGZQNKZFjnSaTCSI/0HpoGlSiMknilZsVDyxEhsyAkVaMZlyPqxtLYWXKDUteUkxHTaowTCU3dYEzDeLzD5nBEM42TeNH+MB7WTGVC2pIo66Ee40SJyjNkMkeRFIQgkQR8KrCNxbgShCQtWtRmQpIFagLWjghkeJlgEdhgyVSCEoHENiA9pOmsRtm0ITQVk2rChcoz2PEIJwnEd6lovwsE73jo99f5J08UvOTuVV5/S849rst86QneYhysHuzRmSuoqpIkUaQqJckLtK5J222SbhehLU4KhPCIYAlIQAI1QZYE6UmLNk55lAQl/WwVOwDB4RR4bREOMimYR3HzyQXOPjl8VldyXYOyrY1dnlxf53A6T45CJYLCJyShQLTb9OYWadUabM32lUvU43UgzLIuCochoFRCCCVCOMpphWoqsm6LkDpsU+GriklVYUwcZKPrTwAqURxanKObtGlRkAqF8QbnDE1dMnJjtsbDZzi/Erj1pqO89YbbyUPK5ugyVy9d4sqZJ2ktLzBBcHVnyGiyw+rRZc5dPc9wbJ86SxZFzx8OqMYNv/EHj3LLGybcMn8MtdDBoQkCQnAoIxFZghIeo0ukVzjtIARs4nAEjLVoFzB2tu8/KIkXAmMD08kIjUDb2URd4yzWBbSdYl1NoxtK59kYalyc2Ij2CWMclzZG3HWoTTdYZC5xQSGcR1UClVo8OQRIErCZIIQUI2eTFcFWs5pmLU9ZTZGiQZGTCIWTASscDk9QBuc1Iki8DwjZUDUjLnnD+UseW/3xPRxxjIn2O48zsHa+5LcvX+AP7l/n5J0LvPu+Fd6o5+mPBa35Nr6lqMspKRmZECgMppygsoJivkNnocCGBF1WyBAAj9UGXEnwNe25Dk44bIAkaaFEg5ISaUF4jQ4ehEUKRRCeDMep+T55Sz2rq7iuQZlpNA8++iQvWT1CrhRKeBLhSGSfRLQJRYaab6OCwWvDVrmLFQLvZ/s1HQ7jLVKCEIE0U0ztlHo8Jmm18KZG65rRsMTo+BCJ9oIgzSWLaUaPlFQlCAe6rimrkmpasjmt2B3UiPCtO/VFmvDal97CAdVDWIEVKbLdZvH0TYxrg7cNdW1IXMJ4Z5cnSo2dSIgzmdHz1OMP7vIHdy5zYiXHe08YDRA+AZcgVBuvBME5pG7wcrZ9UQePKS0IQWMMxlickGgLpp5g3GzXhBSeptE0tqaqK1zwyFSSOIF2HuMmjPSU8dQzmwmNZ8qivRccnN+qsDf1SewUbz2hAWslVmXkrTmEzPFBgghQgMpzgmmwrkIqj3caEk+WC7xtZjXIQgJC0QSNCCnWWJyzCF8Rmoay0mzVhkt1gq5MDMSi5y1vHdPtikd+33D5iQF/9NZV3rS6wstDl15ZsriU48qKftHCBYdNHR0amOxiJobO4gGcn5WICASE0Oh6hyJNKVSGT0AHj3UBmSikDGQ+gHME5VGJwxPwCNJEcajVZn4xf1Ztv65BWQjw1Qee4PvvupW0CaS9HhkSlZYIKVBZCrRRRUZvfh6z02dt9yomb9F4SVNXGGPwOISanVMLAhpdIfQIKQJ1M2E4GRFi4oPoOhOAEIJ2q2C+3SNJU3JZUNezJAO1nVK5ksvllHJi/sSQJ1hY6XHHyZMoLWm0xhlBpQNJv0t7LsENdukuLuKqhs8Mz3PxSol/lhl9omg/crXjk59d4xXHDrKYZOjJOm0xT3rsJnxICLVGWoc3AiMUNQHtDE1l8MahncPgMd7RhIbaNFhbE6whEZJWpnBpQTtLMFWN845GBpS0iEowNP6p7b+xH0X7x/bmBN+9gYIcMa0plSHYBCtyLAIhPcYZQgCl2ohUodnB+xIUSCXxeESAJFOzhAahQciMBIULNdAQXI0pR+jKMKgtZ03CxgVDiONK9DznfcBj2Llo+Nj/cY7PLF/lla84xPfd2OemTovTuZoFWnmHFZXjqgFS9JA2oEY7zClFIKFuSppmSioDRScHqTFKokSCAkIweB9AgkoVeQhYKQgyIThDIQVzMuHIQvdZtfv6BmXA+tVtvvT4k/ROBoo8JfGSkAWCgLwSSKsRoYtKU+aWDzAY7zAppzQioWmmVE2NcRrrHE1VY4NG6xolAz7UTJshO5Py21Yhoui5Fp76t8oU8yGhIzOUdkyHQ0aDbYY7G+yaXZ7Y3Xiqbsy3fvrw4RWOhS563GBTge0USL/A+ScfYbS7RpJmJEXOSJac3Sgpp3GFLHp+C8Fz6eyEz66tcypTHFk6SNJawvdbhEGDbKZYnVIagUbQBGi8QTcWb2Z1/4wUaO/RupltE7YWQSBNU1IXKILDqZREKOqqRCuHDZ5GwqQKcftvtO/UpWVIhu/1ydIJRV6S+hRrMyCZJe9oGrwzSAk+KQhqAdsEnChJpMA5QZ6lWKdJlSQETe1GBJvNSkO4BtNUOKOZNJ61ILiwYaHZ66uPomvLW89oreLjv3me328JDt3S5yWvWOLehYKjTtMVgYNCsBQ0nVYbHzSJUFgCG9uXydpdeosrNFaTiIRcSGQws6QfMmAESKVIVEoa1OzcsjOoIElESlsaDh5oPau2XtegDMC7wGe/+gi3HV6kP+qSdECEWRUMiUfJBMqSpNWGIMnTFqouQVisaTC6pLQGayoqPcU5A8GDFwgcja3YHdUxIov2hoQ3vfkVnOh1SZykKRt2x0OubG8wHgxYE9tcnUy+7f4UwIkDyyyJHJMISq2ZDAbs7FzFOod3nvW1czROc64fuLpVzbLSxRs9ep7zjeXBxybUN2Z4meO8R9oxvqoJZUOtLZUP1FZgEFTGUVcGEHgp8SpBC0HpNNY7gg+kUiIVJCIhtZ5EecCQOgU2IINHe0M9jmePo/3HhcDUKyqZMQ0K8My1EjIvcS4glUSQPLVBKuBcg8NAkaGExXtHkAnOa5QSCAnKK3ICzjRYVxNMDc7gXaDOJOcHAj0KMbFH9L3LO8xUcOGrQy48NOC/FCkyCHrLKTfevMAHX7nKW6wmHwVkA9tbI7pzK3RWlhmVJbpxFK0OQkIIFlEEvEiwTiMkZCohOAVCIQJIqUkSQ554lNhHdcr+OB88589t8MDFqyzf0EYlYlaZPsini6sJqchaLQKBIBTeBZzVpCmESuODpfEVPmiyNEUKifeWRpeUjWY8ssQKZdFeyPKUl5++gYVkDqsFptZ4lUCaMnEVZ8KEqxuTZ/zsUpHTlQWph9BYvA2kiSJrJSi7RCuV1NMNLutdqoknBmTR94pL5wZsGVge7JC1FaLcxW9NaRpJpRXTpqGyigZorKOqLUFIkrxFUCmNENTSYoJHKoEiEPxsV78TIMQsg1ZIBGQClzhq4TGxNlm0zwjAS0tjamxrCaGgsprQGNLEobKApCbg8M4QUDiZYtGEkCBEglSCTAi8mJ049sIjpaQhkGc1TjfUjQYNTisuhcD2VYd3TzUgDi3R96BZ+vwA3kEDrpktC5ejmq2LU7a7jq2bNT/QZCyFHu2VLmlHMtm9BOTMza+StnKc8MhZkmCUSsiSFFxDosALibEOsEgRSFRCEyZcmlbPqo3XPSiDWZHcP/zS49xyuE0rJBTdhAaFNw6lFFYIKEskUNrZAW1bV2g0SS5pSYkq5gh6dnAuSEFdTbGNY1A76jLO9ER749ChZW7vLZH6jGAFprG4qkR4Q5k4Ht2cYKpvvz9FIlk9skomM5KkjRCehJzESQqRY7OAsTlNkrGxC3gFxFn+6Pkv4Nm+OuX8eMSNywdovCYDfLsgSPA4vBUEJ7HWYnzAZymiKHBpTpASbQ2NFbNtJM6grCMEi5dAIjFOYIzAGI1pNMZohlWDj4Vxo31HkC5IjJ+inaadJbTnFpC1weiGWjdI5XEhIGQLHzQ+aEKa4VUboQTO1agAYJEkCGvwjUE2FlF7pPZIDRiJFYKtSuBKD0/tWoo9InqhCQbOfGyTT/QOcihz3FQ2iLEBf4nFgwfpLPZBWnAVPk3wSYYUEhEMKZrgBYqUIASIGikCTjmuVFN+48krPPzg7rNqx54EZRBYuzrksc0Rh487Gq1JrKQJzeyAqgCrNSIIbJqhfUB7T+0sKgRyKZCJQCZdrNU0usLbmuAbdqYNzsbZz2gPCLj3pS9iNeQILWmmNdVkSjUumVZjhkKzOTAE/8xDnpSQCIWUGYnzuHFJM6ko3ZRRvYWvhoypGQ3dd/wdUfR8ZK3jyrTBHLKQK2ztqcoSXRuaxlNry7D2VFZhhASZQV3NXjaFwqrZ73B4JAEXwiwVvrdoJfBhtu3LePDOE4SktkDsR9F+IwSy53G2gaxACUjwpKKNb1u0mWCtBT8r66xkjkLgRUJatBBSYEyO1ZqABZEiC4/MarwM1L4glwHjGkJt2G0sgx2e7guxR0QvRKqTcOI9BxnOKR7pZRy7qulIR6tYIGSKui5J8pw0a6PSAiVmdf8EkIgcHwIgIfHYELhExf2XrvC7X17jsbMDrH527dijoAy8tXzlwUvceeAwhVNYYUikRCDAO5qmQSiF9xkaj/azmSGpFKgEnAUpSFSCTxUyARcE48ojvYjbF6PrTiWKFx09RuZTbFnTDHbQ412qyS6lLVl3hq3tyTPORIYA5UQjTCD3Ams8ptNBLp3EVTvoHcV0OmXTOxr7zboxcU4z+t4QXODy1SnNjYFqOqDZndAMplitMRqmOlA2AivaNFZiE0Ga5wif4oTCKoV1HpfK2SqzEOStHiE4gq6Z1hqfpBBygqywVlCXcQtwtB8F0hSktTjZphYJUqUkwpKKBJQEoxHGgEoQSTGrM+bd0ytdSkpCluLc7AhIEIGgPCKDVitgKsnQByorMFLhnt7GG/tD9MIUKs/537xKolJ6P7DIHfNwrExxJSSVI29Df65FkrUJAnywhARCIglhlu10bDUXxmN+9+xZPvPwZc6cGaErxyyX1LPrW3sWlAFcvjJgbbpNu9DUvkUSEgggvcd6EJlCqTY1AuMt2lkIEoFCCYUXDust2hn8UykoJ1M7C+ziwyW6znr9HrccPoq0gum4oS4bJuWUYTNmR095fDKirCzPFEwF59m+uoM53JBkFbbIWD1xN6IeUV95kiqxjLu7bAx2sJPwbZ+PouczgeDqxoSpteSNJgSPLNpYMho3xiUB5xwicah2gWp3afcXEDKhMRbtBbiADQbhDThL02hqo6l1jQueWtdUpkKbGu8nWP0ny1JE0T4gAjIIXFPS+CFF9wSYHNyEJAlgM0TqcEZjvIQ0IcHjTY2QIKUAIQlB4IXHe4PXDd5pXLA432CaBiENWUdgKmZbrmJZiOgFzAaPHAgcNY9+fsiFDxzhqNYIJylaXbpzC7SLlCQrQaaIoHA4hs6wq2u+dHGLT3zlLN94cpvd3XpWrih4AvKpP2GfB2UBKKcN6+OKg6kiOIsUGcE6ZAgo1UFJRTAWi2FaT9HB46VAWYeXDq9SkArrFc4HfNA0VUzyEV1nYlZ69kX33MKp1iJus6KpS8rpiGE5YFxNuCoGPLK59VRdMfGMv2bqDFNXEsqU3tGD+ANL9DYqJi2BbQs2bcHuk7GGTPS9KDCtNEmnxcLSIrnooUuQwxHJdESqJZmDoDKsTNFIPALvLCEYnBeYRmOrKUEFSMTs5VQGUAJv3SzrXKMpp0OGozFNHc8eR/tPICC8pNIVpqlQHUdWtEnICEIjrSH1HqELgnOIJMxm4lUAEVBCIp3DWRCpwHuBN4agMlI5h3eQ9iYkDEm9ZzC0eB2n+aIXuOCfnpYYXqz41Lkxp492uNMltAqJyg3GDxlPDJvBcmao+draLl+9NOLi2piN9QnN2Dy1jfGP+7O9r+3hSlnAO7i8PeDGrqKux2AFOE+WFQRhyMhIUoklwwuBCwHrPSiP8QZjG3wIWG2o9ZjpZEozsrESfXSdCeYPzPPBt7yOuRKqqkbXA6blDtN6yLYf8mCYsr5RPf3zzzQEPr52kY0w4nh+gLmVJep+Tt/2GI/a1KZgt3QMNps4ekbfcwKwcX7MWmk5WRQgPXVlaEYltp4l5AhB4qXHKYcJ4Lwk+FllCOckzjm8ciAUzgmc0xgzWw1TaYryFmEc1hrGusZaiFuAo/1GBIE10JBQu4D3FpUERFBIkSNkiveegMH7ChcEAkmSKEIwSCEISiEQeGtJlMCkBq0dUmSkRQ/nPe2WY7I7ZDQJ+GdIPhVFL0wSbzxf+M9bXDo94K4THVayXSbWsjHSjLRnZ9uwdqWhmdjZSSpmAd21GEn2dPsiPrCzrUnuWSWtLM1wBxEkoeiRpDkyL/CA9R6vPWY6ohGSolAgBB5PEBYhDZKESqfoJq4iRNdXkije8Z77uK3fZXJph2Znh2k5oHRjtsOQc0nD188Osc03B75nukcFly/v8PXpOgeWjtJvOTJvaGWSTjtllKe4IHExMUH0PWq8W/Plc1vc1V0giByrG6w1aCewtsaQ4PAYF3AerIegErxKaKymNrM04SJJcGGW3IOQkCQSY6tZcgTjsD4wLAO2jmfKov0oML6g0acCIXgab+kSCCrBhITgLT7MJiCStEsSQFuHD/6pgE0DHp9IRFIgnEFgSERKMAbnPCJAisMliqqM23ij6L/xhADNSHP2q5qzX5v+t6m78M3DUd/aY67llMbeBmXA2uVdRkaznLYIWRvnLeKp/dBNY/AiYIKnsQaDxwKNFmTCkaYJXgg0nl3T8MDZITpmXoyus2O3rPLu++6mtV4zHQ2op7tMmiG7eshlNeALVyesrZX4P3UZOzAalHziwmPcPL9A4ZYJImc83MJNx3g9ZVKV2CYOn9H3JmcdX/nyVd56y3EOh4TaWprgaELAhgSnoHGWxlisF2jrEEUbkacIkZEqgUdRa89kWiPxZAloY9AeLClbteHsxpS1q5YQh4poPwpgBoKru57pKbBC0gBBSoKX1MZQljU+WCQBXMBbj7WWNEspckGaSEgUuQiz8/aqg/OzUhCz3fMpWgl2tUR7STxPFkV/Unj6P+GPfe25fgPb86BsPKz5o689zkuOHoCmotElad4hybqQSFAFIs3QIhDyDOcFlXFk0pJVBi1hYzzhG4+uc/7CMxfljaLn0qlbj6J2LlNveKaDCeV0l129zeN+i09Opjx4doR/FpMFznru/9TD3DTXQQ7GdFpdxJyi1CNCVjI1FcHFoCz6HhXgga9c5rfvOcubjh2BRmKEQAuJlwqnPLUEjUAbi5UCTIMsA0akaOvAG6rK0FiHDBXaWBoStieax85cYm1tk2mp8Tb2o2h/CgDO8vBXBiz2rlAUB0iLDgYopxVGG5yDurZYozG6xpQ1zjmyrEuaQJJainZKv6NIcAgX8NrTWM9oNGZjPGB9UvP5JyuGa7OM1fHYRxTtPRHCt51Ke+YfFM+cnODP3QAgyRQ3nFjg1htX6eYe4S15Pk+SZwiVEbIcZw2u1pjGUNkS7TWTynL58pSLF3eoquY5mfl8ln890QvQN/vE0VOL/O333supscAMRuzUIx41u3z64oRHHpvizLNf3BYCFo93eOf33chr85VZPRnhOWtH/MoDZzj/wBBv9vaejH0i+k6uxTjR6qbc8OIVbl1dZKW3yFzRJVMSEQLOGExVU9cNxjpUlpMWLXxIsRa8dAyN5fz6NpPBDtOyZnekGQ4nGOOes92KsU9E38mfp08kecLygTluuuk0t91+M0tLcwRjUc4BAVs32KqmamqqqoKQIgSEYFFS0munZKljako2R1tsDkds7JZsTiaMNj31MDxniaNin4i+k+cqntjvnk2f2POgDECgQHiKTsrqgXk6LUWn22ZuqaDoJfg0o9ytqUYNo92S4bRkOtKMBzXu6QdKfLBE19c3+4RMFEdO9Lj1YIes9mx5y+OXRuzuaIL7s6caFijyXsrJUy1OHmoTpOOxtSmXHp3iqvAM2X2ur9gnou/k2owTAgWgBEmWkmcJRTubZVN0nuA9aabopYo0DSwfWqbWCdW4wQnPzmjKxvouun6W1Tqvgdgnou/kz9cnBCBmtffSlO58l+UT86QyoUjaLC526fdzJpMaISVNXdPohhAsu2tDnAabGGrbMJ02NBOHLT3CS3xwz+nqWOwT0XcSg7Lv7FkHZVEURVEURVEURdG1J7/7j0RRFEVRFEVRFEXPlRiURVEURVEURVEU7aEYlEVRFEVRFEVRFO2hGJRFURRFURRFURTtoRiURVEURVEURVEU7aEYlEVRFEVRFEVRFO2hGJRFURRFURRFURTtoRiURVEURVEURVEU7aEYlEVRFEVRFEVRFO2hGJRFURRFURRFURTtoRiURVEURVEURVEU7aEYlEVRFEVRFEVRFO2hGJRFURRFURRFURTtoRiURVEURVEURVEU7aEYlEVRFEVRFEVRFO2hGJRFURRFz1v3338/P/3TP81gMNjrpkRRFEXRf7cYlEVRFEXPW/fffz8/8zM/E4OyKIqi6HktBmVRFEVRFEVRFEV7aF8GZefPn+fHf/zHueWWW2i1WiwtLfH+97+fc+fO7XXTomjPfOUrX+Ftb3sb/X6fbrfLm970Jj73uc/tdbOiaM/89E//ND/1Uz8FwKlTpxBCIISIY0X0gvPRj34UIQSf/vSnv+17H/7whxFC8OCDD+5By6Jo75w7d+7pceGZ/tlvkr1uwDP54he/yP33388HP/hBjh49yrlz5/gX/+Jf8PrXv55vfOMbtNvtvW5iFF1XDz30EK95zWvo9/v8vb/390jTlA9/+MO8/vWv59Of/jSveMUr9rqJUXTd/eAP/iCPPfYYv/qrv8o//af/lOXlZQBWVlb2uGVRdH294x3voNvt8uu//uu87nWv+5bvfeQjH+GOO+7gzjvv3KPWRdHeWFlZ4Vd+5Ve+5WvGGP7u3/27ZFm2R636zkQIIex1I/6kqqpotVrf8rXPfe5zvOpVr+KXf/mX+ct/+S/vUcuiaG+8973v5b/+1//Kww8/zOnTpwG4evUqt9xyC/fcc88zzo5G0QvBL/zCL/BTP/VTnD17lpMnT+51c6Joz3zoQx/ik5/8JFeuXEEpBcDa2hpHjhzhp3/6p/mH//Af7nELo2jv/e2//bf58Ic/zMc//nHe8IY37HVzvsW+3L74xwMyYwzb29vceOONzM/P8+Uvf3kPWxZF159zjt/5nd/hPe95z9MBGcChQ4f40Ic+xB/+4R8yGo32sIVRFEXRXvvABz7AxsYGn/rUp57+2kc/+lG893zgAx/Yu4ZF0T7xy7/8y/ziL/4iP//zP7/vAjLYp0FZVVX8o3/0jzh27Bh5nrO8vMzKygqDwYDhcLjXzYui62pzc5OyLLnlllu+7Xu33XYb3nsuXry4By2LoiiK9ou3vvWtzM3N8ZGPfOTpr33kIx/h7rvv5uabb97DlkXR3vvqV7/Kj/3Yj/EX/+Jf5Cd/8if3ujnPaF8GZT/xEz/Bz/3cz/HDP/zD/Pqv/zq/8zu/w8c//nGWlpbw3u9186IoiqIoivaVPM95z3vew3/6T/8Jay2XL1/mM5/5TFwli17wdnd3ed/73sfNN9/ML/3SL+11c76jfZno46Mf/Sg/+qM/yj/5J//k6a/VdR3r0EQvSCsrK7TbbR599NFv+94jjzyClJJjx47tQcuiaO/txwxaUbRXPvCBD/Bv/+2/5ZOf/CQPP/wwIYQYlEUvaN57/tJf+ksMBgM+8YlP7OtkgfsyKFNK8Sfzj/zzf/7Pcc7tUYuiaO8opXjLW97Cb/zGb3Du3Lmnkxmsr6/z7//9v+e+++6j3+/vbSOjaI90Oh2AOGkXRcD3f//3s7i4yEc+8hEefvhhXv7yl3Pq1Km9blYU7Zmf+Zmf4WMf+xi/9Vu/te/7wr4Myt75znfyK7/yK8zNzXH77bfz2c9+lk984hMsLS3tddOiaE/87M/+LB//+Me57777+PEf/3GSJOHDH/4wTdPw8z//83vdvCjaMy996UsB+Af/4B/wwQ9+kDRNede73vV0sBZFLyRpmvKDP/iD/Nqv/RrT6ZRf+IVf2OsmRdGeeeCBB/jH//gf89rXvpaNjQ3+3b/7d9/y/R/5kR/Zo5Y9s32ZEn8wGPCTP/mT/OZv/iZ1XfPqV7+af/bP/hk/8AM/wOtf/3r+zb/5N3vdxCi67r7yla/w9//+3+czn/kM3nte8YpX8HM/93O86lWv2uumRdGe+tmf/Vn+5b/8l1y9ehXvfUyPH72gfeITn+DNb34zQgguXLjA0aNH97pJUbQnPvWpT/2pWRb3Wwi0L4OyKIqiKIqiKIqiF4p9mX0xiqIoiqIoiqLohSIGZVEURVEURVEURXsoBmVRFEVRFEVRFEV7KAZlURRFURRFURRFeygGZVEURVEURVEURXsoBmVRFEVRFEVRFEV7KAZlURRFURRFURRFeyh5tj8ohHgu2/HfTUiBEILgw7cUgRNAVrT4mx98Kz/x5u9njh7VZMoTVx7iI08+zC/96u/hrf+uvz+WcYu+k+eqTxR5ymvfdh8/9cEf4djKCXRQmGpC46dUtmbSGHZHI64Mdjl7/iJPPHqGhx56lO2tHbxzPNd3bOwT0Xey1+PE0soC//iv/SivXjjJWFseKs/z//4P/5ErG0NO33SEJFNYE7hycYPh9oBgPd99FPjuYp+IvpNr3ScEgre96WX8v979Xtpmjt3hmK+PLvOPfv3XuHJlE/7UEUCQ5Yq/8YF38ebb72I0GvJrn72f3/6DLz6r96E/i9gnou/kWvUJIRV/9S++h//5je+gEJJkPGGzqfj/fvK3+OgnP4217pr8OdfKs+kTzzoou/4EkkDgjz1ixOz/CEAlijvuuYlXvewm+t2CK5cHPHLmMt944CzVtEEqyXvf+Ur+59e/hnlb4CaO0faUC2fXufjkBt5d2wdQFF0L7W6HH/vrH+L9b3oLvZDS6IrSB7zwtPsL5AGWsoJTwXOPcYSXakwz5craGv/l/s/yf/32x9m6uo0P39Jzouh72FMDA/Dqu+/ktmwe04C3lnTkeNPLXszc0RVuvfM0wliaxrE9nvLVhx7ld3/ni+xsDJ8aLGN/ifY/CTjTkFZDCDkt2eJ4a4H7bruN/3B1g+/23re8NMe7bjrFAZ0xTDu8766X8ODDZ7mw9t0CuijaX0QANxhw+aFvsNxZoF0kzPmEv/nKN7M+GPPpL34Z7/dXYPbd7NugLFWC07cc4+SxFQSBxlgeP3OFKxd3IEhe+/138//4W+/jQJZibEPVNGgr+Mw3LvC//av/xKkjh/m/v/GNLIQuQmc4axlZw4W64pELV+OzJ9pXBCBTyYc+9C7e+7JXcaB/hNpolJlSpOAC6KoEIamaBqVAekFGTitZ5IZjff7WOw7wppe9hP/0sU/y6S9+hbX1LYK1e31pUfScEEiCYDYyB0GWZdx56BCiDNiWQGhIrGJlWnPnQp++TtE1VKWhK7ocfdlLuOHgYX7pV36DnbUhPg4K0fOAJ/DAExe53Ew4qToQ2rRVxn033cZvf/6LjCbln/r5+V6XNICeljijyUrPweVFLqxtXKcriKJrwwfPH375q9ycKG5qH2ShO0d/bpG5dpe/87q3cWl9nSfOXXhePdn3ZVCW5gnv/6E38b/86LtYnesjbY2zDWe3hvzzf/9JPvvlb/BX/sLrWCoSpEqRqSMLASE8L7v1EH/3r7+V4ybjSJ2TqIKmCTTaMq4mnJ9MWdua7PUlRtGfIFg9dID7brmVotQMt9ZRnTYSSd5qE5TEW4dE4BOFD5agNb7RlNMKWRtSKbh97jCn3v1DvP8Nr+f//Pjv8J8//ml0EwOz6HtLmqWcOHmEY8cOsLTY5+KlLS5dusyCEtAISBJU0iUTGXKnolMKCp3Q66ww1AOCLpFGcNfSEh94++v417/6W9RVs9eXFUXfVQA2N8Z8ZeMiNxyaQzqBqiwn2j1efNMN/OFXHvhTP9/NCzKREGyDn1qkhX6RX5/GR9E1FXhyfYffeuQxihsUwQS89vS6DYdaLX7iLW/jH/3a/8lg9Px559+zoEw8/W+BeGqbIoCUgvte+xL+p/e9jQWxgKsyhE/BZCzlOX/nB3+A1774KCcSRU6LvMjJSdGuQnsDIvCKg4fwX3gC2hanDMIEjNVU3nBuY4u6joNvtL8IAS++4xbmbGA8GREmYxCKALSXV0l6fSSCNM8gT2d7skWOShLSXoHPJ+jRDqGyiCpwUnT4Wz/wTtIk56P/+Xfw1j6vZoui6Dvpz/f46z/6Pl5+060UxuGCQyO5cPZxxJmr2LTEJRNsIlFOoCz4xiGMJBQK6wAjyPM2qmm46/hBTpw6yKPfuEDcQhE9H1hneXBth3cfD7iRwegapOElN57g8w8+jDEenuG0pBBw5NgyuZ/9DltPcBiUivd99PzkfeCPzl7m+Pw8BQGFQxpDYlrc1p3jXa98Gb/6u5/G2efHXog9C8qCSMjzhKXlPr1el83NLQa7JXOLXd7z5pcTjGLsJFmSIqzHeUnjc7qdRe6YWyIdDEiPHKOV9pB5Ru3HuHpM5gRCtNnxUNdTiq7GK4XFUyrD5cFuPIAa7StCCOaW53nT992LyAt2x2P0eITXmlDXmPEXaB9cpX/8OJ3OHFmSkgZJkhWINEGmKQEoWvMYxlTNEEXKgaTLj7zhzWyPhvzup+8nuHjfR89vMpG8811v5FU33kKbNi4NBNcQBBw9fpLNK9tMRrskaQenBcFYep0WrjFMt0eEqUGb2Qqz84GmcXjn6RYFMSCLni9CCDx05gqDV0yR+Rwu65G4hJsPHmGu12FrZ/iMnxNAv5WCElSmodY1RnqCdfzxs5lR9HwhgNoYPnPuAoc7bfK0hRaC1tTSDo6333YnX798hQe/8QQu7P/zZdc/KJOghOSlr76Dv/HBt/KyU6fotlpcvnKZ/+O/fopBOeKm5Tm6nQ6yJSAJODxeKYoiRYiMotPGjHYJdcA1Ei8SqhKcFghyPBmqP8dkMiZflVgRaKwmpB6RqNkWsPjwifYLIfi+V9/DkW4LZzT1ZES5vY1vam689WbyXg+CoBKe8c42blKjmppMFaR5TrfXJU8LkjQjKwrUvGQwGODLCYdbi/wPb38XT5w9z4Wzl65Jprko2huCw0dXufu202gkVoBEIFCYYMlbLQ7ddQdbX3iSTraITxOCMWRpF+M8zWgHpTvUWKpygqoyGm0xsmEy/tPP4UTRfnPp6jZT6Tm40kU3CkzKqVbGzcePsr07+g6Tz5ID/S6ltky0Y2wNpW1wTU0MyKLnowCEILi0PeSr0226KmM1AK2MucUFbl5e5u+8r8vf2/gwW5s7e93c7+o6B2UCFeDF997M//p3foSb51bxxqBKz7H2Kn/r+1/LmSe+ypJSdPptVKeLdQYCSAdpAkIk2BAYDaYcGE2xHY01kvGoAuvIZUrtBNnCPOP1igUfCHkCXtBupxw8sMSjj1y4vpcdRd+RZGGpz+vuvZ22lBhTY5uG4AL3vP71zN1xJ6LXwxuL1QaMxZVTqEvQDlNWVFtbNJeuosjoHDlKvrRIpyOZ1GuIqeRkOs8H3/0e/tWvfYTt9c049kbPQwKB4MihJTpGk+HxicEaQwiexILUgbw7jz24wODiGgvLyyTBk2UF3gacqaibhrJIGQWBGJe0kDQS3P6fQI2ib1FWDZWUpNJReIvxgRTBi288weceeITwDDe1VJJDB5ZpLy+iRYeBdFQDw2D6/DlzE0XfLmCt4+tnLnPi9h6rq4fpHDyEygWhnHBrt8sHv/91/Itf/w3cPs+8fl2DMiEC8wfn+R/e8wY605xhokiFRCjB1JfYtKCfdkm0I8kKkqyLqac4HMpbpFf4WZo6BttDymmNKTXlcMpksINIPLRblKMxopOzVW/TGuyQzfUJqaPTzbjp1BF+/zNfJ7iY/CDae1LCq151FydbPRIH2nksgoMnTpJ35xC0cHY2qSCEwkuD6KXI7gLSB1LvaJ84QTAad2WNjW88Qr49R/fgMYruEmUzJfWB191yN4s/eZx/8a8/zNnHzsTALHqemZ08rusJdT3GS2glOc4JTLA4FfDGgAsURxYZnHuEbJriOilBCBIkwnlc2mb1hpeTTivsaAs9WEdaTTU1e32BUfRn0mjHdl0i2o5EOFJjCV5yw6EV8iyjqqpv+0yaSRbmu4jgyRTMddo0UpK0u8D69b+IKLqGNndqHhkPOE1DNt4mFV2QjqRRvO32O/jc7Q/zpQcfg7B/A7PnNCj7kzuUpVC8+tV3c6TdY1xZaEvyTJIIEHmLRHhCUqBrB14QZIHAYl2DtRIhJChQScakrLl66QpmbYugBbU2+MSTZRl2UpIowfTCFQ4sHcfIgF9MaXX6nFxaoNPLGQ9iUBbtvaKT8coX3UyOhCCRQaKEpDXfxyIxwzFmawuvLcELggjIPEcKSZAClEIkAikKxPJhVl9acPWrX2Xy6ICVEzdSFAW7TUVbzvN9N59k/u/8T/zTX/xFHnnoiXi2Mnoe8YBEW8OgnnAoOLIkQYkCKwOlaxDKI3RD2u6gVjvs7E4o2vMoBLmV+KxD1l6i3+5jXSBtHWKcSMbjday3xDM10fOJbSwXdoa8ZtmgrEHUBiFyDnb7HFiZ5/yFbw3KBIJOt8VCK5+NI64Ba/G+Jk2yPbqKKLp2vPd8/YlL3HCwR5ooMhkwsqSjWsylPf7GX3g7Fze22Vjf+mPpBfeX5zAoUwgF8/2CRCZMSg0i8Kq7bqabFVDkuCwl5AlOeLwXyMyRZC2mk5Km0qSFw2hJUwskKcKnZGmCDgkbawMScw56LRpjqaoaoSBVOYlMKLoZaa5YPH2S0GlRyhpDyUInp8hTxs/dhUfRs3bqxuMcWZyf1VyyFls1FJ2MfKEP/R7aNejNLWxVsvnEI2TFHMWRG1GJQjGbWEjzDLzB15qi32P+5ps5/8XP4x99iNWbXky3O0+dSex4yLGiz1/7wF/gMw9+g4/99qdphjUunjSL9jkhFDITSKEopxNC3ZC0JVnWJskSnG7w2pAEiRCB7sElrlx+BJycTexNK+Z7S9gkI9c1reBQeCgy6kYyC/r25yAdRc8oCJ68ukW4E6QzWF3hlKctJIdWFjl/4eq3/jiwNN+jrwqElzjnaHRD0zQYG1eKo+8FntHU8KULF1jq9ClkQsgybG3pq4xb+j1+6C338b//6m9i9mkN1+ckKJNIFg/O8Zff/1re9qoXsbSwyANnLvCR3/4kS4WgUxQUc21US87qL6HwHoTKyfp9xmefRA+GWFmgjUdrgwCUCzjv0LWnHBsubj1KsjxP4wQmBBCQJymtLMf7Ll0laVQg7/dQ5IjKUKSSbidn87m48Ch6lgQgpODWW0/TdpKAR2iD1SXLp4+hum1EnqNHE4yuMKOKetLwhY//Bqt33E5roUubDOEUaZKwc/kMS8urdI6dJl2YY+nUHVz9ytdxDzzA6ovvQM51maK5+PmvoM88yLvf+FLaecGv/bvfBB+Dsmh/kkjmlrq87rX38pLbbqGfZowvPoa9ugatFYJqobIWRZFQhwYaQxIUSaeNyiVr5x6jt7JClgdWJSjXoEa7FM7Q6AaZBhxNnJiInpceffIKRnkclrIu0dKRd7vcdGiFzwvxbbsh5rptchSuMRhtkEpBcJjnQVa6KHpWvOPM2SGPLl1kwXdI+j1cM0UPh/SPHeHVp05z/+0n+drXn8Tvw+f+NQ/KBIK51T7/z//lr/Camw4zX3RI+32WXjzHgWbMxtnz6O4B2hKyPMeSYBuDM5ClKUl/hZ3dBzg02EWpjBBSvAs4ASkOPTXUVY3qtLl87iLdxlEHi1egpESIhH57jlzlqKyNaGWoToEUCYkvUKlCyGt91VH0ZyUo2gW3njqMNAGVpFR6TG+pT9ppofKM4BxhWiG0x/uAkQXnLl3i7IUz9Jf7dNtdMlXgjae8cokb77iXzkizsLrK/IFVDtxxB2c+/Yf4sqR/242Ig/O0Fxa4/I0nOLB6ituXVml3Msbj/TljFL3ACTh1yzF+4q99gNvmjiA1uMawdQDWH32QQ8uHcR5UG4JQeBewPpCgyLKC5ROHWD9zkbn5NlPZ4OpN8t48YSpIraMJNVmasDW4TDWJ2Rej55cQApev7DKoG9Lg8a02zgiEE5yaXyDPE+ra8sdXgA8s9gm1ptmtKXcHkKQIiNmoo+8pdWV59PwWR7MrFH6FRLVo9ebJii4nDx3gx977Pv7+lQ+zuz1gv53iuOZBmRKSN77hpdx2cAGjUyatFi1yirk+R0/fyuWvPIoeDqgXp4hC41WgLMd4a8AJRJ4zHpcMN69QJBlStLAomuDJ0gQZHN4Y5g+t8MgXvw5hG6s8TghckZEqyVzRxZYNSWce2W4hWjkJCjEWyCSZFd6Noj0UEBw7fZSD/XkKmYOzGBHoL/SRaUaaFThnEYmALKcRNcOyZNrrcHVrSvv8BnNinURIvA+0CaxdOMeSAxpNqBo6Rw5z5JUv58wffIb2x89DL2dzvEmoYXRlxMbOFBtXyaJ96sDqIn/9g+/gzoUjCJ1jg8Z7D+0+G1tTBhfO01915Ba8yrFCYL0jNQ5hPO12m7mThxloTZFnXLjwBLffchrRAaQj2DG76zt87qEHqeq4UhA9vwRgfXPA5cGIm3rzZA1o4VGdDotz83S6Lep6wjeDMiFhsZMz3h2RNWC8Y6IddVPhY/rR6HtJgEvrFU8snKfTWFZP3snCwUNkUpKXhpeuHuNH3v52fvFXP4o1eq9b+y2ueVCWdwvuueEYZRnIUklBgpQpiIyFI6c5cvPNTLZ3yRdGOAqEaqGNxhiNM4IiU8giY7C2wVxnHlkYylri8OR5hhAWry29pTkaqdCVRi7Ps3DDHZhOn7yektQNtqpJCihUIFUCi4IkRYqMRKprfdlR9GeS5opXv+pOlpRCSYnVhqLTQhQFSbuLTFu4cUUICU3jGQ5H7Aw3WLeaB/GkwbMiFVKAx3MsQLGzC60OwRhcgCAzOocPcuMb38SZT32cM3/wGXZNiUwz1q+e44mkRNfxLEG0vwggyzPe8tZXcjgvmA4q8lzirMVKic8KXLvHmccf5bY8QxHwMkEHT10bZK3JrcYbTbdbcPXJSyx1TvPE5pCtC5/ghsMLdOd6jITmy+WYLz58GR+3b0XPMwKP1ZbH1q5w26lF+v0WIoMkzzi6fJBDSwvsbE2eXgOTUnDqyEG6y0dQg5rF7hJCG84/sca0nu7ptUTRtVY3jic2am44AE2aYL1BqgRhHDKVvO0lL+UzX/saf/S1h/a6qd/iGgdlgjvuPsHpg0soNXsISJXjZAtjFZCxesPNrP3u79He3SL4gMi6+CCw1hCsQrmUztIKG+cuoOaXSfIaJxJCgOnQYXTFZHuX8c4uU2tZJGVx+TjFwiomCDpzByjKIe7yWXqLi4hOC5ukiBBAKQigiCtl0d66/a7T3HvyEO2khZA5Wjjyoo0SCUVSIJ0gCQlVXTMe7HDlyTM8/MRjXBju0lSGGhh5wzdv5bGQ5PWEcOkSbkmjPTTTKb3RLt1Dhzjxfd/HRT1k4w/vp18Z1i6f5Xx3lq0oivYXyYFjS7zo1FFsqRmoAUWYJflAQJApB06e5MJnfo+ThzfoBk2iUnJj8cFinUc2DqkSWpmg3N6kf/AA+aEjXHp8hzOfe4x8vkvvFXdzpd+lMuf3+oKj6M8sANYGzm3UqDt6dBqB9RpnLf0i55Zjh3jo0f9WkzXPUk4dPEyWttEFBK1Jg6ffX8LGd6Loe4wIgctbmkuu4YZmxDKryLyLdY6stszlOT/ytjfx6JknmUy+vXzEXrm2QZmAm04chKrGZR280bi6gX6CsZJQabLeInjB7uWLJE6gWg2IlMaDqROSdqC/sMr5z/4RefcsWgh0qcEGMhxSOryfJUCoEWRJmyLtUQRIjKZjHUmWMLGB3vwSSdHFqBQpPCpNUEqRZOk1vewoerYkgla/4K2vu5elrE2WtSEEyDxBQpLkiKyN9wJbB7YvX+aRr32BT91/P1/Z3mDD/YmUBAFAsBngAWnwekIYCXSj2blyhU7vIq25ObKFDlbXGAHT4DDViKFM2XcbqqMXLAEIIQgCFubaiGkJWYJQAi08iSqQQiCEo394FdvusXbuLIvpYdKiQNYGIQLaOpwNKKnwVlM3NWZSM7d0nPatL2F66ArJ/AKtYzfgQ82L79zi8597EO9jX4j2MzH7RwSUkCgpcD5wdWeIVJ40U+SZo5aQy4Rbjx9DqS9in9qa2GkXLLR7BD/bEp96QY4mlxnCx91D0fcOKRUHDizy8ntv4d47j7Li2jS+QesKGTKMm2IN3LS0wn2vvIePffLzhH2yW+KaBmVSCXpFm+mgJE9a1CRo1SZpV4zLCoabeBdQ+SIb58+zUPRI6wahCkyS4VWCcgYpYDyacuXhR1EtRTkqIXiKTJIliiTvUdaG3eBxOQgzQkwLhPH44HFZoL80R1CgrMbgAUGiktkzTcZZoWhvBAWvedPLuPPoIdKkR6voMi3HZGlCUbRQnR4ERag1k50Nzj/0VT71+5/m89s77IZA4Jvpu7/lt+IJXPFQBYMejViQY/IgUduCVCTo1DNwDc55asB5QTCzxDz7tV5H9EIiaHULbrjpKMsLcyy1HGZ9ndbJebJWTkhzvMjxwiOUIJub58jtd/DE732cQ/MJ/aUOMk/BaGxdoY0jeDBNgvOWendIdkNCsXiI/qEDyE4HMd8j8Yb7XnYP586vcfVyzMkb7VezdxaVCG6/7TivuvdW5hfnuHhpm82dDUoV6CQJCR5pPEqkHOn0yPMUVzoCsLqyTCEybFPjjcdpjbOOYB3O7I8X0ij68xHIRPCmN76Mv/r+d3H68GmUzBhvblFubTDeHSDxKJfgLEjr+QuveiVff/Axrqxt7XXjgWsclAkhyFSCnmrKbAi1w00M3fGEsqmpx7uMdgdsrj3J2rk1ioPLBGPJc4+noTYG0hSCJgBnvn6G/twsXb5UgqmQtLOCVstwtWzY8rDpLIerMWI3QWjwrsJ2Ut78rr9A/8hBpFAIHEKkCJkiEKRpXCmLrj+B4MTJw7zt1S8h94pWnlNXO1iryVsZaadHXnRJrURZQ0dIllZXyee6+J2dp1a1/rQASjAIns8Lw4II9BAsOkEWAthvLooFHGCdp5dAECGWZ4r2lBCCw0cO8Fff/1Zeeuo4omgzuHCOM1/4MmF5iuwtkqZydmbMW6SDPKQsnz7N1a+v8OTFTW5uZ7TnWmTBUOop3nhQOdYnZEVGublJMx4xd2CZVqcLQuKRFHlBWDrIG97wSv7jRz9GUxtih4j2n9kK2StfeRt/84NvIFc5Uye564aTNOWE4D1CzMYYtMYZy6JQ9Pst6rLBCzh84ABSg3EV0gHO4r0leBvLokTfM44fPcRffc/bOdI5gK8klWmoQ4LqLVBXY7Z2d0h1glIpRgkOZvCDb389//u/+w20/tZspXvhGgdlIILDjA0jvYvrWcbVOioAzjLYWWO4OWDr0lV2tisO7A4JXuJdwCMx05JdU2OaCaZp2K4clQtkMiBDIAlglMYWjoEXaAEXtOZ001C0K5xpGG4Ybrr1DuaOnSJbXcDZEonFOxBBkCcpSRJz4kfXX6vb4off92YO5RkFCmE1IhHkSU7a6lB0lkiTDsHUCNOQCkWnv8yL77qLdV3zxUtr2D/leRGeWvOqQqC2sC7hmAgcC4E8CDTh6TW24GAub9Htw3i4f/ZTRy8sAphbmuPH/toP8orjN5OEHItELwh6i2sMrq7TXzyALCypnJ09bkoNiaTfnePUnXfw8Mc/wcLykBMrHZJM4vKAVj0EOcI6+vN9zj96gc7XvkovSZi/5TZ6S/O4dkqlPFmry6tflHDlygaf/tQXCXEbY7TveNrdFu9550tZ6rSxRkIQJOTMd1sMKkdqDZX2jE2FrwNSSvqtgjUEAsGBXougG5wPsy2NjacuK6ZmTONjWZTo+U8IOH1qBTdt2LVDup2AlwqfSVqdeWwYsTnahMGUfruNFxDqgjfdcjuP3neZT3zqCwTv2cvA7JoGZWmWIEWD1ZbB+g5lIZFKoYyh3t1hsjNhOJiwtVUxrh0bT15m+ZjFpEOaumSyswmmQgjPeDhmEgRae9qAUgIVArV2TPWUrN3jb73uTbzo5lvZOvcYZ554hFe/5vtY31xnLktJU0fo97A2xXuLb0owFe08ZXlx/lpedhR9V1JKXnXfXbz01GFk3ZDkOUmSgIckK8jnFunOraCSFIREGoX2FdZaFhYWeNXdt/L4zi5b0+ZZ/5khzIIwKZ46izD74myIllAknpuOLfPVyWW8+26rcFF07SkpeN19L+LW/iK2cmjlkSrFFl2Wb7mVC1/4fY42Y0TdQsgUZQMKi7WBgGH5+Enmjx/nkUfOcfTYIcZpjurcinJt6qnGu00W+n025xY4dOpGWt0uUmtyZ0mSFq2WwrYVRa549+u+j8uXr/DEYxfjUctonxF0uy1uWGkxnziQLRqVU1aB4A1TY6mnI7QVlEaSS4tvLIcWejx2dg0hBQcXephGg3WzVTID2hqG05pax6As+t6QIajqhqyVolAImSCznLzdRspVhttXybrzLB5cwQWPKR1S5HzoTa/h3KWnnv/fK0GZD4BKMKNdynMbjJqapRuWsNWIanuX8WZFOXbUWmKC4MqTl8mUoVCBZjSkmk4wLmCdZLhr0cy2XjkhUCoFLxgGw4FOh/e98+28+DWvo3vwMJPdezDGMnfwAHYyoJlOGW6vM7e8gnMO4RqQHqE1rTThwHwfIWKOg+j6EEDRKXj9q19EYg0iSxASnDGkeQuRpORFB5IE52bZ5ZpqzGAwwVpDIROWFxZYWe6zPd18Vo+LAGRSkviADrOOHkRAALMj3Z7cWtrWIKV4KiiLoutHAHMrc7zkxEHq7U1C7pG9eSgEQkray6sk/XkmwwHzeReQJF5grAckxhhkIrnhRXfytfMXWb+wgzywQG/+ECEoatlibWuMsFMOdPocvOkmbrj1DlIlUCoggyAYD8Iyn2fcunqYD7zz+/nffumjjIbjvf3LiaI/RgDBORgPKBY7pFKSeIcJCY1WhEazOx5A2sV5yFLJwsJB7rn9RXz9wiYnjhzk1htupjYJSXAo76nqmqau2Kmm1Hp/1WqKoj8LlSh6vTZZlmJ1Q6YEnd48RgqECGRNg89SsmKBpLXI0uIi88srhAAba1eYVCVHDx7gJ/7m/8g//Jn/D8PRaM+u5ZoGZbo2jHXO3be9goX+NlsXz2PNLp5ZJjlvgESSBWjqwHRcM94YUSpPcA268djKUdWCSgemAgoUHRFInSQ4z3y3x9t++P3cde+9zJ+6gWlX0M2XEUeO0FhHOu6RJ5Jy4zKUQ9K8RdAlwRiU8yiVcvzwQbI8fer8QBQ9twKChcU+q70WznskoJuKdneONG3hRQthE6SucRaa2jDcvEo93MSNxgQLdW3R2jILq55FACVgBWgTKAVkAWQA99SnVSLQIXB+Yxfn9na5PnohEggleP1r72A5FZhaE5IG5TXC1ggEiVKsnrqJzUcfZLHdxacpAknmBNYKnBSkSc7S8iEO33YHw40rHJpbpBBA6gkOevN9tqYDJnqMffJJzMGD9G6+BduU2LpESQVCYIOil83z4htO8drXvpj/8l/uj9sYo32lLGvOXV7nRN6mKBR2VGN3BIMKrNfU9ZQDx1eZW1yiLaGVt/jQ8Tt4+zveR0skFOOGUJc401ANN6maDWpTMXVNnJSLnqcUCwtdPvj+t/CWV78CqQ0XzzwCkzGtVKGCp6wmNM4hmwnbgx0yJZnvL5LUipBkzC8cY2Kf5HIz5vTqCu9411v41X//Hwl7tGpzTQ9XBR949OEncKMB3TSwsryErxIS1yNvdShaOWm7y1xviW6aEJyn2hoRxiV61NBUASMy6qDwQRAQTAgE7zGuweWSt//Qe3nxK15FsbiE7+UkicKvHkDrgBQ5vt/HttoUKwcxQeLyAtdexAiJUx4hMpbnu/R67Wt56VH0nYlANW0opzWN0ZhRibKBJEkQQJIoVJpAWpD05lBZh4XlVQ6dOMrikYO0Ol1045iWmqe3IX4XLWDFwwKQAw0BK2Z5G70AGyS7jeTqwMSXz2hPdOZavPTWYxzqFBRpIBUeaRukM6jgkMGxuHyQxjqawRboMdJNUXqMMlOk0aBrUjTHjq5imxox3iUxFUnw6HJMEJqJqTh0+Bh3vO6N6OGUjS9/hUx78iBw4xGmHIHwkGZ0RZdXv+gO5uY6PNu+FkXPNYGgqQ1nt4YMt9bx5ZgwLanWLzHcOsfuzhWG4x3KnS0S7wkm4EYN6URz2LaYqxOypKDTmWeuu0J//giLy0fpLixDmu7ZC2gU/Xm0Ohl/+2/8MB967Zs4OneK5d4xbjx6K2bUEPQUZSqS6QSjKx574mFG21fxoyHjsxdhOMQHS1r0mJs7QouUqxvnue/eO+n2Ont2TddopUwggd5ij/e+450cT3rowRTjzyEtjLeH9OZ72FbA2RRFgmgatsZjRpWnA2gjSXtdQppTuCm1LgHP1eDJBfSU4PWvfS13vvr7SLKUotOicR5UivMCKRVIcE4Q6oa01UGlBcE0eJkiWh1sXeKNoyWgN9dia3NEXCGInnNBMJlMuXh1jaI/j/KKzkKB0J7GNyRJgQ4O3dSkVSCMS0Kj8bPkrThnqMoRShvyJKAdgCAEwbenx58VbZ8XkIfZt1PxzbtckCtFkmeMpOfJ8RQbA7JoD0gRWFrucjCXdFyDKAqcMmArhJSgErwTJIli8dhx1i49wdH0MEmaIJwg8SnG1xiZkgKZMFytDPOTKelwE2877G5uQ9bm5ttexN13v5LO4gHmTp5msnGJ8e4a7ZUV0mQe50qsrQgJBG+ZTxIOH1lisFsSx4dob0lAgAoIFE+uTVlvXcFfHNBaOkitt9GlQ4ccKxTDzQ2Or5zCk+KwiMmU1AtQoDKFbHfw2pLolDzLCUISvJrVLov3evR8IgQ3nD7KXUePY4Ya74Z4BapoI1JFuXUFNbcEeZd0YQF34SJF8EzGu7BdYVctLQGiZ2kVGd3+EtrXjHbXuOeem/n93/8qhOuflfQaBWUBj+Il997OSV9RnbmE3pnit3fI6oq6NkwujUjSlFwEQijJlENKwa4PLIRZtaRMpoQknb0oCk8rQC0lQyW47bbbue/tbyVPW2SdApspQmMgBGQmkKnEhYAUAhcAofC5Aj0BHJWpKb1lXE7RVUWaxGKJ0fVjjefc5XUOyYRUZExbBamaQhEg79BUFUkKvq5x4wrKkrqaMBzusL27yZWtDVTjORUEYyUZSKhlwGm+LS5TBPoBVAAlBCIELGAA4zxNVXFFBMZPFZ6Oouvpm3dcO0/pKk0RHEEqGl/hvUcZSzAJzitIE+YWFzjz4Jijkx1Uu0MqMnANtrE4KfGuwk/HfHk85WuPTXn1eMr8ygLTsebEHae44yWvob94EKFyHIrO8VuoppvsXFmj6LWxWYFIAlaX6GpKMDWZgGea8Iii6ylJJHfecZzX3HsT1lpqt4El8JU/eIS7XtdFqICdTugdPYXqHWZ0+TzT0YB+1sOFhkTm1LpGZYqQJQijCdoSGoNwnixvkaYJIg4D0fOMAG45cYidK+uwktFJM1SRYdOEAzffRJ60sHTBpfiJJA0pdlphjKE2YxrX0HMTim6HbHGFVtFioXcI7wL3vfJFPPjQGXa2htf9uq5JUCYQIAM333iSI4dvoH/ybhKRUpmG3e2rbJ47y+bjj3HuoceotrYRbYmRFp+A9JK12jAvBHk1JjQlNDUiQLeQHFhdoD83z9vf/W7mFpbI0oyk38cpifDgnUMS8N7hESSZwrkEL8EbTZCSppxQVyXTsmJUTpiMJzTNN7eCxdmh6LkW8M7x5MU17jw4RyFaVK5FOp2iEIhWjdIaQQ7O4+sGXU7Z2bzK1bVzrK9fYuPiGgFHKQK5F8wLgSkEbj5hOmRWLNdBBiwF6ApQQZAiQYIPHkvACxhLwSiEp+uWRdH1FAARoNaauixpZV0S4RHUGDfLnoWUlJXGjUpEsHTnWmydv8TxW44jpGOhlaGwjKdDvJ6gB5rNqqK0ghf1Fjh05BAvfu2dHL35DtJOD5FJ8AFrLdNGI4seab9kMt0mTXtYOysy7UyNrSYQU4RHe03Aa159B//ju15OnhRQWcYbXfzoEluDCY9/8RJH7z5FKxUsH7iRdP4QbdlivLlJZ1lgrEUUgeAsiUlJmxZuWmOrBmcMWoFHMdfpkyTqqbPFUbT/CQAhMLZhdzLCZduENKeV5EzGYzqpR0wkqtaU410m1ZSMAuNLmlDRVCOGo6vM2Sm9zhzdxlL05sl7beZ6S5w+JHjXu17D//Ubn2K8W+Kv44rZNQnKArMt+Ts7Q5wQCKGgUCRFjwWfkGlJpyhoH1pi9/IlRsMdGu3pEqiMpRo3NLtTRk0NNuCEYuXQEscOL5L2Frnrrpdy/NRpWnlBt9XBIwkWRCrxucIXCTJLSVRKMBVJmmC9xzYNThvqRjMY7TIeDxmMx1za3WR3MIZnnzYhiv6cAsNRRW1qAh5tupS+IQstlNakdYPzKaqBMBww3rjMzuZldrfWuHj5ItOdKat+ltp+lrxe4MaQakfSy6m7bXa3GtpTy4IPs8QezNLh52mbLBNkTqOVZDNY9KTe47+P6IXMAxtrUzYrxaFyQuYtqmjhpEFZTZYUON1g6inaDmklI9Yur7N6sEuraCFDQTodoqYDyumIx85PMNrxsuPHuO8db+fIiZuZ68yR9JYQmcLnOdZ6yAKhDkynI5JWjghdJlVJKBK0qahtQ20abHDESbtoL3V7LX7obfey2ioQoYVJJfliihYJxfw6jz/yJC5NSZYPo7xG1gP6CwVl5ZmMhyhtcE0bpcCpFEM9Kw/kPMGCyXP0pKYICqUUs70UUbT/SSVJ04Td3SHB1QirGU+GTHXD9tXL9PyEzCvERJLIDJmk1OWUUg+oq22anW1sU6JafbS21CLQcYZWmIO8Taa6vOKO2ziwMM9/+M3f4/wTV67buctrtn1RInjwoccZvrlkPhSkMiNLUvKFjKLdpnOgz/xwhcnJE0wnQypjcCiCgeHuLpub62xsbtCMSlYW5lk6dhCbFBxYWeX0yZN0u13SbhebZ4BCJAqXS0SeotKUJM2w1mOcQ/gwq8dBQOuGSTllUo+ZlDsMxts8ubbNZGJgT6sRRC80Wju8VKhEgQCrQBIw2uATjfANqgbhDEmhyLo5YcuzuTvE+lk4JkUgB7yHXAq6WtEzKYXqY08UDLa2cDtTMpniAKcNSjiCTOkUHSZuwnBi4nREtLfE7OzjTinZrQ3tyRiSXVqHl0hFQ+KmLOaKwXSTaneTanOTtctT2u11Tt/UZ1x6mqZmUk7YWC958HJDR0juOnmC3tIymRCzrIrGgJ8VELUhIJ2BYJGJYFiWuCxDdBKa0Q7WaxprqJym8S72kGhP5UXK4Z6inwRcUzOpFUEokuXT3PnWOR773BdZ356wIirGTz5Je2GZxeOrdI8fwZkGbRuMUfhpRbAVUnpCkUArIVMZlalJlnOUK0jzBMq9vuIo+tMJBHPzPX7ofW/krlMnWH/8DM2Vy/iiT5Ok6GrMdDzlysMPcGS+Q0d10MPApNZM6ylVM8BMdplMxhRzfZL5NbLuHI0MGAU6BFotj0oUuWxzw5HD/N8+8C7+9a/+JmfOXL4u13jNUuJ7PKPxlDJUeGUhUSR5imilJFlG3j9Bb/UgrplgmllSA+c82mgG25v01xZYOXyIRKWkWZuk28Vqz6EjK/QXerTmeoh2gRUSKTOCEgQlkGkGWY4DTFUBHqM1zhga21DbklE1opxWDIcjdsdDzlxYwxt3rS49ip6ValLjQyBJMpxIMEBLSlSSYYPBm4ZATrGwQvvAKq3lg4huh0uDIV/f+vqs8HOYrZZ1C0mvU1C0+nR6C/Tm50iLFoeXjjO+dJXpzoDWwiI+EVTVhCYVbI13WHOGqY33frTHAtx1z+28/JZ76VxepzQXGE3WWPvGJW44fYg8d2QhxY53qLbWKMdTtrXn0W9s8Epfsdx2jMtAaBU8cRnKRnCs1+HokVU6eQvZ6uCLDl4qkA5vKlCSIARSBZx2pJ0WdVMihED25rCDNWpdU+mKadXEhbJoT3nnMXpCQovESVLZYqTmsK0lpO9y40sFVx47h17fpr7ksMMdbrz3JkS2xLieIJ1hVGtYydm5+ji9vKaz0IGgECRktWZ3uMO4HKDUUwlF4g0f7VMCSDLFX3z/W3n7vS+l0+pz0+IRHvvSHzC5ep62l5jgcb5hIwge/4MvsRw8LZHSOPDaoZ3GOkcVAmiNWgx0gyPJ2+iiJEtaWJmTyBZFUqAsrM4p3vnmV/Ovrv7/KMvnfofRNQvKAjAeThg3BttLIM0IKkVmObItCUIhrEW5HpkNtPQY6xzKBhb786wsLlNVNQ1QdPpo56gGAxYXluguLkM7J0gI3gMOhEQmLZK8hZOCalLhtcELgzUa7z1VVVGWJeOyZDAZMRhPOL+7xcVLe1cYLnrhCszS0Qc5qyuTqRznG6wzpEmOVYD3SCGRxlIkOf3eCieOn+KRLz+I0J5cCLpFRqffpei3KbpztLrzFHkbFWbbeOduW2RydYPNK1dIF3sUsoPTFXKux+aFScy0Fe05IQW3Hj9E+cTjDM5eYrK2wXg4YWc8YOfCiHtfeoKhXme8tY51KS5ZoAzbPGk8618fc6OYpRZtVEVpAlLAjUcOsHjgADIrkGmOzFN8noHTSOfxusHhCdKjEih1RZopaqOxVuNIcTZQmZpax61c0d4qpzVbWwMO96e0kzbtRFJOd1Gyh+guk9y0wsLKjZy9/1Nsn32UVpmx+/CXCckCtBeweYcgMtKVFVp6ylxR00olUqYEmTCtdxHaMddKWFrqsrMV34ui/embbyxHjx3inlMnCJWgaaXkK8e45ZXfz9d/72PUaxdxnRYYWFheYffAEo+dv0KqayZPfb7HbH9cjUSXjnBuwE1ZB9cd4W0XKQRSCBIXyFE42aJRCadXVzhxbIWHH73Ec/3udE2LR3sf0ELhUbMNjUqBUngJggwhk1mKSVmjWh2EV6iqJimglefUusGJgA0pg+0tuvM92vO92c8GCTaQCgkEgnTIROKsozEa12i0NzgfcF7Q1A1We6aDCZPdAaPxkJ3pgCeurjMt44AbXX9aOyY+MCc8UllSKUikJIQGF3KsLBBJgq4MIgSEEKRSsbqywtz8HPXmDrkK5LkkzwuypEUmM1oqI00TVJKQKIUH2kdXWVrsMNrZpZPk6HHDoBzThLhxMdp7UkqOHFnh0MpNpCdejK4rhjubXLn4BOce+Bqf+Pg3OHyoxdZWyU7pGZQObTzzBBo8616QMZuk0wRIFcdvvpHW8iFEmkMqcNISwqwGU7AWay0BB6nDi1l9wKZqSJSgcQ1aT9ChYaBL6tIRSzdFe0lry2Pru5yYOqYy5eDyCRa7i4ym62Qrp+iuHoHlQ3SzlMe6CRtnv8G5r32VkHaQSQfVP4LO+qSbW2TdQCoVwgeyPNDUE0ab69TDKaLy3HhslXNPruNMwMeso9E+882SPq0iY7K7ww4F/W6fYqFNsXKU21/1Or726Y9Rbw0JRY9WgMPHjuC9Y3BpA7RnM3g0kAIOj/WSC7uG+Us7pCql3V9ADwb48QTfapEVPWSnS6IUbVVw44lVHnn08nN+6OmaBmUAxgdQEh8CPgSCcygEQWqQAhEUQaYIBcFBSFIkLURw5GKWNbExlsTXLKyuQq+LkBLnHMF50ixDKkVQCuugrmu00djGYILDe4k2lqZqaKZjRuMxw+GQ8XjM5niTC5e3CT5u34quP2MdjTPIRCFlMlsyCylC5gSZIZMcQYKwHozD1A3OaPI04ciBFS7t7KLyBJEUJHmLojdHXnSQSY6SKSrNEIlCCYHzDpWmpDJlePUSoQ/rtcYbH5PgR3suOLhw9Sru8AnaeRfZ6mJzyYJ06KZh48xDPPjENuNSY9yspEOeCk63MmopGJUaH6C2HoPgxMoCh06dIm3lyBRk8CgdsHVFEA3Be5wE479ZLF0gk4Q0tZSTEdLVWDOlsRN2q5KmdsSpi2gvBS949PKQ192xwpNfeoSL2RZ3vvJuDizfgHYlabmLT1qEw4fpLB4kPPkIm1fWWFleJSSKICaoToKcBtCOyUDT7iVUwVBOppTbNY0OSKk4spBx7PQ8Tz62E2/7aF8SwHA0ZGN3C0WGShKKLKG7sEJn5Qgveslr+OInf5vJ+iWSTpt2CKwuryBqzfjKNnNBsCEFCx4UjlyAwJPNzbNyy1208gJra5z1eNsQrKNlDGQp1A2r/TZJKjHmuZ20uKZBmW40o8kUGwLGaoRRJEIhZAuPACVAKIRMCcIjlUM4QArAIpXCDScI4ei0E4r5OWzeRiUZzjhUogjCY73D+wxjHcY4yrJBNxonwDmDtTXldEA12WZcbjOejphWYy5vDNlaN3GlINozHpCJfCogEwQCPrhZDZrGkYqAeqqrBGNmhT3JWTpxlLWLZynylLydogpF2ioouj0UijRJybIWZAk2WJwBEgXzbZRf5tFLj7Iz0IgQ7/1o7/kAX/jSA7z7nttoJwqpWrTabRaXDpHcImgvzbF47Aq722vU9RSCQGUpMs3xIWE0GaK1oZ4adOO55cbTdOeXSJMWSmWzJB+2IshAsB5tHTaXWBXQAWQI4DUoIIF6UmJswGjHzqTBu8CsembsLdHeuXBll/qe5f8/e38ebOt1Fvaf3zW8w57OeOdJ92qyZEmeJMsT2MZgsENsZhNISPg1aVI0P0i6k66udAEhVIVUdSqpEMhEKpWEIr8mHZJASDBDgB/gYBsrBs+ypjvoDmc+e3qnNfYf+9pgJIMMujrn2utTdSXdo33OWXvXfvd6n7We9TxkIfLE7z3DxjNjXv/2hhN33U83aegmEy5/4hKbTzzJvGkQ/ZLrO8+SdVdYXtunt3aS2PYwuUD2NKIBFzomraHxAiMgREEZNA/escaNa1PauU3v+uTQiUBTt+xM9+lFgYyWwnrszoy81AQBayeO8+SvPc5g1GdpuATzObKrkArKECljRLEoAqUIHO33wHvGN65Tnj5Fb3kESuCNx4qIwoK1hNmMwhvyQmHtrW2X8qIGZd55qmqOcS0DXSC9RhoFKETWJ5Y5PkaUlEAgmpYoBMJKopeE2EJ05MMSna2j+yt4IYly0Rxa3dwxC87hpaM1YIzFdJbOBTpnMKYjuIammjObzZnUNfO2ZlKPeeLiNq5LqYvJwQguYK1DyUAMES0kWuXooo/KenhrkVGgkDjbIoRD5gIyxerJkywtL5Flit5ombw3ouj16PVKirxEK43WJcFBsJHoLEEITDTshTlPNg2NCWmyTQ4Jz8bGlHFrOKoCMYO86KOXS5R0KBUZ9HosH1nGmIoQMrxUZEVBCIKmbZiP9/BVw7xpOXv33eS9IUovKvFKLXGhwzmH9dBFcBZiIfFSYFwE7xAYQrD46GnaKda1TCaLnTWJWqQ7JsmBiFx5ZsxW4zh3+jhubth8Zov3/adf5eiFj3Hy+BrTzU22Lu8xLwri6ho6G+DzEaGbMuuuEfY2EZMeammFWPewucZGSyegiRlRl+QyoycKTpRL3HX3Cp/42B749L5PDpvIZFzxxOUr5CebRf+91jHMx7TRMdl+ltn2DZQWXLuyRV3uY4UluIAGpIgcR+AIhChBwNnz57nvFQ8ybyZcv36V/rhY9Dq2nqIYMlheJcsUTTtF4en1Mqr5orL7rfLiBmXes7m7i7EWoTxRegQB5R1eeEIMSJ0hc02IHtlTeOcJnUE2LXQNZZ7B0ohgBV4JBBIpJUi96M8UBdZ6zHxG5xVV09G0HZ2zmNjQdg7b1biuoa4qqnlF09Zcn0zZ2k41X5ODE3zA+4BSCqUyghKgMxb5VgqdRaSLeGcgBGJcLEiITFMOl1g+dRLRWUaraxT9FQajZfr9EWXZRypNCOCMI5gGby0uOKy1bLYTxq1PBT6SQ0Qwm9dcmsw40T/KslBoIUFJVtaO0RuMMM2cZnKCrquxXYPqjZDlAKzDWUsz36OrWioXWT56jJCBj2Zx3YgCVIazHhM9Vkm8lHgvCcHgkcQY8LYlBoMQnugsxrXMZg4ChBSQJQdsPm9436Up33EKVld7LL16yOb1Pa584goXP/UsqIAPGj0YMNAFeEEoCirRwdIyw+NHYHqNUN/AuohpBkx252RrGZM2EMol1PAoWdGjrwe84swJ5pPA5Ut7L1lfpiR5obyPPHF5h5FswXrMzj7r5BjTsrG7wXh3gnMV+TBnb9yiVSQoEELR6+WYpkMAjYCiLLjzwfu58OCDZOsrzI1l/9JFHB2BQLSWxlqm9Yy2qSEIer2M26rQBxEm8wprLJ3uKIoc4QxkGiFutr0NYZGKkmnQEt1ThNwQMk2s9xF9uciHJkdIUConxpsdxewiDaV1gbYxmA5cCBhrFxN37DDWU7ctpq2pmjl1WzM3FZc393Fd+pBJDk4ULIKwqBFykWIVBVhvCDGiZI8gBFKAcB48eAfRCZQULK+vEyYTVpdX6a0cR5UluSrolQNihM60+NghcvAm0sxqpk3NtfEcb4B0gDs5JAQSax2bszn2VMS7gCwFul8i9BJFAAK49Yaum0Ew6KKHQ4IxOGMJnGFvf8qaj6g8kqmMKBXgEGZR9luREcXifLPznkDEBo9xBqUCHo/1hsY3+OCZR0fVmoN+eZIEWHSA/eDvX+c7XvMw9w/u5Moz19m+XgEtJgRkXjA4skK+tI7OM0BSmYai34dMMvWacv0+CjPl3Mll5HibLX2ZvdgQ45xgHG4e8X4V8h4jNeRNrzyJ1vD00/s3q10nyeGxtV3zZC/gpjVHVcFWZ5GVZVZ3tC4yWFvm6PHTzMsxuxvXiT4iy4yl0Yg2RJrWMCayeuwIR8+eQGSS6CNDVbB234Nc377E/vWrmLbBRI8zls5aDI5+X97y5/eiB2Xb27vUvsXFPs45cr2ofhU6s7gJVSBChhQ5YdEOl6xX0gWLyHNEsESlIeaL3TElWcRyns60dD5QzQ2m88znNZ21eBYTbms7vHSL9MV2Tt1V1HbKbrPDtauTmwe8k+TgRBYFSIWPeBUxnUV6TZQRqyWZVMjo8dEtyucbTy40TZAMV9do2o5+XjAaLkGRoRDkeUZT18SuIXYd3XxODIHOtkzmE/bHTVr1TA6ZQHCRp558FnPv/YsjlkgICoGiKAuE0MjBELKjBKXxPuKcga4m1h1BQtu5mwU8OqKWCCWRMoK3RG8ImSAIDw7wgRA1IQa8bTBtR5YJXPAYZwnRUfuOep6CsuRwEDEynhqa3mlo20WfSh3Rg4JhVpAvjRBFjkCgiyEeSdkLtNWMSMS3HfO6ZX1twCjr0dSGNZmT9zU6E4w7ydw3NI0khIgPkVwI3vDgCSbzmu0bzUG/BEnyOYKHK1uWc3eO2NvYR0iPthCqgFaKLDvK8rF7OHq0AdMw291DhEChAqrM8Z3hjkHJ69/0KHIwIGgFxpJrSdc29Ht91KlzbG7foBnfwLoO6yzGdagXvTTic73ov2Jrc5/KNnSmxYSMvCfJ8hzhNFhBDIGgFKoskUIhlEBoAVKjsh6hWzTYjSoHNOFmYQLvI8YHjA9YH6iahnk7Zz4ZL86aSUEXWoLweNvgTH0ziGu4ulVRTXw6tJ0crHiz34YPoDxRBCIGJRRaFvhgidYQfEDgEVqj8gxhAzJEVF6wvLZO9J5cS8gynOmw3ZyyKGgnBustHZ5JNcVgudpOmXeOlLaYHC6LD/ann75KFWuiXMH5btHyREhEJlBaI3NJyDVSZWBalIKoJVKXdLOa3ATiIEOJnCxGlAiE4IhSEaLHG48QiggY77DGIYuIzDyeQGctMXi89xjnqNoO06a0xeRwiESqacOT17Z42WjEcLTM8bvuJ1/vmE/muBggSgQCoQpUlqNER9hvycohuIBrZqyeXcGMNwnVHpOrE06+4iTl0ZJsaoi1ozUdXVvh0SChl2WcP7nK9kaTpo7kkIn0yx533HEntrrM1vYOFk9/SVNKjW+m2L3L6CKjXFthe3efgXHI6XSxGC4iL7vvXk7edRe90TqOgPCOaBpUniMlNLZCFz2W184ym2xj7DbBBopC3fIe6y96ULZ5Y5dxNWEeexRKUQhBVuSolsVZgLIg5BkieEIQiKAwLoDQOF2gfETVc2Lex+GJAYJzOBOwLtI0HV3XUc8ndF2DxzDZn5AVPZwOeO9wviHaDt+2TJuWi5f3iS6khvXJgRKAkgolJSE6rOkQqkSJxco+IqCcRNpAbB3OdIvWErbDtR1aKHqra/jxGCUcqt9HKsFse5NCF+h+f3FGRi7OY27Np+yMa4JPb/rkcPnMO3JvZ8J+M+GsWsHnOUFGZPTErkOgCFIRhUAGQWwdWkiCyrFq8VOca5FOkGlJpgQqWqQPROzNRbiMtmkJUpBLiSDijEELj8Ytih54u8jEIDKeWJxJ10tyeAQXuDydMbz7bqItMPkcI8c0xhO6DikkatBDKQG5IFYNWSYQWUHwgeWyQMUaO9tDFAKV5bh9wWDYZ7UUmKDogsPbgBAQpIao6GUCIUj9+pJDJqJ1RllkrJ85w+joUXZ3Nhnv7JKpgBL71HsVYdBnvDPHEzEx4htDFJKs3+fOVz9IXmqkXCxouODwCIR1NM6QlX3y0DBv97GhIWYCjCbL5O0XlM0nFZf2tjhJj7LIGISS2BroIqIISCXxXYdRc0TZQ1AuKjAGiYsCnZfI2RhTNZjeAKs0vjE4AzNnaVyHrRqC7QhtR/Qe4zqqdo7s9YCIdQ1t22BszY3titlOu5ig04dLcsCkEAghiFHiPZguEl1LmWskmq52WBvJoiJ4MM7ifIPSCq17SCnIl1dwTU1xFKQo6Y9W2L/2LLrs42PAeEfVNew2FdOqO+innCSf13RS8czVDe67d41+6CG8XLSD8AFnI0IWCGcQRYFUCqE0QkaEj4g8xwcD1pOpEi1KJIvrq+sMXgoaW6ORNE2H9Y481ygpMdEScRQKLB4RHMHV7E/m4NM5muTwiDFybbciDHrkI08+s6h+ST4sCSogshyR5yAtmVRkPuKzAVr3MMGwutxHNhVlLlHFCv7EiM2NPe688wImCNaEo/ENXfBE70EWBK1QWi3mqnTjlBwqgul4zj4Zp+46TtnUqOUhveGAdm+Hrq7xpqHuIuBZPdJH5DmhNXjnOXruLCsnjhOlwBpLjJ4YIz4EQFCUA+p2QltNES4ghCTeDN6EvN3OlAFt0/HJT1zmgUeOMIoDulqRR0GZlygVEVYjjSOIGRKBcQ6hFHjQWUYseth6RnSO2d4uQeZ01mOso+k6WmOwdtGrzEdLZ1qE1szqfTJaBBkhtNT1jLqecnVzk+DSh0py8KJYlLsXIS5WIJWG6AlOYJFIEYlCgBY4E2msWTxeCobLS9Q723itGIyWcVWNaBqMc2gpiGXJeDKmidBYw141YXN/Qtvd2p4aSfJnEXzk8aev8/Z77gHTEJTE+ogKBVFrtNMIKQnOgc5BSYJtETFCtujN5+0cXfaQwSHzguD9IrXXebKyz2w2Wayg4pjPthkMl4lRgxAI6RExIIXDuYaJbdItaHLobG5M8cqjB4pyVFK0LcXyAIqMiCIiFgt+EXIpMQGCzBEaVgYZWrbkqqDMR+ilHvt1YLJf0Tt5jP2Nbdx8Czuv8GKAQOCDwpmOtJKdHD6Rtuv4tf/5vzj/rjeyvDwg6/dYXlqimawQbUcIgA+4YOgPV8iyEVIEotZk2QitM7TKcd7Q2Q5nA14tKvLWXY1SkBdL1HWH7TpcZwhRgAYhF3UBbpUXPSgTAZ548ln2X/0AK66mX0EeBAUBGR1SCoKSdFET3GRxuFvnCJURQ7x5EFviXERIyXw+oW0srbPMqzk+BHyIdMHjOkdrDJVpicB0OqFXlhhT0dUTNmbb7GymMvjJ4RADmMqRiwKBQIabX9SLZrpRShCRGBzRBYqyxEXIdI41LdYYQpQsLY3QvYJgLd4a6skcpGLatbTWsDfeY29vn93xPM2pyaEWI3zqU9fZ+6qWpWwGXlAASiiC6bAhIkWJNgE1FHgl8T6isxzrPcVwidnmPmoFpAyAx6uAiBEZIQjoDfpUkz1yrVgarbA/3qFYHhFkgQ0Gbyqiq2ldzWxqUtPo5NDZ2Zuy52qOlz1UqekVGWYwROuANR7rDDEGovfI4PDG4F1HTwWG/YxBOUKR0Vs9jhYZdwyWuXZlg/1nt7DaEmWJqWtaKoJ3uKAZT2ak4ovJYbW7O+fypOZVZ1dYjn2cLhkOF/dFwViwjlLnjI6coNdfxocOUfYZ728jgiEETecdbddho8DbiMjV4kxyW+O7Bo8jz4e01oJtyfUi28nfLn3KPuPatW2e3d/j2NGSficptEZ3EhkFWluiMmQugKtBZIReCUqj/OKJR+MxncUEB1JSVROqrqXqDMZ2eO+wwdHWNS5G6q7D0WF9h2g6GlMxr3Z5eneHdpoObSeHgxSRQU8jo0OJjOA8ItNIKdBKERWL/kk3N7dC8AQTUF5RT2eLst7B47xHCkGQgso6qrrGEmmcZXe6z3494dL2No1JM2py2EWuX9/nU9evceLcBTIfiKEjaoX0GSpoBA1SKGIm8ZlGZjlCKHLpGaytM9ndoGsadKmIUhMFhK7D+0AIGiUES6MRztWEGFldWWdnNqa/lNM6S8QQfcfM1NQTe7N3RQrKksNjf7dio55zIu+hC0mRS3o9jZQeYsA5cN4jpMB1Ft+2uKZhuJozKAv6wyFZtkQ+GqBCpGslo1MnuXbFU09vsDupmDQWPehjQ2A822dzatJlkBxa3jk+dWmDh+68Ax0U/eUlvMnwTUcx1PR7I1ZWjpANlpCZIgizKPbkGrwIuKZCqgwfPLXzOAmxWtxbZUWB8Yv6FZ13OBGw3kC89fHEix6URaCdGx776JPc/ZZl+iEjzzJynVMoh2ybRYpWliFdgOCIxiIyTfAWTEsInrazGG8w3uNFoK7G1G3ACEdnW9puTltNcCEQUTjviCrSzXewpmFjus3GlQ5SkYPksBACpSTSR7QEKxfNmAQR7x3BewIS4SzRB3zn0FrTVhXedahMY2yHmVUIQKCp6o7d/X26rsXi2bx2g13fsFMvep8lyWFnO8f7HnuS1585xdBMiaLECUkWFjtWQmbETBB9QDpPVBG0RElJOVxiaeUI870bZLlEyoAUEmsNPhpQGjxICUoHMhmI0TEsJd18k6zUNN7ivGG/amnmIe2SJYdONTN84sour7hnFa0lvUGJUBkz0dE2DglIKReLds4hCbh6ztG77mA4HFKMVshGq/jg6DpDJRx1M0f3CzZuWKZ1h+hpmqZhZlo2TGBcHfSzTpLPL0Z4+qlr7DzasL62ioqCXr9PeaRgUPYpiwFlOSAaiyxzfCYomopenuECdM5iu26RrhsdTWUQQhFixM9mKGlQusRnjmAEPgQEAaEE2NtspyzGyCc/eZmN197H0qBkEPo4Io1ziBggdIg84AUE1yDmjqgVLgR8sHQy4PA0pqLqDCEYhAwY11D7xU5YZxqsc9iuQUmJQ+C9o5tvU9VjLu1b2l2fFj2TQ8kHv2jlHALOOYQQhAjBBEJdgw3omNM2FbZrcCIgC0WIgcYZrPfkwTMfz5nYmr3NLZp2iomGq+MJNm0QJ7cFCcHz2GMXefxNDzJa9ShAFuXi3Bcs0nkJECDWFq01UVukytFKsbK6SmynaB/ppnNEoXHBgAj4YBARiApQWBPIc0XdWFCfqV5nMLFma7/Gd5AmjOSwCdbzocev8s67TtHTBWVR4lwHsftsAYJcK2priVmGLHJkNBxdG5Ivr6BHA8ihayJT01L7ihbDbr2PG+TMdjP26zEui1St54oV2CZlWiSHmIDZpOYjT17i1CPLHCnWKPMefZXR7/UphyOKvIdGgATjHLaEnippbEMrIm2wNF2H84EgBF09Q/iAzjOMDYS2xroGZzuc7wC/qL54C92yVmjj8Zxr22POj9bwAoyxKAdBB4TRCKsXVU0A33TICFaAIWCEwQiPCxZja5y3SC0pBhnBK5xocVYishyJxLhq8TjbYLuWvdawueHxaZcsOUQiERHBhUWfMhci0UWkd0BGDJpgPFKA7GVUezNibUCCyHJAEmygkh1lgK4zzKdT2qZiHjuuXd+kOD5kEmIqY5zcJhY3fvWs5Tc+8inu+bJXISlQXYNUoHXA4wkhkHuBCB7lPd4aEAqJIO8v0R8doatvMCgLGg/YgIueqAIekNqhdcT5FqVyhIoUeU5nPKGuaU3Hjd2WGNKFkxxCMfLpZzaZu4q+VuhSkHWKXCpypbBZhg0RgUcXA+qmZnWpT39lQLbUQ2hJU9XM53Pm8znT2YSqbahDx35b0ShDLAuqqmXHwayGmFa0k8MsQvCBj3zkSV57z1lGKxm584R+H5UNkFlGjIKAQCqFcgGtc5bKAdXmLtnSEBEXqYzTaoI11eKssgs0rSHi0VJhraczLT5YrF/cs91Ktywo8y7w1OVNXn32JJ2pqV0kCE2uM4TMkbaHUpoQPcZ0i0qMMmBFxMVAFzxtDHgnIWQUeQ8nwHvDcnmMQb+jbRu6rkV2jjCrsHVLYxsmQFelD5PkcFFqkXLlnQfv8YAXgRAtEkcMIH0k6BI3mRO6hrLsE8OisEHXNoQAXeMQIdDZjtYaqqZialt2EbjdCnsLt9aT5JaIkfe//yJvevheXtvvU7qOMkrizVJXSggQLRGFV5Lg/aIyaVEQEGT9AtdopHXkpVj0vew81i4aSUfhkFlE6IBpZvRyhYkeCwQcO+2c3a3FrlpMDS2Tw0ZEbjy7z5OTirWlPmVe4rVFKY8qBNIDMaKVQi4NYLzF8kqf3iAjRoPvDE1dM57uM63n7FUVtXGYEHAhInsF82afKsJ+B6ZLu2TJ7SCyszXhsU9dYnSvozxxJ7LXw1uBG8/QqkT3e3iV4QclUiiWjp1k+8Y1XLNoNRSdIVPQOou5WTQwKweEKKnrGcZMcMES8DgrbmnlRbiFQZmIkmsbe0zNnEqVKBGwPqKlQqsCqWqUUsQInTWL+v8iYKTAEGlFwLEofa8zhUBR6JzgItYGfC4JxuKjQ3mBdIroNU5FaicI5lY9syT509GZptcr8AEUAiI4sSjcEX2HDBEZwLS7RBspe8sY58l0jncO6SIhWHwIRBep25q6bamNZVw3bBuH6yD6dFOZ3H4muzX/43ce5563PsxQZHipkF4jiQi/mCuUyhZnJa3DC4kUgSwKwBMGQ0yzR/QOKRRlAcJ5Oh9utlXpKDMWZwIIRG+xXUVjpmyMW+pJJF03yWFVzQwfePIqr3jlgEGQ5FqgVaDoazpnkXlJRNP5QNHr0S9KhFTY1mC6lslkxqxu2J/XVNGzW83oHOTDHu14DmiqaJgb0mWQ3DZCiHzoY49z37k1RtWMWM/wg1VWBkdxOqAkoEEJicgk5dIKR8+c5NOPPwajAaGbU0/HtM2crqtBQrtjiDh6ZQ8hIThJdI66MYRbnE1xy4KySGRra4+9rmFFzxHCk3uQQSBDjdaLbtpSanyMBLEogW8RND7SqEAUAcRi+1FrjRKK6BZbls4aggNrG5pmgutqQgxYCZNdR0y1XJPDRtwMxqRcrLZIuSg/bC14T7AenMB4GI3WsZVF+Y5M53R1jcgyvOuIWmB8TWMrpvMJm3s7XNke0/qUtpjcvmIIfPB3nuHNrzzNyrpH24DQkJcDYnSIAAiJICyOogWPbyukEOAtQgRkpnHesDhGEMgAoTxRarz3WO/pFRprO3zwGOeojGdjz+JtmjOSwynGxWLb+373Mt/40CmWRE7jLVoGMi3pFRpUjpB95nVHf2mZYB3Wdri6w5sa07a0XUvQinlr6PKCrcku9XSO0AFLZGoixh70s02SL0RkvNPwi7/zUSZ3Pstxpbj/3teinCIUQ5zvKLOIQCHaiig1y8fOsbbxLBvj63jfYKtd2rZh3lQEV4PIgUh03SJNXkiCt8wbd8sXLG5ZUAaRtrLsVS1nRg6DI0aQi9tScBYpJUoWSJ2DUgQVCC7S+Y42WKKIKC/wBpzWyEyTSwUq4gMIIZEyQ4qcwD6BirqLVPuL2nRpuSc5VCJIKZBSglCEmwvzMgIIolZEoDdYxrWWUNf0hyNc3SKFoPUOFyOu87jaM5nXPDve5enJhKlNZwCS25sAmrnldz/xLA+9aURPDugJhwoOHRRCSYLrIBOL5uvCE4xZ3LGKgIweKYEoiDESYgAEkkgmxeK/BAQigcU5gc611J3jymaTSuEnh5hEELn49ITfvbrD+lFFNI48y3A+IDLIewVel2TDEQbP5PozBNPSdjVNPaPzgagEXWfpvGF/sk/nPZ3K2Z/us+cM8y6SVvaS200MkWee3sKGKW996DxHqwkFBSEE+ipAmxNDQDQNuugRBn2OnbmLeTVBDpaxQdJsXCIr+lTVjChqijxHyhylNN47PJ751HOrY4tbGJQJvHWMZwazFmlchfGgYoEQQIxIkSFkQHmLkJIoIq211Kaj9i0xE2gURZYT24iLjiAjNnisNXRdg7MNBEskEISlCh5rfCprnBw6QgikWvwRUSI9ZDESZaSLARUE5WgJbzzNeIu+GuDaBhklutejnY9RQWCiYFJNuXFjh2vzKWNDKn+f3PYiQHT8/kdusPH6e1iXi4I4URmIEuFBEpHOE9Qi1TeGRVM/SUAphZMRvMD7RWq7CBGdaYJ3N3+HIISAcRHjLSY0bNYz9vdSzlZymAUi4BrLf/+dS7z67ZI1U6DzEdo6hr0hsshpgiBoGA16bLSG6e6EOChopKJuW6ZVTe0C4/092rZmOjPMGosrMubtoj9sktx+IsHB1csdnzgyZ01vopoAxwSqLAizOVJnBNcRXI1wFSFYVk+cZnbtSXq5opcVxK4mO3WadrpHriErNASNiAHvIk1167MpbmFQBjHA9vaE5tQyykqkcUhvECISiGRZSUQgpEApDUhM8DTeMW8qZC6RSuO8Qyuw0WCdx1kJLBrtBrnYYRBK4bxid9sSbVrxTA6f4bBkqdcHcoQTxBgWu8dRkQtJORzQBst8skFPSIpSkekMlQ+p6hYhBM46Ojz7dsyu2adTcpH2mCRfJMb7NZfn+5xf0ayT3zxr6RcVSDNFRKIIyBhQwiEWcdiiypaIoARRKmQAGeKinH4MCBGJeEKwBDpcMLSm5cp+QzdO80Vy+EXgkx/Z538+uMc7146jbEUmFL1SAh58i/GSQimGJ89w6cqzHD93hHkXaIKkMXP2J9uITmAnlm5u8QL2O8N0GolB8pmKqElyu/EGHv/UFmeXc0oBg3lJphRZ0UdlBSgwtqHe3UY4h8Ej8px2+xqunRKtZbS0Qv/UGbyZoILAG0VEYaK8WUTtNj1Tthi4ZHtvgteAyglB4OKiYzZSIvRi5VJKRdYriUohvUeHRRUh31XEELE4XFh01DauxXkI0eNDJOAQarELMRcw3vM3K2glyeGyvDKi0Ipc99BBIjpHrhZtHVSe0zqHHe+yNjrF0toyeZHhjKDa38M0NZ2p6VzDzFVMuwoGGdPNjph2yZIvIqZ1PHVlwiNLR2jdhDIWSJ8jvCYGRW/YQxQa2wSiW/T5iwSCFBgX6KLHiIjEk8nFGTSNJApHxONth/Ud1ngqF7hy1RDTukZym+jqjl/+X3u89qsGnLIlme6DcEghiQpc44gtDJdG7N4AtXGN3WbGLHRMraG1Da11NFZjUcycZ2zCIo9ehJTGm9zGAtXUcX3iOHtEMnY1crpHVrYIrYk+YNuGqprhTIPQki5G6jYSdIbOFdF39LJlpFojekcXLcEb6k7gX4LK1rd0pwwi83kHWYnOemjdp2saZIQsK4hKIlVGjBEvBcF7gvfEEAk+0NVzEJ6oJJnKgEgMEeccNhpiWJQWt11N3VRsXrN0M58+TpJDaf3IEpkUROtBKQZFQVYqYow0XUdsKgohGKysIBsw04qubmjG+8yaiml0zIJh2s2IRLqYYZr6oJ9WkryoYohcfHpM/WCkwdMTHikNOhqCUzSdQNPDx4gTYVEiH7AxEoUnBo93AYJH5gIJ2AiOxTmzECLBSqzveHY65eqVhlte5zhJXiQReObpMU9+2RpHC0W/16fIcpyLtNOGZlpjUXjVQxRHuLH7NDGDzZ050+CYdgETFbt1ZNx65nhMANd9ZjU7BWXJ7UmwmD+2tmsmZyryzlHFfXKpF21ViPgY6JoZzntEVmC1JuY5w/4xQrBY1+JbB7nGC0VUjoCg7iC8BJWtb236IpHx5pTptGZlRSO9IDpPCBEfJSgJ+eI8jPeOGCUxRqIUoARCa0IUuBiJzkFoQWqk1igRcTZgg6By8Ow8cum6JYb0gZIcQkJw7NgSIoAIARUDudYIEbHWEJqaTCmK4ydx1lJt72AnczpvF+m8pqHFMHM1nbUgS7b3d9JbPfniEyMbN6ZMglmkXHkFGEopUUWJKgXogNeRmAnwcVG9tO0QcnG+LNcKawNdjMgosDQ47zG2oW1rGtOy21W8/2NT6mkKyJLbR0RSzy2PXTe86h7FkX4P4QXWGoy1+GDonMPGlnk3p2oi+IbaBPbGgUYL9uYB6xf9/oQMSCTeQgrIkttf4MbGlLEVrJSO1jqsXZTKQSrQijBcWpzSDJ7oPVneQ/dLsiyjMw1VM10s3jmDM5bOWOrOIaJcpMPfQrd4pwyaumNjOuX0sI+QGV4EIhYfBSrmYCxSLirHhaiJKmDCIpp1Si1K4stFpTppBCKThBDwLtB5wV7T8cTFGZcuz2ibNLkmh5AAqTKWRiWd94joiTIuqouyeG+LokAJjZlX1LObvZb6Bba2NM5hBXRty7ydEPslu3XHbG7S9Jl8UdrbmvHM1pzTJzJkO6UJgb5WFF1HGT160EONlqknDdF6nLd0IdIFiRECJSJaA1Lig8eZQNt2VN2ccbXPE7tj/s+P3eDJT9Zwi/vOJMmLyxM9PH2xYnxPRT6+RGk1wWqaztOYlspY5nVD4yKu36Np58xdZNYEdB+GQ0XdebSQhCCYTGNqI5Tc9j7zSd7ODb/5vk9gH1jlaMzQIZCXmkznCJUhVY/eyogiy9DlCMoezhm8dfhoUFZhmwpbzWmmU/brjtnE3fKADF6CoCz4yLUbE15+/Di96EEuKs95sdhJCyEQgsdaT0Ai8xwKjezlKFnirMO7SGtacgHBtFgf2K5bnn5mk2vXxswmLcF95sVKE2xy+EgV6RU5zgQ6GSkVi1QqfzMlNwa0afGzilAZPIJ6PqOd1RjrqJsZm9UualhghWJv2qVzMMkXpYjAWs+vvu9p7njXo9w16tN6SWM6ej6QNQ3SRqgCXVCgCoSQWGp89BhAOEeUAePAdp42eMZtx+M3rvOhj1/jiSfnzGeCmAKy5DZ14/qcbX+MfpjRWoGdtezsVezNG+adpXMS8j5Bj+iyJfSyQFVjKuMhjzgpmZrI7lQwfwmqyiXJSycy2bX87lM1X/7I3ZwbZBRoikJTDpfIe8tEJXFthXeeUNd0tiJGhffuZhpkwLQNk7blysSzP35pbrhueVAGgqeeuMHr7z+PzvqQZxAFwUaitwQECIkTBusNofFEKwlRYF2Hxy7SUHzDnpsxnVquXqu48vQWbW0WPWmIpG335NCKoLSgLDKc92gFgYALFhElQglEFLT1nNneHsFYXIy0xtC5yN50wo29XZpBTpkVVKahbruDflZJcsuIAJ/+yHX+lfsA3/KOV3DPaB1hoNAwNJIsakKUVG1H085w1mLbFucjTXTYYGlsZHPSsLU7ZWtecWVjn82tGV3jFsVx0nSR3MYmex03KsGpfqDtWmrTUrsOIwOuVEhVIns9OucIQqAHPZZPZ0w3Z1zfbRjPPY2BEORBP5UkedHFGNm9NuW9449x353rvOrek5ztrSEo8Mbgo8Objs5ZfIh4rfBOYZ0g+EjVWq6PA09c82xOPNEKxM3WFLfSSxCURbavT/nAxy7yyAPn6ZGBA4/FhwA+IIUgBo9xES8srgMToLEO6x3Pbky4emWbqp5RTQze+j9Uce6P/jtJDheBgChpakeVC0JUaK0ZZAOEzIhIutmMaWOxKKquphpPqOdTKtuwXbfUhUb2ChrbsjuZYipHWohIvjjdXGYLkSc/scmPX/ttXv2yM9x/+ggrytLPFTrvg9J0JlJ3ntoYpl3H1t6E/fmUxke2dlqms4bOuMWOdBSkct/JFwtnHL/7xIQ3fc0ryFYD9tpV2nqbpmtwQiEHQ3zWYy4MExeYNTlPXJxy+XqF83+4tHdKuUi+GC3mkbayfOTjm1y8sscD95zlgXsCo2EPrSU6y/BZTte2GGeYzCumsyl7O1MuXt5hZ7/FGPfZn/dSEPEF1tMWQvyZfpHSiiMnlzl5ap2VpQGjkUJrBSEgZaSaOlwUhL6jqhybz07Y357TtYausotJOn6mJfRLdyOayo0nn88LuyYWj5FKc/rMKqeOr1LkmhPHj7G+ssLy0ggfItNZhalauq5jXtc09ZR5NWG829C4gCXShY5gYVYZXBsOrEF6uiaSz+fPOk885+chFm1TVGR5uc/pE8scHeWsHFmiai3WCTa3JszqlsmkoZp3eB8RfygAeymuk3RNJJ/Pi31NfPbnIhit57zr685zbtTHzKZsjS1bu4GNrZa2izjrmXeW/XGLd4vKoy/VOzVdE8nnc6uuiT/htyKEYNAvOHv2OBfuOs1wlFNXFdPpjMmk5dq1PeazCmMCiyOWL25fshdyTbzgoCxJkiRJkiRJkiR58aVk4iRJkiRJkiRJkgOUgrIkSZIkSZIkSZIDlIKyJEmSJEmSJEmSA5SCsiRJkiRJkiRJkgOUgrIkSZIkSZIkSZIDlIKyJEmSJEmSJEmSA5SCsiRJkiRJkiRJkgOUgrIkSZIkSZIkSZIDlIKyJEmSJEmSJEmSA5SCsiRJkiRJkiRJkgOUgrIkSZIkSZIkSZIDlIKyJEmSJEmSJEmSA5SCsiRJkiRJkiRJkgOUgrIkSZIkSZIkSZIDlIKyJEmSJEmSJEmSA5SCsiRJkiRJkiRJkgN0KIOyT3ziE3zLt3wLd955J/1+nyNHjvDmN7+ZX/iFXzjooSXJgZjP5/ydv/N3eMc73sHa2hpCCP7tv/23Bz2sJEmS5JD6e3/v7yGE4MEHHzzooSRJ8gIcyqDs8uXLzGYz/spf+Sv82I/9GD/4gz8IwLvf/W5+8id/8oBHlyQvvZ2dHX7kR36ET33qU7zyla886OEkSZIkh9jVq1f50R/9UQaDwUEPJUmSF0jEGONBD+KF8N7z8MMP07Ytjz/++EEPJ0leUl3Xsb+/z4kTJ3jsscd47Wtfy7/5N/+G7/zO7zzooSVJkiSHzF/4C3+B7e1tvPfs7Ozw8Y9//KCHlCTJn+BQ7pQ9H6UUZ8+eZTweH/RQkuQlVxQFJ06cOOhhJMmhc+3aNb7ru76LU6dOURQFFy5c4Hu+53swxhz00JLkQPzWb/0WP/uzP8s//sf/+KCHkiQH6od/+IcRQvD444/znve8h6WlJdbX1/nrf/2v07btQQ/vOfRBD+CPU1UVTdMwmUz4r//1v/Le976Xb/3Wbz3oYSVJkiSHwPXr13n00UcZj8d893d/N/fddx/Xrl3jZ3/2Z6nrmjzPD3qISfKS8t7zfd/3ffzVv/pXeeihhw56OElyKLznPe/h/Pnz/P2///f5wAc+wD/5J/+E/f19fuqnfuqgh/Y5DnVQ9jf/5t/kX/7LfwmAlJJv/MZv5Cd+4icOeFRJkiTJYfC3//bfZmNjgw9+8IM88sgjn/36j/zIj3CbZOYnyYvqX/yLf8Hly5f5H//jfxz0UJLk0Lhw4QI///M/D8D3fu/3srS0xD/7Z/+Mv/W3/haveMUrDnh0f+BQpy/+jb/xN/jVX/1V/t2/+3e8853vxHufUlKSJEkSQgj83M/9HO9617s+JyD7DCHEAYwqSQ7O7u4uP/RDP8QP/uAPcvTo0YMeTpIcGt/7vd/7OX//vu/7PgB+8Rd/8SCG83kd6qDsvvvu46u+6qv4y3/5L/Pf/tt/Yz6f8653vSutgCZJknyJ297eZjqdpnLfSXLTD/zAD7C2tvbZG84kSRbuueeez/n7XXfdhZSSS5cuHcyAPo9DHZT9Ud/8zd/Mhz70IZ544omDHkqSJEmSJMmh8OSTT/KTP/mTfP/3fz/Xr1/n0qVLXLp0ibZtsdZy6dIl9vb2DnqYSXIoHNZMitsqKGuaBoDJZHLAI0mSJEkO0tGjR1laWkqlvpOERRXSEALf//3fz4ULFz7754Mf/CBPPPEEFy5c4Ed+5EcOephJciCefPLJz/n7U089RQiB8+fPH8yAPo9DWehja2uLY8eOfc7XrLX81E/9FL1ej5e//OUHNLIkSZLkMJBS8vVf//X89E//NI899thzzpXFGA/tamiSvNgefPBB/st/+S/P+foP/MAPMJvN+LEf+zHuuuuuAxhZkhy8f/pP/ylf/dVf/dm///iP/zgA73znOw9qSM/rUAZlf+2v/TWm0ylvfvObOX36NBsbG/z7f//vefzxx/mH//AfMhwOD3qISfKS+4mf+AnG4zHXr18H4Bd+4Re4evUqsDi0ury8fJDDS5KX3I/+6I/yK7/yK7zlLW/huw7d1DEAANChSURBVL/7u7n//vu5ceMG//E//kfe9773sbKyctBDTJKXxJEjR/j6r//653z9M73Knu//JcmXiosXL/Lud7+bd7zjHbz//e/np3/6p/n2b/92XvnKVx700D6HiIewasbP/MzP8K//9b/mYx/7GLu7u4xGIx5++GG+7/u+j3e/+90HPbwkORDnz5/n8uXLz/v/Ll68eOi24ZPkpXDlyhV+8Ad/kPe+971Mp1NOnz7NO9/5Tv7RP/pHqU9Z8iXvrW99Kzs7OynNN/mS9MM//MP83b/7d/nkJz/JD/3QD/HLv/zLaK35i3/xL/IP/sE/oCzLgx7i5ziUQVmSJEmSJEmSJMmf1meCsu3tbY4cOXLQw/kT3VaFPpIkSZIkSZIkSb7YpKAsSZIkSZIkSZLkAKWgLEmSJEmSJEmS5AClM2VJkiRJkiRJkiQHKO2UJUmSJEmSJEmSHKAUlCVJkiRJkiRJkhygFJQlSZIkSZIkSZIcIP1CHyiE+MJ/upB85aOv5ltf+TpODVc43s+4HHb533/y37Oxs/+F/7wDkI7cJZ/Pn+qaeJEtr4z4f3/Hd/Gy5ZOUtiNbVfz4b/wiP/+rHyAGf0t+Z7omks/nVl8TQkm+8t1fxbd94zdw18mzZP0e/f4IETJC7LC2RdhIGTVlb0gErAvUZoatpsimQ3lPG1ou7m3xfz72v/hvv/Qb7GxsE8Of/n2dronk8zkM84SQku/8tm/gL7/2KxiEAU1b8bt7T/EjP/mvmE2r5/2eXq/Hy15+DzjP408+RdeYL+h9nq6J5PM5DNfEQXgh18QLDsr+dCOAup2yu73FoBaMVkbcszLgnY++gn/73t8mxvC83yYRZL2Ml999B/1+zsc+fYnpuF78wCRJABBAWRbIqqalQpaSYSX4ztc/ym/+7kfZ358d9BCT5EUhEAgpefjND/Pd7/lmXrZ+lt7KEbwU7Gxv09UNUgait2hdEoo+zhmccwTvCN6jQoRME/EIr7nn2FnOv/Mkb3vdG/hPv/zL/PZvfZCm6yBGQvTYxuJDJM07yWEi+Mw7Ut78rz/5/VlkigsnTlHEnFG/j/Utd/RXOLa+/jxBmWAw7PH//J7/G1/xilfhbMuv/d5j/ON//e+o6w54/vu2JEn+7G5tUEbk0o1ttk9O6EfNkpSsLq3w9gfu5md/+3eZzVt4vshRCd715jfyLa95lDuWMj423uD/9S/+A3uTmvSBkCQLEWjqhp3pmGGtEUs9PCPOrKzywJ3ned//+thBDzFJXhQyV3zZV76R73rP13NHbwkhoWpmtF2LCJ7lpWXKskSqHB8gEPHWkstIQBBdhxIRFwOi07huTjeTFPlR7l0+zv/9Gy7wda99Jx9/5uPcdf4se5N9fuWD7+O3f/tDfJ61wyQ5GEJQFBnD0ZDJeEqwnvDHBGZCgMo0S/0BRa9ESEGZaUAiPs+3PXD/fbzx7vvJrUa3ijfd8wD//c47+OjHn0hLFElyC93yoGx7b87l6Q4rTjEJmnpUct+xdV5x/iQf/NhF3B8s+3yWUpLzy0sUU0eWlbz1yFne+cZX8n/80vufN4ZLki9VbWvYqaYczfsMRaDNYa23xNsefBm/8/ufIPh0R5nc3rI84x3f8k6+4xu/jpO9NVRvgM0LpFQsl0somSGkRAgwxmGbGc18im9bROvAe1TRJ9MF091thplmSA4xh1kAIchQnLcZx1bvxG0ZXnvnqzn/tlWk9fzWBz/MIhM4TT7JwRJC8MADL+ev/aVv48LKGu//6Ef5Zz/zM+zvjf/E7ytsJFYdpqdQUlJIxWgwfJ4HR+4+d45i5nGFJzgQznPh5Ak+8vHHb80TS5IEuOVBGTjvuD7f495iRN3OmE9zTqws87WPvpwPfOoyuOeeexEI8AEzm+G0QqiSh86eQMqIvzXHZJLktmStZ3M64a61FUwbcI0n2JzXnzvPcNhnNpmnW8nktpWXOe/8+rfxV7/1mzhWrpH3liiHQ2JURCGI1tFOZ5jpBFM3mLqjqWZ0zQzXzpEUHD99gdHSiG6vIttskTpyY3eTbloxEqv0dIHxc6JwhPmcrZ1NlvoZx6Tk2175Wh6/eJHNG/vpOkoOXNkv+avf8HW87sTdZDHn7fdEnnjTJf7jL/zS5/+mCFmekzmQUSOVxjq32CV7nq0yIQQnllZpg6WoK3y0xOhZGvRASNLWcZLcOrc8KCPCuHW4UUnVBfbrhtWmx5dduINjR4bc2Jg851uyTFMisdZi6ga1UnJkOEJKSfA+TY5JclOMka3pPnV/jVpkdMUQ29acPLPEieUlppP5QQ8xSf5UlJa87c+/kfe8+6tYMTn5qEeWaULdYJsGM5/STqbMd/dRIVIMeuSjEb2VI2SDs3jhsfNAIZYZ705on92gV7dM5/tsXnmS+plL9HWfLC+IMRBFpPKGKhpmT2VEIfH1BuvDHpvsHfTLkSQUmab0lmZnn6BXEK7kkTvv4xeK36Dtus/7fVIKykEfL8Bbh5AFvdUVyrJ4zmPzIuf46jKiaYmhIQBOOAiB50lsSpLkRXTrgzJgZ2/OZDah70b0Ms1yYzgpV3jZuaPc2JjxR8+J5VqTaU0UYLsW7w39TLM44pokyWcIAdOqJmqBzEuiLrFCMRSK46sjnrwiiGkaTW4zSgoe/bLX8A1f8RbW3AihJPV4Ans7mNmYbn+MaxqUyijyHuvHjyLXltFLQ1TRJ6qc0Dmid7j9mrC1xezik+ztjrHtlPHG07QbN5ghUFmGkIrWGqzwFDrjxnSO7OU8uzRnPKtId6PJYVA3LZc3tzgR+iwPAll/wN3H7+Dc2dM8+dTFz/tZX5QlUinaeQ0hErTHB8No1H/OY/M8YyAUtpqhdYbINNa0GB9SRcUkucVekqBsXjdYFcnWjhCHfVyvRz/r8aZX3MNvPvb0c3bD81KjtCCGSBNqujhiZX1Almmc9aTZMUkWYow01lIcX0UxIOqMkOWIoLjr/Cn+50c+na6W5LYipOSB1z/Id7zn3azKET05wNQVZnvOfHeLUkdGx44xvOcufBQIHyEIVFbiosbVBmxDt7lH9ewWZnOPvWcuMb56mXoyJojAfHoVaSdEZwm1IkhBFwNKR4TUzKZ77IwyPkyfjd1pOsucHAqms3z48U/xwPAofTFBZoHlLOfNr3kNTz9z6Wa10OfK8hwyiRdglMc5gw8eIZ7bqnY46DPIC4qiJEbovKGp51R/zE5ckiQvjpckKHPO02YCnwe8b4hGEH3JI3ecpuxpmsp+zuN7PY0sJUENsK4i5g6tA+olGW2S3F5mTU0VLK3raEKg6hTroeTsifXFVlq6o0xuI6cunOBbv/4dHJF91npHsMYz39tBeMvJs2fI+wOCzBGxj8ITpaeLjraqMLszRNfRbu8yv/QsdmuHZmuL+fYuzd6YylR0g46ZmoGKCBSSRSEDFSOFgVZ5rq3kfLyX8fuXt/EuXT/J4fH45SuMX1mx1khUFun1lviKB1/Ff//N3+TG5vbzfk9/MECWGicjWi6OgHjAP8/5sFMnT7C2voaOGcSIbgXWWqaT6a19YkmSvERBmY3sm4Zg50TfwxuFs4YLR1c4emzIlYuf20h6eWnI0mhAqfuslgPKpQJrtgghpFSsJPkjutYyNx3OF7Sxoemg80NOLo2QShKep5hOkhw2AsFgUPIN3/SV3LW8ytpwHd9ZrGk4cscZ+qNlolAoIXHOYcKip5izjm46o5m2tOMxZmeT5toO7dYuzObU+9t0pqLuajYHgk8MNRc3IqYDKRVlXzJ0jnNFj1JpdmXgivXcuLyHD+6gX5Yk+UME23sTttuGky6n7AXUQHBu5RhvfeMb+Zmf+/nnrMFFwHuHVRLj7GKdrgTTeXz43LlBCMGZ40cQMRKsw0ZLbTwi1xiTroXkdicWhQRvHpn600UTz3eM6sWLS16avacIs1lNWDa4KOmswBnDQPa458RRrlwc84ef1HDYQwaIviGLGUr26K+N0IVEzFPyYpL8YcZaGtPR4aijoXUaHzzLwx5KQJpKk9uBEJGXP3I/D5w8x2p/nUBG0VOsrS8jVEYMCrTGK4FwgdBZuv09uv0xs51dpuM9qt1dwt6UsLtLO96nNjXGdUxzxfUVwceM48oTE4JfdHYSAkS3SAO+qD0CgfWBRc/oNNMkh02kaVo+dfUKD97/MFLn+GyRWfTVb3oTv/Sbv/mc8vgC6OoW13ZYpyALIAt8lITnbJQJVpeXEcbjA5joaFvDvKqYNXU6Wpnc1gQCoSP9YZ9SKKKAEKGzga5tCTcviBgiQrCYIFjMD5954wsRb349fvanvpgFSV+SoCwSmcwarHC40GI6Qde0DPwq9505xa+LZyC6xVMUUJYSIsTgCCYSncMLifdpnyxJ/ijvPXPT4PWAxhnqpqNxLcujPlmZ09nmoIeYJH8CweqxFb7m7W/kwsppvAfZNfT7Q2Rj0f0MLwO+a/GmxlVzmv1dJtev0u3usHvlWbpmRt3MCW1NbSq288izueJqI9medcxbhzWe+Idn0Lj4ExEY6//QaNLNZ3I4xRh5+sZ1xi9/BZltWDI5melxZnmV17zqFfzar/82f7S8UwietmnxMUcbh2k7lIYyU599jACyTHL6yFGEd/jgCc7iYkcVLLvj51bKTpLDTdxsnq44fnydR15xF2946C5e87I7WS6HdG2NiZFp23J5c5Odas7MGPa2J+SFpr88QCKZ7k2JNhCjICsVK2tLQCSGSNu07GzP2d8e420gEPAxEL2nc5btacV4r6Zq7J84WniJgjIBzOqOVkaa4KhMx6yqWOk8d59ZRykWzTmjQEhY7heICN55TCYJucKFjkUmSZouk+QPiyFSdy0mdPi2phEKayJHhgOWR33msxSUJYeXRKCKjD//7rfwypMnqF1D21hWsgHWKmSe402DsRFbN8S2opnsMt3cpNrZotrZYH/jGdrZnLgk+aDMeWbm2Jka2s4T3OdPe78Zk/FH55Q0wySHl+Di1Rts2Zql5SWq2FJ2ELMeb3ndI/z2+96PNX9wA/iZ97JWGX21xDDXjF1L280YlJ8blOV5xkrRWxQMMQ4XAw5P7R1V0760TzNJvgACCQKiiEihKIqcU6fWeN3D9/Hoy+/iNXef5exwhVwXZHkfLzMwLdJZnHC89o47cMHSmhYPIDwiOjQKGQWIiEAjACUjUnxmR00glMCbgPcQcfjWY1pD3U7YMw17s4Zff/raC3oeL1HpDMFk1jBtGkZB0wjPxo7j2Jnj3HP2GEVP0swX24RCSkYqIxiLNQYTC5ASqQRSQZouky9dn8ll/iM3kCEyrSrEkRPkWU6mS4LXDKTg6MqQa9d3X/qhJskLJHPFl/251/KGV78c33jG3Q6lLmmqSKYlVjhk53HeEuqWbrZPtbvJbHubZn+XameDYOcMTsInteL9Hx7TzRc3pc8XcCXJofb8H/OfYzytefLGNU4PhmRKoAREA3edOMaZMyd45plnP+fxwQds05KNRsgYKIJkPDf0vUNJiQ+BKGB5aYmlkGGrDqskXghchLlpMd6lJfHkEFhs3kghkEqysrJEmWtOnFjl/PFjHF0bcueFk9xx/AgvO3GMVZkjRE5WDAhR0JlIZzyeSK4EMitRhYQQyKJBZwXeRpw3RNeAh0wqcikRUi2uFe9QUiCREAV4T5nlSC0RIhBLSQwB3y1zpHFM9C5Xj76w6qUvUfpioK4NO7MZq3JIWOkz95H53HLy5DGOHFniynyXSCQvFCI2dLMa7QLjtsGbc2RrA4SQiOdszCfJFz8lBIOVIesrS+xNZ0z3Z8Sb5Y8F4Lykf2SNgRUMegWq7KGRjPoFaXc5OayUVrzuq17Hu9/2VnpRMamn5FmfaDN8VBi7SDcUXUNX79FMa5q9XUy1Szvbp2qmRFFx4nzBOAR+72lHV/k0RyS3peMnjvJNX/cutIOf+6Vf4tlrGzffy3/4/RwJ3vL7TzzJq0+fQiOImSEHhr2SL3vd67h4+SrR/8H8UBQ5K+WAXtmj3+8jXUdDR68cfDYIjBGOrq6SWXCmReQ5TgpwHU0zx/8xO85J8oV4AesO8Ifu9gUSIQVFP+OOc6f52q/6ch48fpSlfo+TJ9dZ0rBUlOQqx7UdWkuCLlAyQ6EJIsNGTdd0mLrBOYeQkRaHzCVZJhE6Q2WKGDTRB4wBQYkPhqgVRIEGggCtNSIGlNDIICEWhOCJGoRXhCgRFAjdozcMtC6wufPRF/TavGRF5q117M/n2OUVjChpBBiRs4rk+MoSz7JDBJSWrK2us7p8ir5QHCkK0DmunSNiah6dfOmRSvLQq+7j2772K7lnpc/F6Qb/4v/4dZ556jo+LMob9wdLnDpzB/0Ojq4MWe7nSBrOnT4Gjz1x0E8hSZ4jyyWvfdvDvPvtb2SFnPl4j35RMCqHZHIJJRRKeGw1p9vawdRbdNWcejajbSZMJvtcfmaLE8sCsSr59e3Ak5fnqcFtcluSUvK/ffM38Z7XfQU9ch69cC8/9C9/nGeuXkfE5y5GP3P5Kpcn+wxFjvQaIRsyoXjDg6/kV37jt9nY2PzsY4eDAZnU6AAiGmJTo40B4h/Us5GCu0+eJdc5pdaosmA2b+iqjklV4X2q4pu8OISSLApk+OeNzIQEnWuKouDEsTVOnTvGG17zEK+64zz3Hj3HSpZRKJBZjpKa2DiEl0RZIrXD2Y7YRZzQiCBxzuKDoW5qiBEfA11X0dkalQm0zsn7PYQCQUQQ8d6jhSBIhVcCsowYNRFH8A4pFDIrF2mMNqCcoIVFGmMAT0cMgig0jeoxNS+sGshLFpTFEKmdoFwdkfV6LBWaolSMegPuPn+Sxz5yEREhUwVHVk5TDJfIrSPvFRRlgY4NhJDWaZIvKQI4dcdJvv2rv5r7siG9zvP6lTs4/31/kQ88fon/9Evv4+Kla4hc0xuNKJUnz0uyTKNLyekj62mjLDl0lFQ8/JZX801f++WcyFagbQlCk3kQ1lMsKWSZ09U1XdtQjXfZv3EV2+0y3huzvTVjvDtlVkUuhz5Pjh03blQ490d3FZLk9iCFZOACbmuGHazy8t5p/vo3fzt/59/8S6bj+XOCstm84eOXr3ChvwJVRFYV2gaO9Ie87fWv4z/8wnvx3hGJxBiJ0mNVIJpm0Tzae4JYnJUBQZ7nPPzQQ5w8chQlHJ0xWNfQNDX700VmRrqykhfDn/vat/CW17+ajeu7EBQySlTwhNhBtOgy44G77+bE8iqnjh6jzPvkMid2nrjXEkIkFBnCZzgXCXOHdx3eVnhnMaajbipkjEgh8VmBdZG2aQh9Tcg0PnZ43xHmhhgFiECW5UgpkSqiFJRlQd7LKLQEIkEEXJRkKr95W6WI0RFCpO4CndS46LEBTGcIIeKI1NaxOTlE6YvAoix+a1Fljs4U/UyhoocYeej+O/kP//X9BALLo5IjvT5lr6QoI0UuiRLoDf5MnQWS5HYUEdxx9gRya5d53iFWR6iQcWq0xF961et43V3n+MF//jM01ZxMamSxWFGVwiGl5NzJY0gpCD5dN8nhceGVd/KOd76RY6ogA4z1aHKkKEBkCBnwrsXMJ3TNFKsDrpBsbuyzceUaWfSsDwW5gquZYWfLp4Asua2FGHjq+lUeWjrNcq+ml/d5zbl7+M53fx3/7D/8DKb73JX2GCOffOoSr7vjDs4PjjIaraOzgkINeOurH+U3f/dDXL++sXiwAEnAtTWISPAGHwy5+GzVb1aWRtxx5Ch52aNc6pN1HUtaMPcVbWfSDnTyovmLX/EmHmYJff8D5FmJKkpkJkF4vAhQFkgviUEgJx5XVZhuj7ZumezuEvD0RyOEBWKk6jpCjFhraNuatu3wMaAyjQ2CJsvxUjGdT5AiEKIhdA1KBPLRgBACwi92yJSWDJeGjJb6QERnAkWGVgqFJJMZnoj3gbaKxCgwIqOJls4YjGvoOktTVZjO4IKnbg37s9kLem1euqAMaExLwCKiR+iMqANCCe664zRKa7w3rC31KYtFFCqMRWcFKgpQOfF5m7YlyRcxAVlwzPe22KYhxgJkn5bAvO44mQ/537/tbfziJ58hlgGZaWQEokWEjKPra2itMD51K0sOB50pvuItD3NKKYaDEe2kW6ThhoCjIGpJ27UE6zHzlnre0LVzOrvD9t4ElGZ1FCl0QLeCtq9Ru+mGMbm9iRD4tQ8/xoPLR7kjW2NpaZXl9RW+4ZE3cGVzg5/71V/7bB+lz9jambCxv8/Z8hjeO5ZCRt7PKQYn+PJHXsV/+IVfIkao5tWiUI7UeCLWeXzjiJ1bFCogcvbMSVZVRnAtpvZ0TQtNB0RmXaq8mLx4Pvyxj9OXywzCEj1V0ssKenkOQtI1Df3hkCAzEOB8S9U2zLqWaTWnmc2w3tBbXYIQF/MEEGPAdS1VVVGbDjnsEfMCFyEQ0S5QNzNkoTDzGa41CBRZWZLlGVpLWjdj/egKuV5ncKTHoCwodLbYbQsR8ODBRLHobWYdzguci3S+o3UdbT2hqxraak7wnhACjbPU3Qurgv2SBmVtZ7DCgVKLlRux6IOxPlqj7GXYzrK+ukIRM2LToKJDRgmFJuRpDTT5EhQFu+MJVX+FHprdnV18PqBXlCjhaZuau1dXeeOr7wQRkUIQXcRlgggM+32yTGO6FJQlB00ggaOnj3DhzFGOr5+iqwyzekZwAW0FPW3R0eGaFlO3mOkEP9+i3n6W7SdvML5acep0yWggKUSg7MNHraKu5qQZIrmdeeDGjR1+9cmP8e4z96FCTaYt/ewo/5e3fTXPbm/x2O995HN6mltjeeL6dd507l5Krcl9gKZGiYK3vuYR3vvb72OyP6OzlsYYrJf4GHDGQlvjTAUsUrfuPXeWApAqYLuatulo68WCyHg2PaBXJfli9P99729hX3kf53yfQezR1xm5khAi7awhGw0RAoy3OBHoXEcdHJ2ZYYzHe0+v6hGjJ1pFiA4fLdYbmqbDukA276N1gcw1WkJsDN5YBqePUS4NmbcVs+1NRDUj65VEnZOfXiYbDjh35xlOHjtKVvQh01jnMSbig8cEh/WRaMGEgO8C3hm64Ji1NWY6WZxXaxukkEQpmFYzdrf3X9Br85IGZfXcMncG0ddkeY4UklBVLOeafpEzpWZlMCQag7WOoMA6gY8WU3uiSwdNky8tAsG1jV22hyusjpYQqmQ+n2NLwXCQkUmNaAL350dRrkVZCUHc3FWOLPc1/V5ONU8rncnBEkSiEJy96ySnl9ZRIcd3DVqVNKah3ysZ9HqI1sJ8hpiO8fs7VLuXuX75IjvXa0ZlxtqwYGVg0Zngosz52IfHKT03+aLgfeB3PvEpXn70GD0t0dN9cqU4d+4sf/07/hJ/e3uHZ59d9Dta5A1FNmcNXeepzBwpJFoEbNAcDYrX3/cAv/yB32U+b5g5S5MVyM4gTMA7cDcbpmuleNmpMwRv8VJgrcWYhq6b01hDa9OiXvLiubox5qfqD/P6O05zvl8y8oISSRYEXQxEI3FiscsUBJjYMkcybRuiCDjvGZCRIckVKALCgfABU1foLuKbgpjlRCTCBrIgMMYwriacufflDIbLyLqh2tunbeeo9RVOnz7Jo488wqlj6+SqJAqBI0JwNJ3FWk9tDS6AaAMhBFxw1E3DtK2ZVnP8fBdrG6KAPM+pq5qnr2wx3a9f0GvzkgVlAjCdY6+dIVcdRTYiSjDTKboUjHqSTQXD/oCqNsjWkWtJo8E1LY3Z/WwJ8BdKIhEykhUFx9eXuOf8CVZ7JYbABz76FFubUyIvrCJKkrx0xGLCFRCJTPYrPr27w9KsAD9kWSjCBJwdYnuaWJTkKqCdReuaWAd8p7GmICslZT8nVftIDloElJI8+MA9FEiq8YQI9HpLjJZWKJSmsB63tYfb2cZPNphsX+PylWu0xlEu58ioGZUZo75gW8OvPNGyv/vCDlB/4SQ8z/yQrqTkVqrmLe97+mlO3JPTz/ssK0HtHXetn+Cvfce38//5p/+c6aRaFP6IkavXN7k62WNQRITIULsN3Z7BdoE3nz3Pb37k97DW0TlwxhDqDpykahqcdUigN+qxPhwQrMMgF41vu47OGPabmsnshd1QJskLEgN7k5Zf+sQlVoYZx0Ylq7lGROhkhyoFxuSYEFCZYG+vZt4Gqtp8tp6+uJl5MRhk5BpUEKwe6aFFZDnXnFUtynl87cF4ojGYzmN3JMYJ7jx5F6tLR+mfzNjcvsLp8+d4w2tfy6nTZykGJTSO0HVYY3AuYruICQrT3SwY0nV4Z+mMZVpXjJsJpp0Tu4bgLUFEblzb4cqVLT58fca0fWGzxksSlEkp6fVzVteHzKcd9qTCSIkJAUxDPa7o9+HE8SM8dOfdhLkjWMPcdLhmTl44tswOPrzwAEoKQX9Q8NoH7+EtL7+He1bXONYbsDbqMeprPvk1Y77nH/8Um1cnKSxLDpVMaU7fcZyXnz+HlPDppy/ierA92UC0nq47Rb9bxa5AFMsUuo/uANNC5umPehT9ASF4+mQcXV/i6uW91GMmOXCrR1e47/x5utaQqxKlcvr9FcqextdTmMwI9Zhqvsv+dId901IM1hCuAW0ROjDMJDdmmv/fxpRPPlPzBUwLfzIp0ELSLzNWlof0VIEUAiHEzRVbz43NXZrOIiJpUS958cXIx5++xMvOnGTt+HHyespKXdIrBG++++Vsfdt7+Ml/9+8xTUcAqqrmsSvPcPaO+8lEQdY59CBHBMfJXHHvqZNsNg3rS0uIWY1G0+YKW2SouLhXOrKywrrSONdig8RYR+c9LjimbYNJO2XJLRB8YG/SsT9tWVT0gygWBT+I8mb8FRbVEZ/zWbu4n+nGf7Aod2OvJQrFynrOyQeWENdAxobOeNouLNINidTXrhIby91n7qQ/WGIlnubVDz/EnfffjV4/ghnPyTsIbaC1gblxdK1n1hlm8zHONETvsM7SNDPmpqGuKnxbY8Wc8XSfzRv7XNqYcb3y7EaBf4GFcm5xUCbQmeDRh+/n7Q8/xF3Hl9HB0uzXtERiVmBay7hTfNOXv5Xzd7+So3pEaAzBtLimotnb5+LVDa6YzRdU/Uew6IHw4N1nefcbXsUDo+Msi4K+0gzyIaXQKNty11rB/S87yea1GcQ0sSaHg9SSr/yaL+Mb3/BmhrJgvLXNK5eW2a73mfo9Js0cmimmLjAFeBVZsp5epulJj+oJrJyiM02eD9Ao7r3zDL/34csH/dSSL3ECwZk7TzGMErzEacmoN6Do9ZEyolSJHq0igqbXGzDvr9Db2UPJCTbs41yNEA3X92oeN4pnd8PNw9cvDp0pzqyOeNnyCmd6SyzHjGHWIysKZJFjM4EtFVe7it/69ONcurKRtsySW6LtHL/2+x/j3LEjKA3ZWCN8QPdGvPP+VzN5xx4/895fpGsNRMFHLl7k9SdOkok+p86d5dijD2J3djjSzniH7GhWjnJ2/Sxa7iBdQA3XaM9dYCu03LU9582vfYRTy8cxdUNTVbTR0VlD5zr2phOsS/dIya2waMcQ4yIrQcDifjwC+JvHMJ4vIHt+AUGm4HUvO8Gp0YBqtWDz+hMIG9Ex4gWEKBAhsrG3hTSOs2unuffBc5y+YxUhAqH1iCpgmsjcBCa1oe4M03nFpG6wviHYFm8bXAxYF2idoRY1bbuLoeUjT25yZaNl3wuaRelTxM2g809yS4MyIRSPvPIe/vwbXs9yKBG1YGV1iXOrK9SdIOQFsd9jUOa89eSQLoBEo3o5FAVtluFQzOqO7d0r8AKCMqkVb371vXzLa17D0XKZUTaicJ4egmhrbO55+vrH+Y3ffZaPfvzZF/Ijk+QlIRDcefc5vvL+h2CvY38+Z+vZq4yvbiJGCjkc0nYVykwIc0EQy8S6oxG79NH4XKGO9Cj6y4RQEW1JEBlf+ZqH+c+/8AFsF9JuWXJwBJw6uUYwHr1U0u+NyPISpSIagRCKECRC5MiYocgYlAOynqFrF6lUpg1c2pwSYsFrzp/kA+Yq1fxPn74oAKRkbdTngeU+d5qC0Z6ixJArQzlSlGt9lM6BjJhryiynfOgV/IoLXLr+whYLk+SFijf/ubG9z3977DG+5fWPQpA005pe2Wd04gx/5e1fS+gV/MzP/mes8WzuTfjE1jVWRie5cGSZWPTRy8fJRY93PrJOtrKOH7fIrCAvFEpJltfWeNfXfBNvf8e70K1D7c1w+RK9fsvOeJfZvMK7wNZ8RngRFz+S5HP9QSuT577LvrA2J0LAnReOcv/xNQq/TD4saVZmbG9cJIuCbBEf0SGwMdAWgQtvuIPjp9bY29mBrKQczqGOeK+YW8O4bZl0DfuTfZq2IfiW6BskgSgkXkRa1zKb7NPNK554do8bmx2Vhwa/iDH88z+753MLgzLJ0krB/RfO0O11TLFYn9OKSO/kgJPHB9R1RjV1hCBw9YyyNyCWEDJJMHHR9FAJWgtGLnY3xfM3AAdACMGD95/jm1/1IKtdTq+/QpbllKohywxGt/zqxd/jZz/0OB99ckY3e+EReJLcahE4OlxmfmmD2kTmsznTzV3mW7sUYpVsOWe3nRK6mogneIfNS2QMyNYyVdC0fXx5nPVsjXw4oPA5rz51hgsXjvHpx6+TlvaTgyKkZHWlj9CCvCjolT1yoci6QHQe1xioHWY2w84qeqJAFxFdWETZEj3cGDfYrMAJwdGtfd7y8jv5zU9coqpeWLnhP0rlkruODHnA5KxudvRDQGQCbwxeS0LeI1pH1BYtNcSMgco4ZiwPnj7Ks1s7uJTaldwKET75xFV+qT/gK++6hyO+4K7T55CuZa1/lL/0le/kxrXr/Pr73of3gQ9dfpYL94+4t6voT+fo/jGCHKHcnFhPUX6CFBpJD+Utclahyx6FzjFBEgdDlA2UOmMQAr2uZVLvsjOdI2JIM0dy6BWF5pG7T6F8j75eISjBoOgzkxm7ocZHwUAK8iLnwXvP87ovf5Th8hLtbM5sNmVWXUZnN+jrPtlgmf26ZtJ1jE3LtJpgq8miv7KMZHmxKNdvZ2xuP0s9njBpLZNJTSg0s9AR/xS1CV/0oCzLNb1ejg+Cs+dWifWMMX0GRQ/bgcg0c6M4rgRZtNgoCM7imhqlJIIArsR3Bt96JAXl0hrr4diil5l1PN+NpVCS17zyHv6vX/HlHPUZIZQY5ymaKeUqMGj4L5/6Pf75z/0e8z276HD/Yj/5JPkCCEBozckzxzi6vsqVS88ibcfm9asILzHG0dRzmq6BeYEaltQusre7wZF5TX9pTjlaQfZLhK9obYvq1lnqljgiIz5r8WrEUtbnVQ9c4MlP3yAteCYHReWKXqHoaY1WOVIVoOQiaUVK8s5jnSGEjCwfoVXABkVUMxrt2Rk3XN2bs3Rymf6oRG7XnKoN73zlQ/zyRz/OrKr/xDWHzxTpUFpzZLXgzFBxXw2DWUveebKb5xmkyhBCglv0wYGG6CwED4WiLzJO9foMBj2m4xfWFDRJvlA+BD70sSdZyXJed+Q0c1exKixmvM2yyvjfvurtPPnM01y+ep1r2/tcvHvKy25cZXnpBOUdp+kfWUGIEWFPErXDhYj3EW08QXiU0lhniSLQxQiZJKoc1WnKXh+R96hqk+6VkkNNAhHBhZNrrOUlWblCT42IypKrDE0kSoXLS86eO8vrHrmXO86dJgrBfDJlPKkXqcD7U5QUDIYjssGMuu2Ye0fV1jT1/qIwoc4Rec68aphVO2xPtmim+5RRMm0sbSbYrCxRSfBf+KbPixiUSYbDHl/zlldx/12nmMz2ufaJT6GtwytwZYErCzopmVlonSYrAiHWzHbH5HnBfDah7I+IGbiuI1hPDBbfNhzJBwyHBXvNc1clpZK8/rUP8T3v+hqOiQLpMoLKEaZC7m9DqXnKbfKv3/tRprtuUZr5xXviSfIFE0Be5nzLN3wtf+51rydEzxMf/z22Ll1FdYtmhDrL6R9fB6WJtkGZQF4OuBF3MPt7DKcTloYzBkePoQcSXeTMfGBvPOP4rKE3qOi8oiyXuf/CaZDh5jZ6krz01o8vMxqUi/QpLQly0dRTukhsLbZqsZ0jSoWWEawlOE/oGpypqEzH0vKAshiiiz7qjhHCCO7Q8O43vJpf+f1Psv3H9IIRgFSCtdUh951Y5aTxqGvbDE1AR5BCIlVEa1CZpJfn9EsJrkGjidFibY10JaX3yHJGxCx67ybJLWKt430ff5LTb1vhbBTs7U3pDzp0UbDuI9/ypjfxE//l5/Eukp86w9a8ofzIxzgydhy5517UsERkI7xQDEIkrwNV2Gdc7yOCZWW0TmjsolKdWyx6xxCw1iKkJsuyg34JkuSPFYHeKOeRl53n2Po5Cr1Er5U0tiVO5/T7fR6+8x7uf+gBjh8dUeQaYyNtbdjdrZjbjrozOG9QMtBr54i9DZwFrwLTZkpT1/jOIGUgasnUtuzO93DBE2Tk2Znj2SoyrQPO/uljjBctKMtyxdvf9hpefeFlDHo9jvTW6E0imxcvsX7kDJnOQCiikNSdY9oEjg8zgpsx290hX1pGhEivXKJtWkwzZ/vyFbyZII8OGA40R9aH7G1Xn/N7lZQ8+vDL+d4//3ZO5EtEqZFZjiQgZUfvhKIrWv7VL36E/Y0OQdqGTw5eFILXPvIK3vGqNzIMI/Y2dxhONFUnkCvLGA8+CCSBLLS016fI1jJQOUu9IfVsgnKBONvHS8eINWJvBdvrUUvBfl2zxIBiOEQVgTtPHCPLFd3zLGokya0mhOTkuRWGhcKZFmE6hFxUynImQt0RjCf4gESSS4W1DaGpEd5gfYDhgF6WU5RDCt2nkAq9WhJt4LxUvOcNr+M/v/8xbuzs3KyM+NnfjpCR5WHJvadWua/osdJEzO4M23kKlVHGAqECZanIckmWZxRFRqYcRI92HucjURtox1TMeYqGunaINKEkt9isbvifn7rM+ZXjKDyd61P0NZKcB9dWefjeCzS9Pl/20KPMPv40n7j0Se40Dc1sn5Xzd5Av9RFdQ3QR2QlUyJAYNnefIqzO6McCpTWxtQilwAdiCHjnKPPUUiU55ITgkZffzasvPMhw5SRy3uJmFe1swolzx3j9fa9leb1PjA4bBOP9BmsD9bxmfzqmFh2Vs4QYwFhmlUW4hraaE5HUIhC9Q0qNk455bZk5x3YbuLa3KAjStIvzbzHGP9Pl8qIEZQLB+pFlTq2uYG3EDTKG/QEve9WrcPOG5tp1irwgyAG1i2TBsl8Iji0dQUnP3DW46xPO330/XQjsbVxn4+JTnL7zLvTyCabNLpPJDv1CIoS4WfBDoPOCRx6+k+966+s5KvsgCjIp0FlAYFE64OyUn/vk07zvf14npLzo5JBQWvHAhfPU21MaZkwnE5ou0LlAX8lFqq6LCOtRaLqmRYsxMXrKGAgIciLBe2rTkEeL8YsVGhsk887Rto7eqCN2HfffeSenTh/h4lMbB/3Uky85gizLOXN2hLYG7cF2FUpoRMyJNhDajlB3ZJ1HxYCv58T5PrHex/mK/WqGzDN0hLzoI0UBLiDqSJb3yPOcfud4z6OP8ltPf5qnrl1nXhmkFKyv9TizlHOWyHrdMmo8hczJdYEYrdDTAe0iygsGZaTMIrIIiHIRIEofsNIhaDC65qKu+bCPfPTxBmfS1nPyEoiRT1+8yvtPrfEVZ+8kzFv8qKAYjji3doL/x7u+nqV77qbZ2ufG0hKX9mc8Pv8kdwtBGw3DU6coVSB0HdqD1hqfSZZW1tmd7mBtTiYUuS6Igz6+c4vr0jl6eUEKyJLDTCrF/WfPcdfRl9FET91UhLrhxJljrJ1cpWomVHWL85H9dowxAWssdVPRuopWNLTekgsFpqNparp2Rtc4inyEkQ6vIlXbsOcCu41je+7Zr93zVwD+M1wuL0pQFoHV1R6haWizGYXtEeWAMte84S2v57Ff/Q3a61dg9Qh5WdL4jF0Mk4FkaViyv7PJsTvuZi4k+1eeZLy1wb2vfg2izFheGXBUnaT1c95USD71xDbOCk6cWOHb3/XVvPWe+yl9TrCWLCspiv8/e38eZFt2F3a+37XWns6Yc+adq+6teZJUKk1IVZIAIYHBYnA/YQzWM+AGm26HaTrCA4/RYaLDzx3P7+FuP9TGxm0bHrSNcRO0DVhmUAnNVajmuW7dOW+OZ9rTGt8feVWokAokqLqZt2p9Im5FxcmTJ9c+sdfe+7fWb/1WQqEqJC11OeaB7cv8m998lKaMBT2igyPPM1IEo61tyFJ0cPhBDzfOsdoiU4W3FmstwQdq0zDbHJEkCb6uUMGTATmCsm5pqxq7GKicZaYD0xom05bhQJPmhjmZceqGlRiURVedAOYOFXRVQzdNSZICEFhrEQaUCSjjyLxHGA22xZTbmNkO2o7ZmU1pBCRIpNpbjwYKlMA7D40hTQqKfMC8D6wdu5HnBj02fI13lmGo6Y4qinLvAbPXy+gUBb4rcI2m4zT9VJBqTy8rSFNPSPZSUqx3WFEzFSVP5IGPzxpOv9BQTW3cSSW6agIC5zwff+hpjvb73EwPrQcsOUn/1GHm+kexlUeIhG63y/Lhwzzx+QeRSnGdbWh0zXBtmaI/wEuJ6uYkqcLpGhEkm5d36JSO+YVFmo0Rlba0dYu1jpidG10LlFJkMsFUmsJ4Vg4fohENpW3pDhaZjkaMxyNmdUWQllpPaPQMKx0tNU1rmM4cetagG0NwHiXhYj3hnBPstIbaOurW44MExKsyVvHKpC8K6HUcutqkllDIFCMTmixFpp53fu3X8Hu/+VFMW9EMFwndDqM2Y6uTcHxlnsFwnny4wPb6JXYuneXWN70ZmziOrl1HkkqUswgTeMepW2i/Q7PQWeSuI0c40pkno4/KU1RP4b2nkws60lM1Y57bOcf/59cf5PK5Jo7zRAeKM5bdasJqb45EFMiiSyIg6xToyYxkIHCtwTQNpq0RiaCaNUi9dyFQCBACFaAbArkU2KZFy4SpStnNUnbGBfNzBqE0aM/aYi9moURXnZBw6IYOC52Ufm8OmWYIKQiNAeMRtUbWFdJbgmkwTYXVY8bNBpemU8pMIUQP3zpUSJE+kBVAkiJlhp9Z3LQlzOWoXpelvKDa2MafOY3Uhq5y9LKEtNMjH3SYGwxI0wyRpohGU+iKbp5ThIQiS0itxqhA7TxT3fJkx/L7k5bPP1tSj8GHvRTg+LAaXT17qVGTccUfPPMc8ydOkA/mGCyukGYFKQKhLYn1dPOEuUOr9FdXePTJJ5hMRiwvnGVpdZW1W+5kePgQsttBZZJOEnBqnrZucErj57p00gJbThFbhsLP0e12EUIS4ihEdFCJgFMKKSyDLCdfXGM63qa1NeNqwlTtsrWxQ5EUVJMJ2m7jVYsWLTMc4/GU0U6LbiG1Aqk9wcE2ghdkYOK4svXJF676r15feIXSF6FuK7YvX8IYi3SOrDVoUaAHCdmC4J677+Q///p/pbtSYRcXYa7LloSjnZRDqwucu3CJ2dZFbnzDG2lk4NjKKmiLcgqvLf1OD5mt8O23v4NB2scHhWlavBTINKPTT0mEISsCEs/mzhb/748+yJmnyrgXWXTgGG24sL7FDafWSHEIAU4l5J0eGxfX6aUJTnt0WWHqem8fJyAQ+EKGvwwSKwIyCHxlEAsW6zyttpRNy2hWMa279PoF0mgGuUIIEfdViq4qlSuOLCesLKyRdxaQSYEICmkcsmkQ7QwVGrw3VPWY6WiXnfGIsXDYuUWCd2SypqomqJCRJSlZWuyN+He6yBRE6/ceGq0jLQqO3Xwr7WTK5TPPEhLo5IJBr0Pe69IrCvJOQkglaSej4xzD/oDecIBvKpqppbQNT8mW396c8Nknpsx2Hc57xBeNaMReFF1tnsCTp9e5eWmBu+5YIu318EJgrMYGsN4igH6vz+KhQ0yrGU+dP8fzZ89y0/UnoTeHyBKKXkZ/sAwqJZUpvTmNyRuK5VVsA6lNWJjvIHslR7cPgXw4FomKDizvPLuzEutrct+hIWUcBGUzQ1dTymZKknaY7WzRjjYp7Q566NgwhvWpoWodQgg6HYlxDpNItprAZeMxXl5Zo/zV7Zn2Z/WKFfqYmpYtU9HUGt+0iO6MxWKeMA2YTc0db7iTvDPH5OwFurpBtYtMMsV4d4ywJaNJyfX3vA0rFZ08oWktqTDUwtHr9PfWEqgBWadLayxSFYQ8oUQwl6WkmSRPQWSGra1L/LPf+RQPfG7rz1KRMopedT4InnvhPPecOEVu90YinQuINMNax2w8Aalo2xrXNmAcIghqApWAJEAqHAroCFBak2U9+gvL5KnCWslkYtnaqlgYDOirnOtXVlGp2lsvsN9fQPQ6IegvFRyfX6VXrBFEtlcCH48Se5Wuguzg6dP4CfQzZDJP0WtoTUXrNb6ZIpzHqIyEhEQlpEkXEoVIMkSiyDJBKlOkknszaWmH6268k9HWFrRT+p0uw05Ot9+lKDJUniCLhEE3pdPpoRDYtmacTHm8aPgv6zt8+rkJu1sG7/bau1e1VxL3toz2T8Bbz+O7E/5iJycIQWsNSZIQhCBIgRSQIFgYDgnXX0+mEtYvXuSZy5dYqXfplAv0q3lk2ZJ1e4hMkvU0tWm5dOkcXYZY57Fa45qGOSXIUkkbH6aiAyp4mNQNxYnDzHOYjfWSxrbMpuvousQ0M8azTerdTbQrKQeKJyrNM1uWuvRXUtEFUlhELq4Undr7XIHfq7B7lR6aXpk1ZSEwnWjGKVRbJc2uwcztMBEJPaEY9BJWVhd4z7d8A//xn/8ine2SstS80GzTd1MWl1c5dtdthLyg3h3R767iWouRgm5/DuM9znuQEutBXpkz6A6HaOVIfINsQUpNM7nMv/7d+/lPv/M8VseLSHRQBbZHYzbLMT2Zkeq9kU6CJ0kSJhuXSed7NK3G1Q3KeVIhMAFGBIZXPiVFsbC6xmBxkbwzpF/06HcLMiVQyjEtKza2xqRyga+59RS33naExz9/Lm4KEV0dMnDihj4L3Tm6xYA0zxEIRLAEAkmekOc5iUuYC0NcCIybGYx20ROQFnAp2JTOYB5fOdI0RQiFTBPSRJKmCSoohJNkKiUVEmc8nYVl1o6dpLnwLP3hgOHCkO5wgEgVaQ69+RyV58gw4/LORc5rzSd3Z/z2YxMurbdg/ZfpJ/GeEu2vAGyPZky9Q9cNedEhhBRtGoI1WKNBBrr9Loawt7m5CGxe3OCJzz+EShKG3QH9fIgqBoQ0R3Tm6WpL5XdoqxphUxQGa0qCmZElkna/DzyKXoYAVKdD0h0w255SbpzFXLhIM7PUbUk7m1I1E2xScTF3PF62nNsMWOO/KNgKe1d3+9JrfnjxP1fHK7amrBxDuypR0rO7XmLqmj6CvAocOdTl8qUpp+68lbvuuZun/uDTmBAwE8EFZWiammqxh+oaOipgmpYgJEUvRxtPcC0qVxAKnMjwiSAoQZpn9HqCvJmgRIOvJjy7c4n/339+Ihb2iA64wNraMgHLrBzTzbo0jabZneAmU8qtTfrKY43F1CVKW2SAgr0N1q0IZEJy5Nh13Hb3W6HIIVhUpwCjcXVNEJaGhFmm0X3HoUMD3vGW63jskQvgYi5K9OoRSACyvuTokZRU5vSLJZKkQCGRVqFCgNYRXEVwAW/8lRRBRyGhlyZ4J2m8J80zvMrQtiHtFIgkQyqFFAopMlKVEQJYZ8kSRZpIdNCsHjvB+nidwWKfzjChM0wQaUKSSnIFs9Bw2ezye9MZH318mxfO1th6b2YsDlxEB9VkVHJu/SI3Xb8ArUe7KXVoadoaYzQESBJFnucsHT5ENj+Ps4Hp9haz8YS2qZjtbJN0uoh+D+sVaTEk9xr8DJwgIYXSYK0GEVdQRgdXAJrZiM0XHiMZC1w5JegxrpyiqwZbN6yjecpZzo4d5WRvJuwgemWCsgC2DeTZkOUFaEXFdNrgM09XCkalZzbtIE2Xr33/17P+wnlOnz2PL2F9u2JXl/TKy6TLLf21ZfAOpMD4gG0b8mwvTcVJhQ97m44Ga7AahvNDkkThak1jJ/zGZx5nd7slZvxHB1mSJ9x80zFkaxjpbYyc0owqJuuXmG1t4bRhtrFNm4LWhsyBYq/DViHQSsWpk6d449vuZX5hjSAE4+1LtJMxeI+pW/AGZxKKNKHUfTpNQpFohJSEGJRFr6KAR6LoLWfMdzKypKB1NanrgNgr9OGFxZmA0YHgLdJagvcE4SF4JKC8I01SZJKCceikRaY5aVEgkCiVoKRCKvaGSxuLaCyJTFAK8l4HMTcgG/bozPeRuUBKgROeylme09v88lNn+PgfjmkmIa63jA68QMBay9RbKlMRtAHnaI1mUpcY3WKwpInk6HXXU+kWuX6ZjTznyF13cujoCdJOgSx6pCohERIvBE2SorIhSVfi3ASjQaQCWWTxaSo64AIXLqxzaf0FhvRoTEXtd9DNLqVt+UMz5rFRyWRiD3xo8IqtKZNSctMtt7E0M2w8ewZf7VV8E/0EnXTYOHeRi4NnufOe67npnjt57Ox5Wh0Io4KVYh4xnjEsUsLRozgBeZrjCSRSAx1MEPgkwRlPcJpEBLytoQUKhzUlZyZj/s/ff4Ivt21AFB0kg36PE715mmfOMS132bY1ZqehLFtCCAigbQym3Ruz33vmFDgRSBDccOw63nnve5kbLpMlXYKEwdoaYcszWb/IbGODNE1I1BKNbplNJlRuh2fObBJc3EA6evV56Zg7mtJXPYQUZGmKUlequEkBShIwBK/xzmKtJgiBExZnNSIYlPLksoPBI7wjVZpE7BUnEFIilUTJvbRFjyckGU7U5NLSceDw9OYXqV3DSreDaxpEFtBO81B7mf/9obM8/XSFb4gzY9E1wznHC+uX2Zpfpes8iQtY59D1DNsaOktLDI8eoXaOAkGHwMKgy1ve/R6WF1e4ePYsxUJANBaVODpJgvMWkxZ4L1GtoyzP0NQjpAix0mh0oAn2Uno313do60tY31Dullza3OAz422erA3WiGui6N8rFJQJsiRhUeX0dUuyuMSgk7O+vkU7rbFS07bbnHv+cxTdCZtlCwEcAtNYdDXFZx10UyOCAKnwSmIBkeZoleOFRBuNt3vpLkUiyBOJ8J4QHEbP+NzzZ9naniHD3jhtzP+PDipnA8snTrJy/A2sXzzHJz/x28zKvSqLir1ZMStgF8HqlXPZsDdLtjw3x7vf9nYWlw+RJh2EV1RliXMGoRJE1qW3eAhrSyaTHXLVsN3TbM6mPPLEVuwW0VUhlWS5NyAxCqUSkqQgURnKBaRxJMaSBoMIDQRHCJI2OIzbK2ojhWBv54cUhUdIRS4zenkXj3oxKEukRPlAqhS1qLEqYE1LVyh0AnOL88zK09jQUiSeqZ3xsZ1N/vVnz3Ppksb7EAOy6Jrz1PMvsHX0GIsBMpGQdbvMLR6hWwwQaYcgoW4nyFSRd3Nuuv1Wjt1wI12VU+1OCMGgBMi9KglkQmDTFCc8080xk/UNdqYbJGIvFTKKDrKyavGyj7qs2TlziXE1oq0rbMfi3NWpnPhKeOVmyhJBd2HAkcM30hjL7s4mNn2EzafPMt2d4cuadpJzqZzx3NltEvZSXHwzw+w6JqFHZ2kO8JBnOBlQAowDnQaCEBhb432DIJAGj5Ae5xWJsUzMLh/9zNNY/YUWxSfP6OBqdMvOaIuVYZ/h/GFuuPVuHtn9A1xdYxDkQIZkG48LMAekCGSa8PZ77mH5+AlU1kcGhbWatq3YHW/R6hLjLbN6gvSGXlfR2DHT2YQHdidsXq73+9Cj1wVJvpCwciinmxcMunN7gZQLyBBAeGSwWKdRweOUxDiLC3sphFJJkiARNkOIhKArZIDMORIJMlGIRBFw4DVKKNIEQkcxGjsSIellgl4iCSpFJvMo5ZmoGf/5zDq/+IeX2F43xLSK6Fo1nsxw0tPrLbF2+Do6C4s4awnW0mrNdLJDpkA7i9MNp265g06vT94ZsnjYIGqNqxqajW1ULpC9PqlIcE3JaLTD+XNnmSmDyyV5V8Hufh9xFH15AYFpDSHPuO72N7IwWOHcmWeYXXyWMZrgxF5a/DXgFQrKAm1j2NraYO1QlzwfMBwu4o6fIBWwfWEDPas5v1vhtit8CAghAEnwjrptIGR05hcIaU5w/spsmbqSjqLQTYP3Ld61SOnRwSO8IjiPbWsuTcc89tQm10o0HL2+WWOpqoow8GSZYHX1OEfWjrP+wjO4K3uJheBZBqYikF3pM7fecivX33QLMskwxtK2DaZtaYxGW8toNKZupmSFwpoaqjG9XsZIpXz+6TGm+cJasriLdPTqEQT6q4qhAEVCp5gjTUCGdm/dWBCEYJBSIZUkSBBCoIxFBE8QAUNAihQlExrtSWUgEZZ+mhCkxONAWMCDMqTKkktJkyumtWXQCeTWYrSlGGaU0vBfTm/zi5+7yM6Giad/dE2zLtBbXeHQwjH6/UW8lwipsMLhnaYtRwzmFzG6QRrH4uoRECnOwXBhiZ3pGZIExFyX3QsXCDubqH6HSTNla+sslzYvUqeOfGmICzHlPTrYpNzL2Bt05xlc38fhuTBbx0zHBMQ1c71/xWbKjPVsTmfoI5aOgsFwSJqeIut2mFtcwDRTrLU0swbnHLayoBL6gz4rJ07RW5in2+3srQsIEJKMRioIDtdotN1bexCsRaaQpx4tJDo4BDUff/wCo5l5pQ4nil5dHrTzeAJCSvIsZ+3ocaqNddpqhhQCHwI9AAJBwHBhgZvuuAPZ7eO8x1QzdN2itabWNa0xBKHwxrCze45uPzC3nFEMEy4rzfnzFVc25IiiV5eQdArBnOzS7cwThEQKgUCgEKhgkd6SeIdwnsTuFfew1hF8ABnwJpCqHGPDXi1ECUmWkhCQKmCCQyWeJAm44HHe0k1yVnqKiy3oIOgnHh9KNt2Y3396nf/w2U2qkbtmbtBR9HK01VTO4pBYY1EqweNpjKaZ7CCNw2nLaP0yS6tr+KzAWU+YjQi1pTcYMtveYjYbkeYZZd0y3bnIxsYlTp99lvFsB51DqTzVTP/pDYqifZQXBYM02RvYM45OVtDrDsi1hFngWhmIfsWCMjzsNg11AgMlSZWip/oU+Qn08iqmneF0g7GATEmCIiu69IYLzK8dZrRziaSpCd7jBVjn8dYSsGhtaK3GuBYhHKlM6IoUh8Xj2G1q7n/wLMHH0Zzo2uFDQIRAlmYM+wPsiRPYdsqFp5/Eti0KWEoyekYzGPa44Q130llaJBComgZXW1ptaOqKupmiTY21LZ1BStofUI/OY2xGSBc4PWuZ7cadZqKrJPHMr3b2ytt3MhQOZQwJci+oalpk25A4j/SB4BzCOaRzyCD3MiGkIktzmmaMtJpEKlIlSYLeK3yTOJzyeAVpIimbAuUCw65kvg7UdctcP6FM4BdOn+OBh0a0lb8W7stR9KcyjeXy7g7V3CESEvI8Q3uPcZZZVaKUpKomNDu7rN72BpwxKCfRdUNoLbPJFOMcvbU1zp17ltl0TDXd5NL6eXamYypjscYxMQHdxk4THVR7ZWh0q5lUNSH3YFoSB0VWIIQEHNfKhf+VC8oQ7E5LtLE4LEUnkBQdkt4QEHhT0zYjjLa4xpOolP7cAkW/TyolJu0AAZ+kuBCwbQ1C4ZA0uqGqaho0aS7pe4EnxRMwuuGZi5s8d3aECOLK135tfPnR61nAWIN3FrAUScawO8CsHiZVAm1anNb4umV+YYGVkydJ5oakWYo1Fqs9rTNUuqZqZ7RNCVhCAV5rhp2ctbljJKpG5pJnzpe4eGONrhIhoT8YInxG8IJcJAjnQOwNRCRGkzqHMC0KQQge7z1S7q0lswGKPKPxHmlbMhzSBVLhSKUjkR6hFFYoptqSCYlKBNY4vPUsdXPO1Jod6fjY1mUefGiErg5+OeQo+op5mNQ1lWtQSY6QKa02oASNbpAqwdUlg7khrtfDW43y4E0gGEM1m+KDZ2v7Mslcn93ti2xtX2JajzEy4KSkbTQbdY2NSUjRgbU3C+acJxEpmYG2qtFGYxKJ8eLF91wLN4BXMCgLbG+MmVQ1y32HMZY0zcmSnCLrkMghTq5QW42tamTwFN0BUkpC25BmCqsyUPneRqLeEZylqTSVaWmcp03ElfodkhAsLjiMqXjgmYvUtd7LG40FPqJrQAgwq0qcN+RZD6SgKyXJ4aMsrq5QjUfUkxF5kXHouusQaUZtDNaCtZ7GGCpTU9uaytY0piJYTaeX0e13CG5KmiX0BwOm0nDxjIZwbVyUomufANIQUBacaVCiIleSxAp82YAxCNsiggalIA2kSYKxCuccSkAuArqeoVxDIjzOBVQuUVlASIsMCanKUEHhnCeVnjwN1PWUYa9Lpy95cLTBbzz0LE3lEfHUj15DQvCUTYsTAY+nnJUImVKZGW01I8kU9e6EkydvxliNwBOsJdSgyykyEYxHY5z3rL+wTuVbZtYx85baG4y3VC4wrmPWe3TwCRFIVYrTBt00YDRWQnslKBOIa+Lp5xUMyjyzUc1WOeJob5HCZwTrUNKTFRkql6SpJNMWm/WRuUSR4MopxlsSCUEmaOvBB7xzWG2p2oYyWJxS2CBIrcDYFuskwnmqUPOJR85d2Z07Xjmia0QIGGsRicJYSyJgbn4el6a0bUue5izM9ej1uhRz80yrCiEErdFoB401NFYzqyvqukG3Fm8N1lYkQ8lwPgdVYjA8MykZX9aEGJRFV0lSKHq5IkOSSItpp6hUkQtFmoPykCmBFBIAqyR4jwyBxHmEkGjbkjQliW9QCCpnEIMeSZoQvCVPPFkmkShIEnQ5Ju3kTFtLkTu23ZT/8/OPMdox7O1CFs//6LUjANO6orUGKy1C7C0badbHuFYzXFpjdHGDYtBFB49vNa2VhFZjnaa1Gh0sbVUiVaDemWBbQ2sdBocJjmkbKGPB3ugaEIBGzygrSdNOqWzJlptQmmtrWdMrGJSBNY7LuyOquYZOUmCcxjpD1cxIQ07iJVIKiiQDlYCHIHOcmZAoiW1bMplSO4NpW9qmpQ4eHQTWCqQMOKHBB4KF1lguT6e88MIu8WYbXWvKsqVpWzoqI+91QSTIIMhSheh1yVUHIfZG+L3zeA9ta9DW0eiWsimpyxmz8YTWtuA0jdIkQjBMcrrLHpG0PHV+jG32+2ij1wOBACmYuylnoZsjW0eiQDiHcAa8RVhP6i20JZlKQaUg9qoxEgQBiQge3ZbIUJMIA0KSZgkqS3CpJReSJHiStCVRCeO2RWWO1jeIVPDCdMT/8gef47lndwgmXLk9xHtE9NoRAmxt7+ATQXABkYJrStrRFoOFFSQFuqoJRYq2Gm88ToNrDaapKcsKIQWt2que3ck7NN0e42aMbwPGBCZG4OK2EdEBJ4AkUxg/Y3dcUpdTLrcjHpvuoOu9itPXyl6Ur2hQRoDLl7cZH55QyIRMSGovCEogkoA0CUmng5AK6QVWBDwCZx1SKCQJ3mlC8LTWMNU1WkBtU6yzpF7T7SVI6xE2IKTi88+vUzexgEF07ZlMprS+xakO2rYQwpUlq55eXqB1TZ4ktE2NswbdarRuKetmb6asrqnqilrXVPWEYDWJ1HQEuLk+hIRdJzn9vLkyiRxnkqNXVwASJRmupQyznK7okqUdlBJ42+7N1noQIaCyBK8kVd2QFV2kSPDSkihH21QI30BoUGhSlYOUFGkC3lJ0clIkQVlUKtFVzaDoIrVhRMkvffZpnn1mB6GvjRtxFH31Ajs7E2ZlSQ/F3EpBNZoy6KYsnLqF0488QLffobGWWgSs8bi2xTQOU7U4Z6nKCpTDekfVVtSmxiuPx1MFmARBCHtbXMSeFB1UgYCznstbOyyWmlkz5XNuzGNbI8Q1VtvplQ3KgM31MVv1DgtJj1ZrUi8RiUIogfIOJyWy2CvSIaXE4XFC0NYVQUi0N2hn0dbiZIoPEucqTNui64pcw1zWw2sPvsMfPnKRYGNaSnTtGY3GzNoZQ9lBtZI0DwQfSPMMAQhtcV5R1TNaq6laTWMMdV1SVjPaWmN1gzY11WyCaRv6hcIVDuNBiB4vjBy725bYP6KrQQjwPpCUGWlI6HYK8iQjUwoRBJIM6R3CaxCCpjZkKiPxIKQizQW6rFAYVGhJlEU4T5ZK9na23LvDNnqCKqDTyxGpQE49Unoenlzif/+vj/H4s1t4Gx8ko9e2ne0Jo9mIQ0sDQmPAWFZvexvTyS7t9ibDQ6u0PtBYg9YO19Q0dYtpDN47jDfM6jHGNmjp0U5jdY20BusEWu8N5MV+FB10ujH86qc+z93XzzNtZjx+qcSU/po7d1/xoKyeas5vb3AoGZB4hcgdMpWoRqESifAeKRQhy0mCQiFI8pzZdIwJBo2nMoam9dRBYl0gOAO2oVMIJtPLDPrz9Hs9zu9Oee7M9jX3pUdRQDCdVozrKUtqSKYEjbVkWQYixThDkOC8Q2tDoxsabZhVNW1TYeuKyXRMOZ2iqwZT1cy0QWvBXA7aNZRkPHmhxJnYQ6KrIxCQiWBuoYvwiiIbkJIhnUNlAmlbUucJWmMsKFJSoVASekWOnlZ4b9FWs1d7FxKV4IRDCkEiQaWCUTVD5opcSTLp6CjN5y6P+Nn/+GnWLzcEG2eFo9c6QVk2rI9G3Dh/iLou6fSXsU1LtXGRkKf4XhejG9om4Jynrpu97IqyxFpDEFCbiroZo+uGtq1otcY6S2UkPqYuRteKENgZ1/zOo+VeGvw1eu6+4kGZN5Iz57Y43ushWk86nCfLFDQGmXeRHYH3Y5Kii00U0gWE35s1s6VhUs+ovafWmgqH8wqlFHhPCCV5v8PuaIP5hWU+/dQO02lLHMeJrj2BttGc397mcLFIoRJUkHjvaesG6SwBh3EWrVu0NnvFb5ylrGZYXeK9xjYV9bSkcgEbwBqYVYB3bAvN6TNt7B7RVSULGAw6zHXmSdMOaZGRFgq8heAJ3iOSjDxNyVEkErJMIYNHBovyllQGLAFhBIkIeBxKKTLhkTJDdfrszDbIOpZUGT536TIf+S+Pc+liiwjxhI9eDwLOBk6vb3HnkSlpKlC0mO2S2eVNOsvLtOMJWZbiWsGsrvf2tTQNtalomgbrLY5A1TYIPaUpp+jaoD20Lvaj6FrjCW6/2/Dn84oHZQLPzsWW51Yu05vPGCQpCYqQpMhgAUfuO1it8VKikFhj8NZj2gbnodKama5prcWGvdkCqglzPU2mBHlquFRv8fHPnSHEG3B0TQp4D8+fX+eOtWN0ZIHKJNIpgjYILEoJ6qamtQZvHK5tcLrFYJnVYyY7I2xlSBEUBIQQEASZhDTznBtrpuM4YxBdPSJIhkcL+oXCB0jTAlAIr5AarDV4wt4m0iZQJFBkGUmWUk7HSO+RAoIQeym4UiKEJxHQ66b4LKEMgZDnzCYGGxR16PKvf+dpLp6bXSkUEu8J0euDIPDCmcts3jJh2CtIzIy2bNG2ZTBYpdo8A3MGYy2VqajrGl0ZdNlgTE2lZwi5V15ftxVGG2YOgpfUNvaj6Fp17Z67r3hQFgg4HXjhfMmRYsww7yNrD2kPXCC4vSqNQYq9zUKFxLtAU5Vo3WJci5IBvKGuZzS2wTRjhClRSHqdlM4g4/c+M+biRhmDsuiatr01YXO2Q6/fIZUSpCR4jxQeEQK1adFa05qKtq0wsyl2MqYsZ4xmGtPsPeDmSjKXgBSBpXnI5zs8+4zDxxo40VUkEDgLqepinER1huS5wtkG6wErCVogTEuCJxMFqROI1pFajfEtQoG0CR3ZpQo1SkpU4hn0FDp19PsdVKHwjWJ3NOF317c5tzGLBQmi150QAhcvbXJpssOK7ICAZjZC5B2CdXhX45zDti26rairbdqypJmW6LrFuhaPxgZB02qq2tI68AL0NT7jEEXXolc8KAMgwOyy5an5TfqpQOh5RAaqmyJosS6A8Hjv2dsIOlA1Jdq2tLaksRZhDdLWCD0jVDvkhafT7TDoG3aQPPzEmBCn16NrXDlruLi7w+HOMplRBBHAB1Qi9raTKCvadkZpZ1TVlHoyZra9QzVp0Ro00AqH9jAvBCvDwNpKikl7nDu/iyQQ763R1RIIFF2JMbv4dB6ZJRSdHp1QIHODaj3JrEWFKW1VEuoJ+SiQpxnkGeAI6L1URw9CgnEt3ju2RiWNNMgNyeqhZVQ+4CO/8yy/8/AWpozBWPT61DSGZ85scF3eo5sn+GDIhguU0zEqCRhtoDW4pqUuK9p6jLclwTjaykAmaIxmVnqMCQglaKXAXqNrcqLoWvbqBGXs7au0calha37KXK/HQHqst6A1rXZIKUBKXFvhvUF7TaUbWtfQ6AbnDJm0dOY6JAsrKFGxslQwN5fz8MMTdBsfNaNrX/COs+s73LwyIw0KHxxSgPSSpq2pyjFt2zJpdijH21RlSVVbGgtBgAx7+9WAwmhPAnQHgou1pi5dfFCNrjLBbKOFIPFIptOauSSjJzwdJGlwFAmk3YwkGZIYQ65ShACnNUIbpNFIYfCpoLEOKxJsb4VHLp1DpCnDbo9PPjzi9585zYMv7KAnnms5XSWK/lwCXLi4yfjkGvOiQqmEIAWmNaT9eZqyITQldrZDEjSTZoytGlKp6PYVk6nFtIARSB/IgQkiFvmIon3wqgVlAHUp2DQty1T0fI1rBakqEELhvUP6gNcNCIdXAhMCJjiCDMhEUQiBkoZukTHf7zDfU/hU8swzm8SbcPRaEAJsbozZmGyQdANdUQCC0ATquqZtGnywaOdoQsCrBKksRQdUEDRNwDtBJgKDHIbLkoWVLk9sSbwRhLg3WXRVBWwFbaNoMsGFjV28gWKxT0ca8tSRGU3uLNLvVVj0weObFt/WVM5QmYZGCaaAKbqcnQp+8/4H+fyFi1Stx7mAEaBbDz7ElMXodU0gWF8fs17WLIqKge8i25YgUlSni9u6zGx7A/wEM56ivMDKvTL5zlqkkiSJwhmLDOAVWOviI1YU7YNXNSgLBrbGDWO1RW6hsDmFzPBqbxRVOg/WorIEWRQYC56AUIokEWRZIJOCXhYYdjt0+4FnNmfsTmr2ttmNV43o2lfXmvM7IwZCYunsFQJvDE4bnPCYYGltQGRdsiwnFxZah2hAJYEkDXQ6sNiHteWCubk5mgsVwcfZ5OjqCgRMZdh6YYdDN65Bx7E+bnBTzc3LHZIcEm+g1QTn8F5gmxqsoW0NrfBUaQeXZmgpuf/sOr/08UdZ327iyH0UfRmBQNNYzl8YcfyGPjIIisoRxN4aZWs01azEpi3lZIQTiqRQIB0ET2s8ppEEF3AOSg8zT3zCiqJ98KoGZYRAVUK5oBnXO1ibor3CCpAyI0kKkjwnyxNkJhDKEqwCL1DK4zGkeUa318H3AxeSCX+wPcHYmK4SvTYIIHjP6YubLGYtS75LCBLfGFzwiEThBNRNSRCBPE9IOwkoiRSOkAQyCYM5WOjBXE+SZznTttzvQ4tep5z1nH52l7niEodXArajqXzKaGebWxdybp7LSDoJmcoQLkPpgmo6wSsFMqFuA09vlfzak8/wiSfP0bTumt1zJoquihDYbsaMbQ9fS1KnSNICLT2jyRjTyZC5RyYKXVvSXJHle/thauGRyuO8wPmAVQIbC6hF0b54dWfKCLQzGFlL1pZoq+gkGSFJUT5BygZhHIkw5KQgErSQiAJckSNEyuWq4rHNXdYrzcX1KbvnmniDjl4zvnAmj3YaHk3hZDajIGBN2CspngjSTgePQYYEU1qs1mi7t1N9lgkSAikKGkvTOJ6e1Zy5VO/nYUWvWwE8bG+3PPbsJZJOj8P5AkFral1x+eJZHrEtfaCX5aRe0tYNW9s7TKznrIcnd2eMk4TxpKJt7H4fUBQdeAE4f37Mc0tdVhVkrSM4AeeeRbSGdHkJkXSgl9ApMrwISCXwiaXTASlBt6CMZOYFVse09yjaDyJ8hTXlhRB/pj+gCsFNdw84jALnkXV75fMkMkuR6ZC000MmAuszNndbJrMZs1lJUxvK2qCNwzn3hYoGV1UsuR+9nD9rn3jZz5PQKwRLuSIXgX6hKDop0gtabfAzS2ZAB0/jA0JAkkh88BSJZAb4tZStOrBzwV6pbvrKi30iejlf3CeEEhw+usyNN5/k+OIiw26f0DjS0qDrKbqZkmuD8YHtuuaRs5c4N6vRAa61TIjYJ6KX80rfJ/4kaaoYdBL6SpL4gGwthQysHJrj0JEl2rrEaUvaSUgTga5nGF2jW2hbi/NwroQzE8+f9/YR+0T0cq5mnzhIvpI+8aoHZQhYXO2yujSg288RTbO370yeM5o0NI1nVmqqusVoh9UW/5ImfeHv7k8HjxeW6OW8KhcWIZAS8kyQJQJl94K1TAhk60k8OAFNCFgpscETlMR5MM7jEQj/hfIer865G/tE9HK+XJ9IMsXhwytcf/31DDt9RGtRCXsp661ha3vEI089z6iuCeELK1murXMs9ono5VztB9AvfmJSApQQdIuUubmcYSelSCU+CNJEEKzB+BqtDU0jaHVgq/TU5s/fD2OfiF5ODMpe3lcclEVRFEVRFEVRFEWvPLnfDYiiKIqiKIqiKHo9i0FZFEVRFEVRFEXRPopBWRRFURRFURRF0T6KQVkURVEURVEURdE+ikFZFEVRFEVRFEXRPopBWRRFURRFURRF0T6KQVkURVEURVEURdE+ikFZFEVRFEVRFEXRPopBWRRFURRFURRF0T6KQVkURVEURVEURdE+ikFZFEVRFEVRFEXRPopBWRRFURRFURRF0T6KQVkURVEURVEURdE+ikFZFEVRFEVRFEXRPopBWRRdY/7Vv/pXCCF44YUX9rspURRFURRF15Sf+qmfQgix3834EgcyKHvggQf4xm/8RobDIYPBgPe///18/vOf3+9mRVEURQfIgw8+yAc/+EEWFxfpdrvceeed/OzP/ux+NyuKoiiKvmrJfjfgj3vwwQe59957OX78OD/5kz+J955/9s/+Ge95z3v4zGc+wy233LLfTYyiKIr22W//9m/zF//iX+Tuu+/mx3/8x+n3+zz33HOcP39+v5sWRVEURV+1AxeU/fiP/zidTodPfvKTLC0tAfA93/M93Hzzzfzoj/4ov/qrv7rPLYyiKIr202Qy4cMf/jDf/M3fzL//9/8eKQ9k0kcURVEUfcUO3J3s/vvv533ve9+LARnA4cOHec973sNv/MZvMJvN9rF1URRF0X77pV/6JS5fvszP/MzPIKWkLEu89/vdrCi66h5++GGEEPz6r//6i6898MADCCF485vf/JL3ftM3fRNvf/vbr3YTo2hfffzjH+etb30rRVFwww038JGPfGS/m/SyDlxQ1rYtnU7nS17vdrtorXn00Uf3oVVRFEXRQfHRj36U4XDIhQsXuOWWW+j3+wyHQ/7m3/ybNE2z382LoqvmzjvvZH5+no997GMvvnb//fcjpeShhx5iMpkA4L3nE5/4BO9+97v3q6lRdNU98sgjvP/972djY4Of+qmf4nu/93v5yZ/8SX7t135tv5v2ZR24oOyWW27hU5/6FM65F1/TWvPpT38agAsXLuxX06IoiqID4JlnnsFay7d+67fygQ98gF/91V/l+77v+/i5n/s5vvd7v3e/mxdFV42Ukne9613cf//9L752//33823f9m0IIfjEJz4B8GKAdt999+1XU6PoqvuJn/gJQgjcf//9/L2/9/f4sR/7MX73d3+Xxx57bL+b9mUduKDsh37oh3j66af5/u//fh5//HEeffRRPvzhD3Pp0iUA6rre5xZGURRF+2k2m1FVFR/+8If52Z/9Wb7jO76Dn/3Zn+UHf/AH+eVf/mWeeeaZ/W5iFF019913Hw8++CBlWQJ76Vp/4S/8Bd70pje9GKzdf//9CCG4995797OpUXTVOOf4rd/6Lb7t276NEydOvPj6bbfdxgc+8IF9bNnLO3BB2d/4G3+DH/3RH+WXfumXuOOOO7jrrrt47rnn+Dt/5+8A0O/397mFURRF0X76Qor7d33Xd73k9b/yV/4KAJ/85CevepuiaL/cd999WGv55Cc/yVNPPcXGxgb33Xcf7373u18SlN1+++0sLi7uc2uj6OrY3NykrmtuuummL/nZQa3kfuCCMoCf+Zmf4fLly9x///08/PDDfPazn31xEffNN9+8z62LoiiK9tORI0cAWFtbe8nrq6urAOzu7l71NkXRfnnLW95CURR87GMf4/7772d1dZWbb76Z++67j8985jO0bcv9998fUxej6IA7kEEZwMLCAvfeey933XUXsLew+9ixY9x666373LIoiqJoP91zzz3Al64xvnjxIgArKytXvU1RtF+yLONtb3sb999//0uCr/vuu4+2bfnFX/xFLl++HIt8RK8rKysrdDqdL5vO/tRTT+1Di/50BzYo+2K/8iu/wmc/+1l++Id/OO5HE0VR9Dr3oQ99CIB/8S/+xUte//mf/3mSJOG9733vPrQqivbPfffdx6c//Wl+93d/98WgbHl5mdtuu41/9I/+0YvviaLXC6UUH/jAB/iP//E/cvbs2Rdff+KJJ/it3/qtfWzZyztwm0d/7GMf4x/8g3/A+9//fpaWlvjUpz7FL/zCL/CN3/iN/O2//bf3u3lRFEXRPrv77rv5vu/7Pv7lv/yXWGt5z3vew+/93u/x7/7dv+Pv//2//2J6YxS9Xtx33338zM/8DOfOnXtJ8PXud7+bj3zkI1x//fUcO3ZsH1sYRVffT//0T/Obv/mb3HffffzQD/0Q1lr+6T/9p9xxxx08/PDD+928L3HggrKjR4+ilOIf/+N/zHQ65eTJk/zDf/gP+ZEf+RGS5MA1N4qiKNoHP/dzP8eJEyf4hV/4BX7t136N6667jn/yT/4JP/zDP7zfTYuiq+6d73wnSim63S5vfOMbX3z9vvvu4yMf+UicJYtel97whjfwW7/1W/zIj/wIP/ETP8GxY8f46Z/+aS5dunQggzIRQgj73YgoiqIoiqIoiqLXq7hAK4qiKIqiKIqiaB/FoCyKoiiKoiiKomgfxaAsiqIoiqIoiqJoH8WgLIqiKIqiKIqiaB/FoCyKoiiKoiiKomgfxaAsiqIoiqIoiqJoH8WgLIqiKIqiKIqiaB99xbsxCyFezXZ8BSRSwYc/9J38pbd+PZlIqHe3+J0zj/Jzv/SLaGNelb8at3GLXs5V7RNS8t9+13fyA1/zAaRXjOyU//D5T/K//covY1vD1TxLY5+IXs6r1SfE3ofzXd/2l/jON38tg2yAczX/4Yk/4J//0i9infuqPi9LEv7WX/9v+eZbvgbnHL7r+OX7P8q/+pX/A3wgfJU9KvaJ6OXsx7NTp1fwD/7WX+ft89dTTT2Nrfm3j3yc//CbH8X7Lz5XBatrS/y1b/8gdx45wcZ0zC/+1m/y+Uee/HOf07FPRC9n/+IJweHDy/z4d30Xt3aXOTJMmHZb/sb/+m944InT8Co/SX0lfeIamikLpCphrdfnwnNPcuH5pzj7wnP0nKfT6+x346LoVaUCtG1NPatBC1Kb886Td3Dq6FH2e7gkil5tARBS0E0TtrbWuXDmOSY727zhxI0sLS9+1Z/Xn5vj1kM3oJ3EuEC11XBy8RBpor7qgCyKDhIhBLfefJJ7lq4jl13wEFrN8e4QpV46Dq9SxXd/0zfwvlO3sOK63Fgs8rV3vwGVqH1qfRS9mgTWaKr1Tcbr21TjkqUm4TvvfQvigJzy11RQJpMEbwy7GxucefJhdrbW0dai1AH5NqPoVeIJXFhfZ9o2WGvJhWQ+yXnT7beCvIa6cRT9GYXgeeHCGapqitcNZjZlXvW48eTJr/qzVleWmMt7KO+xtSHIDO3sq9DqKLq6BIJbTl5PZjwyOJLgaE3DmUvncFfO8S8M5B0/vMa7rr+RzClMo2lrQxIEaZbu3wFE0atCAAGtHaNmxu5om/HlLdyk4Q2HD9Er8v1uIHBQg7KXGfp3ztK0NVU9oZzNsMbgQ4A4TR69xoUQOL+5SeU1rq2gKuk5uOvoSYos2+/mRdGfmxDiT0xrER6eOvs8m+0uTkEbAkltufHIia/6b62trII2aNeifUXbjNmZjr7qNMgoOkjElf8sd3q4tsY2FaGtaaspu235ktRFIQVvvuVmln0CrUMFiW0M25vbmFdpOUgU7Z+AINAax8xbjLO0kxmubjnSKTi0NLffDQS+ijVlV0Nv0OdbvuEDHFtc5aOf+TiPPvY47otvkgG0NwTvCS7gEWhrMTaOcEavfdNpSd2OsVIgPKgUjmQ5c/MDqvVmv5sXRX8mUgiOnzjB//1b/xsWii7/+RO/y3/91Cdw1r/kfR64fHmHc7tbHOqs0Osv4pKE6w5fT94paOuvvA8Me120aQg+4I2masacOXeG4OMAX3TwpIliYWmBTCi2Rru0jf6ySbZBQJ4mLOQKXTeoXNG4Gm0bZrPqxfcJQKmUN5w8TpF4nNUILEa3bOxu40wcnIheewIChMeEgAsObQJ6VjI4vMSxI4s8f/Yy/k//mFfVwQnKhODb3v9+/trXfhOFkdx46DA/delnuby5tfdjAALGWUwIkCq08LTOvjRwi6LXIAH4EBB5SmduCaEt0tSkHoZFh0v73cAo+jPKOzn//Yc+xHtuuAdTaq775hUubGzw2DNPf8m6a20Mz29c5Mal4xw6dgNIuHF4PTeduoHHHnvsK1oNphLFDTdex8KRQ0idYPSE3cu7nN/ZjEkX0YGTJAnf9sH38de/7lugsfzGA5/gI7/6axhtv3T9Y4A0S+nKFILEOTDW07QGY/7ocTMIyPKEE/MD8uCpvcWaBtuW7EzrWKQjeg0TqE6CMwGDpdEV82GV64+t8fviyX3PvDsw6YtKSVaLDhcff4LT555FX7rMQn/w4s+/8DV5H5B5TtIfIrIMAYh4/YheDwSITobB45XAp4rucECvGwvdRNcqwbDfZzhrefIPPs7zTzwK45Jveue9ZF8uLTfA1mxCutYn6UqGS/McWVrg2z/wjSTFV5bGO7cwx+2nbiLpJqiBQvRyekfWaMNeeksUHRhCcPT4Mn/rffdy2AaSrZp3rp7kuqOHX/ZX+sM+S3PziELh0kDa60EnZapfOpPc6+UsJBlCJGgXmE6n7I42uLyz/WofVRTtK+MtrTc0wjP1Lda3HF2dR4r9D4kOzExZCIHt6ZhNn2CmJaHXpfPHHjaTNOXokaMc6SxiWodKJR1dI9SBOYwoenVcGX3wIqCFJUiBTSRWCo6trfLg40/tdwuj6M+krmoef/oJ1kQGKLqjRW44tsxtN9/EQ4889iXv39gZo2lpZjsUJCQi8KbrbubWW27hkYce+VP+muDwoTXmswLZ1HgdcEYjpYArN+S95eBRtP8EgeWFHn00ZjxmVpYEazm+sswzp89+2d8pOjlSgQ8VwadoZ9ChomzqF98TAhxaXWRpOACR4Y3FB8XEOUod15NFr0VX8u1CwAZLyAa4LKPtpYTg8W394rv28/q//2HhFd57LmxvMmsqdNsgvKdfvDQo6w37zHU7dFPo91MG/Q79XkGex0pB0WtcAGsdQYB1Fu8stmnBulgSP7qGBaZVwydOP8n6dIfJdMru9jZye8K773wTafqlA26jnQm7oxFtaBmXU7S2dF3ON3zNe/70SrwSjh05QppmJHlBkiWo4JBNi/D7vZogiv6YABcuj9mta+qdy7STHRpdcf3SMlJ9+Su/UgI8eAfWerQztDbQtn+0zEMIwaljR8iUpzEVZTMD5ahywaRpr9bRRdHVJyDtKIrFIcXyCvNLayTdIaeuO4Y8AKHEgQnKCHBhcwtRZBT9DghHr/fSEpWJUig8um0IdYktKxJnKA5IKcsoerUEoK1bGufwwWLbEqY1GIuM4/rRNSx4x6MX1nnO7FCZGqMN1W7FzXMr3H7DDV9SjddozdNnL+Kcp9Ul47pCYHnL7Xdx9MjhKxUcX26oInDiyBqZsaRCQSpRqcLVFakCYgJjdIAEBKPxjDOTbaSckVqDagw3Lq0w1+9/md8QDIp8b6ABC8Fgg6GxGu/+aNBBScF1h1ZIEFhraJqK6XSHC9uXaNoYlEWvRYEvzIFJwDlHW82QTuNU4PChNdJk/7PuDkxQJoCt0Yimm2OKgqrV9Iv8i0Y+xYvBl9Yt1jnatsVZ9yUbIkbRa5XzHu8F3oMPAukV3bTgT6gkHkUHXt0aHrp0mY2kxkhLIz1upvngu76WleXll7xXBHj2hReY2BrhLUE4nHUs+IS33f3mvfe8zN9JkoRlIUm2d2k3NijXL6HHI0Kw5HkRA7LogAnoquWBF86RDxIypUlsxYrIuPPUSfYu/H80OyyATrfA+yuDd0FjXIuxzd6eElckWcZNa8skDowHLSSND1wajfCxblr0Gre3NYRDCI2tS6gr+iqQZvu/5/FVCcqEgCxNkVIhXuZ2GYByWlIRGB4+ysrJG7jhuhvJi+LK7wRECFitmcxm1GWJaRuMNSRfJsUlil5rsk4OItDWFeVoTNuUBGdRyZ80MxBF14ZLmxOeq3bYZsJOM0WmGXeevJn/7vt/gKWlZf6oBq/k8uY2m6MdEiXpZwWpEgzyjHvf+GY63c5e6eM/RgArq8vcdPIUydwAgScZVbSjMdVoxHQ8Ja4miw6a4AOPPLeO70oyOUO6mkRb3nzyBFmWvnRuV4BUkrapaaxBe4+TgSB5ybNXt5ezNuzRGou1Dus0JvgrqYsxjTd6LRFXzv0r/4LAGUewhuAdxhmct3RSSZom+34HuCpB2Vve/Gb+nz/2Y/zgd36ITuflUw2NsWS9guFch96wYGnQY2Vx/sUvKU1TvLUE77He45wheEMRd5+PXgeUkgjrUTIn789RDBZxHryOe5RF1z5vPc+c32TLlJB4VEfhXMtda4f5/u/+y3R6BV8IzCajKRc3LmNtQ7+f0RvmJF3FTUcPc/jQKi8XXN1ww0kW5xdw7d4m7FmR0u11IQTMlQIHcXgjOkgC8OTTZzlf1eTJXin7NE+5aXWNw8sL/PEgyluLrhvqaUtVGggJKs3gi9agHVpeYEEmOKD1Dq9bjGlpWn1Vjy2KXn3hJf8vgWAsygPOY7TGWEeeF3S7+78U6lUPytIs5S/d+27uyZb55tvu5l1vfOOVnP8v5XxgZ7yL0xW+LUmt5ujy/Is/T5SikxcMun3yTkEQAadb4nx79HqQqoRBp0de5ORSkUmHcy22iTfS6NoXgMmk5bnJmHYomNYjmt1t3M4O77rhJr7zW76FNE0Bj7We5zbXqfWUcusC7dYmdneXgffcefNNfNnKxlLwhjtuIwl+LwW+bnHB0zYNW7MJmzs7L7Yjig6Snd2SJyczhsdXmFueI+skdILgzpMnXvI8FQLkKOaGcywsLuMduMaRCEmW/1Fq1uGVefJZQ6gNdlJia41zDmvdvu/TFEWvpKyTcuLkYW668RjHj60wGObkShJagy1rxpvbzEZjOkWX/mD/txd61fP+BIFLzz3LY5slxgfefOgYf9B9iKr8MqP7wTEeTzCHLL6xJE5xbPUQiXwC6wMLwyH9bp+sl5CIBG0sm5OtA5EHGkWvLIHYW4764tLU3qBPMT/HXLFGp9GE4JmahqzTQYh4L42ufd4Hnn1+g5uOrdNZSJBCYIWiKzO+9e3vZVJX/Pp/+k2s9Tz97Bm27noj/axA5BnOKaRLecNNt/J/ffR3sH9ssG4w7HPz9cdpmmZv83VAhUDjDWd3tplV9ZdvVBTtM2sdn3j6HO/7ukPIcYW0DiFS7jx5kt958GHqaq84hwCkd3RlQirBN5p6WqMnO6z0cjaYIaXg1uNH6RQDvAkYa6mmNbOqQrs4wB1dm8SLibxfeBCSDJcG/Dcf+gA3H1+jJz0Zgt2tTTafeA4jMpJMoaSi3J0x32gGB6Bo4KselGlt+fzFM8w1jkRkzC/1OXX0KI8+/dyXvDcE2BzvUguFD4FUJBwdLtAb9hiPZhRZRo4gtRYFBDxpkLRVnCmIXluEgvmlIccOr1EkKZc2tkmzhCRJEWmCcXYvayXAwmBv00NPvKFG1762sXzu0dOsvK2PIscXHeotR0ck/OX3fAO7W9v83qc/zcbmDg9feIHlQY8s5HgjSMi56fgxVpaXuHRp48XPFALueMNtrPQ6+O0aWosIoK2lrWc8vX4JH0viRwdVEDz65EU232fopx4hDd56jnR73HTiOA8/+SwAQgT6eYqsalApc3kX7xOqtiA3BqkEvUGHe64/ThI8tZV4o/DGUdcVLvaB6BqVZOpK+qGirjTWGb7269/CLScPk6tkr/iNh1uOH+Wmos/4QkuvyJhLCxaXBiSyS5pI9nunsqtSIePxc+e4e2mNeedRvssbb7yJJ587g3WOLz54gWC8OyFIxdqRVdysYakeszI/x3hUAgFjalRtISiEB91WGOf2fltIBB4fICahRNcqKRXv/rqv4X/469/P4axLNtNstCWPv/AUhcxQUiIzSVtXBOFIZIgLYaLXEM+lyyOe39hi4dgC4/GIwWCenrMsDJb5H7/rrzKblXzu0Uf59KOPc/fxI/SKLogU4xu6vR6333wz65c2rtwFBHme83XveDudxuK1J9i9io26bSjrirPrl+MtIzrAPBcubPHk5ph7spxMWXAW5XPeftstPPnsabTdG5TLVEInS8mkRAmHtzVOWMaNgSA4cmiJ6xbnyemgg6OYG9BxLcpvUTZN7AbRNUawcniRb/rGd3Dy2GG88Jw9d4lPfOpRrludo58oevk8eI93DpUorr9hmWcmT5H6hFSB95ok6bK0tArimX1NO7oqhT52dqY8ub1Jk6eUAm46dowTJ4992QfJ8XTKYK7Pysoi/UGXlaVFVubmALDGoKtq719Z0rYttW6YlTMGc33e+7Vv59s++HXcfstJsjy7GocWRX9+UrC3CGavOx49tsoP/oUPcjyZQ40sydSzXGfcVizjxxO8DDgCWmucEIgQXnadZhRdi5zzfP7J02y2W+jdbdppSdpRNO2Y+armf/z2D3H90SOcPb/FUxvbWC+pKk25O6aoNd9wz9vo9HpIIcnzlA9+yzfxlsXrMJcqXGnAWKy1tNay21aMp7P9PuQo+hMIjDH87sPPohMLoqXwLcpoTi2tcv11R/cKyyEoq72CHc62BFsTnEYKhbiyvdCJo6v00wRrDW09oW0mtLpk1E5ojInje9E1Jc0UH3j/O7nzplP0B32GvT533X4zH/6ub6BfjemWDYVQZEEhtSAJKUkvYfW6IUmRkA26ZL0ChOXIkYV93/f1qsyUeRd46OJ5bjlxgutvuoH5hUW+Z9jlf/7//nOq8qV5/LOqRHiHn83IgqObpyzPDUAEJqMxuqpx2pKKFJVKrLcU3YL//oe+m6+54y7MbEJbV3zskUf5+X/7a0zizTY6wOYX57nnbW/i+PIio/GYj33iAW6/4Thya8z6+lMkaUKSJtR1zagcsXPxPIsLK0gTcK3BBL9X6DUGZdFrSmB7t+KBp57jvTfcACxz4cxpOpmkm+Ys9Of5gW//IP/Tv/q3fO6pZ/mGt74HN6rxNNjJjLedvIkf+qvfzZnxFvfcfhd3DpbJJoFuZ4mmnDAtZ2g8LYZt3cT1ZNEBJ5A+8MCjZ9i89w56KiU3DY2b0c8WeP8b7+bcxXWaxjKelVR1g0kFxmqC1QTtya9UX7zxukOkCqzXOG8xrcUYR+09zsd5sujacvTYKtdft4zKMlKlIEiETJjrDmibQHV5m6KzhBIZykpcZXBNzuFDK5y+fB7nHIoMrGZ+sSDsLeXfN1clKAsINrdHNEWyN3qJ5+4TJ/ng+76e/+M3/tOLO80HBFVZszPZZVV2sU4js4zVxRWk2FvsahJBlncxVYsThoaGb/2Wr+ONx04wGdUYEhKreNuNt3DmvnfwH/7zfyXECgjRAXT9yRP89E//P3jjqVtIL43xGD5x92d54bnH0eOSqkjIsx7GaabNlN3RNlUzYfvMCyz1FrBVQ6sbdHB/zvUwXwjoYj+JDpAQeOqFDU6uLqIaxU5rmO+mzC0vsbDkuWNhmb/2zR/gXF2zcuQUWu7g2jGZSrGV5X13vgOKFBmAaYksPKlK6WYdev05tqZbVKNzjHS7V3Uuig6svRXD6xd2eeLihLchEQE6AapZw4m0x52nDvPA4+fYHE8oqxl1IvbK3NczTF0hrEOlipOHlveepbylsRrTTqjaCVXbYK2Pd4HoGiFRwJGjc4iqJCkG9Lo9lErxLlAEyeqhYzx/7g9pL2whu4u0WtNkYHLH3OGCvAtCGxQZiXH00w6vizVl4LAGPvXoY9xx/SmyfIEslXzTW97K4888w8OPP3XlfZ66ajl3eZMTxSqiSMhUzk2nbqY/GLJyaI13fMO3EirHZOMS5y+eZinT3HT33RACLtToEJhZTbWxww2HV5kbdBlNyqtzmFH0FUrzjO/5S9/Kndki4cKYZqsktDOuNwpTB5IjOSFReKCta8qyxDkHeDY3zjG/VlDujGmnMxrz5y10E0iSBEK4ss4zig6GtrU8+OwlVm5JOH7jKQ6fOkG32yUhR3r4xjfcwfzR2xA6wyLxQRKCoqlafG0ZDIakIYAHKwMyUyi/N6I6lwmsrGjOncHHGYLoGhCs5+MPvcDXf+Ae+soy3m0RxQDdK7h5aZkH5Tl2qpLL9YwC8ELjrMEYg9KeTjdjrpPRThuMdtStoQ2WyrRUVRXH5aJrgpQSlSYIEVDVDD8ZYzsDlOqSpwnWetCa4aDDiZVVnn/8SeT8AiZITJLQbwcszh/DViMSO8C5FFuOkdZC2N+so6sUlO15+tkXOH3uDN3VlGS+z6H5BX7gL383P/b/+p8ZjyYEwDvHc2fP89YTt9ChoFPM8Y6338jf73Y40sspkgH0O1g6HM97HBYNgYBXe5vrZs5jVcDqmqQZsbYyF4OyaJ/tFWv94pI2C/MDjkrF+h8+Sp70sD5Qm5bRxmVyNSCVBVnS4Qul8dOig7I1goRZXVJ0u/RNYFRP/kxrUgUghWBxdZF73/pG3nLyJHXT8tsPPMQDDz1+JQCMon0W4NLmBPvuRQbXreFSiSBhqb+AnjZoKupyh2FvjVSBCxJaTS4CeZ6htCF1AdFJUUKh0gREjqgDpnZYofDBXbkRxyfS6KDaOz8lgs8//jwb73sTx7qSnklIZMpEJZw8dJx+7zFmteGF8Q7ZpCIVHhMETjuUEyyuDBA7LbtGE9KEqq5ptUXrhmnTEnzsB9HBNr805B3vfhPXn1hDBTAXLlJeGDHoLlPZCk9FlhXgLCYYjhxZ5lO//TH8ZITzgike1axw/Pg8zc6EpioZFJLOQgdki2B/Z4uvalBWt477H3qY1XvnOHzD9Sx0h7xlbpnv+o7v4Of/zb/BGAcBLmxsYLodFudWmD90FKky3nDoFM3ls+yePkfSX8L3umg/wBqPn25SLPVQSuLKCXZnm6raZWPzHFlxVWqZRNHLElIwtzDHjTfcQF7kPPLwIywt9FFVza5xZFlNCALvAtOdGXmhSKRASoG1lhAcSSJJlMQHhzEGawwqSxksLNLd6n/Va8q6gw73vu3NfPd97+V4MUQ2gUk1Y/5OuHjxEufXt16lbyOKvjrOWspaM52MsG2LbSpk4cAb5m47zMqb3ojdNaRFSrmpEGVLazTKG6QxCCHwAaz3eOGQqUD7mkpXtM4hpfySYZMoOlgCIAhCMp02PFvV3Nhbwkw9Wk/BzTicdzm2OMeTZze5sL7DoNR0BNhMYlRKTylO3nwjPdtlPC0xvmJWN0yrvYfX3bYmxIr40QGWZAnv/ca386abr2Mh74IGMbfI5ceeYPz0s5jVhqINBKtJU4kd5iy/8WZqaxm9cIZESXSesNBPacqanfVtMm2o51MWDg8R7FVyfx2kL+4RwfH4c2d419vv5ja/N0qZJYIPvfv9fP6xx/jUZz4HATSweP31rA0OIQk021PkrOLyxdNMRlN6naMk8yska0Mmm1uwe5ba9sh7XcysZHpxk8unL9FsTgkuFkCI9pGAW++4mZ/8u3+XWw6dxJuGj3/8o3z8U/fTkQrV7SHTDiCRAYxwJN5CcIBD4AGHMy3eabCWvFCUuoE0Je0UrCyv0ekUGPMVFLURsLayxA//5f8b71o7RVdmVK1lPBpz+sxz/M6jf8B4OnmVv5Qo+sqFENjd3WVrI0Mbw7wa4nuaLE84tHY7ZiZQOseFDq3oUtopdb1BISVd2SFRCal30Bq8SCn1LjvjHaZtgxGOWCMnOvgEvUHBfW+7nevm5sFYTFsjnEZPHbVxOAt3HjvKs+vb2CzHGtAS8sGQTnfAt779Xaxed4y0dJhhh8wHkFPa6ToGS2XtPj+ORtGfRDC/0OfIXEpn1tLxPQrZYWY8/bkVHv7c73PoOotQ2V510jxBuILt8TLkGU3ZcvzNb2P12FHC6BK60Rw7eYp2NMLULe1scmX/4/11VYOyANSN4RMPPsSdR25gTnZIez26acYPfOdfYdZWqCzne7/7ezi2dAivA6HVSKNJs5zZaEIqcqb1Jl4b+vkUyk168wuQ5XgpSYddlk+s8thDT5KpAuemV/MQo+glOr0Of/PD38ObVk5gW4HbbXhT9wgzUyCDJ81zZJohZYI2LQjQVYXXBk8L1qHLBqNrTNsSPDjjGe1uM5xfAQ+LRZfjR9Z4bPInB2VCwNFjh/gfPvRtvGvlRjKfYVpLPak4c/Ysv/7gJ/mDC+eo3X5flqLopcqZ5dzj52lthTt2lNRI+p0hu2c26A96eJ1jkoLQW0C3W9jxDmZ+nnHqSIIhExaURLd7SWDZ/ABRSqwuKboZyL11Z1F0EBXdjB/5ob/Ke4/eSjJpcIOEyhpcfYHmzPO0uyU2WK4LjrfcfJz33HMvJ5IeaSoRQdCWDUWvTyefZ2YnEAJSKGSbI3sdlMnRWl6ZLZbEzhAdNALJ8soconW0vqGabWGSDrOqZTpuqLVj5/Iu6Xwfp2f0OykDqZle3kAqSW/pCIdvfwtLy/P09RrV7jqrR4/Tv+UuQjUhWc5J2pb9HqW7qkEZQAieR544zSNvOMNAdYEjLB5e482nbuF/+wf/iLTXZ0BOYyxN20DVIJxFBEuRdrl07gWOX98j77ZM1zcYzM1RLK9ijEboEiEDaZrwrq//Gj752U8zunj5ah9iFAESQeDmG09xQzFPfWYTrwTeWFTWo0j7+LJFdQLOO5wQWNtibUM7qzGzmqA0VdXQtg2NbrCuwZkWjaCcjBgUQ3LvGcqMG48e5/GnnvsT15etLM3zQx/4Bt6ar5LZBOM8Wzsj1s+e5xPPPMon1i/sBWQxJosOmLIxDA8d5+JjT3OpvEB+c4fRaEL38YS5xRLV9HH5AsnaPLYuGSwcwnQ6GGPwweOtB+sYt2NOnLqL0CZ0Fyy7szGd7YuIENMXo4NrbW2Re48dY7F3hNI1tNMJ5D3sQsPgTYJwbpPp1i5LteI7b7+D+YXDpM4hjGZ6aZ16PGP1LW/AKUAkyEQiZYINM7Juh0FYJkkyoN3vQ42iL0MQhGe+SKg2d9hgB1csIqzCtI7SaKxQlLtTBoM+pjY0FtT1NzFqM1Ik/V4XhSeZVawszhGmI3KpSOe62FyCgt6gQCmB9aCkJAT+nJWtv3pXPSgDaBrN7z34WU7OzzG3sETa79LpDeh5j5Q5oXWo4El8oDINSnhs1XJ09Sibmxd57oWn6I9XULlAO4fOc/r9Plma4q3DOpjOdtG9QFnFi0y0HwJCSd561+1Q1ozaKUme4UIg7Q8YnDhONd6ks6SxrcNJhbcG7TymaqlGUyyepqlxxhCExzuLDR7TappZTZnPKDoZufPcvLJMlqe0jfmSlgj21pD99W9+H3eS4EcalyvGox1GO1s8s3OW+888TdV+6e9G0UHgcchhyuKhNXbOn2a6M0WJnPPPnabWhqyeR4hd8rAArkIvD/FJRqIKMtdia4f1lllV8/TzT3HD6o242mNbx8JgSJIqtI6zA9HB5L0nty1ufJaeXCE7fJjGXEIoj+guMBgsYCtHLRRV06C1JVMKvVvhZjOOnTqO7OQ0s5rM+r2JMOEoioLRbBfvYFjkrDMjjspFB09ACMFwMGB0ZptdPcIcNfTDcG8gulMwt3aU6bPPoxpP3QryxWNkwxtZWFugqT6PsA3+8mV0liOyZVQ/wbgW11aQZxACy/2Cm286zO3XX8/xxQEiFXzssaf4/IOnsebqFD/bl6AMAs+ePsuO08wtLpKTkaRdZJC4VhO0RdYtom3xTY3VBrJA0sk5fOQ4Tz73OGU7QeU5nXqX7a2LdLKMLARSGaiqKeN6SmUq3FWOcqPoC+bmhxxZHKJNQzfzhKwAGQipYP7EMc7ff5qlRhNkgvEGazUgMNagm4q6NVSmRWYJhVAIb3BW02hLLWeMu7tYkdNWJYfzLotzAy41O1/SjqKf88H338fX33ALvbGgLAP1uELPGi5tXOBzZ5/iUhU3WY8OMJEilaCpR9hGM9naYXnpMOuXxhgfOLZc0F8QlJsXaKoJu7spvptTJAlpW9E2E7T2lK5EtyM6vR65zpHesZDn9Ac9drZH+32UUfRlbW7s8PmN03zL0Tdjc4OyW3TqBiELVJqDDlTCIYWj8RNQLdOZx+xuoVKF7WcUlUZOa6QQpIMus6Yhz5O9LI1UkeUCRMyUiA4mKQUqTUiTDhefu0Cel3SWVkhlytKhW1k9cg+Pbv0qyczSzYbk+QK0DRmB5dWjrD99lnZzg6pTsDOfMHPrdPwi0kBVdFjfHTNpG37oG95Hnnbp5gVLcynf8q43849+5df5rf/yMCK8+vkU+xSUQV23TIXElxq/XeNEDkrgqhnOeVywWKfxVmOwmCyl8prllWVOuVM8/uRjoAST6TbGNcjgKVRKb9Cn8ZoaS8jEH+2LG0VXmUokzWzMuNihSHv0uz0ymREsDAbzTKsaUzWYJEV7j3UWKSXBO5xu8NohsowkSUkcOC9wjUa3jq2ywbQlrK2ysLxCb+Eob7jtNtY3PvGSzdJVovir3/nt/MDb3kt3Cq2ymKJl98xZLmyc48zOOZ6f7mDjjTg6yLxDT2v6vQWOv+NW9GiM3p0iZeDsA4/THNklm19AJBmV1YhEEDJBgiBxjrybYmVGKz39IuX8xac4eeR2CtVn4Pv0i4IvHc6IooNBt5Zf+E8f447vGXIqOUkmu4RUIfKEUFWUVYO2EpcmDJeWCbrEhV1K0dDv9UhLQ8MM7xwiVXjbkqjAxUvn0KMS2YU8+0JQFh+aooNHJQl5kSCUJkcyO3cZu3iEwWBIIRSDlVVufNu7uPCpj9PrDRB1Qz2esb21w/KJVc488odsbwuaI0s0my3DpS6nh11cA+XMMJpqksSzMHccVWR0i4wi8RxKU77vW76W+z/xJPVM82qPWuxbUBZ8YDae0lQ1lWoQbhMpLMEbXABtNdrUBBw+OHZGm/gEht0FlgSoZ5+nKcc0oWQ23WGwMs94MiLf3SafH+CHHbS2eBdnyqL9ENDG0BrY2d1mMR9gVQ6dLgRBQoJMM9rpBNfpUmuNtxasp52WuJlGyYyi8phqhBaSkMN4e4TRDceuv461k6dYXF0jtAazMeWdx0/yu+ln0NrsjUVIydve9ka++53vZUF3KaVhpxqzce4iKpeUuWPc1IwbG0dHowNt6fAKd931NlQF061dxqXD+Qo33ebo4ipzhw+zW08ZXVyndhYjHSYYvLFkwZOoQDG/xODYcSqtyTPJ5dELrHWOItqG1aUBZy+s7/dhRtGXFXzg0Ucv8Y9/83f4n777G1nwKyiZ4UPAKE2txlRBkXSXCWnOXF6QSUF2m2R0fgPfzLAmxSjIOgN8p8Arz+x8TWeY4QpJLysQIq6tjA4igVIC2Ria7RG0DaFu2T53hoXb5qDahd2UwytrbHZzFAZrxsw2DJfrXRpfY9uKzSee4diJEyzc+kayuQ7NMMPXGXYn0O0cIlcaJQqaeoLZXidkloXuIW67/RZuuuUoDz1w+lU/0n0LykSAWVlS+5bxZIcwsQRbIYTDOEuta4xpMCFgZEpS5KRFH28MpWsZLK1hbcDV2ywcOooJLc54TALCO4TwBDwxezHaL1prUpVSVS2TakpqFUXdx6UF1msGcwvUZUkqBUEbQoBMJVS6oapr8gSMM3SSlNAabC4QCczPL9NfXIW8D6pg0O2hGsP8aMbJQ4s8dXYTIQK333kDf/fDf5U1hlR1xaQsqYDuTSe4cPZZntu8xIXxjNK4WG8rOtASKXF1i5x5Em3JVIJS4BNFEwRJrcmGQ249dQsXz57h9HNPULYljdH0uzmybbEyRWytM5cdJiRzTGc7BBEQ1nD9kRUeePRZgo8PpNFBJPA+cHGkuVjukKmGvM4QNscgEElGlitINUmnRyoKXFhAqZws61BubFDtjCm68xy57jpm3rN+8QzHb30LSafHdHye/NknkELgYlAWHTCCgEokmfN4uqQLS3it2b24wXr6DPK6lhAmZMMBa8d6uK3LjGrFjk/YqcDWLY0xSA9bz50mXV5GFDlq2AfZo5oIBAIvA9N2HUeD1C2tbFlY7nFyeDNf/3X38PCDp//EYmqvhH0LyhAgE4X1jjJUKCx1O6VtalxT4/CITDHoLzI3v8zW9iVKUyG1ZX7lMPO7E8aXL7ByeI3Gatppg8hTfCIIOBLAoXD26izOi6IvJoTkHW+/h6N5j7oeU9cNZTtGGM/MjDCmxXlDORkxl+YIJ3FYmmmFaQ3aa6rdkno2JUHQKbpgFSIIEIosTcDujRoF45C+4dD8PG89eYKQ5Lzlrtv40H1fx03JIWxQ6CJBZD3SRvHsYw/z+B9+iifPnOaxWU1rbbwNRwdba3FNg/IK4SEoiUglQTkaM8Nuw9z8DaTzSxzt9VGdHuVklxdOP0rIBC4kVF6TVBOyUReQFJ2CGRNEKpgbSooipa70fh9pFH2JQEAgmFvocd3JNzG9vM5DD3wa+8KUlbl5ksV51KFlusOAMClJJ6E3N6CqUmwi6eUFoj9hbeEwk+2S3emIVBWoIPFmSjnbolvszUY4u99HG0UvFYA0TVg+tEx34Rh6XFFXFevPPc/5Z55hcvkic4M+3X7BsQXHoRsKLlycsFkGyjawtT7CGocUgUvnzuNMoHP4EHnRQ6UD0t4yLk0YuwqhDCZohGkp6wk7u11WLlzg677mbn5++H8xGVev6rHuX1CGIE1TpITl48dQRUZT1uiqphzvElRAW40LEuMDzXTEsOiwcNNJtLVcd8Mpzj3xEFIIkiSnGAyxMuC9JUiJM5ZwFRblRdGXM7885Ove+haO2h5ntieMd7ZA5rRixKyumc3G7Jw/j59WiKygsqDbGlNOqeqKum1IEOAD9axktj2iszhADVOGxZBMJkjXIISjPz9Pr7PCmjrGD954M/9dd47+sA9BYRuBTQRapEyrCc898xhPPPMoT148y6PjKVtexD4SHXg2BEzwe3suGYsN4PICPZPU0ymLi31cRzCuJ0wnu5i+4NDSMWa7F5iaCp8XWO8xxjCZbONThRB7ZcE7nS7H15ZYWuxzvtol5vJGB5EAjAmQdujm17NyKHD6uc/z+x/9DCuHB8zfuMypO++ktyTxvoPMErLOAJcmiLpiLulirCOIEuFKEtGhKwytnRHcDClDTF2MDiwBNLOSfmPpdzpIUnrFkMbtsLk9xe5M6R9WdA8N2N6Z4hrB4rBPLjLG4xmTytAQ2KgbyrMv0NnYoFAdhOyTZH1cL0EMU3wuEdJhyynLiwXbuztcfv40N7zlNu647To++aknXtXj3MegDIqiYOnIcTqLh9FaE2xDKDqEZkYIjnbWopsKiSMEx+INNxGCgHIXZRyLC2tU7M2q5aFDSA21nmG8RwToJQmdImU2i7Nl0dUjhOA977yHtY1dLl46TbO9w261zXRhgayBerqNLktGkynBJ8idXdrZFGsNDnulyI0jqIRKWkjB2UAnyyj6PVRRQNaht3qMpaUliixHZSkdIRlaj53V4BLqLCFYi68adiY7XLp8lueff4Inz7/AH44njIIgPoBG1wIVAOOxrUHTYGkgMeQLfZKlBWw3p24svpxST3YQqWDWGsK0IRUO5goKmSCuVDltq4okyUmSLplWzHXmufXUcS5cGL2kUE4UHRghsHlhl9nmhN7zlrlqwKHVGznTfYYnnj5H58xlzj67ydd+873MLwtsW2PzAUKmOJlDnpMXkmTYIawWNLsVKmjQhk7WYW4wREmJiYns0YEjGM4PWV07ylqyhPXQnj6DEoZcgfOADHQ6CZOJZa63Rv+2Q8yA7XOXMcFSiYAOAolACkFVlygqtNsmIAhSIhIJSqFEYL7fRa7ewM72Dgv9lLXtY9z3rtv45Kef5NXMYdy/NWUCOnkHb0E3Gt1WWNPiEoH0Hi8kupqh24r+/DyHjq+S9nvU27vgPLpuyTsDqvGMzrCPUQ6rW2Qo90ZRvaCXJqwtD5jNmv06zOh15gt1q+bnlrn5rfcRRiXl1hYXLpzn3PoLjLYuorcuI4BWW3Tw9KY1ZjoD4zCpAOdpGkN6eIEwGFDvbiM2d0nzLiYoZJpRDBfIih552qHT6+PTFC2g1QYRFKZu8CLFB2h1RWP+/+396a9lWZrf933XWns8451jyMiozKyszKyqrurq0SqKok1zMmkOtkBItAQQBgQJ9gtBgAHC/4hfNGxLbgOELRBtiBLdFEk1m+6JrO6usWvIyjnmuPO5Z9jTGv3iZoFtWGRnV2XEvVn5fIC4b3KIvRfOvmf/1lrPs3rOLxa8d/iU7x6fcGHjM98bLcTHxXqPi55oLRQ5u/svMxkcy7NDXPIMYYP3Fn92At1AzDWHZ4foIsd2gbyP5LUipgzlA6FtcZmhz6EcxvQhcns6RmlIMocnrqFIom8c3UXPXE3Id2uqzrK7vcfZ0SOiSzy8d8p3/+gdfvnP7rGzM6fIMrTKSChCNAQ3QBsILvLk8D7b2zsYU5OSJtMGo6XzoriGFBzs77E7vgFdYvX0ERf33mN9cojznhJFoRK9g5vbN6j3Djg8WXHv6TmHD09ofIKtCTQtxilcTMyLjHGmGXxk2VlIGmNymn5AZQk13eJ0eU4wU07Wc26dnfNLX/kCVf3/pm8tz2pK+0pXyrz3dH2D3ixJdqBv1qQyI6XE0DWEoWF7e4dqMkYHQ2wHGAZcb9H5mBu3XsJ4jy8Na7ekKDO6kKFTwChNoTR3X9jnvfsnsiAgnpuUEu++dw/3C4H57h1mN1+huPkS/bc07dMTTFnjlad1lt5b9rwnH0+Irsd7Byjq2S717guMVgNhuyaM5qShp5jMKCdbjMYTdrZ2qWczkjHoPL9cXQuJCHS2J9iOFDt8ckS74WT1lD86OuS0CxLIxCfKuuvwmWL31k2mk21a57DnRyQTCd5BDt71hFXLcLHAlDkpRbKdbebJcHF0QqkURV2R1xnJBFTwMPTYdoMqcpQCrZSsE4hra9U0LNYNt+sD8lsvMM5y5j+4Rfn2d2liwPnIB++8z2g64qt/boZRhrRy6KJCFSPQCucsJ48ecfrwfY4Xj/jMK29gXU8MHiWhTFxHCSZFRdw0rI8PWbz7Lvb8lFleE7dznB3IkyPmORet5cm7j7gYco6WjlTX7O9ss2x6YtuQq8SoMFjnSH2iQrGjFCFXzHfnPH56jioNZGCDwgVD2yeWi3Ne/Pwr3L27w9s/POZZtUa7upb4KXGxvGDdLInOoKLHp0ihoe0buq5lMt6inuxg16ds37hJf7HGDwZTbjE2Y8p6zvr0jNE0QytD0ND7FuU6TAooY5hU+WWbV3kLFc/Bjz5lTd8y+AblJyStqOoRZVYyKsas1AaX5agsMtgV3nYwHtFnBevFBq9htLvFbFLj/EDIC5rc0A0de3XNS3de4oW7n6OYz4lFhkoJbR26D0Qb8M7T2QEfLLQNLrQsjp/yzuF9Hq0apMGc+KTpB0s5KilVhRscMXlUTJjMYNsNujb4Zk1O5HRxQTWbsjWfoeopo2rC1uyA1fEJ8+05wSTcsMIPHTa04BS2yhiGVs61FNda1w48Xp7zlZsvg4mUhWK0MyUYTVFpDvYKTJmz3hgOT1ZUeYdqoRhPsEPP2nuadsnx6SPOz85oFwPj7Ql94+naDdqAQtrii2tGQz0yaJXY2jtga/8ONima8zPWRw9YPH1Me3bM8mKgz3vIx/TFiNkLM9z6FI1BO8uo0JSVRoWEGxIqaRwJBXQ20j0+QScwGMp8RFlPMLoiRcXQeMaD5fOv3uGdt06e2cT2FYYyOFmcs1kvQHtGVUkxmmDXLf1yRTkZo0hkuWGzWZP29/HeY3SF0TkpXnZu3D24weMn7+P8gG49xirymJFFRfIB56Sblnj+Bjfg8NjkyRWYqNiebHFY1qQYKfOaQQ2XM5k+ke3sUwZNtBXN8m2GbkE2FISwJppEcBte/dwXePXf+XPsH9xFT6ak6GHwpBBJPoL1eOdo+pZNs2G9OsV0PevVBfeO3+eHh09wTtYBxCfPcrVm6TbUKaesxjgCGE1IELUGr/CrDXk1JQWFyjS6mFBX29RbcwqTs7Wzy8XDB1TjEbOdOyw3R2zaU/qLNZkpsVqjJJSJa0wbDVmPHR5y/lvfZ3H/jP7iiHKr4KWXtzl/esHWwV3e+MJXGJYN0+2SwbXYVY9NcLHa8PDpQ44OH9H1DW3Wc//J+2SmZLlaEGXvrriGVFIUWUGR11TjETGrLrtPN2tiihiTqHamqGpMmzxVUVCOR2xWJ4wmY7yFqlJ4lzEqSlxjUTmUQKUupyB8AOci49GI+mAPEw25GyhH+yidY60nWMvPv/4i/+gff+Oyv8UzmLy4upoyYN01DNExLTXRGFSR4zaWcjImkTBAWq3QwbFq1iSfo1PAWkfbLunalj44CInUW/KyJDWRGAZCn4gmcb7cyCqZeO7GoxqVAslZTBbJ6pIbL95l6Fc0mzOWF+ckBpKKJBTj8Yzw4WrAmYbvfefrLB9tM60rsmrMV/7cX+bVP/vnqcoa5RTJe5ILl7Vpm57gE951bGzLqmtZdWvWrmO4OGW5OOKD5TEPlp1sWxSfSJum5ay7YKw1QSWi0fjgUFpTVRPseo3KMoYh0A+OeVUy2z1gMtomyw1aG3RRU7/6OsP6lPViyXgyQ49ymvU5y9UF66Tk+RDXWpYbMjbc/8FvsXr3gpN7C+xY88bP3aZftYz2tvm5P/uLzLZ3qEd3eHr/EacnS9I0JxaJ5eqYs5MntKsVXjsclsXpCVorVusB76KskYlrKBGDJbgWl2BoOwLgk6eeTdH1HWzX0zYbimhIKSP2LVUxpZrM6dcNuVlTTAO5KtBZSbGtyYHSJYrRmL18xOnTQ8oi54UvfJnJjZvYbsMQOnzX4tYG1fW8dmtGWeV0rXsmd3p1K2UoVhdLkkl4ZSlURbtYYFRCFQW2aRhvz9kcP0GVOZumxYSMrt3gBk/Tb1guFjjlUWWJ7lqas3NGsxlnq4ahb/Fx4OFxI/Vk4krED6fd9WBRo4rdO3cYVQXb23MevP8Bi8U5p+fH9Kfn5PaCKlOoseczL93lcz/zs0znO4x2t7n5yhts37mLihrlLgu+ow+QNF3TknpHcJZ+aFjbDU3fsNosuWguWF6c0A8b3lkc07VyAI34ZBoGx9HimNksI2iDGS6bFuTakM3nnA8r8npCc7TARUdW5GSFpsgNKiVUDAxtc3lMynTCuC7olgtOHx7j6EiZwwZkAk9ca0WRc/vuF3lhK5LtPOV08jazOjDYJVk95s6tXW7fegFjpvR9hwue8mCXjp7Hpw85PD+n9QmXZcTLlqZ0XY8nsWgi7tm8ZwrxE0sKvAGjIYUIKTHb3YXxiGZ9zsXZMdnQ47sGvzwnlAYzmmE3G3zfoFOiLCpMVlJWE6qqJtOaaVYyvXGb8c5t2osFwXUsNivAMZqPybrLHXfROVZnZ2yPDfOtEX27/Olr9HF+dk5ne0ZmRG4caRjIlCboRJZlJG8Z+g49G7FuG/KQ4xrHZnlBM2zYdJYYAtkow4wqKrXN+w++ixopbPQs+p6LVQ/PrE+KEP/jog/YrsflA6EsmM5uEPOMsdHc3dvlxue+xGZxzPn5MavDQy6ePqGMkdfeeJUXv/B5RndeRE12MHWFIkMZQ3KR6ALWtvi+J4TA0LW4FHFDi7Ud682GpmtYrVes+iVLv+CDxx/wwWL1rOpShXjmgoscrVfcHG/BkDOmhBioxiPSSFNsxmA0p8MjkoFkIs4PDINHA845YgwMQ0+wClMYWgVZXaOzjAZNt2mJUlQmrrEUE+VoArGiG07Yvv0iZ6cf0G0GptMpW7f2yKc1MKLdWOrxnKNH93lwfI+VX7NoPK0PDCmi4uWLrXeB3ijOG0hecXk6+1XfqRD/mgJcDAwqoJNF5zlVNiarC2JVX3ZgHG8IfqDtGxgadMpxLpFMAwQ0jno0pZzsM51uMRmNyE3OeDSm2tkno2Z3a+9yIuP4MY8++AHObsgMTHYmDKbEdzPKcUWRm2f2iFxhKEv01rKxPbsFuLZF+UCWFWRG45NneXhMPapYpUjvHG3b061a+q5h3W5wvSObjAgkUJGmXTHa2uJ8fYKPnhNvGfqA/IYRz1sEfIqYXFPWNTQNcVRiRhNMnlMULdV4zM7BTfTnv0xSl3um9agkhYgej4l5QdAagrqcJXKe0A3YzjL0A12wOG/x3tMPLe3mnL5vaNcrNt2Gi2bBW/c/4PvHp1z0kYRGkpn4JEox8fjJBZ/d3aIMhirT1NMJCY/2jqoa0diB5B3aKGIGTb9GU5HQuL4nWEdUoPMS5xLFqGZmdmiHBh8V3aIhxShTeOLasoNl2bW8mHKmtw7oTzwn378g14aJhsneFjEzYD1kgcVgyaottvZe5vjRuzh/hspAKUMMjhQVMSXSoOjaRJSVYnENJaDtLQNQo8mMIs/AKAVVzXg6xvsp1naU8xkpRmJK6JSIeELoKcsx4+2b7O7fYjaZM6rGZDonoSjLEUlrlqsLVErcfPUuagrr5QX98oTN+SGTyR5JJ6K1BB+e2VrPFYYyRbPpWa5WpPENSGBSJDfQdRt0YXA+kBmFDwHnLW3XYLuevu1xPmDKnHJcocqc7uKQZCyrxQUqV7gI52cQg7yEiucvoUBlpKiwTY9Bk5c5eE+MieQdRkE+nqDKgphp0IaoNdE6UlagTQ4qEQO4iw22swSX6G2Pi54+BVrX0zUtrm2wQ49Llj72NP0FD48e8Z2nZyxtRFaLxSdZInF6tOLss0vqqmQ+3cbrRJHndJsGU2TQrchyKIwmi5Eh9cT+BBUKTFKXh7PHgA4D1WRCMomoFfmoxoTAauMhffjsyrMirqHgI+tNh9nZJatLgo3EQdEpR9NZMqVAQ5Msqw+bIDRuoBkss+kuxbhm2Vyw3JzStwofFDEkBh+x4UffE0JcP10/XE4aKMiMIc8UWa5BZ8SipCxr5rsHbFSGShnhw89y7yx+ZZnv7LN78wV2tvcpyxqtc7KiwoZA227QRY1H026WrN47Y+fGjOb8CFUZ6t0tNpsNp4tzHi16FhebZ3aA9JWulNnB8+jwkM/Ob6LICQAh4J1jVM7JsprW9pBnKAMuOvo04HIwZU01GWES9G1DCB1Beyb722zaBUOXWK/lZVRclcTgW7p+w6jM8aHA9AP4RNIG5RxkAZXlaK2JWU7KCvABU+WkPCMMHj8MuM7TrzYkrRlixEZHZ3t6P9B2G/q+JfgBG3p8tDRDy9H5Ed97/JiVC4Dm8hmQ50B8cvVt5P2Ha7ZfnTOEgRASSlW46FFGM64KNntbeL8C59BFSd9bVO9QKSOmeNmVMXk2FxeYWqGqBEZjNazXDpXSh6FMiOsnpsR5tyLLErk2RBswKaMqJ3TnDcEHXHI0TU/bdyzbFl9lKDUi4HCdIyjQKscohVKRGBV9TPgI8h0hrqOUEsvVBhccUV++1ysyYtAYDHlWMZpsYaoRQ2PJ9yqCKvC+pwyWKjMc3H2JnYObjMdzwBCTIuYFygSaYY3fLC5rjmvF0Ayk40OyItCvLwiuYZTDRXfCP/7uEV337JLFldaUpRh4+/5Dfv6FlzF6RD0ZXZ60vXuAT4l6NGOzfkpUCpMXZEVGPR2RuUAIAOlyVazrGXwgaEApyA2LRaIfpLGBuBp939PbnsG3OFNRhArvPLkuUClASJhJednaOwRUVpPUh/OUMeHbDt/0uMEy2IALgZginR2wdqAdWjabDbZr6LqGGAMhDXTthrOzU9559ICjpvvwamS1WHzyxRR48GjBi3d3mNsl2/kW3l6eOZMVJUMITEdTsoMK6yylhlAVuKGDqAneoXoPlUbrgtA7knXUowmtHmjW9sMvWXkxFddTSok2dOhcoROoENm+uY8pNecfPIBocNFhbUdjO7poWXeWJjhSodFU0BsUnhQDOkbQ4KImSDt8cV0p6KzDJodPgeAjwUQKk9AR6rImL3Pi8pzZbA5aYXTFcnFGPdnB3L7B/MZdqnKKMiUpJnzw9HYgqoQ3hi4OJG8xBEbTgq47IzMR59YMw4qsLPnWuef3/ugRxGf3TnWloQzg4eMjztsLRpOC0kDIDLEwGBvxRpNIl9sW0ZBpXH/5iyPEHucU7eBZt2u6zRqdBVSu6FLg6NyR5JRccUXOT89pvSUWCU/C9gMpJmII5FVJKi6X3bMQAYPy4G1DTAlvA37TY53DOs8AeBdxwdMNPcMwEGIgeH9Z/JoCfdfgQ8Niccz9pw945+wC52TOX/x06RrHuw+O2XutYJRGEBNRR0wKaG3YuXGXZrTm5NERsV2jpmNSBamzxNDj+5ZgA7rISQpSpkiZ4axrsVYm8cT1lkLi6YMF6QsFykdm9Zjq9Vc5enCfyXhMNamxwdMHx8b1bNzA2vX0bqCxAy4E0uUJmrgYSCoHAimlZ/meKcRPJin6bmBwHUGPSVkiOk/SOToDrTNSiJiUMdreIS9yfNMQJyWTg33q0Rif5bgY6IcWkyCkgI2JIQQuK88izjsMHmUTk3FN054w2RvjTs9Z5YZ/+LtH9KvwTKftrjyULc6XvP3gfeafKxlnI1J0rBcLsmRoNmdYP9CFFhsSySeU0XRDS9st8cOAd4HOrvHWkheKkCKn3YblWr5gxdXp+oGLocWWkd4NZBZybcB4nANtamg7lLOobEJwgWRbiAmCI3mFc4nN0NPbFnwkYGjalsF2hBCI3tP3G/qhpbEbuuU5R0/u8/2jJ2z85eSFTEuInyoJHt+/4MGWYbansG6E8p662MfojHo8xTlPphLtyYKyVKRcYW0gmICLDaFrSS4DA+QJn3kOz1ckeSkV157i0ZNzHAOlURzcPuDkfEFBRrGzB2VGiB4bHCk6hmFN5yyr1tO5FtJAdMPlxF/0aKXR0RDxsqFCXGOKdtPTOovXHpd5SmUIrselhFcKnQJVkWOmOyhtaAfHfGefcjwjr2us8/joidaitcHHgA8J5yODv5ykiEaD9/gUGfo141rhkkPNx/z3Xzvk8HH/zN+prjyUBZ947+kJr754i8kwoUyeuFldrhwMa7zyWCyL1RnJRpwyDG5gfXZ42SlLGQa3xruBgZyNb3ly1hOcvI6Kq9Nueh6fnPFadYBNBUFprO0oco2JBaGzhOjQ8XKWBhVR1pK0IqSEjwlrLc4NDM4Sh4GQEra32L6n6zpS8mz6FTZ42mbNydlD3nz6hJNmkGYF4qdUwnXwvbdX7E632Qsdla7wAUxRQVTkKifHsFpsUJOcqDX+w1qbPmxwwaM6hzEJhsRgIoulbN0SnwxPjs7owsBsXtNZS4Ymz0qy0pCpxCa0WHtB8Gu8bbDrBh88SSvs0BKGjn64fMHNlcKnhAvPrG+BEB+DSL+xnKw23NqfUKqcIqbLLbgKlIFyNKbKZ6i6pO9aTJmhfcSQER2EIRCiBwXDMBAVrLvu8jBq7+ldS3AD8zwyqjUpDQQTGTT88x+uePuefS7PyJWHspTg4eE5G9ezWJ1Tpoo0QPIQXUck4UuF99Ctzokm0tvhcitX25EbTUgNzluGpFgoz2IRPizYFuJqxJB4fHhMf/ASLpU4k1PEQHAeFy/3MSdvyVCQLFpFiJfnkPmQGFLARUdQCRcjHs+mWeG9x7ueTb+6rKV0Pa3rOT074r3Hj3i4avCAQj7/4qdVYL0IfOeHx3zldsVWnahSQ12PWfZrYnLESYFfK7rVhlQYnB3wyRG1x2cJPySIkaw2qCrivIQy8UmQePr0lJPlBTt6h0xplI1Mt+f07QI3DMSRJ7oN3fqcYdkRmhbbnWK1oomKoevwgyUCDggahpCkJ5q41mJInCwucDv72M4z6BaVlRhjKLMKpUvyekQkUtcldqVQ8fKwaRctKXmi9aAUznv64Omjoxks1kdCcqjk2fQNhYpsz6C3Db/zzhnf/d45PKdO7lceyiCyWjU8OV0wRmFjBTrDxwgRCm3AKUBh8oxhGFApYnTA5IGubUjJk0wgmUTTBIZGfrOIK5YU9+4/YfP5JTumwqsK5wOh6/Ha4bwj0wkLGBQpWDCamBJhGBiGATcM9G5g7S19jNi+I3lH3/c07ZrOdRil2Jyd8cHjB7y32GCjtCoQP/1SgqeHaz57e8QsC7TNGoPGDQHvA14nyvk2g+1IzhKcQynQKcdoi8oTSSvyUU5Vz9Dq4qpvSYiP5OJkzR/df8Drn51jyoysMszHUwg9RpWkdkPyllGVMa2hbzJCX5C0RdmWoR3wHlQGIYeg1GU9mSyViWsspsTR6TmLF5YYBbooLxdlvINMY3AopSiyChscmcpwyV8uo6mEzjxpcPRdj9cZrbe0bqD1A11rSWmgyhyjyuPoGBR8+9GC3/1XR4QhPrd3qmsQysD7xB+9c4/t0lO6HJMXmFRgLRR5xng0QqNQeXa5T7rtsdGSdI/KWlTMSDqitWK5VqgoqwTiqkUePTni8XrFrWoXnyyd68E6nA0QI740aJVQwUP0pEzjQyAES9c1rBZLFssVS9+w8Y7oPd725FVFNzg2zQXWWe4dHvPeRUsvH3rxKeJc5K2nG3ammiKsWZ21l22SkyI6S9+1+DCgc4jx8tSa5B2KSKYjOoO60kzKnOm0YHHc/Yl/pxBXzbvI1959n7/58hsYoyhrg1IZrTbkFGR9wvqBi/aY1q8Zbxd8Zn6TJ4ctq4sj/MYRfKAcK7LicqVMForFdadInD5ZcfzyGaMcRsUB1lpMyEi5JrqBOPSXJSDDQJ6NaJdLkrogFCUxUyRtsCGyai6wLtHZwGZzgbUdJndEerbqMeU48KiN/Pe//QjbRRKa51V0eS1CGSny4P4Z798quVNMUC6jUDUqlXgViTYQifjQkSuPVQmtPEEFVJYRQgKjUFnG0A6ycUtcuQTYIfB0eUG33VN2mlBeLp37wZESKF9S5Aat4mV71q7H+xbvLJu2YbnesGw3tK5ltdnQtw3etmiT4UNi0zU8XQ+81ztaKdIWn0KHTza8NU58/mZPdpGBhqQUOiSUDpeHShuFIdK1a7RJmAS50iiTUSlNHmF7mvHgqm9GiI8gJvjmN+7x4H/ylDvsMJ7NaDtLWVRgDHHVkYVIjsO5jlWzYrBnVOWMmy/N4LGlOY+odHkIr9ERlLwziestkWgbx+NFw81bM9ww0LkBU3mc1zg7EFmR+YFMG5I25HnBanmCMzUhM1jvabynCZ7VckV7sSIGT9ufMx4n6t0a6xZ0quTX/8UDFuf2ud/n9QhlgPeRe4c9e58dMS4UiohJibyu8ToSXIeNA67vudzM+OG2Lw1aRcqyYqU03vdXfStCAIkYFe88eMq/e+claqeJKpASpBAZfKJS8fJLNHjcYLGhAzUweI8jYlXA6svzNELoGcIGGzrcytF3iUOXuJ8iQ3x+szhCXB+R6DXv3GuZb2tuhA0pQlYWl89ZriEfo7SiMAptAt4NWBsY+oRRnlAMMApMylJqasQnROTx4wX/6oP7/O1XRhTVDgM5utqgjGF9tiIzPbmzFDFQlRp0otmcs+kDygbGhaIvQEWNCpG8kO8Qcf2lmHjydMFrN2ZMhwyVXW5h7PqOLKvIksYNFpPlgCaEgLOWk82SLjlcBIei847NxRnt8py2bRiNod1YtmYz6v0p/59vnPDB/dWVfB9cm1AGcHrYkH3xDsn3dN5TFpDrDGXMZVF2mRODxTYDwVtSSOgUyEykymCDke9UcW0o4PD0glUaGJmC6APJR4beksoKekdIGRFobI8NjrLOiIWCFNClRl8WnYFK+HjZibHvE4dO8VAlrAfF89vvLMT1Ehm6xIMTz407I9RFf7mlBUVejjAlqLzGW0OuIkUJVfQ4n7CtI/gI3pJnIwll4hPDtYF//Idv8ec+c5MDlVNmNd10i1DMsGrC4De4EDBKUeWKqs4YnCPZSFCJwWtUDqG3kENRavn8i+svweqi56Q9Z2YS5WgHrTQKjXWOYXAkF8lHFSHB0Pf0/WWn6/PVCc2wobMRaz2262iXS0ymUcpw99Up5cjz5uMV3/j2CfGKzjm+VqGsbwa6ULE3rRlcAJNj6pxcZ5A0qnTk5nLr4nrZMjhHphW5zjBKkeuE1vKbRVwPicj52ZLDi3NmFfhoSN5jrQXdo0xB8gU+Jrp2Q+M25KkgOYdrO5qhpWtW9EOHcy2+t/TrxLmFJyEySGG2EEDi+PFAePkGW1sJO/QoItpkqMyQUiDTiahBkWNMTlkqbDaAT/gQ6Bo5p0l8kkR+8OZTvndxzFdHmpSmhJToG0M0JVlxm/mBwZ0+wa0vqMqSohwwnSUfgcojKRpQGWXumZiEVpdbI4W4zvom0gVNNp9Qj7bJ9IjgNW3wpBRQMTIEj4uRvm1pupZN3xKCYrHYsNhsWLcdXYTYw7xK3Jrl2MGjb9V882vn2OHqiiyvVShLKWKTZrazR9cN2BAJ0V/W3ygoihqVZSiVgfLoZkkKkRQjCc8wGLyTb1ZxfVjrODxfsjOFKkGyDqMzSCWximB7nLN0fYPVidg4wtDQrhqawTKEnuAs0XuSjxgUg0n0EZl7EOJDtkssWs2tG1uozYYUPwxZmSbGRFHmuC7ih0hZlFRVhR+ny4Y6IXLv0cVV34IQfyrteuA3v/+Q176gKVND0yc266eXL0tZSWm22drLiKlkPM/pY85gNeUY+t5BMqAMQ3JM3UBRKHrpFiWuuRgSF03HetZStytIjiKrCElDAp8gWovzPb332NDQDR2r1RLbNSwuWs4tDClRoNiZKHZueu7c3eVJozg6udqGT9cqlEUUhMR4uk1ZBjrb0w8rhjCgM4OzkcwUZMYxGo1J3uG9I6WAT4aHTxzBXfVdCPGvxRAZVKALA303EPqG0fY+hP6yJ7EKuGQZUsAPnrD2dN2SwXX0zpGUwkdFVBlJ5aQ44JS6sqV1Ia6jlODR4ZLPv3TAKI6IMRADKJ1I6vLLOs9L1otjjII8rzF5xqJ1fP2dE47PpBZZfLLEoPjaHzzkf/X6LQ78wNBGluuGejoBV1Nv11TzW6yWPWWVsbdf0/gxXdehWWGtJS9rSj1muTjDmMjlHkaZ2BbXl0qatrW0tuG0cTTOkKsSZTSojBgSuIBShlCW9DEwpIGoBooC9vczchdxfWJawiu3Cm7vzcjrij/8vad4d7XvVtcqlIHiwaNjhq+8gTaJsqjQSYFrIIsorQnWUpUlmZ4RxzmrzRmL1cA7R46Hh52sHohrRuEdmK0JOmUU0xoznqMidNbRNyucdWhToMuSpBPa5uQmI+QD1jWgFcGGy39W6Cv/pSHE9RM5fHrBadvzQlkzWI8yHogQPTEm8iyjridob1FK0brA19475/HJIN8b4hMnETl6uuY33jvkP3jtAL9oOF2eM6blxq0XKascFwqqcgtNosojVW7pBkvKSgpVkCvD5rQh9oG8ANUmSPI4iOvMs1442lsDebqsv98MDdG6y4UdF1AhoasaHXO8MnTRo+uCcWXIQs4otORaU+eR0TyxniR+55sn3LvfXPl5fdcslCXeeecBv/O17/BzX/gsefIQEsF6UvCopCBEogqAYUPim+83PHzS4bw0OxDXT0qJD959wH5KTBRU4xF1GkjRM3hHHwKBhHKOQhtyo7GFutzbrwwqlR8ejq4IStFEaAJIVbYQf1ykbS3f/N5DJl95lTxX4BQxKhIGT8KYknwcWZ0PPLlY8413Tjg66lBJDlERn1Ah8I/++dt8+aUxL481k90Z9XhMJBLDQFFmbB9s4ZwlzzXzWYbPp8R+hXKO1HQYBnKdo1WQ50B8InTryLpbE5oL6mQw+QhdFECGKhXGGDA1QUVcCjilcWT4AVws2NjAsu2pD3JwOUe/s+L8fk8MV39g37ULZW5w/Pbvfoej4zN+4WdfYZblxOjp+pYYEuvNBhsC9x6f8OhwxWrtrzzZCvFv89ajU07WG17e3+HFrS22ijU6N8QYiUmhlEYrRcoVusiIWYbODa6HBmgbx/lgOVWRxy7SDvJ5F+L/T4J7755werjiM3f2+MyNGZXxmBRxfcuSQMgLvvv+GU+PepwF2aolPskicLHoeedU83NfeBmbO3oUqlbYwZJngXxS0WwyTJ3jS0/X95wPCT8ETo8vOF9s2ARH00RI6qpvSYh/qwQ4myhmN9nZHjGsVnSbC/pmhSkMIRqIGYpE1wbOO89qiPQ+0Q8O7xMhJlIy8LCBeNlq/7pQKX20RKPU83xYNUrBfGvM5165ydZ2zeHxBauLltPTFf0QLg+M5kd/np2PODziU+ijPhOay0+p1oY8N+zMa+aTinpUsTWdo7SmrEvm05pCK7qmZbVp2LQtpxdrFm3PamPxzuHt5WdSXeER6fJMiH+T5/s98W+iUDpRVDnzrZL9gxHGes6ajvNTz9D4j/0QCXkmxL/Js34mFPD6z9zib3z1JbpVxaAUozJn6DecLjf0seDhwzPOl2ustwwu0DSWlAIxRlL4429RH9/nWJ4J8W/ykz0TCmU0r3x5h/3xHGLCd2uCT3gUq7VlcdYRk8IOHufDh+9MP6I/rJxMaBRRxee26eijPBMfOZQJIYQQQgghhPj46au+ACGEEEIIIYT4NJNQJoQQQgghhBBXSEKZEEIIIYQQQlwhCWVCCCGEEEIIcYUklAkhhBBCCCHEFZJQJoQQQgghhBBXSEKZEEIIIYQQQlwhCWVCCCGEEEIIcYUklAkhhBBCCCHEFZJQJoQQQgghhBBXSEKZEEIIIYQQQlwhCWVCCCGEEEIIcYUklAkhhBBCCCHEFZJQJoQQQgghhBBXSEKZEEIIIYQQQlyhax/KfvVXfxWlFPfu3bvqSxFCCCGEEEKIj921D2VCCCGEEEII8dNMpZTSVV/Ev00IAeccZVmilLrqyxFCCCGEEEKIj9W1D2VCCCGEEEII8dPs2m9flJoyIYQQQgghxE+zax/KhBBCCCGEEOKnmYQyIYQQQgghhLhCEsqEEEIIIYQQ4gpJKBNCCCGEEEKIKyShTAghhBBCCCGukIQyIYQQQgghhLhCEsqEEEIIIYQQ4gpJKBNCCCGEEEKIKyShTAghhBBCCCGu0LUPZSEEALIsu+IrEUIIIYQQQoiP37UPZU+fPkUpxc7OzlVfihBCCCGEEEJ87K7t8tPR0RG/9mu/xq/8yq/w1a9+ldFodNWXJIQQQgghhBAfu2u7Uvbmm2/y9/7e3+PVV1/lV3/1V6/6coQQQgghhBDimVAppXTVFyGEEEIIIYQQn1bXdqVMCCGEEEIIIT4NJJQJIYQQQgghxBWSUCaEEEIIIYQQV+gjd19USj3L6/ixaK2YzEf80i+8wWhc8u1vvcfjRyfEGD+2v0NK7oQQQgghhBDP0kdu9HE1oUyhlEFnibzMGI9ryqJgs+5om57PvnaHv/u3/iKfPzhgq845dRv+/v/wr/in/+TrDMPwsVyBhDIhhBBCCCHEs3QtQ5kGolLM92a8/qXPcPfFm+zvTjmYTZmXFS443n3/AXf37/Cll19jOt6njg6jHI3a8N9+/ev8/f/nP+fseANE4McPVhLKhBBCCCGEEM/StQxlymg+94U7/Dt/5osc7EyZFyOmeUXuDbUp2WxWXHQ9B7MbbG/tMRlPGZcV1Vijc4+3DV+/9x7/p1/9h7z91hNIP/52RgllQgghhBBCiGfpWoayG3f2+Ct//Re5OZkwrcfMTEWlDJN8zmYYuH/0iO3ZDtvVDjUZKMgz2LmxTVEU1JMRSXneu3jIf/Vr/4R/8RvfwLvE5arZn46EMiGEEEIIIcSz9JEbfTxPW5OKsusgKEwPwVh8OWFRRz549IRpbpioCVnKiS7gveX05AEm3GU23SHaSD6b8tnZS/wf/u7f5s7tXf7r//o36VoLErKEEEIIIYQQ18ifqvuiVgqTa0JIxJAgJdJPUK/1r2lMobj94k1u7M353MsHDMfHnF80mP09wt5NhnxCVUy4+cJrjHvHqN7G9z190xJcy+mD+2xt1ZAUuWupvKWaz9kud/m7f+Uvsn+wz//l//oPWZyufpISMyGEEEIIIYT4WH3kUDaZjvhLf/6r/Pxrr3B8esHvfPO7fP/Nd3DW/4QZR7O9N+Uv/vlf4hff+CyjssSnRLvecPz2B2y9cMDsxitUo1s4C15ZppMKu9nQrRd0zTl9s+L86SmL/QWtNdSzKaMIk6QYTccUk23+ws/9LOP/ouL//F/9dzz94Jj4E9SZCSGEEEIIIcTH5SPXlP37/4u/wH/85V/mxmSP3g6cuDW/8c73+Qe/8c9p1x3xx4xms+0p//F/+Fd5Y3uPshgRCmhdxzAMjFXF3vwFamY0Z2u0ikSvaVYr/OYc261YL444O33KcPSUm194g2r3JtPtObOdObPdPertHarpiCpPtGHJWycf8Cv/91/nu996nxT/5GuWmjIhhBBCCCHEs/SRV8reuHGAXQysbSCrayabgb965w3q/2XGP/jN3+L0ZPFjBZjX33iJW+MamyIuOnQIrBeHjKJiPL1Dv1jSrk8pPGyWa1xn6TcdXX+B7zrWTx9zfv6UDMf66SFJ5egUMBo0JYkcg6KclkzzMT9/8BL/x//03+f/9t/+Jr/1m9/BD+Fj2oIphBBCCCGEEH96HzmUvf3wHje3NK6Dcjqi1opxyPlL+6+w+zdr/stf/2c8OTwn/Sm2BSqlmI4y2k2H2cqp8pIsr8lixeE3vsVQPaSupmifM3QeN1hs0+Hbnq5vaTcLmnZDCI6gIuvzBSnPyYym1Rk6abLMUJclPZ7RKKfIx7wyPeA//zt/hXKS80//mz/E+/BjDZ4QQgghhBBC/KQ+cij7V2++xQtfqrkbYOqnqKrEmJx8VvPlg5f4T//W3+BX/pt/xNHRGYr0kZrPKwW+W9IePyTngMqUGHJm0wOedIrjt9/CeA0knM5wMdJ3PfhIiAGbHEElPJoE2PWGqA2ZqRmGAdssGFU5TaagzzF9ST6dMM3HjPOc//yv/zWa85bf+s3vfYxNS4QQQgghhBDio9Mf9V88PFnyG++/yQfLhyxWJyzbFSvb4puWaRzx5b3P8L/963+Zvb0tolLAn3CumdLU04qtnRmFSZzd+4DTd99iWKxRPqN+4RU+WHc8vjjn8cWCpxenHC3PWdiWdezpsQSlWZHxXRL3MXQusV4sefrgA4anR4wnM6z3+GBRWuO9pW2WDLaDEHm5nPFf/Ed/mZsvbv9phkIIIYQQQgghPjYfOYmkkHj3/jH/8vB9Hl885uL8FGsHBmvZrFfkA3xxts//7m//NT73+ksfHjb9Px7MlIK7d2/wn/xv/hp/8Su/zCsvf5Gbt1/i6Xv3OPrB9+hOD6m3ZoxeeYlFlnEEPI7wOMFhgkWCVmfsvnBAuztFVzmxzkh3b3CaG7ZnW+x++QvkW9tMZjvkVYVzDtsNNMsNq+WGIWiiLnlj+xZ/5X/++T8xQwohhBBCCCHEs/CRty8mEtYnvvfBITUZVV4yijOc05Qb8M4zqkt+8eZr3P47d/n7/+yf8rXf/yNCCPzrg8EUkNjb3+I/+l//BV4e7WBSic0d2Xbk4PXP8ujbb+Fay3j3NndfeZmRUTx58ojM5AwxEHuL94GVCwRj+N//jf8Z5aQiZpF6vs1/+f/4dbJ6zqZZUJhAai8gOmbTOZNpCdpc1pCpSMaM+bbhf/pzr/EP/l9/QLuW2jIhhBBCCCHE8/WRQ9mPOBv51qND5vMxapWxw5isqLl99yXKaoZJhhdLzX/21/8q89mI/+Ff/AFusB/+1wmU4UtffJUX6i1Uvk3IDUp56jzDJc2dLxkeffsH7DtLsbvLzZfusH/7NjYlbK5xzjGsN5w8eMz7J2f8/HLJixWgYaYi/97PfpEf/u63CKs1ZmvJOk+88jNfYOfFl0mF+bAzo8HkOd57nE3c3d3h5memvP+9s493dIUQQgghhBDiT/CnDmWQ6JqBP3zvAdWLPS/FCQd3P0sfAzo4ShfJtWaLnL/z7/156rzmv/unv4WzDkgUheHlvV02Zw3drKScTsjykqIu2Soq6qpkNB1z/1vfZXR0wvbODUw1JdUlfZYgJeL2LvPpAfff/CG/97Xv89LOnCp4vMl4YB2v/eyXufHCC+zs71POxljfY30iDx5dFAQUm6FH5YmpnrFfb3Hn1q6EMiGEEEIIIcRz92OEskunZxt+F0d8eZ/teIvN6oREII5qnDMknah04i997g3i0PNPfu8P6BvLaFQwzjV+6IjdBp0ZYoiU9Zh6tIvJRuTFhC9Ntrj/7T/i+MF7bO0foP2MVGTkKNqmw2QFN27f4vT9d3j7nfvkMfLyK6/yZ37xl6jqEfV0DEWJLieMt25QlDkprnHdCt1viEkTg8LZDl0EPnd7n99WbyMNGIUQQgghhBDP048dygBOzh2/HY9xwJdYsB/v4vwumanReU50LTvzmr/xlV9gNhnza//kt9maT9BuwIeOrKgIXYMm4o3BFCWj6Q62HONMyWt/pub8rXd5+OZ7VIMjVgV9Uux+5jVGNz9Lf7Eg1yWsFhzee5/t/ZuQMrTKIRjikGguWvLeE+ox5bikHO+hZ1v4bkkIHW7oKDLDZ2/uoY0iekllQgghhBBCiOfnJwplpMhiYfm9dw7xvuVLXrEXoDRjUgxsbc1QMWN/POff/ewbLH9pybcfvUu3XFBqS5YS0bZEN8YNLaFrGM92yaoJKZsQdGD/c6+zu7/P93//m4RNQ6wrkh5R5mMmeyPmXy44vvcWMfRY16KVxxQaihxd1OTTEdl0TF5kmMwQfE+IA7oaMa0n5CYw2DV7exXFKKNfuY9paIUQQgghhBDiT/aThbIPrTaB33+0IvKAN1xinEaMzIgMmM7m+BCYkfPVl+4wtIesj49ouoGtW3eoptsU3ZRyMiHlDfQDxWhO8BFjDJ3PMCbjtZ/5Am/+/rewmwa7PCNt3aCazCgnc6pX3qC7OMaGHl3nhFyTlwXo7PLP4HHDQBrlFJOSqiiIoceHllgo8umIrdGI8TinXwX4SEdfCyGEEEIIIcRP7mMJZURYnUe+rk/Q0XLHz9id7DPf3WMzDFQ6EqNnpgu+Mr7Bu2+/idY9hx/c4+Cmxc4H3GAJo5rgAqFt0CbHZwWdD2iXqJLm5iuf4d1332H99DHjvCbfOcCgmYynbO3fYXn0DiEGnHNoP6DzHNt3lFWFKTIynZGcY/CWvEyUoxKFIzrLdlVx8MKM86e9lJUJIYQQQgghnpuPJZSldPljeeb5VnVBNYnsbt2h156874jRQrCE4NjZ3mVresDi9BHWbjhsHrB1u6MZLZhOtqnGLaGaUOQlKSWUMTQhMGhPKCNZpvDrJYt7H1C0LVldsWlygu6oRyNMVWOqGmU0GksKiWGIGEqSUYyLmsl0gko9Q3tGPdJYEykKz+39CW+qI2n2IYQQQgghhHhuPp6VMhKgIGjOnyS+/3JiN23IhzVGKWKeQ3BEm0jk7L14h27VYtfHLNuOaI+Z7I1JnaVvGuxoi1FZoqNDJYWLhi6DECzVbMrq6IK6GnFyeJ96f0573nH09rv84lf/DJQ1uhoRsoyoM5TOQSlCDERn0RvIfKSqI/VoiksNNkJhJty9sYvS75KCQpKZEEIIIYQQ4nn4mEIZQCKRCF5z/+Ga70zuU/lEMXsBrytMUngfCMOAiYnXf/kXabqeez/8PsujQ9xTx7R3+HmD6xsGU1ApDarAZhk+eXINKo94v+Hk4X0yEv7djk3XsnfrJqouSEkRfCLLNCFGiB6fDCgwHgKeRE/QBrShqisyE7Ddils3tzCZwYfw8Q2LEEIIIYQQQvxbfIyh7EcSvoe3H6zYyo7IVc64mJJR4nqPdpbZ3oz53ZfYLSvKrW0efOdrHL7/kOXRivJCkY1b/HjEkGckVaDyAp0FlMkp5ltM91/k+2++xYkbsAk08Jfm24SUwFqSyUgqQykYhoEe0KEgixXK5ISyIOaGbmjIc01ZaDKtuTWuMdrgichKmRBCCCGEEOJ5eCahDBLNIvL9w3O2g+KgOCCPOWnwbN06YOuFV6inW2DgYH+XcOczuLMLzk4vcK3B9w2qGcinFTHLSUphMkVRzdj63OfYfnkfUxzwO9/+lzxwDbeyit2DfVRRknQiEMA7olIkrdF5gQ2K4DyxGQjOECYVW/MMrxU6BZJSbM3HTCYFtrMSyYQQQgghhBDPxTMIZR+KitMTy1v1BVmdqAfF9vyAg8/cJZ9MqPOcpAKxGjHd2WN+sMdquaZ3kRQTtrPUCYrKk4xCG4NPA24ITOqcz7z+BRhW6De/ze5sxM7eDllRkJU5pi4JCrwdaHqH04qQF6gip9I5pSnph56T04HoR9zYmxKzmlGZs7VdcXayeWbDIoQQQgghhBB/nH5W/+NEIvTw/mHPQ7vAlTC/tUeWFeQxogPkMaH7wEiXbE23mIzHBCAqxQJ4YAOuc2Q2XC7AhUR/ek53cQK+4/bdF/nyC3d5cWuLvMhBKzygjCEra+r5PtVsB1OW5EqjbST2njh4ilHJfGtGZgzWW8igzjNu352BfmbDIoQQQgghhBD/P57dShkAiXaduNc6bk0VqcxxboPXCpc8Gg22h2DRmSEzhhpwKFRKrFLgyCXuArXR5HlB//AhfYgwn2HcwK2dOT61gCdGR0oZvmtIvSOYgswo6jLHofExklxLs1wytGDHmv3tLcrtA0KakCXF7Re30AainB8thBBCCCGEeA6ecSgDEpycJB7fsNz1G8qVpqgde3dfomsjttvQr87YHB8S+o69WUUTA0NrKSJ0KnJiFS8aQz2p8CFinx6iuw5Fjw8drlCgM5IygEJr/WFNWMBaT9/0dK5HFZrJpGY+32Y6ysizSDcsOT5cU401hYq8sL2FNPkQQgghhBBCPC/PPpQBroMPjhs+MztkXDlef/l1hpCzOn3M6YP3WT68z639Pb74lS/T+o7jpw/ZOjths3GcLTraIXDULTHLxO7BLkNose0Fqix4uGqYjWekEEAZoimIygDQ9i197/DOkTKHG3pau4TlU1qT2Lqxz+3PvEA1rlDugiEueWl3TD3KaZb2eQyNEEIIIYQQ4lPuuYQylRJnpwNvzk/5hV/+GZyFYXPExQc/ZGIUX/mbfws9m9IOPfPmgvnenLvRs1ouOX74iPPHp5ycrjhvFriHDWWZY72nD5Hee7ZfyVHGk0KHchkmM8QEOkZKbVBljg8tdnlG1Ak1rRnPd9Ex8P4ffZM7L73I7gsHJDvlYNawuzOlWZ49j6ERQgghhBBCfMo9n1BGImwCh6eRNsvoVmesnhzyyue/yIuvfRlbVfh+g2ka1HTCXFmch92DNTdu3WV5esrx4RNc59g8OadZrdHGMBlVjPKc22+8SohQkKEAryJkGUU2ouktMSYMUyZ7FRmelDqWyw1aVezefpG+b3j07ve4ffMW83rMC7fnPPjgHNnGKIQQQgghhHjWnkso+1HPjOWi49H5KXvZFq/87JcZ33yRTVIUKZGPpxTjMVkGIQZIAWd7/DCwd2PDnTc+j1I53aZlWG8Yhp5RPeNisyIoj3UDmoFC1RgMISp8CCgN+HR5bpm3BA1ZVuKsZb1ecXBjhk2K2zfv0PQXGGd5+e42X/uX90kpPI/hEUIIIYQQQnyKPZdQ9iO+97z76JAvfeGAdeeJpwvKukaNR2S6IK9qkkpoHTFGYYoCKs9oVBOcA50xbAVCCDjvSWimXccHb7/JuKrww4AxDcloVDlCGUPse2zX45wnpkjKFChNOakhtDx59IhXXnmRbuWY7+zRtWe8eGuLrEi44XmOjhBCCCGEEOLT6LmGshQTP3j3CT9zew/rPPuhZx7mYCJJTTHakGUZ5AqMQSsDyWFUJNcGMGQKUp6IKuG8w2q49eIt7r/5TeZbN0gYQkgk68FkZEpB8vjQX15DMqSoiORko5ppndFuWva2poR+QGnD7Z0JWZ7hBmn2IYQQQgghhHi2nmsoiyROz1d87dF7ZHcceaZAR6LJgBzlI6quMKbEuUCuMnTKUHpMLBIahcFCSgQSJjPkKkfvK2y75viDD8g3DeVkhh+NCCkHnVOVJTEEfIholVMWOZkJhGCxnWNvvk9Ummoyxm8cN2cjtrdruo2EMiGEEEIIIcSz9VxDGUB0iu/+4JjxuGCUT4hZRdIlqJw4HpMyjY6OPMvwOpEVNeQZIXh08BidiNZhjCGqhEIxLre4e/dn2Zkf8OTemwznJxRxm9H8Br6oyVTEmJx+aAnJo3RkMppTFVC4gRQ0eTXCx0SRF0zKjL29MU8frp/38AghhBBCCCE+ZZ57KIPIsIx8981jbo5n6HKE1jlB5wQFLnjyPCfPcrIskidN8o4ig6AiWikUl3Vh0SiU1mRaY/Kc8ahie7bDsFlx+OQRfbciVwFdjDDjEVWVE4O73MoYIlU1phzVmDyhjCfLCoLOqHzFCzfnfE8dP//hEUIIIYQQQnyqXEEou7Q67vnW06eMyxqVDMHkRKMZO0dZ15RZYJQnXPCozODLErQiWU8WE8mDySuiBoocRUKnwKiaUu8Eyt2bnB8+YnF6RLSWlOcQC5K2lLlHuwZvDcVkRMpB64ysLCBaTKN5/dWb/DPz1lUNjxBCCCGEEOJT4spCWXCJez88Z55XcBCJ0RAjRJMTgmMwGl/klFmFNgXRB7I8QylN8AGlI8lF0JpoIzrL8EmRZYasLimqEfumpp5ssViesu5ahuAJ3pGUJS8L4uCwuqPUJdEpsBGloMwKXr+zzWhcXtXwCCGEEEIIIT4lriyUJRJ2HfjBW4fozAOGgMfnEwbnyY0m1iXkHmNKiJFUlviYMAmMMRj6y7b3MZGSJqWIzQzJOZJKmExR1AV1nOIUhGGg63pi0DjnMUVBcB5nFV2byCnJRxmmqHlhZ8Lt25OrGh4hhBBCCCHEp8SVhTJQkBLtWeSH75xQvBqIIRBGNxl6yygvIAZs5sh0xihMKG2FQZNpAwnqzKGLggCkEIFI0op+vcRoRZFDoQyj8YRoNGGzoQ0W5wZ661HZwCgvsS4xOIVVFTFqki6o8zFf/OKdqxseIYQQQgghxKfCFYaydPkzRVZH8FZ5QZ4yGCKunhCqCTEGsqTIlSZ4i6sqtCrIlSFTmmQK9FCisxxlEkpFQozgAj4GQqbAZIQMcp1RlQWZK2j9gAoJYwfSZmA0HdEOCr1qqMeGrEhsXMtp31zd8AghhBBCCCE+Fa4wlP2IIgU4fej4QVoQb0Ze6LcJ08BgHNpFCpMRw0BXlJR5fdmZURlCNcI4i9YGbRR5rgkxEFIkhYgZAip5ok6EMkPlhno6pnUDrm/QPpEVJc56lPKgAsFkJJ/42v0jvvP7j696cIQQQgghhBA/5a5BKIuXPz0cPe5IKRC2OyyOKWO085R5RUiWUVZSFxV5XlFl+WXwygqM1pAUpshRRgOeYFuS7Yg6okYlWShIKiMjkuEZgDIrsT6ijIUcYh/YeMXXHx3za7/+B6xO2isdGSGEEEIIIcRPv2sQyv4Ypzl5anHW09qB3axkTM1sug2doaenSCvKrGA2n+F8Is9LtNaYLCN5RZ7lKBykHq89yhRE6zEhYYwl6cB4XBKVou87YgaYjKGD1q75ne+/z2//4TsszxrSh1sshRBCCCGEEOJZuVahLBHBwuIo0Q89d0aO3ZEnVBk2OooQyV1ke7KHKjNcCBR9htIZSWmSAa0VVZkzqktClpOUJzhHtJGynjCZ74CO9O6Cvo90NrFxgZPNhj/44T2+8733GForgUwIIYQQQgjxXFyrUAYftv+IifYc7neJNjk6d8T+eEwVFdOios4c2B5nPbn3RBIaTdSJcjoipAqbBnSeoVDY6BhNJ1BW9M6DVmRVTmgVi8bx5GLN73/nh9y//5gY41UPgRBCCCGEEOJT5NqFsj9u6BNPjx3rCvq4YjvX6Fph7JKZAp80arg8k6wscvJiTDO09L4ndwVJK0JKzPf2ifmI3lmyGFFZRtN7LvrAD5+e8C//8DtcnK9BVseEEEIIIYQQz9m1DmWkRHCwdOA0+FnAtC3Be4LzlEVGkRUUpiRGT7s+R6mSlCJ5ocjrEaPdWziVE22LUgFjFX00PFwu+Na7H/CNb/2AobNXfadCCCGEEEKIT6nrHcr+mHYDjwzEYsB6R0JR64p5DbHvCZ0n+pYwRFRWUO/uMt8/wOcG32/QgwalcCHxcNPw21//Lg8fPCH4cNW3JoQQQgghhPgU+8SEMkLCLuHYaPJZZBx6VAK16VDNQBwiBMiqmtH2FDOd0rtIbDconSBpVv3Ag7Mlf/D9dzg/X0GU7YpCCCGEEEKIq/XJCWVADNCcR04zTVFY1BAIHaQ+MR6NqWczqmoKRtH7Hr1ReF+ijOK0DXzjnfs8eHyMHdxV34oQQgghhBBCAJ+wUAaQguJimcgr0C6xFWH79j6zvduYoAltQ7AbfHJQzOkMPDlu+M7bj1gsGlKS7opCCCGEEEKI6+MTF8ogEVrN4lxRHSR2ZyPUbIxXgRh6HA4XIyvvOV2e8ej4EadnLSFIGBNCCCGEEEJcP5/AUAaQsJvIxdRwMUsU6wXae2KqWKwtjw+XPF12NK0nRYW0uhdCCCGEEEJcVyql9JESi1LqWV/Ln5ouNDs3NHszQ5lNOL9IPH1yQXCRhEKRfuI49hGHRwghhBBCCCF+LJ/oUAagcsgKTRgSKSY+7pIxCWVCCCGEEEKIZ+kTH8qeNQllQgghhBBCiGfpI9eUSTgRQgghhBBCiI+fvuoLEEIIIYQQQohPMwllQgghhBBCCHGFJJQJIYQQQgghxBWSUCaEEEIIIYQQV0hCmRBCCCGEEEJcIQllQgghhBBCCHGFJJQJIYQQQgghxBWSUCaEEEIIIYQQV0hCmRBCCCGEEEJcof8vEBEAuJDx4NUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set the size of the drawing\n", + "plt.figure(figsize=(10, 10))\n", + "\n", + "# Loop through each subfolder\n", + "for i, folder in enumerate(class_folders):\n", + " path = os.path.join(train_path, folder)\n", + " \n", + " # Set subplot index\n", + " plt.subplot(10, 5, i+1)\n", + " \n", + " # Loop through each file in the directory\n", + " for j, img in enumerate(os.listdir(path)):\n", + " # Make sure to display only a single image per folder\n", + " if j >= 1:\n", + " break\n", + " \n", + " img_array = cv2.imread(os.path.join(path,img))\n", + " \n", + " # Show image\n", + " plt.imshow(cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB))\n", + " plt.title(folder)\n", + " plt.axis('off')\n", + "\n", + "# Set space between rows and columns\n", + "plt.subplots_adjust(hspace=5, wspace=0.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "81f9fbda", + "metadata": { + "papermill": { + "duration": 0.018024, + "end_time": "2024-05-09T15:42:55.911415", + "exception": false, + "start_time": "2024-05-09T15:42:55.893391", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# **2. Create training and validation datasets**" + ] + }, + { + "cell_type": "markdown", + "id": "1820c9eb", + "metadata": { + "papermill": { + "duration": 0.017835, + "end_time": "2024-05-09T15:42:55.947077", + "exception": false, + "start_time": "2024-05-09T15:42:55.929242", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

2. Create training and validation datasets

" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9dc2c5bb", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:42:55.984338Z", + "iopub.status.busy": "2024-05-09T15:42:55.984054Z", + "iopub.status.idle": "2024-05-09T15:43:14.959062Z", + "shell.execute_reply": "2024-05-09T15:43:14.958273Z" + }, + "papermill": { + "duration": 18.996339, + "end_time": "2024-05-09T15:43:14.961370", + "exception": false, + "start_time": "2024-05-09T15:42:55.965031", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-09 15:42:59.535726: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "2024-05-09 15:42:59.535839: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "2024-05-09 15:42:59.807956: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" + ] + } + ], + "source": [ + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f9d68453", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:14.999759Z", + "iopub.status.busy": "2024-05-09T15:43:14.999207Z", + "iopub.status.idle": "2024-05-09T15:43:15.005050Z", + "shell.execute_reply": "2024-05-09T15:43:15.004225Z" + }, + "papermill": { + "duration": 0.026807, + "end_time": "2024-05-09T15:43:15.006955", + "exception": false, + "start_time": "2024-05-09T15:43:14.980148", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "train_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,\n", + " rotation_range=10,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " shear_range=0.15,\n", + " zoom_range=0.15,\n", + " horizontal_flip=False,\n", + " vertical_flip=False,\n", + " fill_mode='nearest',\n", + " validation_split=0.2,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "51632943", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:15.044118Z", + "iopub.status.busy": "2024-05-09T15:43:15.043871Z", + "iopub.status.idle": "2024-05-09T15:43:15.177452Z", + "shell.execute_reply": "2024-05-09T15:43:15.176653Z" + }, + "papermill": { + "duration": 0.154401, + "end_time": "2024-05-09T15:43:15.179417", + "exception": false, + "start_time": "2024-05-09T15:43:15.025016", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 2012 images belonging to 36 classes.\n", + "Found 503 images belonging to 36 classes.\n" + ] + } + ], + "source": [ + "train_images = train_generator.flow_from_directory(train_path,\n", + " target_size=(150, 150),\n", + " class_mode='categorical',\n", + " batch_size=32,\n", + " subset='training',\n", + " )\n", + "\n", + "val_images = train_generator.flow_from_directory(train_path,\n", + " target_size=(150,150),\n", + " class_mode='categorical',\n", + " batch_size=32,\n", + " subset='validation',\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "f0557cbe", + "metadata": { + "papermill": { + "duration": 0.018122, + "end_time": "2024-05-09T15:43:15.216089", + "exception": false, + "start_time": "2024-05-09T15:43:15.197967", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# **3. Build InceptionV3 Model**" + ] + }, + { + "cell_type": "markdown", + "id": "311e6018", + "metadata": { + "papermill": { + "duration": 0.018452, + "end_time": "2024-05-09T15:43:15.253156", + "exception": false, + "start_time": "2024-05-09T15:43:15.234704", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

3. Build InceptionV3 Model

" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f9212931", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:15.291299Z", + "iopub.status.busy": "2024-05-09T15:43:15.290512Z", + "iopub.status.idle": "2024-05-09T15:43:15.299855Z", + "shell.execute_reply": "2024-05-09T15:43:15.299001Z" + }, + "papermill": { + "duration": 0.030614, + "end_time": "2024-05-09T15:43:15.301962", + "exception": false, + "start_time": "2024-05-09T15:43:15.271348", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Model, Sequential" + ] + }, + { + "cell_type": "markdown", + "id": "e9ed6145", + "metadata": { + "papermill": { + "duration": 0.018032, + "end_time": "2024-05-09T15:43:15.338279", + "exception": false, + "start_time": "2024-05-09T15:43:15.320247", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

3.1. Use transfer learning

" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "12c9781b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:15.376098Z", + "iopub.status.busy": "2024-05-09T15:43:15.375356Z", + "iopub.status.idle": "2024-05-09T15:43:19.100174Z", + "shell.execute_reply": "2024-05-09T15:43:19.099329Z" + }, + "papermill": { + "duration": 3.746223, + "end_time": "2024-05-09T15:43:19.102610", + "exception": false, + "start_time": "2024-05-09T15:43:15.356387", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "\u001b[1m87910968/87910968\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 0us/step\n" + ] + } + ], + "source": [ + "# Load the pre-trained model\n", + "pre_trained_model_InceptionV3 = tf.keras.applications.InceptionV3(\n", + " include_top=False,\n", + " pooling='avg',\n", + " weights=\"imagenet\",\n", + " input_shape=(150,150,3),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "ae2bd490", + "metadata": { + "papermill": { + "duration": 0.019105, + "end_time": "2024-05-09T15:43:19.141280", + "exception": false, + "start_time": "2024-05-09T15:43:19.122175", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "### **Note : You can run this line of code to get the corresponding final layer to build the model**" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "053e1ff5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:19.220807Z", + "iopub.status.busy": "2024-05-09T15:43:19.220442Z", + "iopub.status.idle": "2024-05-09T15:43:19.224606Z", + "shell.execute_reply": "2024-05-09T15:43:19.223722Z" + }, + "papermill": { + "duration": 0.064619, + "end_time": "2024-05-09T15:43:19.226568", + "exception": false, + "start_time": "2024-05-09T15:43:19.161949", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# pre_trained_model_InceptionV3.summary()" + ] + }, + { + "cell_type": "markdown", + "id": "41a3b4bb", + "metadata": { + "papermill": { + "duration": 0.019675, + "end_time": "2024-05-09T15:43:19.265566", + "exception": false, + "start_time": "2024-05-09T15:43:19.245891", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

3.2. Use Warm up and Fine tuning technique

" + ] + }, + { + "cell_type": "markdown", + "id": "fd35101b", + "metadata": { + "papermill": { + "duration": 0.020238, + "end_time": "2024-05-09T15:43:19.306159", + "exception": false, + "start_time": "2024-05-09T15:43:19.285921", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "* **Note :** \n", + "* If you want to achieve fast convergence efficiency, you will use Warm up\n", + "* To increase accuracy we use Fine turning technique" + ] + }, + { + "cell_type": "markdown", + "id": "c2fee6fd", + "metadata": { + "papermill": { + "duration": 0.020221, + "end_time": "2024-05-09T15:43:19.346807", + "exception": false, + "start_time": "2024-05-09T15:43:19.326586", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

Warm up technique

" + ] + }, + { + "cell_type": "markdown", + "id": "4185198d", + "metadata": { + "papermill": { + "duration": 0.019666, + "end_time": "2024-05-09T15:43:19.386692", + "exception": false, + "start_time": "2024-05-09T15:43:19.367026", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "* Warm up is a necessary process for the model to converge faster. The Warm up process freezes the CNN layers so that their coefficients do not change and retrains only on the last Fully Connected Layers. The purpose of Warm up is to retain the high-level features learned from the pre-trained model, which is good because they are trained on a larger and more accurate data set. Higher accuracy than random coefficient initialization.*" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "9aa19f19", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:19.426557Z", + "iopub.status.busy": "2024-05-09T15:43:19.426234Z", + "iopub.status.idle": "2024-05-09T15:43:19.430076Z", + "shell.execute_reply": "2024-05-09T15:43:19.429251Z" + }, + "papermill": { + "duration": 0.026075, + "end_time": "2024-05-09T15:43:19.431966", + "exception": false, + "start_time": "2024-05-09T15:43:19.405891", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# for layer in pre_trained_model_InceptionV3.layers:\n", + "# layer.trainable = False" + ] + }, + { + "cell_type": "markdown", + "id": "82cf9dd7", + "metadata": { + "papermill": { + "duration": 0.019036, + "end_time": "2024-05-09T15:43:19.469859", + "exception": false, + "start_time": "2024-05-09T15:43:19.450823", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

Fine tuning technique

" + ] + }, + { + "cell_type": "markdown", + "id": "0f14cfa4", + "metadata": { + "papermill": { + "duration": 0.018973, + "end_time": "2024-05-09T15:43:19.508006", + "exception": false, + "start_time": "2024-05-09T15:43:19.489033", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "* The main purpose of warming up the model is for the model to converge faster to the global optimal value.\n", + "\n", + "* After the model reaches the optimal threshold on Fully Connected Layers, it will be difficult for us to increase the accuracy further.\n", + "\n", + "* Now we will need to unfreeze the layers of the base network and train the model on all the layers from the pretrained-model. This process is called fine tuning." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0a115f94", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:19.548207Z", + "iopub.status.busy": "2024-05-09T15:43:19.547490Z", + "iopub.status.idle": "2024-05-09T15:43:19.554312Z", + "shell.execute_reply": "2024-05-09T15:43:19.553365Z" + }, + "papermill": { + "duration": 0.028867, + "end_time": "2024-05-09T15:43:19.556214", + "exception": false, + "start_time": "2024-05-09T15:43:19.527347", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "for layer in pre_trained_model_InceptionV3.layers:\n", + " layer.trainable = True" + ] + }, + { + "cell_type": "markdown", + "id": "d92f0820", + "metadata": { + "papermill": { + "duration": 0.018958, + "end_time": "2024-05-09T15:43:19.594445", + "exception": false, + "start_time": "2024-05-09T15:43:19.575487", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "* You can choose arbitrarily as long as it has enough characteristics and can improve performance\n", + "* Here I am using mixed7 class" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "8c4e3cce", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:19.633797Z", + "iopub.status.busy": "2024-05-09T15:43:19.633268Z", + "iopub.status.idle": "2024-05-09T15:43:19.638503Z", + "shell.execute_reply": "2024-05-09T15:43:19.637842Z" + }, + "papermill": { + "duration": 0.026958, + "end_time": "2024-05-09T15:43:19.640305", + "exception": false, + "start_time": "2024-05-09T15:43:19.613347", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "last_layer_InceptionV3 = pre_trained_model_InceptionV3.get_layer('mixed7')\n", + "last_output_InceptionV3 = last_layer_InceptionV3.output" + ] + }, + { + "cell_type": "markdown", + "id": "1e4ed34d", + "metadata": { + "papermill": { + "duration": 0.018961, + "end_time": "2024-05-09T15:43:19.678367", + "exception": false, + "start_time": "2024-05-09T15:43:19.659406", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

3.3. InceptionV3 training

" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "7a380778", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:19.718804Z", + "iopub.status.busy": "2024-05-09T15:43:19.718123Z", + "iopub.status.idle": "2024-05-09T15:43:20.135473Z", + "shell.execute_reply": "2024-05-09T15:43:20.134754Z" + }, + "papermill": { + "duration": 0.439824, + "end_time": "2024-05-09T15:43:20.137692", + "exception": false, + "start_time": "2024-05-09T15:43:19.697868", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from tensorflow.keras import layers\n", + "from sklearn.metrics import confusion_matrix\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense,BatchNormalization,Flatten,Conv2D,MaxPool2D,Dropout,Activation\n", + "from keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "78fc6de4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:20.180796Z", + "iopub.status.busy": "2024-05-09T15:43:20.180065Z", + "iopub.status.idle": "2024-05-09T15:43:20.191311Z", + "shell.execute_reply": "2024-05-09T15:43:20.190473Z" + }, + "papermill": { + "duration": 0.033964, + "end_time": "2024-05-09T15:43:20.193309", + "exception": false, + "start_time": "2024-05-09T15:43:20.159345", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "optimizer = Adam(learning_rate=0.0001, # Learning speed\n", + " beta_1=0.9, # Beta coefficient1\n", + " beta_2=0.999, # Beta coefficient2\n", + " ) " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6c463159", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:20.232791Z", + "iopub.status.busy": "2024-05-09T15:43:20.232462Z", + "iopub.status.idle": "2024-05-09T15:43:20.324189Z", + "shell.execute_reply": "2024-05-09T15:43:20.323515Z" + }, + "papermill": { + "duration": 0.113811, + "end_time": "2024-05-09T15:43:20.326121", + "exception": false, + "start_time": "2024-05-09T15:43:20.212310", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "x = layers.Flatten()(last_output_InceptionV3)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.Dense(128,activation='relu')(x)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.Dense(64,activation='relu')(x)\n", + "x = layers.BatchNormalization()(x)\n", + "output = layers.Dense(36,activation='softmax')(x)\n", + "\n", + "model_trans_InceptionV3 = Model(pre_trained_model_InceptionV3.input,output)\n", + "\n", + "model_trans_InceptionV3.compile(optimizer=optimizer,\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "859fd109", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:20.367949Z", + "iopub.status.busy": "2024-05-09T15:43:20.367667Z", + "iopub.status.idle": "2024-05-09T15:43:20.680603Z", + "shell.execute_reply": "2024-05-09T15:43:20.679597Z" + }, + "papermill": { + "duration": 0.343822, + "end_time": "2024-05-09T15:43:20.690696", + "exception": false, + "start_time": "2024-05-09T15:43:20.346874", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"functional_1\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"functional_1\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
+       "│ input_layer         │ (None, 150, 150,  │          0 │ -                 │\n",
+       "│ (InputLayer)        │ 3)                │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d (Conv2D)     │ (None, 74, 74,    │        864 │ input_layer[0][0] │\n",
+       "│                     │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalization │ (None, 74, 74,    │         96 │ conv2d[0][0]      │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation          │ (None, 74, 74,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_1 (Conv2D)   │ (None, 72, 72,    │      9,216 │ activation[0][0]  │\n",
+       "│                     │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 72, 72,    │         96 │ conv2d_1[0][0]    │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_1        │ (None, 72, 72,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_2 (Conv2D)   │ (None, 72, 72,    │     18,432 │ activation_1[0][ │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 72, 72,    │        192 │ conv2d_2[0][0]    │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_2        │ (None, 72, 72,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ max_pooling2d       │ (None, 35, 35,    │          0 │ activation_2[0][ │\n",
+       "│ (MaxPooling2D)      │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_3 (Conv2D)   │ (None, 35, 35,    │      5,120 │ max_pooling2d[0]… │\n",
+       "│                     │ 80)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 35, 35,    │        240 │ conv2d_3[0][0]    │\n",
+       "│ (BatchNormalizatio…80)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_3        │ (None, 35, 35,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 80)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_4 (Conv2D)   │ (None, 33, 33,    │    138,240 │ activation_3[0][ │\n",
+       "│                     │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 33, 33,    │        576 │ conv2d_4[0][0]    │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_4        │ (None, 33, 33,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ max_pooling2d_1     │ (None, 16, 16,    │          0 │ activation_4[0][ │\n",
+       "│ (MaxPooling2D)      │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_8 (Conv2D)   │ (None, 16, 16,    │     12,288 │ max_pooling2d_1[ │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_8[0][0]    │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_8        │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_6 (Conv2D)   │ (None, 16, 16,    │      9,216 │ max_pooling2d_1[ │\n",
+       "│                     │ 48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_9 (Conv2D)   │ (None, 16, 16,    │     55,296 │ activation_8[0][ │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        144 │ conv2d_6[0][0]    │\n",
+       "│ (BatchNormalizatio…48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_9[0][0]    │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_6        │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_9        │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d   │ (None, 16, 16,    │          0 │ max_pooling2d_1[ │\n",
+       "│ (AveragePooling2D)  │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_5 (Conv2D)   │ (None, 16, 16,    │     12,288 │ max_pooling2d_1[ │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_7 (Conv2D)   │ (None, 16, 16,    │     76,800 │ activation_6[0][ │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_10 (Conv2D)  │ (None, 16, 16,    │     82,944 │ activation_9[0][ │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_11 (Conv2D)  │ (None, 16, 16,    │      6,144 │ average_pooling2… │\n",
+       "│                     │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_5[0][0]    │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_7[0][0]    │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_10[0][0]   │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │         96 │ conv2d_11[0][0]   │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_5        │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_7        │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_10       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_11       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed0              │ (None, 16, 16,    │          0 │ activation_5[0][ │\n",
+       "│ (Concatenate)       │ 256)              │            │ activation_7[0][ │\n",
+       "│                     │                   │            │ activation_10[0]… │\n",
+       "│                     │                   │            │ activation_11[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_15 (Conv2D)  │ (None, 16, 16,    │     16,384 │ mixed0[0][0]      │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_15[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_15       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_13 (Conv2D)  │ (None, 16, 16,    │     12,288 │ mixed0[0][0]      │\n",
+       "│                     │ 48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_16 (Conv2D)  │ (None, 16, 16,    │     55,296 │ activation_15[0]… │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        144 │ conv2d_13[0][0]   │\n",
+       "│ (BatchNormalizatio…48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_16[0][0]   │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_13       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_16       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d_1 │ (None, 16, 16,    │          0 │ mixed0[0][0]      │\n",
+       "│ (AveragePooling2D)  │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_12 (Conv2D)  │ (None, 16, 16,    │     16,384 │ mixed0[0][0]      │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_14 (Conv2D)  │ (None, 16, 16,    │     76,800 │ activation_13[0]… │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_17 (Conv2D)  │ (None, 16, 16,    │     82,944 │ activation_16[0]… │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_18 (Conv2D)  │ (None, 16, 16,    │     16,384 │ average_pooling2… │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_12[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_14[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_17[0][0]   │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_18[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_12       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_14       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_17       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_18       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed1              │ (None, 16, 16,    │          0 │ activation_12[0]… │\n",
+       "│ (Concatenate)       │ 288)              │            │ activation_14[0]… │\n",
+       "│                     │                   │            │ activation_17[0]… │\n",
+       "│                     │                   │            │ activation_18[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_22 (Conv2D)  │ (None, 16, 16,    │     18,432 │ mixed1[0][0]      │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_22[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_22       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_20 (Conv2D)  │ (None, 16, 16,    │     13,824 │ mixed1[0][0]      │\n",
+       "│                     │ 48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_23 (Conv2D)  │ (None, 16, 16,    │     55,296 │ activation_22[0]… │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        144 │ conv2d_20[0][0]   │\n",
+       "│ (BatchNormalizatio…48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_23[0][0]   │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_20       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 48)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_23       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d_2 │ (None, 16, 16,    │          0 │ mixed1[0][0]      │\n",
+       "│ (AveragePooling2D)  │ 288)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_19 (Conv2D)  │ (None, 16, 16,    │     18,432 │ mixed1[0][0]      │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_21 (Conv2D)  │ (None, 16, 16,    │     76,800 │ activation_20[0]… │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_24 (Conv2D)  │ (None, 16, 16,    │     82,944 │ activation_23[0]… │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_25 (Conv2D)  │ (None, 16, 16,    │     18,432 │ average_pooling2… │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_19[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_21[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_24[0][0]   │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_25[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_19       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_21       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_24       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_25       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed2              │ (None, 16, 16,    │          0 │ activation_19[0]… │\n",
+       "│ (Concatenate)       │ 288)              │            │ activation_21[0]… │\n",
+       "│                     │                   │            │ activation_24[0]… │\n",
+       "│                     │                   │            │ activation_25[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_27 (Conv2D)  │ (None, 16, 16,    │     18,432 │ mixed2[0][0]      │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        192 │ conv2d_27[0][0]   │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_27       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_28 (Conv2D)  │ (None, 16, 16,    │     55,296 │ activation_27[0]… │\n",
+       "│                     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 16, 16,    │        288 │ conv2d_28[0][0]   │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_28       │ (None, 16, 16,    │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_26 (Conv2D)  │ (None, 7, 7, 384) │    995,328 │ mixed2[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_29 (Conv2D)  │ (None, 7, 7, 96)  │     82,944 │ activation_28[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 384) │      1,152 │ conv2d_26[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 96)  │        288 │ conv2d_29[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_26       │ (None, 7, 7, 384) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_29       │ (None, 7, 7, 96)  │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ max_pooling2d_2     │ (None, 7, 7, 288) │          0 │ mixed2[0][0]      │\n",
+       "│ (MaxPooling2D)      │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed3              │ (None, 7, 7, 768) │          0 │ activation_26[0]… │\n",
+       "│ (Concatenate)       │                   │            │ activation_29[0]… │\n",
+       "│                     │                   │            │ max_pooling2d_2[ │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_34 (Conv2D)  │ (None, 7, 7, 128) │     98,304 │ mixed3[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 128) │        384 │ conv2d_34[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_34       │ (None, 7, 7, 128) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_35 (Conv2D)  │ (None, 7, 7, 128) │    114,688 │ activation_34[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 128) │        384 │ conv2d_35[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_35       │ (None, 7, 7, 128) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_31 (Conv2D)  │ (None, 7, 7, 128) │     98,304 │ mixed3[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_36 (Conv2D)  │ (None, 7, 7, 128) │    114,688 │ activation_35[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 128) │        384 │ conv2d_31[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 128) │        384 │ conv2d_36[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_31       │ (None, 7, 7, 128) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_36       │ (None, 7, 7, 128) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_32 (Conv2D)  │ (None, 7, 7, 128) │    114,688 │ activation_31[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_37 (Conv2D)  │ (None, 7, 7, 128) │    114,688 │ activation_36[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 128) │        384 │ conv2d_32[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 128) │        384 │ conv2d_37[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_32       │ (None, 7, 7, 128) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_37       │ (None, 7, 7, 128) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d_3 │ (None, 7, 7, 768) │          0 │ mixed3[0][0]      │\n",
+       "│ (AveragePooling2D)  │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_30 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ mixed3[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_33 (Conv2D)  │ (None, 7, 7, 192) │    172,032 │ activation_32[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_38 (Conv2D)  │ (None, 7, 7, 192) │    172,032 │ activation_37[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_39 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ average_pooling2… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_30[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_33[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_38[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_39[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_30       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_33       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_38       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_39       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed4              │ (None, 7, 7, 768) │          0 │ activation_30[0]… │\n",
+       "│ (Concatenate)       │                   │            │ activation_33[0]… │\n",
+       "│                     │                   │            │ activation_38[0]… │\n",
+       "│                     │                   │            │ activation_39[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_44 (Conv2D)  │ (None, 7, 7, 160) │    122,880 │ mixed4[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_44[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_44       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_45 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_44[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_45[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_45       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_41 (Conv2D)  │ (None, 7, 7, 160) │    122,880 │ mixed4[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_46 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_45[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_41[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_46[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_41       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_46       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_42 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_41[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_47 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_46[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_42[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_47[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_42       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_47       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d_4 │ (None, 7, 7, 768) │          0 │ mixed4[0][0]      │\n",
+       "│ (AveragePooling2D)  │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_40 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ mixed4[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_43 (Conv2D)  │ (None, 7, 7, 192) │    215,040 │ activation_42[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_48 (Conv2D)  │ (None, 7, 7, 192) │    215,040 │ activation_47[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_49 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ average_pooling2… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_40[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_43[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_48[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_49[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_40       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_43       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_48       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_49       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed5              │ (None, 7, 7, 768) │          0 │ activation_40[0]… │\n",
+       "│ (Concatenate)       │                   │            │ activation_43[0]… │\n",
+       "│                     │                   │            │ activation_48[0]… │\n",
+       "│                     │                   │            │ activation_49[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_54 (Conv2D)  │ (None, 7, 7, 160) │    122,880 │ mixed5[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_54[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_54       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_55 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_54[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_55[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_55       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_51 (Conv2D)  │ (None, 7, 7, 160) │    122,880 │ mixed5[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_56 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_55[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_51[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_56[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_51       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_56       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_52 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_51[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_57 (Conv2D)  │ (None, 7, 7, 160) │    179,200 │ activation_56[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_52[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 160) │        480 │ conv2d_57[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_52       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_57       │ (None, 7, 7, 160) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d_5 │ (None, 7, 7, 768) │          0 │ mixed5[0][0]      │\n",
+       "│ (AveragePooling2D)  │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_50 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ mixed5[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_53 (Conv2D)  │ (None, 7, 7, 192) │    215,040 │ activation_52[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_58 (Conv2D)  │ (None, 7, 7, 192) │    215,040 │ activation_57[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_59 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ average_pooling2… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_50[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_53[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_58[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_59[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_50       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_53       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_58       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_59       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed6              │ (None, 7, 7, 768) │          0 │ activation_50[0]… │\n",
+       "│ (Concatenate)       │                   │            │ activation_53[0]… │\n",
+       "│                     │                   │            │ activation_58[0]… │\n",
+       "│                     │                   │            │ activation_59[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_64 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ mixed6[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_64[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_64       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_65 (Conv2D)  │ (None, 7, 7, 192) │    258,048 │ activation_64[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_65[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_65       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_61 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ mixed6[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_66 (Conv2D)  │ (None, 7, 7, 192) │    258,048 │ activation_65[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_61[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_66[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_61       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_66       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_62 (Conv2D)  │ (None, 7, 7, 192) │    258,048 │ activation_61[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_67 (Conv2D)  │ (None, 7, 7, 192) │    258,048 │ activation_66[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_62[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_67[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_62       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_67       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ average_pooling2d_6 │ (None, 7, 7, 768) │          0 │ mixed6[0][0]      │\n",
+       "│ (AveragePooling2D)  │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_60 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ mixed6[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_63 (Conv2D)  │ (None, 7, 7, 192) │    258,048 │ activation_62[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_68 (Conv2D)  │ (None, 7, 7, 192) │    258,048 │ activation_67[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2d_69 (Conv2D)  │ (None, 7, 7, 192) │    147,456 │ average_pooling2… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_60[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_63[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_68[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 7, 7, 192) │        576 │ conv2d_69[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_60       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_63       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_68       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ activation_69       │ (None, 7, 7, 192) │          0 │ batch_normalizat… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ mixed7              │ (None, 7, 7, 768) │          0 │ activation_60[0]… │\n",
+       "│ (Concatenate)       │                   │            │ activation_63[0]… │\n",
+       "│                     │                   │            │ activation_68[0]… │\n",
+       "│                     │                   │            │ activation_69[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ flatten (Flatten)   │ (None, 37632)     │          0 │ mixed7[0][0]      │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 37632)     │    150,528 │ flatten[0][0]     │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense (Dense)       │ (None, 128)       │  4,817,024 │ batch_normalizat… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 128)       │        512 │ dense[0][0]       │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense_1 (Dense)     │ (None, 64)        │      8,256 │ batch_normalizat… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 64)        │        256 │ dense_1[0][0]     │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense_2 (Dense)     │ (None, 36)        │      2,340 │ batch_normalizat… │\n",
+       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", + "│ input_layer │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m150\u001b[0m, \u001b[38;5;34m150\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ - │\n", + "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ \u001b[38;5;34m3\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m74\u001b[0m, \u001b[38;5;34m74\u001b[0m, │ \u001b[38;5;34m864\u001b[0m │ input_layer[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m74\u001b[0m, \u001b[38;5;34m74\u001b[0m, │ \u001b[38;5;34m96\u001b[0m │ conv2d[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m74\u001b[0m, \u001b[38;5;34m74\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m72\u001b[0m, \u001b[38;5;34m72\u001b[0m, │ \u001b[38;5;34m9,216\u001b[0m │ activation[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m72\u001b[0m, \u001b[38;5;34m72\u001b[0m, │ \u001b[38;5;34m96\u001b[0m │ conv2d_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m72\u001b[0m, \u001b[38;5;34m72\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m72\u001b[0m, \u001b[38;5;34m72\u001b[0m, │ \u001b[38;5;34m18,432\u001b[0m │ activation_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m72\u001b[0m, \u001b[38;5;34m72\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m72\u001b[0m, \u001b[38;5;34m72\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ max_pooling2d │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m35\u001b[0m, \u001b[38;5;34m35\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ activation_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m35\u001b[0m, \u001b[38;5;34m35\u001b[0m, │ \u001b[38;5;34m5,120\u001b[0m │ max_pooling2d[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m80\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m35\u001b[0m, \u001b[38;5;34m35\u001b[0m, │ \u001b[38;5;34m240\u001b[0m │ conv2d_3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m80\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m35\u001b[0m, \u001b[38;5;34m35\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m80\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m33\u001b[0m, \u001b[38;5;34m33\u001b[0m, │ \u001b[38;5;34m138,240\u001b[0m │ activation_3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m33\u001b[0m, \u001b[38;5;34m33\u001b[0m, │ \u001b[38;5;34m576\u001b[0m │ conv2d_4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m33\u001b[0m, \u001b[38;5;34m33\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ max_pooling2d_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ activation_4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_8 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m12,288\u001b[0m │ max_pooling2d_1[\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_8 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m9,216\u001b[0m │ max_pooling2d_1[\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_9 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ activation_8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m144\u001b[0m │ conv2d_6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_6 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_9 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ max_pooling2d_1[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m12,288\u001b[0m │ max_pooling2d_1[\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m76,800\u001b[0m │ activation_6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_10 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m82,944\u001b[0m │ activation_9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_11 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m6,144\u001b[0m │ average_pooling2… │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_10[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m96\u001b[0m │ conv2d_11[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_7 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_10 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_11 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed0 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ activation_5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ activation_7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ │ │ activation_10[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_11[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_15 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m16,384\u001b[0m │ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_15[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_15 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_13 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m12,288\u001b[0m │ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_16 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ activation_15[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m144\u001b[0m │ conv2d_13[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_16[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_13 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_16 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_12 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m16,384\u001b[0m │ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_14 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m76,800\u001b[0m │ activation_13[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_17 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m82,944\u001b[0m │ activation_16[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_18 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m16,384\u001b[0m │ average_pooling2… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_12[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_14[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_17[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_18[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_12 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_14 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_17 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_18 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ activation_12[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;34m288\u001b[0m) │ │ activation_14[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_17[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_18[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_22 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m18,432\u001b[0m │ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_22[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_22 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_20 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m13,824\u001b[0m │ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_23 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ activation_22[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m144\u001b[0m │ conv2d_20[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_23[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_20 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m48\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_23 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ \u001b[38;5;34m288\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_19 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m18,432\u001b[0m │ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_21 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m76,800\u001b[0m │ activation_20[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_24 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m82,944\u001b[0m │ activation_23[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_25 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m18,432\u001b[0m │ average_pooling2… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_19[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_21[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_24[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_25[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_19 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_21 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_24 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_25 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ activation_19[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;34m288\u001b[0m) │ │ activation_21[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_24[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_25[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_27 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m18,432\u001b[0m │ mixed2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m192\u001b[0m │ conv2d_27[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_27 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_28 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ activation_27[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ conv2d_28[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_28 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_26 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ \u001b[38;5;34m995,328\u001b[0m │ mixed2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_29 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m96\u001b[0m) │ \u001b[38;5;34m82,944\u001b[0m │ activation_28[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ \u001b[38;5;34m1,152\u001b[0m │ conv2d_26[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m96\u001b[0m) │ \u001b[38;5;34m288\u001b[0m │ conv2d_29[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_26 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_29 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m96\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ max_pooling2d_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ mixed2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ activation_26[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ │ │ activation_29[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ max_pooling2d_2[\u001b[38;5;34m…\u001b[0m │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_34 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m98,304\u001b[0m │ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m384\u001b[0m │ conv2d_34[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_34 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_35 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,688\u001b[0m │ activation_34[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m384\u001b[0m │ conv2d_35[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_35 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_31 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m98,304\u001b[0m │ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_36 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,688\u001b[0m │ activation_35[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m384\u001b[0m │ conv2d_31[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m384\u001b[0m │ conv2d_36[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_31 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_36 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_32 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,688\u001b[0m │ activation_31[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_37 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,688\u001b[0m │ activation_36[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m384\u001b[0m │ conv2d_32[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m384\u001b[0m │ conv2d_37[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_32 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_37 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_30 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_33 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m172,032\u001b[0m │ activation_32[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_38 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m172,032\u001b[0m │ activation_37[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_39 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ average_pooling2… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_30[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_33[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_38[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_39[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_30 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_33 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_38 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_39 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ activation_30[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ │ │ activation_33[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_38[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_39[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_44 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m122,880\u001b[0m │ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_44[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_44 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_45 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_44[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_45[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_45 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_41 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m122,880\u001b[0m │ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_46 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_45[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_41[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_46[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_41 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_46 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_42 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_41[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_47 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_46[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_42[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_47[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_42 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_47 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_40 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_43 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m215,040\u001b[0m │ activation_42[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_48 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m215,040\u001b[0m │ activation_47[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_49 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ average_pooling2… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_40[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_43[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_48[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_49[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_40 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_43 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_48 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_49 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ activation_40[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ │ │ activation_43[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_48[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_49[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_54 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m122,880\u001b[0m │ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_54[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_54 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_55 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_54[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_55[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_55 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_51 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m122,880\u001b[0m │ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_56 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_55[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_51[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_56[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_51 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_56 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_52 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_51[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_57 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m179,200\u001b[0m │ activation_56[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_52[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m480\u001b[0m │ conv2d_57[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_52 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_57 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_50 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_53 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m215,040\u001b[0m │ activation_52[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_58 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m215,040\u001b[0m │ activation_57[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_59 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ average_pooling2… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_50[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_53[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_58[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_59[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_50 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_53 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_58 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_59 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed6 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ activation_50[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ │ │ activation_53[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_58[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_59[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_64 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_64[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_64 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_65 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m258,048\u001b[0m │ activation_64[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_65[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_65 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_61 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_66 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m258,048\u001b[0m │ activation_65[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_61[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_66[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_61 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_66 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_62 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m258,048\u001b[0m │ activation_61[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_67 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m258,048\u001b[0m │ activation_66[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_62[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_67[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_62 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_67 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ average_pooling2d_6 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_60 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_63 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m258,048\u001b[0m │ activation_62[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_68 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m258,048\u001b[0m │ activation_67[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2d_69 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m147,456\u001b[0m │ average_pooling2… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_60[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_63[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_68[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m576\u001b[0m │ conv2d_69[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_60 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_63 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_68 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ activation_69 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ mixed7 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ activation_60[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ │ │ activation_63[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_68[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ │ │ activation_69[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m37632\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ mixed7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m37632\u001b[0m) │ \u001b[38;5;34m150,528\u001b[0m │ flatten[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m4,817,024\u001b[0m │ batch_normalizat… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ dense[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │ batch_normalizat… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ dense_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m36\u001b[0m) │ \u001b[38;5;34m2,340\u001b[0m │ batch_normalizat… │\n", + "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 13,954,180 (53.23 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m13,954,180\u001b[0m (53.23 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 13,859,716 (52.87 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m13,859,716\u001b[0m (52.87 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 94,464 (369.00 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m94,464\u001b[0m (369.00 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model_trans_InceptionV3.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "7d5554a5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:20.744250Z", + "iopub.status.busy": "2024-05-09T15:43:20.743960Z", + "iopub.status.idle": "2024-05-09T15:43:20.748859Z", + "shell.execute_reply": "2024-05-09T15:43:20.748042Z" + }, + "papermill": { + "duration": 0.033264, + "end_time": "2024-05-09T15:43:20.750779", + "exception": false, + "start_time": "2024-05-09T15:43:20.717515", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Define a Callback class that stops training once accuracy reaches 99.9%\n", + "class myCallback(tf.keras.callbacks.Callback):\n", + " def on_epoch_end(self, epoch, logs={}):\n", + " if(logs.get('accuracy')>0.99):\n", + " print(\"\\nReached 99.9% accuracy so cancelling training!\")\n", + " self.model.stop_training = True" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "04118f60", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:43:20.804471Z", + "iopub.status.busy": "2024-05-09T15:43:20.803941Z", + "iopub.status.idle": "2024-05-09T15:48:47.822198Z", + "shell.execute_reply": "2024-05-09T15:48:47.821033Z" + }, + "papermill": { + "duration": 327.04745, + "end_time": "2024-05-09T15:48:47.824243", + "exception": false, + "start_time": "2024-05-09T15:43:20.776793", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------Model is being built......................\n", + "\n", + "Epoch 1/100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.10/site-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:120: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10:35\u001b[0m 68s/step - accuracy: 0.0000e+00 - loss: 4.0365" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "I0000 00:00:1715269469.700691 90 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n", + "W0000 00:00:1715269469.792709 90 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 870ms/step - accuracy: 0.2792 - loss: 2.8087" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W0000 00:00:1715269529.342289 90 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m140s\u001b[0m 1s/step - accuracy: 0.2824 - loss: 2.7977 - val_accuracy: 0.6083 - val_loss: 2.6084\n", + "Epoch 2/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 273ms/step - accuracy: 0.8335 - loss: 1.0122 - val_accuracy: 0.8131 - val_loss: 1.7646\n", + "Epoch 3/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 268ms/step - accuracy: 0.8968 - loss: 0.6413 - val_accuracy: 0.8648 - val_loss: 1.2211\n", + "Epoch 4/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 271ms/step - accuracy: 0.9537 - loss: 0.4122 - val_accuracy: 0.9066 - val_loss: 0.7450\n", + "Epoch 5/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 266ms/step - accuracy: 0.9600 - loss: 0.3475 - val_accuracy: 0.9463 - val_loss: 0.4972\n", + "Epoch 6/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 269ms/step - accuracy: 0.9779 - loss: 0.2419 - val_accuracy: 0.9264 - val_loss: 0.4213\n", + "Epoch 7/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 270ms/step - accuracy: 0.9805 - loss: 0.2059 - val_accuracy: 0.9245 - val_loss: 0.3678\n", + "Epoch 8/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 268ms/step - accuracy: 0.9827 - loss: 0.1687 - val_accuracy: 0.9364 - val_loss: 0.3031\n", + "Epoch 9/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9838 - loss: 0.1598 - val_accuracy: 0.9304 - val_loss: 0.2861\n", + "Epoch 10/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 268ms/step - accuracy: 0.9903 - loss: 0.1213 - val_accuracy: 0.9344 - val_loss: 0.2823\n", + "Epoch 11/100\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 209ms/step - accuracy: 0.9949 - loss: 0.1028\n", + "Reached 99.9% accuracy so cancelling training!\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 265ms/step - accuracy: 0.9949 - loss: 0.1029 - val_accuracy: 0.9423 - val_loss: 0.2866\n", + "\n", + "----------------------------Model completed......................\n", + "\n" + ] + } + ], + "source": [ + "callbacks =myCallback()\n", + "\n", + "print('----------------------------Model is being built......................\\n')\n", + "history_Incep = model_trans_InceptionV3.fit(train_images,\n", + " epochs=100,\n", + " validation_data=val_images,\n", + " verbose=1,\n", + " callbacks = [callbacks]\n", + " )\n", + "print('\\n----------------------------Model completed......................\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "330360b8", + "metadata": { + "papermill": { + "duration": 0.083368, + "end_time": "2024-05-09T15:48:47.994291", + "exception": false, + "start_time": "2024-05-09T15:48:47.910923", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# **4. Build ResNet50 Model**" + ] + }, + { + "cell_type": "markdown", + "id": "772b711e", + "metadata": { + "papermill": { + "duration": 0.083559, + "end_time": "2024-05-09T15:48:48.161438", + "exception": false, + "start_time": "2024-05-09T15:48:48.077879", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

4. Build ResNet50 Model

" + ] + }, + { + "cell_type": "markdown", + "id": "43aa8e3e", + "metadata": { + "papermill": { + "duration": 0.086111, + "end_time": "2024-05-09T15:48:48.331023", + "exception": false, + "start_time": "2024-05-09T15:48:48.244912", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

4.1. Use transfer learning

" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "b5332b93", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:48.502858Z", + "iopub.status.busy": "2024-05-09T15:48:48.502141Z", + "iopub.status.idle": "2024-05-09T15:48:50.580809Z", + "shell.execute_reply": "2024-05-09T15:48:50.579648Z" + }, + "papermill": { + "duration": 2.166838, + "end_time": "2024-05-09T15:48:50.583390", + "exception": false, + "start_time": "2024-05-09T15:48:48.416552", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "\u001b[1m94765736/94765736\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 0us/step\n" + ] + } + ], + "source": [ + "pre_trained_model_ResNet50 = tf.keras.applications.ResNet50(\n", + " include_top=False,\n", + " weights=\"imagenet\",\n", + " input_shape=(150,150,3),\n", + " pooling='avg',\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "9ac1cd00", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:50.764542Z", + "iopub.status.busy": "2024-05-09T15:48:50.764193Z", + "iopub.status.idle": "2024-05-09T15:48:50.768670Z", + "shell.execute_reply": "2024-05-09T15:48:50.767712Z" + }, + "papermill": { + "duration": 0.096631, + "end_time": "2024-05-09T15:48:50.770499", + "exception": false, + "start_time": "2024-05-09T15:48:50.673868", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# pre_trained_model_ResNet50.summary()" + ] + }, + { + "cell_type": "markdown", + "id": "b967257f", + "metadata": { + "papermill": { + "duration": 0.088926, + "end_time": "2024-05-09T15:48:50.946539", + "exception": false, + "start_time": "2024-05-09T15:48:50.857613", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

4.2. Use Warm up and Fine tuning technique

" + ] + }, + { + "cell_type": "markdown", + "id": "76d57a40", + "metadata": { + "papermill": { + "duration": 0.086275, + "end_time": "2024-05-09T15:48:51.121869", + "exception": false, + "start_time": "2024-05-09T15:48:51.035594", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

Warm up

" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "fedd481c", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:51.310024Z", + "iopub.status.busy": "2024-05-09T15:48:51.309286Z", + "iopub.status.idle": "2024-05-09T15:48:51.313879Z", + "shell.execute_reply": "2024-05-09T15:48:51.312855Z" + }, + "papermill": { + "duration": 0.105593, + "end_time": "2024-05-09T15:48:51.316069", + "exception": false, + "start_time": "2024-05-09T15:48:51.210476", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# for layer in pre_trained_model_ResNet50.layers:\n", + "# layer.trainable = False" + ] + }, + { + "cell_type": "markdown", + "id": "cbd10dad", + "metadata": { + "papermill": { + "duration": 0.087018, + "end_time": "2024-05-09T15:48:51.498544", + "exception": false, + "start_time": "2024-05-09T15:48:51.411526", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

Fine tuning

" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "38d8bcf7", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:51.678699Z", + "iopub.status.busy": "2024-05-09T15:48:51.678300Z", + "iopub.status.idle": "2024-05-09T15:48:51.684522Z", + "shell.execute_reply": "2024-05-09T15:48:51.683507Z" + }, + "papermill": { + "duration": 0.100586, + "end_time": "2024-05-09T15:48:51.686774", + "exception": false, + "start_time": "2024-05-09T15:48:51.586188", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "for layer in pre_trained_model_ResNet50.layers:\n", + " layer.trainable = True" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8bf07106", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:51.864033Z", + "iopub.status.busy": "2024-05-09T15:48:51.863724Z", + "iopub.status.idle": "2024-05-09T15:48:51.868359Z", + "shell.execute_reply": "2024-05-09T15:48:51.867459Z" + }, + "papermill": { + "duration": 0.091847, + "end_time": "2024-05-09T15:48:51.870199", + "exception": false, + "start_time": "2024-05-09T15:48:51.778352", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "last_layer_ResNet50 = pre_trained_model_ResNet50.get_layer('conv5_block1_out')\n", + "last_output_ResNet50 = last_layer_ResNet50.output" + ] + }, + { + "cell_type": "markdown", + "id": "bff90d52", + "metadata": { + "papermill": { + "duration": 0.086455, + "end_time": "2024-05-09T15:48:52.042580", + "exception": false, + "start_time": "2024-05-09T15:48:51.956125", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

4.3. ResNet50 training

" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "7f383fd3", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:52.222734Z", + "iopub.status.busy": "2024-05-09T15:48:52.222353Z", + "iopub.status.idle": "2024-05-09T15:48:52.314242Z", + "shell.execute_reply": "2024-05-09T15:48:52.313438Z" + }, + "papermill": { + "duration": 0.185787, + "end_time": "2024-05-09T15:48:52.316592", + "exception": false, + "start_time": "2024-05-09T15:48:52.130805", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "x = layers.Flatten()(last_output_ResNet50)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.Dense(128,activation='relu')(x)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.Dropout(0.4)(x)\n", + "x = layers.Dense(64,activation='relu')(x)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.Dropout(0.4)(x)\n", + "output = layers.Dense(36,activation='softmax')(x)\n", + "\n", + "model_trans_ResNet50 = Model(pre_trained_model_ResNet50.input,output)\n", + "\n", + "model_trans_ResNet50.compile(optimizer=Adam(learning_rate=0.00001,beta_1=0.9,beta_2=0.999),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "1923e7d4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:52.492429Z", + "iopub.status.busy": "2024-05-09T15:48:52.492099Z", + "iopub.status.idle": "2024-05-09T15:48:52.715859Z", + "shell.execute_reply": "2024-05-09T15:48:52.714897Z" + }, + "papermill": { + "duration": 0.317206, + "end_time": "2024-05-09T15:48:52.722944", + "exception": false, + "start_time": "2024-05-09T15:48:52.405738", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"functional_3\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"functional_3\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
+       "│ input_layer_1       │ (None, 150, 150,  │          0 │ -                 │\n",
+       "│ (InputLayer)        │ 3)                │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv1_pad           │ (None, 156, 156,  │          0 │ input_layer_1[0]… │\n",
+       "│ (ZeroPadding2D)     │ 3)                │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv1_conv (Conv2D) │ (None, 75, 75,    │      9,472 │ conv1_pad[0][0]   │\n",
+       "│                     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv1_bn            │ (None, 75, 75,    │        256 │ conv1_conv[0][0]  │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv1_relu          │ (None, 75, 75,    │          0 │ conv1_bn[0][0]    │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ pool1_pad           │ (None, 77, 77,    │          0 │ conv1_relu[0][0]  │\n",
+       "│ (ZeroPadding2D)     │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ pool1_pool          │ (None, 38, 38,    │          0 │ pool1_pad[0][0]   │\n",
+       "│ (MaxPooling2D)      │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_1_conv │ (None, 38, 38,    │      4,160 │ pool1_pool[0][0]  │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_1_bn   │ (None, 38, 38,    │        256 │ conv2_block1_1_c… │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_1_relu │ (None, 38, 38,    │          0 │ conv2_block1_1_b… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_2_conv │ (None, 38, 38,    │     36,928 │ conv2_block1_1_r… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_2_bn   │ (None, 38, 38,    │        256 │ conv2_block1_2_c… │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_2_relu │ (None, 38, 38,    │          0 │ conv2_block1_2_b… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_0_conv │ (None, 38, 38,    │     16,640 │ pool1_pool[0][0]  │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_3_conv │ (None, 38, 38,    │     16,640 │ conv2_block1_2_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_0_bn   │ (None, 38, 38,    │      1,024 │ conv2_block1_0_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_3_bn   │ (None, 38, 38,    │      1,024 │ conv2_block1_3_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_add    │ (None, 38, 38,    │          0 │ conv2_block1_0_b… │\n",
+       "│ (Add)               │ 256)              │            │ conv2_block1_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block1_out    │ (None, 38, 38,    │          0 │ conv2_block1_add… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_1_conv │ (None, 38, 38,    │     16,448 │ conv2_block1_out… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_1_bn   │ (None, 38, 38,    │        256 │ conv2_block2_1_c… │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_1_relu │ (None, 38, 38,    │          0 │ conv2_block2_1_b… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_2_conv │ (None, 38, 38,    │     36,928 │ conv2_block2_1_r… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_2_bn   │ (None, 38, 38,    │        256 │ conv2_block2_2_c… │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_2_relu │ (None, 38, 38,    │          0 │ conv2_block2_2_b… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_3_conv │ (None, 38, 38,    │     16,640 │ conv2_block2_2_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_3_bn   │ (None, 38, 38,    │      1,024 │ conv2_block2_3_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_add    │ (None, 38, 38,    │          0 │ conv2_block1_out… │\n",
+       "│ (Add)               │ 256)              │            │ conv2_block2_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block2_out    │ (None, 38, 38,    │          0 │ conv2_block2_add… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_1_conv │ (None, 38, 38,    │     16,448 │ conv2_block2_out… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_1_bn   │ (None, 38, 38,    │        256 │ conv2_block3_1_c… │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_1_relu │ (None, 38, 38,    │          0 │ conv2_block3_1_b… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_2_conv │ (None, 38, 38,    │     36,928 │ conv2_block3_1_r… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_2_bn   │ (None, 38, 38,    │        256 │ conv2_block3_2_c… │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_2_relu │ (None, 38, 38,    │          0 │ conv2_block3_2_b… │\n",
+       "│ (Activation)        │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_3_conv │ (None, 38, 38,    │     16,640 │ conv2_block3_2_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_3_bn   │ (None, 38, 38,    │      1,024 │ conv2_block3_3_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_add    │ (None, 38, 38,    │          0 │ conv2_block2_out… │\n",
+       "│ (Add)               │ 256)              │            │ conv2_block3_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv2_block3_out    │ (None, 38, 38,    │          0 │ conv2_block3_add… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_1_conv │ (None, 19, 19,    │     32,896 │ conv2_block3_out… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_1_bn   │ (None, 19, 19,    │        512 │ conv3_block1_1_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_1_relu │ (None, 19, 19,    │          0 │ conv3_block1_1_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_2_conv │ (None, 19, 19,    │    147,584 │ conv3_block1_1_r… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_2_bn   │ (None, 19, 19,    │        512 │ conv3_block1_2_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_2_relu │ (None, 19, 19,    │          0 │ conv3_block1_2_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_0_conv │ (None, 19, 19,    │    131,584 │ conv2_block3_out… │\n",
+       "│ (Conv2D)            │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_3_conv │ (None, 19, 19,    │     66,048 │ conv3_block1_2_r… │\n",
+       "│ (Conv2D)            │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_0_bn   │ (None, 19, 19,    │      2,048 │ conv3_block1_0_c… │\n",
+       "│ (BatchNormalizatio…512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_3_bn   │ (None, 19, 19,    │      2,048 │ conv3_block1_3_c… │\n",
+       "│ (BatchNormalizatio…512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_add    │ (None, 19, 19,    │          0 │ conv3_block1_0_b… │\n",
+       "│ (Add)               │ 512)              │            │ conv3_block1_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block1_out    │ (None, 19, 19,    │          0 │ conv3_block1_add… │\n",
+       "│ (Activation)        │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_1_conv │ (None, 19, 19,    │     65,664 │ conv3_block1_out… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_1_bn   │ (None, 19, 19,    │        512 │ conv3_block2_1_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_1_relu │ (None, 19, 19,    │          0 │ conv3_block2_1_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_2_conv │ (None, 19, 19,    │    147,584 │ conv3_block2_1_r… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_2_bn   │ (None, 19, 19,    │        512 │ conv3_block2_2_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_2_relu │ (None, 19, 19,    │          0 │ conv3_block2_2_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_3_conv │ (None, 19, 19,    │     66,048 │ conv3_block2_2_r… │\n",
+       "│ (Conv2D)            │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_3_bn   │ (None, 19, 19,    │      2,048 │ conv3_block2_3_c… │\n",
+       "│ (BatchNormalizatio…512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_add    │ (None, 19, 19,    │          0 │ conv3_block1_out… │\n",
+       "│ (Add)               │ 512)              │            │ conv3_block2_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block2_out    │ (None, 19, 19,    │          0 │ conv3_block2_add… │\n",
+       "│ (Activation)        │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_1_conv │ (None, 19, 19,    │     65,664 │ conv3_block2_out… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_1_bn   │ (None, 19, 19,    │        512 │ conv3_block3_1_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_1_relu │ (None, 19, 19,    │          0 │ conv3_block3_1_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_2_conv │ (None, 19, 19,    │    147,584 │ conv3_block3_1_r… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_2_bn   │ (None, 19, 19,    │        512 │ conv3_block3_2_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_2_relu │ (None, 19, 19,    │          0 │ conv3_block3_2_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_3_conv │ (None, 19, 19,    │     66,048 │ conv3_block3_2_r… │\n",
+       "│ (Conv2D)            │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_3_bn   │ (None, 19, 19,    │      2,048 │ conv3_block3_3_c… │\n",
+       "│ (BatchNormalizatio…512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_add    │ (None, 19, 19,    │          0 │ conv3_block2_out… │\n",
+       "│ (Add)               │ 512)              │            │ conv3_block3_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block3_out    │ (None, 19, 19,    │          0 │ conv3_block3_add… │\n",
+       "│ (Activation)        │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_1_conv │ (None, 19, 19,    │     65,664 │ conv3_block3_out… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_1_bn   │ (None, 19, 19,    │        512 │ conv3_block4_1_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_1_relu │ (None, 19, 19,    │          0 │ conv3_block4_1_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_2_conv │ (None, 19, 19,    │    147,584 │ conv3_block4_1_r… │\n",
+       "│ (Conv2D)            │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_2_bn   │ (None, 19, 19,    │        512 │ conv3_block4_2_c… │\n",
+       "│ (BatchNormalizatio…128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_2_relu │ (None, 19, 19,    │          0 │ conv3_block4_2_b… │\n",
+       "│ (Activation)        │ 128)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_3_conv │ (None, 19, 19,    │     66,048 │ conv3_block4_2_r… │\n",
+       "│ (Conv2D)            │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_3_bn   │ (None, 19, 19,    │      2,048 │ conv3_block4_3_c… │\n",
+       "│ (BatchNormalizatio…512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_add    │ (None, 19, 19,    │          0 │ conv3_block3_out… │\n",
+       "│ (Add)               │ 512)              │            │ conv3_block4_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv3_block4_out    │ (None, 19, 19,    │          0 │ conv3_block4_add… │\n",
+       "│ (Activation)        │ 512)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_1_conv │ (None, 10, 10,    │    131,328 │ conv3_block4_out… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_1_bn   │ (None, 10, 10,    │      1,024 │ conv4_block1_1_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_1_relu │ (None, 10, 10,    │          0 │ conv4_block1_1_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_2_conv │ (None, 10, 10,    │    590,080 │ conv4_block1_1_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_2_bn   │ (None, 10, 10,    │      1,024 │ conv4_block1_2_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_2_relu │ (None, 10, 10,    │          0 │ conv4_block1_2_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_0_conv │ (None, 10, 10,    │    525,312 │ conv3_block4_out… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_3_conv │ (None, 10, 10,    │    263,168 │ conv4_block1_2_r… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_0_bn   │ (None, 10, 10,    │      4,096 │ conv4_block1_0_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_3_bn   │ (None, 10, 10,    │      4,096 │ conv4_block1_3_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_add    │ (None, 10, 10,    │          0 │ conv4_block1_0_b… │\n",
+       "│ (Add)               │ 1024)             │            │ conv4_block1_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block1_out    │ (None, 10, 10,    │          0 │ conv4_block1_add… │\n",
+       "│ (Activation)        │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_1_conv │ (None, 10, 10,    │    262,400 │ conv4_block1_out… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_1_bn   │ (None, 10, 10,    │      1,024 │ conv4_block2_1_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_1_relu │ (None, 10, 10,    │          0 │ conv4_block2_1_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_2_conv │ (None, 10, 10,    │    590,080 │ conv4_block2_1_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_2_bn   │ (None, 10, 10,    │      1,024 │ conv4_block2_2_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_2_relu │ (None, 10, 10,    │          0 │ conv4_block2_2_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_3_conv │ (None, 10, 10,    │    263,168 │ conv4_block2_2_r… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_3_bn   │ (None, 10, 10,    │      4,096 │ conv4_block2_3_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_add    │ (None, 10, 10,    │          0 │ conv4_block1_out… │\n",
+       "│ (Add)               │ 1024)             │            │ conv4_block2_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block2_out    │ (None, 10, 10,    │          0 │ conv4_block2_add… │\n",
+       "│ (Activation)        │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_1_conv │ (None, 10, 10,    │    262,400 │ conv4_block2_out… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_1_bn   │ (None, 10, 10,    │      1,024 │ conv4_block3_1_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_1_relu │ (None, 10, 10,    │          0 │ conv4_block3_1_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_2_conv │ (None, 10, 10,    │    590,080 │ conv4_block3_1_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_2_bn   │ (None, 10, 10,    │      1,024 │ conv4_block3_2_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_2_relu │ (None, 10, 10,    │          0 │ conv4_block3_2_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_3_conv │ (None, 10, 10,    │    263,168 │ conv4_block3_2_r… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_3_bn   │ (None, 10, 10,    │      4,096 │ conv4_block3_3_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_add    │ (None, 10, 10,    │          0 │ conv4_block2_out… │\n",
+       "│ (Add)               │ 1024)             │            │ conv4_block3_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block3_out    │ (None, 10, 10,    │          0 │ conv4_block3_add… │\n",
+       "│ (Activation)        │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_1_conv │ (None, 10, 10,    │    262,400 │ conv4_block3_out… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_1_bn   │ (None, 10, 10,    │      1,024 │ conv4_block4_1_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_1_relu │ (None, 10, 10,    │          0 │ conv4_block4_1_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_2_conv │ (None, 10, 10,    │    590,080 │ conv4_block4_1_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_2_bn   │ (None, 10, 10,    │      1,024 │ conv4_block4_2_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_2_relu │ (None, 10, 10,    │          0 │ conv4_block4_2_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_3_conv │ (None, 10, 10,    │    263,168 │ conv4_block4_2_r… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_3_bn   │ (None, 10, 10,    │      4,096 │ conv4_block4_3_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_add    │ (None, 10, 10,    │          0 │ conv4_block3_out… │\n",
+       "│ (Add)               │ 1024)             │            │ conv4_block4_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block4_out    │ (None, 10, 10,    │          0 │ conv4_block4_add… │\n",
+       "│ (Activation)        │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_1_conv │ (None, 10, 10,    │    262,400 │ conv4_block4_out… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_1_bn   │ (None, 10, 10,    │      1,024 │ conv4_block5_1_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_1_relu │ (None, 10, 10,    │          0 │ conv4_block5_1_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_2_conv │ (None, 10, 10,    │    590,080 │ conv4_block5_1_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_2_bn   │ (None, 10, 10,    │      1,024 │ conv4_block5_2_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_2_relu │ (None, 10, 10,    │          0 │ conv4_block5_2_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_3_conv │ (None, 10, 10,    │    263,168 │ conv4_block5_2_r… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_3_bn   │ (None, 10, 10,    │      4,096 │ conv4_block5_3_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_add    │ (None, 10, 10,    │          0 │ conv4_block4_out… │\n",
+       "│ (Add)               │ 1024)             │            │ conv4_block5_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block5_out    │ (None, 10, 10,    │          0 │ conv4_block5_add… │\n",
+       "│ (Activation)        │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_1_conv │ (None, 10, 10,    │    262,400 │ conv4_block5_out… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_1_bn   │ (None, 10, 10,    │      1,024 │ conv4_block6_1_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_1_relu │ (None, 10, 10,    │          0 │ conv4_block6_1_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_2_conv │ (None, 10, 10,    │    590,080 │ conv4_block6_1_r… │\n",
+       "│ (Conv2D)            │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_2_bn   │ (None, 10, 10,    │      1,024 │ conv4_block6_2_c… │\n",
+       "│ (BatchNormalizatio…256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_2_relu │ (None, 10, 10,    │          0 │ conv4_block6_2_b… │\n",
+       "│ (Activation)        │ 256)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_3_conv │ (None, 10, 10,    │    263,168 │ conv4_block6_2_r… │\n",
+       "│ (Conv2D)            │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_3_bn   │ (None, 10, 10,    │      4,096 │ conv4_block6_3_c… │\n",
+       "│ (BatchNormalizatio…1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_add    │ (None, 10, 10,    │          0 │ conv4_block5_out… │\n",
+       "│ (Add)               │ 1024)             │            │ conv4_block6_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv4_block6_out    │ (None, 10, 10,    │          0 │ conv4_block6_add… │\n",
+       "│ (Activation)        │ 1024)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_1_conv │ (None, 5, 5, 512) │    524,800 │ conv4_block6_out… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_1_bn   │ (None, 5, 5, 512) │      2,048 │ conv5_block1_1_c… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_1_relu │ (None, 5, 5, 512) │          0 │ conv5_block1_1_b… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_2_conv │ (None, 5, 5, 512) │  2,359,808 │ conv5_block1_1_r… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_2_bn   │ (None, 5, 5, 512) │      2,048 │ conv5_block1_2_c… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_2_relu │ (None, 5, 5, 512) │          0 │ conv5_block1_2_b… │\n",
+       "│ (Activation)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_0_conv │ (None, 5, 5,      │  2,099,200 │ conv4_block6_out… │\n",
+       "│ (Conv2D)            │ 2048)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_3_conv │ (None, 5, 5,      │  1,050,624 │ conv5_block1_2_r… │\n",
+       "│ (Conv2D)            │ 2048)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_0_bn   │ (None, 5, 5,      │      8,192 │ conv5_block1_0_c… │\n",
+       "│ (BatchNormalizatio…2048)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_3_bn   │ (None, 5, 5,      │      8,192 │ conv5_block1_3_c… │\n",
+       "│ (BatchNormalizatio…2048)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_add    │ (None, 5, 5,      │          0 │ conv5_block1_0_b… │\n",
+       "│ (Add)               │ 2048)             │            │ conv5_block1_3_b… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv5_block1_out    │ (None, 5, 5,      │          0 │ conv5_block1_add… │\n",
+       "│ (Activation)        │ 2048)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ flatten_1 (Flatten) │ (None, 51200)     │          0 │ conv5_block1_out… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 51200)     │    204,800 │ flatten_1[0][0]   │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense_3 (Dense)     │ (None, 128)       │  6,553,728 │ batch_normalizat… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 128)       │        512 │ dense_3[0][0]     │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dropout (Dropout)   │ (None, 128)       │          0 │ batch_normalizat… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense_4 (Dense)     │ (None, 64)        │      8,256 │ dropout[0][0]     │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ batch_normalizatio… │ (None, 64)        │        256 │ dense_4[0][0]     │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dropout_1 (Dropout) │ (None, 64)        │          0 │ batch_normalizat… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense_5 (Dense)     │ (None, 36)        │      2,340 │ dropout_1[0][0]   │\n",
+       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", + "│ input_layer_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m150\u001b[0m, \u001b[38;5;34m150\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ - │\n", + "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ \u001b[38;5;34m3\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv1_pad │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m156\u001b[0m, \u001b[38;5;34m156\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ input_layer_1[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;34m3\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv1_conv (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m75\u001b[0m, \u001b[38;5;34m75\u001b[0m, │ \u001b[38;5;34m9,472\u001b[0m │ conv1_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m75\u001b[0m, \u001b[38;5;34m75\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv1_conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m75\u001b[0m, \u001b[38;5;34m75\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv1_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ pool1_pad │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m77\u001b[0m, \u001b[38;5;34m77\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv1_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ pool1_pool │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool1_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m4,160\u001b[0m │ pool1_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv2_block1_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m36,928\u001b[0m │ conv2_block1_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv2_block1_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_0_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m16,640\u001b[0m │ pool1_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m16,640\u001b[0m │ conv2_block1_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv2_block1_0_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv2_block1_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_0_b… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ conv2_block1_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block1_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m16,448\u001b[0m │ conv2_block1_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv2_block2_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m36,928\u001b[0m │ conv2_block2_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv2_block2_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m16,640\u001b[0m │ conv2_block2_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv2_block2_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ conv2_block2_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block2_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m16,448\u001b[0m │ conv2_block2_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv2_block3_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block3_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m36,928\u001b[0m │ conv2_block3_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv2_block3_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block3_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m16,640\u001b[0m │ conv2_block3_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv2_block3_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ conv2_block3_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv2_block3_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m, \u001b[38;5;34m38\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block3_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m32,896\u001b[0m │ conv2_block3_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block1_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m147,584\u001b[0m │ conv3_block1_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block1_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_0_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m131,584\u001b[0m │ conv2_block3_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m66,048\u001b[0m │ conv3_block1_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv3_block1_0_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv3_block1_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_0_b… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ conv3_block1_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block1_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m65,664\u001b[0m │ conv3_block1_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block2_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m147,584\u001b[0m │ conv3_block2_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block2_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m66,048\u001b[0m │ conv3_block2_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv3_block2_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ conv3_block2_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block2_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m65,664\u001b[0m │ conv3_block2_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block3_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m147,584\u001b[0m │ conv3_block3_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block3_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m66,048\u001b[0m │ conv3_block3_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv3_block3_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ conv3_block3_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block3_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m65,664\u001b[0m │ conv3_block3_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block4_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block4_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m147,584\u001b[0m │ conv3_block4_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block4_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block4_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m128\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m66,048\u001b[0m │ conv3_block4_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv3_block4_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ conv3_block4_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv3_block4_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m, \u001b[38;5;34m19\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block4_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m512\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m131,328\u001b[0m │ conv3_block4_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block1_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m590,080\u001b[0m │ conv4_block1_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block1_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_0_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m525,312\u001b[0m │ conv3_block4_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m263,168\u001b[0m │ conv4_block1_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block1_0_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block1_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_0_b… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block1_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block1_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m262,400\u001b[0m │ conv4_block1_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block2_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m590,080\u001b[0m │ conv4_block2_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block2_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m263,168\u001b[0m │ conv4_block2_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block2_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block2_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block2_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m262,400\u001b[0m │ conv4_block2_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block3_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m590,080\u001b[0m │ conv4_block3_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block3_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m263,168\u001b[0m │ conv4_block3_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block3_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block3_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block3_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m262,400\u001b[0m │ conv4_block3_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block4_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m590,080\u001b[0m │ conv4_block4_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block4_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m263,168\u001b[0m │ conv4_block4_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block4_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block4_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block4_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m262,400\u001b[0m │ conv4_block4_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block5_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m590,080\u001b[0m │ conv4_block5_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block5_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m263,168\u001b[0m │ conv4_block5_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block5_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block5_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block5_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m262,400\u001b[0m │ conv4_block5_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block6_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block6_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m590,080\u001b[0m │ conv4_block6_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv4_block6_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block6_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m256\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m263,168\u001b[0m │ conv4_block6_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block6_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_out… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block6_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv4_block6_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block6_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m1024\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m524,800\u001b[0m │ conv4_block6_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ conv5_block1_1_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_1_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │ conv5_block1_1_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ conv5_block1_2_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_2_b… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_0_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m2,099,200\u001b[0m │ conv4_block6_out… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m2048\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_3_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m1,050,624\u001b[0m │ conv5_block1_2_r… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m2048\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m8,192\u001b[0m │ conv5_block1_0_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m2048\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m8,192\u001b[0m │ conv5_block1_3_c… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m2048\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_add │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_0_b… │\n", + "│ (\u001b[38;5;33mAdd\u001b[0m) │ \u001b[38;5;34m2048\u001b[0m) │ │ conv5_block1_3_b… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv5_block1_out │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_add… │\n", + "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m2048\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m51200\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_out… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m51200\u001b[0m) │ \u001b[38;5;34m204,800\u001b[0m │ flatten_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense_3 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m6,553,728\u001b[0m │ batch_normalizat… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ dense_3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │ dropout[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ dense_4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m36\u001b[0m) │ \u001b[38;5;34m2,340\u001b[0m │ dropout_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 21,413,988 (81.69 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m21,413,988\u001b[0m (81.69 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 21,270,372 (81.14 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m21,270,372\u001b[0m (81.14 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 143,616 (561.00 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m143,616\u001b[0m (561.00 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model_trans_ResNet50.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "ac6dc648", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T15:48:52.907416Z", + "iopub.status.busy": "2024-05-09T15:48:52.906612Z", + "iopub.status.idle": "2024-05-09T16:26:38.648757Z", + "shell.execute_reply": "2024-05-09T16:26:38.647669Z" + }, + "papermill": { + "duration": 2265.837967, + "end_time": "2024-05-09T16:26:38.650880", + "exception": false, + "start_time": "2024-05-09T15:48:52.812913", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------Model is being built......................\n", + "\n", + "Epoch 1/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m131s\u001b[0m 996ms/step - accuracy: 0.0486 - loss: 4.2715 - val_accuracy: 0.0278 - val_loss: 3.7711\n", + "Epoch 2/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.1126 - loss: 3.5146 - val_accuracy: 0.0139 - val_loss: 3.9262\n", + "Epoch 3/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 281ms/step - accuracy: 0.2224 - loss: 3.0052 - val_accuracy: 0.0298 - val_loss: 4.0786\n", + "Epoch 4/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.2492 - loss: 2.7066 - val_accuracy: 0.0239 - val_loss: 4.1811\n", + "Epoch 5/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 287ms/step - accuracy: 0.3620 - loss: 2.3578 - val_accuracy: 0.0099 - val_loss: 4.1978\n", + "Epoch 6/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.3982 - loss: 2.2265 - val_accuracy: 0.0278 - val_loss: 4.0088\n", + "Epoch 7/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.4095 - loss: 2.1813 - val_accuracy: 0.0517 - val_loss: 3.9037\n", + "Epoch 8/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.4751 - loss: 1.9834 - val_accuracy: 0.0477 - val_loss: 3.8396\n", + "Epoch 9/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 275ms/step - accuracy: 0.4940 - loss: 1.8771 - val_accuracy: 0.0497 - val_loss: 3.7580\n", + "Epoch 10/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.5340 - loss: 1.7820 - val_accuracy: 0.0915 - val_loss: 3.6092\n", + "Epoch 11/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 288ms/step - accuracy: 0.5637 - loss: 1.7215 - val_accuracy: 0.1272 - val_loss: 3.4089\n", + "Epoch 12/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.5816 - loss: 1.6239 - val_accuracy: 0.2187 - val_loss: 3.0367\n", + "Epoch 13/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.6153 - loss: 1.5466 - val_accuracy: 0.3300 - val_loss: 2.7232\n", + "Epoch 14/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 276ms/step - accuracy: 0.6214 - loss: 1.5059 - val_accuracy: 0.4254 - val_loss: 2.3480\n", + "Epoch 15/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.6546 - loss: 1.4432 - val_accuracy: 0.5885 - val_loss: 1.9992\n", + "Epoch 16/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 289ms/step - accuracy: 0.6577 - loss: 1.4222 - val_accuracy: 0.6839 - val_loss: 1.6699\n", + "Epoch 17/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.6798 - loss: 1.3652 - val_accuracy: 0.7734 - val_loss: 1.3487\n", + "Epoch 18/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.7094 - loss: 1.2885 - val_accuracy: 0.8350 - val_loss: 1.0997\n", + "Epoch 19/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.6993 - loss: 1.2996 - val_accuracy: 0.8748 - val_loss: 0.9432\n", + "Epoch 20/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.7184 - loss: 1.2387 - val_accuracy: 0.8986 - val_loss: 0.8590\n", + "Epoch 21/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.7447 - loss: 1.1699 - val_accuracy: 0.8867 - val_loss: 0.8290\n", + "Epoch 22/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.7555 - loss: 1.1573 - val_accuracy: 0.9006 - val_loss: 0.7797\n", + "Epoch 23/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 289ms/step - accuracy: 0.7694 - loss: 1.1232 - val_accuracy: 0.9026 - val_loss: 0.7384\n", + "Epoch 24/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.7749 - loss: 1.1325 - val_accuracy: 0.8907 - val_loss: 0.7354\n", + "Epoch 25/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.7868 - loss: 1.0806 - val_accuracy: 0.8986 - val_loss: 0.6958\n", + "Epoch 26/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.7856 - loss: 1.0532 - val_accuracy: 0.9145 - val_loss: 0.6969\n", + "Epoch 27/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 285ms/step - accuracy: 0.8154 - loss: 1.0074 - val_accuracy: 0.9066 - val_loss: 0.6845\n", + "Epoch 28/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.8234 - loss: 0.9843 - val_accuracy: 0.9264 - val_loss: 0.6442\n", + "Epoch 29/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 289ms/step - accuracy: 0.8184 - loss: 0.9957 - val_accuracy: 0.9085 - val_loss: 0.6266\n", + "Epoch 30/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.8020 - loss: 0.9891 - val_accuracy: 0.9105 - val_loss: 0.6193\n", + "Epoch 31/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.8295 - loss: 0.9598 - val_accuracy: 0.9264 - val_loss: 0.5763\n", + "Epoch 32/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 287ms/step - accuracy: 0.8444 - loss: 0.9150 - val_accuracy: 0.9304 - val_loss: 0.5814\n", + "Epoch 33/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.8409 - loss: 0.9084 - val_accuracy: 0.9304 - val_loss: 0.5672\n", + "Epoch 34/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.8503 - loss: 0.8784 - val_accuracy: 0.9225 - val_loss: 0.5678\n", + "Epoch 35/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.8457 - loss: 0.8547 - val_accuracy: 0.9225 - val_loss: 0.5433\n", + "Epoch 36/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 274ms/step - accuracy: 0.8528 - loss: 0.8556 - val_accuracy: 0.9245 - val_loss: 0.5304\n", + "Epoch 37/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.8714 - loss: 0.8367 - val_accuracy: 0.9284 - val_loss: 0.5292\n", + "Epoch 38/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.8882 - loss: 0.8005 - val_accuracy: 0.9245 - val_loss: 0.5355\n", + "Epoch 39/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.8655 - loss: 0.8061 - val_accuracy: 0.9185 - val_loss: 0.4996\n", + "Epoch 40/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 279ms/step - accuracy: 0.8836 - loss: 0.7613 - val_accuracy: 0.9304 - val_loss: 0.4976\n", + "Epoch 41/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 285ms/step - accuracy: 0.8807 - loss: 0.7562 - val_accuracy: 0.9185 - val_loss: 0.5096\n", + "Epoch 42/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9010 - loss: 0.7045 - val_accuracy: 0.9443 - val_loss: 0.4708\n", + "Epoch 43/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.8957 - loss: 0.7637 - val_accuracy: 0.9324 - val_loss: 0.4784\n", + "Epoch 44/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 283ms/step - accuracy: 0.8902 - loss: 0.7327 - val_accuracy: 0.9443 - val_loss: 0.4579\n", + "Epoch 45/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 282ms/step - accuracy: 0.9020 - loss: 0.7167 - val_accuracy: 0.9503 - val_loss: 0.4306\n", + "Epoch 46/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9107 - loss: 0.6933 - val_accuracy: 0.9284 - val_loss: 0.4594\n", + "Epoch 47/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 286ms/step - accuracy: 0.9046 - loss: 0.7133 - val_accuracy: 0.9344 - val_loss: 0.4394\n", + "Epoch 48/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 282ms/step - accuracy: 0.8937 - loss: 0.6804 - val_accuracy: 0.9443 - val_loss: 0.4143\n", + "Epoch 49/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 272ms/step - accuracy: 0.9058 - loss: 0.6778 - val_accuracy: 0.9284 - val_loss: 0.4426\n", + "Epoch 50/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9295 - loss: 0.6246 - val_accuracy: 0.9523 - val_loss: 0.4121\n", + "Epoch 51/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.9118 - loss: 0.6631 - val_accuracy: 0.9344 - val_loss: 0.4133\n", + "Epoch 52/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9328 - loss: 0.6057 - val_accuracy: 0.9483 - val_loss: 0.3881\n", + "Epoch 53/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.9163 - loss: 0.6155 - val_accuracy: 0.9384 - val_loss: 0.4004\n", + "Epoch 54/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9352 - loss: 0.6024 - val_accuracy: 0.9523 - val_loss: 0.3655\n", + "Epoch 55/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.9192 - loss: 0.5948 - val_accuracy: 0.9324 - val_loss: 0.4072\n", + "Epoch 56/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 286ms/step - accuracy: 0.9202 - loss: 0.6235 - val_accuracy: 0.9404 - val_loss: 0.3749\n", + "Epoch 57/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 282ms/step - accuracy: 0.9256 - loss: 0.5937 - val_accuracy: 0.9404 - val_loss: 0.4024\n", + "Epoch 58/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 278ms/step - accuracy: 0.9251 - loss: 0.6221 - val_accuracy: 0.9503 - val_loss: 0.3734\n", + "Epoch 59/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9402 - loss: 0.5692 - val_accuracy: 0.9324 - val_loss: 0.3688\n", + "Epoch 60/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 283ms/step - accuracy: 0.9328 - loss: 0.5578 - val_accuracy: 0.9463 - val_loss: 0.3680\n", + "Epoch 61/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.9405 - loss: 0.5557 - val_accuracy: 0.9483 - val_loss: 0.3826\n", + "Epoch 62/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 274ms/step - accuracy: 0.9455 - loss: 0.5298 - val_accuracy: 0.9463 - val_loss: 0.3566\n", + "Epoch 63/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.9417 - loss: 0.5072 - val_accuracy: 0.9344 - val_loss: 0.3863\n", + "Epoch 64/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9421 - loss: 0.5209 - val_accuracy: 0.9463 - val_loss: 0.3314\n", + "Epoch 65/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9602 - loss: 0.5070 - val_accuracy: 0.9523 - val_loss: 0.3462\n", + "Epoch 66/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 283ms/step - accuracy: 0.9478 - loss: 0.5075 - val_accuracy: 0.9384 - val_loss: 0.3568\n", + "Epoch 67/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 290ms/step - accuracy: 0.9577 - loss: 0.4690 - val_accuracy: 0.9423 - val_loss: 0.3526\n", + "Epoch 68/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9589 - loss: 0.5034 - val_accuracy: 0.9304 - val_loss: 0.3480\n", + "Epoch 69/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.9553 - loss: 0.4802 - val_accuracy: 0.9443 - val_loss: 0.3505\n", + "Epoch 70/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9558 - loss: 0.4898 - val_accuracy: 0.9404 - val_loss: 0.3460\n", + "Epoch 71/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.9576 - loss: 0.4661 - val_accuracy: 0.9443 - val_loss: 0.3199\n", + "Epoch 72/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.9673 - loss: 0.4419 - val_accuracy: 0.9423 - val_loss: 0.3263\n", + "Epoch 73/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9657 - loss: 0.4628 - val_accuracy: 0.9483 - val_loss: 0.3347\n", + "Epoch 74/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9603 - loss: 0.4381 - val_accuracy: 0.9583 - val_loss: 0.3119\n", + "Epoch 75/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 276ms/step - accuracy: 0.9572 - loss: 0.4630 - val_accuracy: 0.9583 - val_loss: 0.2931\n", + "Epoch 76/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.9560 - loss: 0.4642 - val_accuracy: 0.9463 - val_loss: 0.3239\n", + "Epoch 77/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 274ms/step - accuracy: 0.9711 - loss: 0.4128 - val_accuracy: 0.9463 - val_loss: 0.3121\n", + "Epoch 78/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.9697 - loss: 0.4237 - val_accuracy: 0.9483 - val_loss: 0.3197\n", + "Epoch 79/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 286ms/step - accuracy: 0.9679 - loss: 0.4414 - val_accuracy: 0.9543 - val_loss: 0.2967\n", + "Epoch 80/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.9710 - loss: 0.4128 - val_accuracy: 0.9523 - val_loss: 0.3226\n", + "Epoch 81/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 285ms/step - accuracy: 0.9696 - loss: 0.4050 - val_accuracy: 0.9463 - val_loss: 0.3184\n", + "Epoch 82/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9665 - loss: 0.4062 - val_accuracy: 0.9443 - val_loss: 0.3137\n", + "Epoch 83/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 276ms/step - accuracy: 0.9649 - loss: 0.3974 - val_accuracy: 0.9364 - val_loss: 0.3228\n", + "Epoch 84/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9708 - loss: 0.3925 - val_accuracy: 0.9563 - val_loss: 0.3088\n", + "Epoch 85/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.9787 - loss: 0.3717 - val_accuracy: 0.9404 - val_loss: 0.2957\n", + "Epoch 86/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9664 - loss: 0.4126 - val_accuracy: 0.9423 - val_loss: 0.2982\n", + "Epoch 87/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9779 - loss: 0.3564 - val_accuracy: 0.9443 - val_loss: 0.2921\n", + "Epoch 88/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 280ms/step - accuracy: 0.9811 - loss: 0.3739 - val_accuracy: 0.9463 - val_loss: 0.2887\n", + "Epoch 89/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9741 - loss: 0.3696 - val_accuracy: 0.9443 - val_loss: 0.2913\n", + "Epoch 90/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.9781 - loss: 0.3447 - val_accuracy: 0.9364 - val_loss: 0.2976\n", + "Epoch 91/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 284ms/step - accuracy: 0.9792 - loss: 0.3642 - val_accuracy: 0.9642 - val_loss: 0.2667\n", + "Epoch 92/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9814 - loss: 0.3490 - val_accuracy: 0.9602 - val_loss: 0.2620\n", + "Epoch 93/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 276ms/step - accuracy: 0.9691 - loss: 0.3802 - val_accuracy: 0.9443 - val_loss: 0.2900\n", + "Epoch 94/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.9765 - loss: 0.3591 - val_accuracy: 0.9483 - val_loss: 0.2603\n", + "Epoch 95/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 270ms/step - accuracy: 0.9803 - loss: 0.3566 - val_accuracy: 0.9463 - val_loss: 0.2730\n", + "Epoch 96/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9756 - loss: 0.3348 - val_accuracy: 0.9423 - val_loss: 0.3036\n", + "Epoch 97/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.9734 - loss: 0.3404 - val_accuracy: 0.9503 - val_loss: 0.2747\n", + "Epoch 98/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 278ms/step - accuracy: 0.9815 - loss: 0.3219 - val_accuracy: 0.9523 - val_loss: 0.2998\n", + "Epoch 99/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 284ms/step - accuracy: 0.9815 - loss: 0.3041 - val_accuracy: 0.9583 - val_loss: 0.2721\n", + "Epoch 100/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9736 - loss: 0.3356 - val_accuracy: 0.9463 - val_loss: 0.2949\n", + "Epoch 101/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9794 - loss: 0.3399 - val_accuracy: 0.9463 - val_loss: 0.2808\n", + "Epoch 102/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 274ms/step - accuracy: 0.9888 - loss: 0.2863 - val_accuracy: 0.9523 - val_loss: 0.2738\n", + "Epoch 103/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 282ms/step - accuracy: 0.9844 - loss: 0.3119 - val_accuracy: 0.9523 - val_loss: 0.2676\n", + "Epoch 104/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 281ms/step - accuracy: 0.9883 - loss: 0.2869 - val_accuracy: 0.9443 - val_loss: 0.2740\n", + "Epoch 105/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9825 - loss: 0.3024 - val_accuracy: 0.9483 - val_loss: 0.2617\n", + "Epoch 106/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9816 - loss: 0.2997 - val_accuracy: 0.9463 - val_loss: 0.2788\n", + "Epoch 107/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 276ms/step - accuracy: 0.9859 - loss: 0.3004 - val_accuracy: 0.9443 - val_loss: 0.2623\n", + "Epoch 108/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9872 - loss: 0.2835 - val_accuracy: 0.9404 - val_loss: 0.3040\n", + "Epoch 109/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 283ms/step - accuracy: 0.9799 - loss: 0.2904 - val_accuracy: 0.9583 - val_loss: 0.2281\n", + "Epoch 110/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 279ms/step - accuracy: 0.9875 - loss: 0.2993 - val_accuracy: 0.9423 - val_loss: 0.2880\n", + "Epoch 111/150\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 219ms/step - accuracy: 0.9904 - loss: 0.2702\n", + "Reached 99.9% accuracy so cancelling training!\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 277ms/step - accuracy: 0.9904 - loss: 0.2702 - val_accuracy: 0.9503 - val_loss: 0.2764\n", + "\n", + "----------------------------Model completed......................\n", + "\n" + ] + } + ], + "source": [ + "callbacks =myCallback()\n", + "\n", + "print('----------------------------Model is being built......................\\n')\n", + "history_Res = model_trans_ResNet50.fit(train_images,\n", + " epochs=150,\n", + " validation_data=val_images,\n", + " verbose=1,\n", + " callbacks = [callbacks]\n", + " )\n", + "print('\\n----------------------------Model completed......................\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "b1abd28d", + "metadata": { + "papermill": { + "duration": 0.697795, + "end_time": "2024-05-09T16:26:40.042510", + "exception": false, + "start_time": "2024-05-09T16:26:39.344715", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# **5. Result**" + ] + }, + { + "cell_type": "markdown", + "id": "b915e243", + "metadata": { + "papermill": { + "duration": 0.692189, + "end_time": "2024-05-09T16:26:41.476086", + "exception": false, + "start_time": "2024-05-09T16:26:40.783897", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

5. Result

" + ] + }, + { + "cell_type": "markdown", + "id": "b5f5dfd5", + "metadata": { + "papermill": { + "duration": 0.753692, + "end_time": "2024-05-09T16:26:42.925854", + "exception": false, + "start_time": "2024-05-09T16:26:42.172162", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

5.1. InceptionV3

" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "5f9e4400", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T16:26:44.328322Z", + "iopub.status.busy": "2024-05-09T16:26:44.327966Z", + "iopub.status.idle": "2024-05-09T16:26:44.888849Z", + "shell.execute_reply": "2024-05-09T16:26:44.887895Z" + }, + "papermill": { + "duration": 1.253087, + "end_time": "2024-05-09T16:26:44.891167", + "exception": false, + "start_time": "2024-05-09T16:26:43.638080", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABepUlEQVR4nO3dd3wUdf7H8dduek8gpEkgCEiT3gRUUFEERLGciqioqL/zwBN776dYznKKguUEPUWsoKKIgIjSaxCUKh1SCOk92Z3fH5MsBEJoyc5m834+HvPY2dnZnc/G033ffJvNMAwDERERES9ht7oAERERkdqkcCMiIiJeReFGREREvIrCjYiIiHgVhRsRERHxKgo3IiIi4lUUbkRERMSrKNyIiIiIV1G4EREREa+icCMiHs9ms/HUU0+d8Pt27NiBzWZjypQpNZ73yy+/YLPZ+OWXX06qPhHxLAo3InJcpkyZgs1mw2azsXDhwiNeNwyDxMREbDYbl1xyiQUVioiYFG5E5IQEBgYyderUI44vWLCAPXv2EBAQYEFVIiIHKdyIyAkZMmQIX3zxBeXl5VWOT506le7duxMXF2dRZSIiJoUbETkhI0aM4MCBA8yZM8d1rLS0lC+//JLrrruu2vcUFBRw7733kpiYSEBAAG3atOHf//43hmFUOa+kpIS7776bJk2aEBYWxqWXXsqePXuq/cy9e/dyyy23EBsbS0BAAB06dOCDDz6ovS8KfPHFF3Tv3p2goCCio6O5/vrr2bt3b5VzUlNTufnmm2natCkBAQHEx8dz2WWXsWPHDtc5K1euZNCgQURHRxMUFESLFi245ZZbarVWETnI1+oCRKR+SUpKok+fPnz66acMHjwYgFmzZpGTk8O1117LG2+8UeV8wzC49NJLmT9/PqNHj6ZLly7Mnj2b+++/n7179/Laa6+5zr311lv5+OOPue666+jbty8///wzQ4cOPaKGtLQ0zjrrLGw2G2PHjqVJkybMmjWL0aNHk5uby7hx4075e06ZMoWbb76Znj17Mn78eNLS0vjPf/7DokWLWLNmDZGRkQBceeWV/PHHH9x5550kJSWRnp7OnDlz2LVrl+v5RRddRJMmTXjooYeIjIxkx44dfP3116dco4gchSEichwmT55sAMaKFSuMCRMmGGFhYUZhYaFhGIbxt7/9zTjvvPMMwzCM5s2bG0OHDnW9b8aMGQZg/Otf/6ryeVdddZVhs9mMrVu3GoZhGMnJyQZg/OMf/6hy3nXXXWcAxpNPPuk6Nnr0aCM+Pt7IyMiocu61115rREREuOravn27ARiTJ0+u8bvNnz/fAIz58+cbhmEYpaWlRkxMjHHmmWcaRUVFrvNmzpxpAMYTTzxhGIZhZGVlGYDx8ssvH/Wzp0+f7vq7iYh7qFlKRE7Y1VdfTVFRETNnziQvL4+ZM2cetUnqhx9+wMfHh3/+859Vjt97770YhsGsWbNc5wFHnHf4XRjDMPjqq68YNmwYhmGQkZHh2gYNGkROTg6rV68+pe+3cuVK0tPT+cc//kFgYKDr+NChQ2nbti3ff/89AEFBQfj7+/PLL7+QlZVV7WdV3uGZOXMmZWVlp1SXiBwfhRsROWFNmjRh4MCBTJ06la+//hqHw8FVV11V7bk7d+4kISGBsLCwKsfbtWvner3y0W6307JlyyrntWnTpsrz/fv3k52dzbvvvkuTJk2qbDfffDMA6enpp/T9Kms6/NoAbdu2db0eEBDAiy++yKxZs4iNjeXcc8/lpZdeIjU11XV+//79ufLKK3n66aeJjo7msssuY/LkyZSUlJxSjSJydOpzIyIn5brrruO2224jNTWVwYMHu+5Q1DWn0wnA9ddfz6hRo6o9p1OnTm6pBcw7S8OGDWPGjBnMnj2bxx9/nPHjx/Pzzz/TtWtXbDYbX375JUuXLuW7775j9uzZ3HLLLbzyyissXbqU0NBQt9Uq0lDozo2InJTLL78cu93O0qVLj9okBdC8eXP27dtHXl5eleMbN250vV756HQ6+euvv6qct2nTpirPK0dSORwOBg4cWO0WExNzSt+tsqbDr115rPL1Si1btuTee+/lp59+Yv369ZSWlvLKK69UOeess87iueeeY+XKlXzyySf88ccfTJs27ZTqFJHqKdyIyEkJDQ1l4sSJPPXUUwwbNuyo5w0ZMgSHw8GECROqHH/ttdew2WyuEVeVj4ePtnr99derPPfx8eHKK6/kq6++Yv369Udcb//+/Sfzdaro0aMHMTExTJo0qUrz0axZs9iwYYNrBFdhYSHFxcVV3tuyZUvCwsJc78vKyjpiyHuXLl0A1DQlUkfULCUiJ+1ozUKHGjZsGOeddx6PPvooO3bsoHPnzvz000988803jBs3ztXHpkuXLowYMYK3336bnJwc+vbty7x589i6desRn/nCCy8wf/58evfuzW233Ub79u3JzMxk9erVzJ07l8zMzFP6Xn5+frz44ovcfPPN9O/fnxEjRriGgiclJXH33XcDsHnzZi644AKuvvpq2rdvj6+vL9OnTyctLY1rr70WgA8//JC3336byy+/nJYtW5KXl8d7771HeHg4Q4YMOaU6RaR6CjciUqfsdjvffvstTzzxBJ999hmTJ08mKSmJl19+mXvvvbfKuR988AFNmjThk08+YcaMGZx//vl8//33JCYmVjkvNjaW5cuX88wzz/D111/z9ttv07hxYzp06MCLL75YK3XfdNNNBAcH88ILL/Dggw8SEhLC5ZdfzosvvujqX5SYmMiIESOYN28e//vf//D19aVt27Z8/vnnXHnllYDZoXj58uVMmzaNtLQ0IiIi6NWrF5988gktWrSolVpFpCqbcfj9UhEREZF6TH1uRERExKso3IiIiIhXUbgRERERr6JwIyIiIl5F4UZERES8isKNiIiIeJUGN8+N0+lk3759hIWFYbPZrC5HREREjoNhGOTl5ZGQkIDdXvO9mQYXbvbt23fEhGAiIiJSP+zevZumTZvWeE6DCzdhYWGA+ccJDw+3uBoRERE5Hrm5uSQmJrp+x2vS4MJNZVNUeHi4wo2IiEg9czxdStShWERERLyKwo2IiIh4FYUbERER8SoNrs+NiIh4D4fDQVlZmdVlSC3x9/c/5jDv46FwIyIi9Y5hGKSmppKdnW11KVKL7HY7LVq0wN/f/5Q+R+FGRETqncpgExMTQ3BwsCZl9QKVk+ympKTQrFmzU/pnqnAjIiL1isPhcAWbxo0bW12O1KImTZqwb98+ysvL8fPzO+nPUYdiERGpVyr72AQHB1tcidS2yuYoh8NxSp+jcCMiIvWSmqK8T239M1W4EREREa+icCMiIlKPJSUl8frrr1tdhkdRuBEREXEDm81W4/bUU0+d1OeuWLGC22+/vXaLrec0Wqo25aVBwX6IO9PqSkRExMOkpKS49j/77DOeeOIJNm3a5DoWGhrq2jcMA4fDga/vsX+mmzRpUruFegHduaktf34Dr7WHmXdbXYmIiHiguLg41xYREYHNZnM937hxI2FhYcyaNYvu3bsTEBDAwoUL+euvv7jsssuIjY0lNDSUnj17Mnfu3Cqfe3izlM1m4/333+fyyy8nODiY1q1b8+2337r521pL4aa2JJ5lPu5ZDml/WFuLiEgDYxgGhaXllmyGYdTa93jooYd44YUX2LBhA506dSI/P58hQ4Ywb9481qxZw8UXX8ywYcPYtWtXjZ/z9NNPc/XVV/P7778zZMgQRo4cSWZmZq3V6enULFVbwmKhzWDY8B2s+hCGvGR1RSIiDUZRmYP2T8y25Np/PjOIYP/a+Tl95plnuPDCC13PGzVqROfOnV3Pn332WaZPn863337L2LFjj/o5N910EyNGjADg+eef54033mD58uVcfPHFtVKnp9Odm9rU/Sbz8fdpUFpoaSkiIlL/9OjRo8rz/Px87rvvPtq1a0dkZCShoaFs2LDhmHduOnXq5NoPCQkhPDyc9PT0OqnZE+nOTW06/XyIaAY5u8w+OF1GWF2RiEiDEOTnw5/PDLLs2rUlJCSkyvP77ruPOXPm8O9//5tWrVoRFBTEVVddRWlpaY2fc/jSBTabDafTWWt1ejqFm9pkt0P3G+Hnf8HqDxVuRETcxGaz1VrTkCdZtGgRN910E5dffjlg3snZsWOHtUXVA2qWqm1drgebD+xaAukbra5GRETqsdatW/P111+TnJzM2rVrue666xrUHZiTpXBT28LjzY7FYN69EREROUmvvvoqUVFR9O3bl2HDhjFo0CC6detmdVkez2bU5hi2eiA3N5eIiAhycnIIDw+vm4ts/gmm/g0CI+HeTeAXWDfXERFpgIqLi9m+fTstWrQgMFD/ffUmNf2zPZHfb925qQutLoDwplCcDRsa1sRJIiIiVlO4qQt2H+h2o7m/Sk1TIiIi7mRpuBk/fjw9e/YkLCyMmJgYhg8fXmWdjepMmTLliMXGPPK2ZNfrwWaHnQshY4vV1YiIiDQYloabBQsWMGbMGJYuXcqcOXMoKyvjoosuoqCgoMb3hYeHk5KS4tp27tzppopPQMRp0LpizoVVUywtRUREpCGxdFKAH3/8scrzKVOmEBMTw6pVqzj33HOP+r7KxcY8XvdRsHkWJE+FC54A3wCrKxIREfF6HtXnJicnBzDX0qhJfn4+zZs3JzExkcsuu4w//jj6QpUlJSXk5uZW2dym1YUQlgBFmeaaUyIiIlLnPCbcOJ1Oxo0bR79+/TjzzDOPel6bNm344IMP+Oabb/j4449xOp307duXPXv2VHv++PHjiYiIcG2JiYl19RWO5OML3W4w99U0JSIi4hYeM8/NHXfcwaxZs1i4cCFNmzY97veVlZXRrl07RowYwbPPPnvE6yUlJZSUlLie5+bmkpiYWLfz3Bwqeze83hEw4M7V0Lhl3V9TRMSLaZ4b7+VV89yMHTuWmTNnMn/+/BMKNmAuDta1a1e2bt1a7esBAQGEh4dX2dwqMhFaVyxfrxmLRURE6pyl4cYwDMaOHcv06dP5+eefadGixQl/hsPhYN26dcTHx9dBhbWk+03m45pPoLzmlVxFRESOZsCAAYwbN871PCkpiddff73G99hsNmbMmHHK166tz3EHS8PNmDFj+Pjjj5k6dSphYWGkpqaSmppKUVGR65wbb7yRhx9+2PX8mWee4aeffmLbtm2sXr2a66+/np07d3Lrrbda8RWOT+tBEBoHhRmw6XurqxEREQsMGzaMiy++uNrXfvvtN2w2G7///vsJfeaKFSu4/fbba6M8l6eeeoouXboccTwlJYXBgwfX6rXqiqXhZuLEieTk5DBgwADi4+Nd22effeY6Z9euXaSkpLieZ2Vlcdttt9GuXTuGDBlCbm4uixcvpn379lZ8hePj42tO6gfqWCwi0kCNHj2aOXPmVDsAZvLkyfTo0YNOnTqd0Gc2adKE4ODg2iqxRnFxcQQE1I8pTSxvlqpuu+mmm1zn/PLLL0yZMsX1/LXXXmPnzp2UlJSQmprK999/T9euXd1f/InqdgNgg22/QOY2q6sRERE3u+SSS2jSpEmV3zQwpzf54osvGD58OCNGjOC0004jODiYjh078umnn9b4mYc3S23ZsoVzzz2XwMBA2rdvz5w5c454z4MPPsgZZ5xBcHAwp59+Oo8//jhlZWWAOd/c008/zdq1a12rAFTWe3iz1Lp16zj//PMJCgqicePG3H777eTn57tev+mmmxg+fDj//ve/iY+Pp3HjxowZM8Z1rbpk6SR+DUpUErQ8H/6aB6v/BwOftLoiERHvYRhQVmjNtf2CwWY75mm+vr7ceOONTJkyhUcffRRbxXu++OILHA4H119/PV988QUPPvgg4eHhfP/999xwww20bNmSXr16HfPznU4nV1xxBbGxsSxbtoycnJwq/XMqhYWFMWXKFBISEli3bh233XYbYWFhPPDAA1xzzTWsX7+eH3/8kblz5wIQERFxxGcUFBQwaNAg+vTpw4oVK0hPT+fWW29l7NixVcLb/PnziY+PZ/78+WzdupVrrrmGLl26cNtttx3z+5wKhRt36n6TGW7WfAznPQI+flZXJCLiHcoK4fkEa679yD7wDzmuU2+55RZefvllFixYwIABAwCzSerKK6+kefPm3Hfffa5z77zzTmbPns3nn39+XOFm7ty5bNy4kdmzZ5OQYP4tnn/++SP6yTz22GOu/aSkJO677z6mTZvGAw88QFBQEKGhofj6+ta4EsDUqVMpLi7mo48+IiTE/O4TJkxg2LBhvPjii8TGxgIQFRXFhAkT8PHxoW3btgwdOpR58+bVebjxiKHgDUabwRASAwXpsGmW1dWIiIibtW3blr59+/LBBx8AsHXrVn777TdGjx6Nw+Hg2WefpWPHjjRq1IjQ0FBmz57Nrl27juuzN2zYQGJioivYAPTp0+eI8z777DP69etHXFwcoaGhPPbYY8d9jUOv1blzZ1ewAejXrx9Op7PKAtgdOnTAx8fH9Tw+Pp709PQTutbJ0J0bd/Lxg64jYeFrZsfi9pdaXZGIiHfwCzbvoFh17RMwevRo7rzzTt566y0mT55My5Yt6d+/Py+++CL/+c9/eP311+nYsSMhISGMGzeO0tLam0JkyZIljBw5kqeffppBgwYRERHBtGnTeOWVV2rtGofy86vaQmGz2XA6nXVyrUMp3LhbtxvNcPPXz5C1w+yLIyIip8ZmO+6mIatdffXV3HXXXUydOpWPPvqIO+64A5vNxqJFi7jsssu4/npzdK3T6WTz5s3HPRq4Xbt27N69m5SUFNfcb0uXLq1yzuLFi2nevDmPPvqo69jOnTurnOPv74/D4TjmtaZMmUJBQYHr7s2iRYuw2+20adPmuOqtS2qWcrdGp8PpAwDD7FgsIiINSmhoKNdccw0PP/wwKSkprhHCrVu3Zs6cOSxevJgNGzbwf//3f6SlpR335w4cOJAzzjiDUaNGsXbtWn777bcqIabyGrt27WLatGn89ddfvPHGG0yfPr3KOUlJSWzfvp3k5GQyMjKqLGFUaeTIkQQGBjJq1CjWr1/P/PnzufPOO7nhhhtc/W2spHBjBdeMxR+Do9zSUkRExP1Gjx5NVlYWgwYNcvWReeyxx+jWrRuDBg1iwIABxMXFMXz48OP+TLvdzvTp0ykqKqJXr17ceuutPPfcc1XOufTSS7n77rsZO3YsXbp0YfHixTz++ONVzrnyyiu5+OKLOe+882jSpEm1w9GDg4OZPXs2mZmZ9OzZk6uuuooLLriACRMmnPgfow54zMKZ7nIiC2/VmfJSeLWdOWPxtVOh7VBr6hARqYe0cKb38qqFMxscX3+zYzFoxmIREZFapnBjlW6jzMctcyB7t7W1iIiIeBGFG6s0bglJ5wAGrFHHYhERkdqicGMldSwWERGpdQo3Vmo3DIIaQe5e2DrX6mpEROqVBjYepkGorX+mCjdW8g2ALteZ++pYLCJyXCpnvS0stGihTKkzlbMxH7pkw8nQDMVW6zYKlkyALbMhZy9EnGZ1RSIiHs3Hx4fIyEjXGkXBwcGuFbal/nI6nezfv5/g4GB8fU8tnijcWK3JGdC8H+xcZPa9GfCg1RWJiHi8yhWr3bEIo7iP3W6nWbNmpxxWFW48QfebzHCz+iM49z6wn9rtOBERb2ez2YiPjycmJoaysjKry5Fa4u/vj91+6j1mFG48QbtLIfB+yN1jLqjZ+kKrKxIRqRd8fHxOuX+GeB91KPYEfoHqWCwiIlJLFG48ReWMxZtmQW6KtbWIiIjUYwo3niKmLSSeBYYDkj+2uhoREZF6S+HGk1TOWLzqI3A6LS1FRESkvlK48SQdhkNgBOTsgm0/W12NiIhIvaRw40n8gqDTteb+qg+trUVERKSeUrjxNN0rOxb/AHlp1tYiIiJSDynceJrYDtC0FzjLIfkTq6sRERGpdxRuPFHl3ZvVH6pjsYiIyAlSuPFEHS6HgHDI2gHbF1hdjYiISL2icOOJ/EOg09Xm/mp1LBYRETkRCjeeqnLOmw0zIX+/paWIiIjUJwo3niquI5zWHZxlsHaq1dWIiIjUGwo3nsw1Y/EUMAwrKxEREak3FG48WYcrwD8UMrfBjt+srkZERKReULjxZAGh0PFv5v6qKZaWIiIiUl8o3Hg6V8fi76DggKWliIiI1AcKN54uoQvEdwFHKaz91OpqREREPJ7CTX2gjsUiIiLHTeGmPuh4FfiFwIEtsHOx1dWIiIh4NIWb+iAgDDpeae6rY7GIiEiNFG7qi8qmqT+/gcJMS0sRERHxZAo39UVCN3PWYkcJ/P6Z1dWIiIh4LIWb+sJmU8diERGR46BwU590/Bv4BcP+jbB7mdXViIiIeCSFm/okMMJckgHUsVhEROQoFG7qm8qmqT+mQ1GWpaWIiIh4IoWbWlLucLJyRya/bEqv2ws17QExHaC8GH7/om6vJSIiUg8p3NSS2X+kcdWkJTz/w4a6vZA6FouIiNRI4aaW9GvVGLsNNqflsy+7qG4v1ulq8A2E9D9gz8q6vZaIiEg9o3BTSyKD/emSGAnAr5v31+3FgiLVsVhEROQoFG5qUf8zYgD4dUsdhxuA7qPMx/VfQXFO3V9PRESknlC4qUX92zQB4LctGZQ7nHV7scTe0KQtlBfB75/X7bVERETqEYWbWtTxtAiigv3IKy4neXd23V6sSsfiD9WxWEREpILCTS3ysds4u7V592ZBXfe7Aeh0DfgEQNo62Le67q8nIiJSDyjc1LL+Z7gx3AQ3gg7DzX11LBYREQEUbmrdua2jAfh9Tw4Z+SV1f8HKpql1X0Fxbt1fT0RExMMp3NSymPBA2seHA7BwS0bdX7BZH4g+A8oKYP2XdX89ERERD2dpuBk/fjw9e/YkLCyMmJgYhg8fzqZNm475vi+++IK2bdsSGBhIx44d+eGHH9xQ7fGrHDVV5/PdgNmxuFvFsHA1TYmIiFgbbhYsWMCYMWNYunQpc+bMoaysjIsuuoiCgoKjvmfx4sWMGDGC0aNHs2bNGoYPH87w4cNZv369GyuvWWW/m1+37MfpdMMops4jwMcfUtbCvjV1fz0REREPZjMMzxlDvH//fmJiYliwYAHnnntutedcc801FBQUMHPmTNexs846iy5dujBp0qRjXiM3N5eIiAhycnIIDw+vtdoPVVrupOszP1FQ6mDmnWdz5mkRdXKdKr4cbTZLdb8Zhr1e99cTERFxoxP5/faoPjc5OeZMu40aNTrqOUuWLGHgwIFVjg0aNIglS5bUaW0nwt/XTt9WZsdit4yagkM6Fn8BJfnuuaaIiIgH8phw43Q6GTduHP369ePMM8886nmpqanExsZWORYbG0tqamq155eUlJCbm1tlcwfXkPBNbgo3SWdDo5ZQmm8uySAiItJAeUy4GTNmDOvXr2fatGm1+rnjx48nIiLCtSUmJtbq5x9NZbhZtSuL3OKyur+gzXZwvSl1LBYRkQbMI8LN2LFjmTlzJvPnz6dp06Y1nhsXF0daWlqVY2lpacTFxVV7/sMPP0xOTo5r2717d63VXZPERsGc3iQEh9Ng8dYDbrkmna8Du585W3HK7+65poiIiIexNNwYhsHYsWOZPn06P//8My1atDjme/r06cO8efOqHJszZw59+vSp9vyAgADCw8OrbO7i1tmKAUKbQLtLzP3VH7rnmiIiIh7G0nAzZswYPv74Y6ZOnUpYWBipqamkpqZSVFTkOufGG2/k4Ycfdj2/6667+PHHH3nllVfYuHEjTz31FCtXrmTs2LFWfIUauYaEb96P2walVXYs/v1zKD36kHoRERFvZWm4mThxIjk5OQwYMID4+HjX9tlnn7nO2bVrFykpKa7nffv2ZerUqbz77rt07tyZL7/8khkzZtTYCdkqvVs0xt/Xzt7sIv7a76YRTEnnQlQLKMmFP6a755oiIiIexKPmuXEHd8xzc6gb/ruM37Zk8NjQdtx6zul1fj0AfnsV5j0NTXvCrXPdc00REZE6VG/nufFGbu93A9BlJNh9Yc8KSPvDfdcVERHxAAo3dWxAxTpTy7ZnUlTqcM9Fw2KhzRBzf5U6FouISMOicFPHWjYJ5bTIIErLnSzb7qYh4XBIx+JpUFrovuuKiIhYTOGmjtlsNs61omnq9PMgshkU58Cf37jvuiIiIhZTuHEDS/rd2O3QTTMWi4hIw6Nw4wZ9WzXGx25j2/4Cdme6sYmo6/Vg84HdSyF9g/uuKyIiYiGFGzcID/Sje7MowM13b8LioM1gc18di0VEpIFQuHGT/m0saJqCgx2L134KZcXuvbaIiIgFFG7cpLLfzeKtGZSWO9134ZbnQ0QiFGfDhm/dd10RERGLKNy4Sfv4cKJD/SkodbB6V5b7Lmz3gW43mvvqWCwiIg2Awo2b2O02zm1tUdNU1+vBZoedi2D/ZvdeW0RExM0UbtzINd/NJjeHm/AEaD3I3F+tjsUiIuLdFG7c6JzW0dhs8GdKLum5bu7cW9mxOHkqlJe499oiIiJupHDjRo1DA+h4WgQAv27JcO/FWw2E8NOgKBM2fOfea4uIiLiRwo2bWTJbMYCPL3S9wdxXx2IREfFiCjduVhluftuyH4fTcO/FKzsW7/gNMra699oiIiJuonDjZl0SIwkL9CW7sIx1e3Pce/HIRLN5CtSxWEREvJbCjZv5+tg5p3U0YMGoKTisY3Gp+68vIiJSxxRuLHBwvpt091+89SAIjYPCDNj0vfuvLyIiUscUbixQOd9N8u5ssgvdfPfExxe6qWOxiIh4L4UbCyREBnFGbChOAxZudfOQcKgYNWWDbb9A5jb3X19ERKQOKdxYpL9VsxUDRDWHVheY+6s/cv/1RURE6pDCjUX6nxEDwK9b9mMYbh4SDtBtlPm45mN1LBYREa+icGORHklRBPn5kJZbwqa0PPcX0GYwhMRAwX7YPMv91xcREakjCjcWCfTzoU/LxoBFTVM+fuakfgArJ7v/+iIiInVE4cZC51bOd+PupRgqdbvRnLF423zYOs+aGkRERGqZwo2F+rcx+92s2JFJQUm5+wto1AJ6/Z+5//29UFbk/hpERERqmcKNhZIaB9OsUTBlDoMlfx2wpojzHoGweMjaDgtfs6YGERGRWqRwYyGbzWbdKuGVAsPh4hfM/YWvQcYWa+oQERGpJQo3FqsMN79usSjcALS/DFpdCI5S+P4esGJouoiISC1RuLFYn5aN8fOxsfNAITsyCqwpwmaDIS+DbyBs/xXWfWFNHSIiIrVA4cZiIQG+9GjeCLCwaQrMzsX9HzD3Zz8CRVnW1SIiInIKFG48QP82Fve7qdTnTohuY07sN+8Za2sRERE5SQo3HqCy382Svw5QXOawrhBff7ikYsTUysmwe4V1tYiIiJwkhRsP0DYujJiwAIrKHKzcYXFzUFI/6DISMGDm3eCwYP4dERGRU6Bw4wGqDglPt7ga4MJnICgK0tbBsklWVyMiInJCFG48RGW/m183Z1hcCRASbQYcgPnPQ84ea+sRERE5AQo3HuLsVtHYbbApLY+UHA9YBqHL9ZB4FpQVwKwHra5GRETkuCnceIjIYH86J0YC8KvVo6YA7Ha45FWw+8LGmbBpltUViYiIHBeFGw9i+VIMh4vtAH3GmPs/PAClFk0yKCIicgIUbjxIZbj5bUsG5Q6nxdVU6P8gRCRCzi5Y8JLV1YiIiByTwo0H6dQ0kshgP/KKy0nenW11OSb/EHNpBoAlEyDtT2vrEREROQaFGw/iY7dxTmsPa5oCaDMY2l4CznJzYU2nh9xVEhERqYbCjYdxrRLuSeEGYPCL4BcCu5ZA8idWVyMiInJUCjce5tzW0QD8vjeHA/klFldziIimcN4j5v6cx6HggLX1iIiIHIXCjYeJCQ+kXXw4hgELt3rAhH6H6v13iO1orhg+5wmrqxEREamWwo0Hcg0J3+RhTVM+vhULa9og+WPYscjqikRERI6gcOOBXP1utuzH6TQsruYwiT2h+03m/sy7obzU0nJEREQOp3Djgbo3jyLE34eM/FL+TMm1upwjDXwSgqMhYxMsedPqakRERKpQuPFA/r52+rYyOxZ71JDwSkFRMOh5c3/BS5C53dp6REREDqFw46E8bimGw3W6GpLOgfJi+OF+MDys+UxERBoshRsPVRluVu/MIre4zOJqqmGzmZ2Lffxh6xzY8K3VFYmIiAAKNx4rsVEwp0eHUO40WLzVQ+eUiW4N/caZ+7MehJI8S8sREREBhRuPdq6nN00BnHMPRLWAvBSY/7zV1YiIiCjceLL+bQ4uxWB4ap8WvyAY+oq5v2wSpKy1th4REWnwFG482FktGuPva2dvdhF/7c+3upyja3UBnHklGE74bhw4HVZXJCIiDZjCjQcL8vehd4tGAPziabMVH27Q8xAQDvtWw6rJVlcjIiINmKXh5tdff2XYsGEkJCRgs9mYMWNGjef/8ssv2Gy2I7bU1FT3FGyBg7MVe9g6U4cLi4MLKtabmvsM5KVZW4+IiDRYloabgoICOnfuzFtvvXVC79u0aRMpKSmuLSYmpo4qtF5luFm27QDFZR7e3NPjFkjoCiU5MPsRq6sREZEGytfKiw8ePJjBgwef8PtiYmKIjIys/YI8UKuYUBIiAtmXU8zSbQcY0MaDg5zdx5z75r3zYf2X0HUktDzf6qpERKSBqZd9brp06UJ8fDwXXnghixbVvDJ1SUkJubm5Vbb6xGazuUZNefSQ8EoJXaHX7eb+9/dCWbG19YiISINTr8JNfHw8kyZN4quvvuKrr74iMTGRAQMGsHr16qO+Z/z48URERLi2xMREN1ZcOzx+KYbDnfcohMZB5jZY+JrV1YiISANjMzxkAhWbzcb06dMZPnz4Cb2vf//+NGvWjP/973/Vvl5SUkJJSYnreW5uLomJieTk5BAeHn4qJbtNbnEZXZ+Zg8Np8NsD55HYKNjqko7tj+nwxU3m8gx3LIHoVlZXJCIi9Vhubi4RERHH9ftdr+7cVKdXr15s3br1qK8HBAQQHh5eZatvwgP96N4sCqhHd2/aD4dWA8FRCt/fo4U1RUTEbep9uElOTiY+Pt7qMurcobMV1ws2Gwz5N/gGwvYFsO5LqysSEZEGwtJwk5+fT3JyMsnJyQBs376d5ORkdu3aBcDDDz/MjTfe6Dr/9ddf55tvvmHr1q2sX7+ecePG8fPPPzNmzBgrynerc1ub4WbxXwcoLXdaXM1xatQCzr3f3J/9MBRlWVuPiIg0CJaGm5UrV9K1a1e6du0KwD333EPXrl154glzMriUlBRX0AEoLS3l3nvvpWPHjvTv35+1a9cyd+5cLrjgAkvqd6cOCeE0DvEnv6Sc1bvqUUjo+0+IbgMF+2Hes1ZXIyIiDYDHdCh2lxPpkORp7v4smelr9nLHgJY8eHFbq8s5fjsWwpShgA1unQtNe1hdkYiI1DN13qF49+7d7Nmzx/V8+fLljBs3jnffffdkPk6Ok2tIuKevM3W4pLOh83WAATPHgaPc6opERMSLnVS4ue6665g/fz4AqampXHjhhSxfvpxHH32UZ555plYLlIPOaR2NzQZ/puSSnlfPJse76FkIjITUdbD8HaurERERL3ZS4Wb9+vX06tULgM8//5wzzzyTxYsX88knnzBlypTarE8O0Tg0gI6nRQDw22YPX0jzcCHRcGFF8P35OcjZU/P5IiIiJ+mkwk1ZWRkBAQEAzJ07l0svvRSAtm3bkpKSUnvVyREqR03Vm/luDtX1BkjsDWUF8ONDVlcjIiJe6qTCTYcOHZg0aRK//fYbc+bM4eKLLwZg3759NG7cuFYLlKoq57v5bct+HM561hfcbjcX1rT5wIbvYNOPVlckIiJe6KTCzYsvvsg777zDgAEDGDFiBJ07dwbg22+/dTVXSd3omhhJWKAvWYVlrNubY3U5Jy62A/SpmJfoh/uhtNDaekRExOv4nsybBgwYQEZGBrm5uURFRbmO33777QQH14N1j+oxXx87Z7eKZtb6VBZs2k+XxEirSzpxAx4y157K2QW/vgQDn7K6IhER8SIndeemqKiIkpISV7DZuXMnr7/+Ops2bSImJqZWC5QjHVwlPN3iSk6SfwgMfsncX/wmpG+wth4REfEqJxVuLrvsMj766CMAsrOz6d27N6+88grDhw9n4sSJtVqgHOncinCTvDubnMIyi6s5SW2HQNtLwFkOM+8GZz1ZUkJERDzeSYWb1atXc8455wDw5ZdfEhsby86dO/noo4944403arVAOVJCZBBnxIbiNGDh1no2JPxQF78AfiGwawmsnWp1NSIi4iVOKtwUFhYSFhYGwE8//cQVV1yB3W7nrLPOYufOnbVaoFTv4JDweto0BRCZCOc9bO7/9DgUHLC2HhER8QonFW5atWrFjBkz2L17N7Nnz+aiiy4CID09vd6t11RfVQ4JX7B5P/V6ebDef4fYM6EoE+Y+YXU1IiLiBU4q3DzxxBPcd999JCUl0atXL/r06QOYd3EqV/iWutUzqRGBfnbSckvYlJZndTknz8fPnPsGYM3HsHOxtfWIiEi9d1Lh5qqrrmLXrl2sXLmS2bNnu45fcMEFvPbaa7VWnBxdoJ8PfU43J0ysdwtpHi6xF3S/ydyfeTeUl1pajoiI1G8nFW4A4uLi6Nq1K/v27XOtEN6rVy/atm1ba8VJzQ4OCa/n4QbggichOBr2b4QlE6yuRkRE6rGTCjdOp5NnnnmGiIgImjdvTvPmzYmMjOTZZ5/FqSG9btO/jTmn0IodmRSUlFtczSkKbgSDnjP3F7wEWTssLUdEROqvkwo3jz76KBMmTOCFF15gzZo1rFmzhueff54333yTxx9/vLZrlKNIahxMs0bBlDkMlm7zgpFGna6BpHOgvMhcmqE+d5QWERHLnFS4+fDDD3n//fe544476NSpE506deIf//gH7733HlOmTKnlEuVobDYb554RDXhJ05TNBkNfBbsfbPnJXFxTRETkBJ1UuMnMzKy2b03btm3JzMw85aLk+PU/w2ya8opwA9DkDDh7nLk/60EoqccjwURExBInFW46d+7MhAlHdvqcMGECnTp1OuWi5Pj1adkYPx8bOw8UsiOjwOpyasc590JUC8jbB/PHW12NiIjUMye1KvhLL73E0KFDmTt3rmuOmyVLlrB7925++OGHWi1QahYa4EuP5o1Ysu0ACzbvJyk6xOqSTp1fEAz9N3x8JSybCJ2vgfjOVlclIiL1xEnduenfvz+bN2/m8ssvJzs7m+zsbK644gr++OMP/ve//9V2jXIMh85W7DVaDYQOV4DhrFhY02F1RSIiUk/YjFqcu3/t2rV069YNh8Nzf4hyc3OJiIggJyfHa5aK2JCSy+D//EaQnw/JT15IgK+P1SXVjtwUeKsXlOSaHY17jra6IhERsciJ/H6f9CR+4jnaxoURExZAUZmDlTuyrC6n9oTHw/kVUwvMfRry0qytR0RE6gWFGy9gDgn3wqYpMO/WxHeBkhz46VGrqxERkXpA4cZLuJZiqO/rTB3O7gPDXgebHdZ9AX/Nt7oiERHxcCc0WuqKK66o8fXs7OxTqUVOwdmtorHbYFNaHik5RcRHBFldUu1J6Ao9b4Pl78D398Idi8Ev0OqqRETEQ53QnZuIiIgat+bNm3PjjTfWVa1Sg6gQfzonRgLwq7c1TQGc/yiExkHmX7DodaurERERD3ZCd24mT55cV3VILeh/RhPW7Mpmweb9XNOzmdXl1K7ACLh4PHx5M/z2CnT8GzRuaXVVIiLigdTnxotU9rv5bUsG5Q4vXJ29w+XQ8gJwlJpz32hhTRERqYbCjRfp1DSSyGA/8orLWbsn2+pyap/NZs5c7BsI2xfAivetrkhERDyQwo0X8bHbOLtVxSrh3jZqqlKj02Hg0+b+T4/B/k3W1iMiIh5H4cbL9PfW+W4O1et2s3mqvBi+uhXKS62uSEREPIjCjZepDDe/783hQH6JxdXUEbsdhr8NQY0g9XeY/5zVFYmIiAdRuPEyMeGBtIsPxzBg4dYMq8upO2FxcOkb5v6i/8COhdbWIyIiHkPhxgt57WzFh2s3DLreABjw9f9BUbbVFYmIiAdQuPFCleHm1y0ZOJ1ePlz64hcgqgXk7oEf7rO6GhER8QAKN16oe/MoQvx9yMgv4c+UXKvLqVsBoXDl+2DzMdee+v0LqysSERGLKdx4IX9fO31aVgwJ9+ZRU5Wa9oD+D5r7398L2busrUdERCylcOOl+rdpAEPCD3XOvdC0J5TkwPS/g9NhdUUiImIRhRsv1b+1GW5W78wit7jM4mrcwMcXrngX/ENh5yJY/IbVFYmIiEUUbrxUs8bBnB4dQrnTYPHWA1aX4x6NTofBL5r7Pz8H+5ItLUdERKyhcOPFzm0IsxUfrstIc4i4swy+vg1KC62uSERE3Ezhxou5hoRv3o/RUFbQttlg2BsQGgcZm2HO41ZXJCIibqZw48V6n94If187e7OL+Gt/gdXluE9wI7h8orm/4n3Y/JO19YiIiFsp3HixYH9ferdoBDSwpimAlufDWf8w97/5B+Q3sO8vItKAKdx4uQaxSvjRXPAkxLSHgv3w7Z3QUJrmREQaOIUbL1cZbpZtO0BxWQOb+8UvEK54D3z8YfMsWDXF6opERMQNFG68XKuYUBIiAikpd7J0WwMZEn6ouDPNOzgAsx+BjK3W1iMiInVO4cbL2Wy2hjdb8eHO+ge06A9lhfD1reBoAJMaiog0YAo3DcC5rQ8OCW+Q7HYYPhECI2HfGvjlBasrEhGROqRw0wD0bRWNj93GX/sL2J3ZQCe1izgNhv3H3F/4KuxcYm09IiJSZxRuGoCIID+6NYsE4NctDfTuDUCH4dD5OjCcMP12KM6xuiIREakDCjcNhGtI+KYGHG7AXHsqsjlk74JZD1pdjYiI1AGFmwai/xkxACz+6wCl5U6Lq7FQYLi5erjNDms/hfVfW12RiIjUMoWbBqJDQjiNQ/zJLyln9a4sq8uxVrOz4Jx7zf2Z4yBnr6XliIhI7bI03Pz6668MGzaMhIQEbDYbM2bMOOZ7fvnlF7p160ZAQACtWrViypQpdV6nN7DbbQ1zlfCj6f8gJHQz+93M+Ds4G/DdLBERL2NpuCkoKKBz58689dZbx3X+9u3bGTp0KOeddx7JycmMGzeOW2+9ldmzZ9dxpd7h3DOigQY8JPxQPn7m7MV+wbD9V1h6fP8bFBERz+dr5cUHDx7M4MGDj/v8SZMm0aJFC1555RUA2rVrx8KFC3nttdcYNGhQXZXpNc6pmO/mj325pOcVExMWaHFFFotuBRePh+/ugnnPwOkDIK6j1VWJiMgpqld9bpYsWcLAgQOrHBs0aBBLlhx9zpKSkhJyc3OrbA1VdGgAHU+LAOC3zRkWV+Mhuo2CNkPBUQpf3QZlRVZXJCIip6hehZvU1FRiY2OrHIuNjSU3N5eioup/lMaPH09ERIRrS0xMdEepHqtBrxJeHZsNLn0DQmJg/waY+7TVFYmIyCmqV+HmZDz88MPk5OS4tt27d1tdkqUq15n6bct+HE7D4mo8REg0DH/b3F82EbbOs7YeERE5JfUq3MTFxZGWllblWFpaGuHh4QQFBVX7noCAAMLDw6tsDVnXxEjCAn3JKixj3V7N0OvS+kLodbu5P+MOKGiAK6iLiHiJehVu+vTpw7x5Vf9f9Zw5c+jTp49FFdU/vj52+rU0R001+NmKD3fhMxDdBvLT4Lt/gqE7WyIi9ZGl4SY/P5/k5GSSk5MBc6h3cnIyu3btAswmpRtvvNF1/t///ne2bdvGAw88wMaNG3n77bf5/PPPufvuu60ov96qbJpq0OtMVccvCK58D+x+sHEmrPnY6opEROQkWBpuVq5cSdeuXenatSsA99xzD127duWJJ54AICUlxRV0AFq0aMH333/PnDlz6Ny5M6+88grvv/++hoGfoMrJ/NbsyiKnsMziajxMfGc4/zFzf9aDcOAva+sREZETZjOMhnXvPTc3l4iICHJychp0/5sLX13AlvR83rquG0M7xVtdjmdxOuDDS2HnQjitB9wyG3wsnRJKRKTBO5Hf73rV50Zqz8Eh4ekWV+KB7D5w+SQIiIC9K+HXl62uSEREToDCTQNV2e9mweb9NLCbd8cnMhEuedXc//Vl2L3c2npEROS4Kdw0UD2TGhHoZyctt4RNaXlWl+OZOl4FHa8GwwFf3w4l+juJiNQHCjcNVKCfD2ed3hjQQpo1GvIyRCRC1nb48SGrqxERkeOgcNOAVfa7mb9R4eaogiLh8ncAmzk0/M9vra5IRESOQeGmATuvTQwAS7YdYNICDXk+qqR+cPY4c/+7f0JuiqXliIhIzRRuGrCk6BDuH9QGgBdmbeTdXxVwjmrAI+YcOEVZ5vIMTqfVFYmIyFEo3DRwY85rxd0DzwDg+R828v5v2yyuyEP5+sMV74NvEGybD8vfsboiERE5CoUb4a6BrbnrgtYA/Ov7DXywcLvFFXmoJmfAoH+Z+3OehLQ/ra1HRESqpXAjAIwb2Jo7z28FwDMz/2TKIgWcavUYDa0vAkcJfH0blJdYXZGIiBxG4UYAsNls3HPhGYw5ryUAT333Jx8t2WFtUZ7IZoPL3oLgaEhbD/OesboiERE5jMKNuNhsNu67qA13DDADzhPf/MH/lu60uCoPFBoDl00w95dMgG2/WFqOiIhUpXAjVdhsNh4Y1Ib/O/d0AB6fsZ6py3Yd410NUJvB0P1mc3/6HVCYaW09IiLionAjR7DZbDw0uC23ndMCgEemr2PacgWcIwx6Dhq3grx9MPNu0BpdIiIeQeFGqmWz2XhkSDtGn20GnIe+XsfnK3ZbXJWH8Q+BK94Duy/8OQPWTrO6IhERQeFGamCz2XhsaDtu7pcEwINf/84XKxVwqjitGwx42Nz/4X7I2mFpOSIionAjx2Cz2XjikvaM6tMcw4AHvvqdr1btsbosz3L23dCsD5Tmwdf/B45yqysSEWnQFG7kmGw2G09d2oEbzjIDzn1frmX6GgUcF7uPubimfxjsXgqLXrO6IhGRBk3hRo6LzWbj6Us7MLJ3MwwD7v18Ld8k77W6LM8R1RyG/tvc/+UF2LvK2npERBowhRs5bna7jWcvO5MRvZrhNODuz5L5du0+q8vyHJ2ugQ5XgLMcvroNSgusrkhEpEFSuJETYrfbeG74mVzbMxGnAeOmreE7BRyTzQaXvArhp0HmXzD7EasrEhFpkBRu5ITZ7Taev7wjf+ve1Aw4nyXz/e8pVpflGYKi4PJJgA1WTYGNP1hdkYhIg6NwIyfFbrfx4pWduKp7UxxOg39OW8OsdQo4ALQ4F/qONfe/HQt5adbWIyLSwCjcyEmrDDhXdD0Nh9Pgzk/X8OP6VKvL8gznPw6xHaHwAHwzRrMXi4i4kcKNnBIfu42X/9aZ4V0SKHcajJ26mp/+UMDBNwCufA98AmDrHFjxvtUViYg0GAo3csp87DZeuboLl3Y2A86YqauZ+6eaYohpBxc+Y+7/9Bjs32RtPSIiDYTCjdQKH7uNV6/uzCWd4ilzGNzxySrmbVDAodft0PICKC+GL0dD/n6rKxIR8XoKN1JrfH3svH5NF4Z2rAg4H69m/sZ0q8uylt0Ow9+G4MaQtg4m9YNtC6yuSkTEqyncSK3y9bHz+rVdGHxmHKUOJ//38Sp+2dTAA05YHNz0PTRpC/lp8NFl8PO/tAaViEgdUbiRWufnY+eNEV0Z1CGW0nInt/9vFb9ubuDNMTHt4Lb50O1GwIBfX4YPh0GOlrAQEaltCjdSJ/x87Lw5ohsXtTcDzm0frWThlgyry7KWfzBc+iZc+V9zkc1di81mqk2zrK5MRMSrKNxInfH3tTPhum4MbBdLSbmT0R+uYNHWBh5wADpeBf+3AOK7QFEWfHot/PgwlJdaXZmIiFdQuJE65e9r562RXbmgbYwr4Cz+SwGHxi1h9E9w1j/M50vfhv9eCJnbrK1LRMQLKNxInQvw9eHt67txXpsmFJc5uWXKCpZuO2B1WdbzDYCLx8OIaeaaVCnJMOlcWPel1ZWJiNRrCjfiFgG+Pky8vjv9zzADzs2TV7BMAcfUZjD8fSE06wOlefDVaPj2TigttLoyEZF6SeFG3CbQz4d3bujOOa2jKSpzcPOUFazYkWl1WZ4hoimMmgnn3g/YYPVH8N75kL7B6spEROodhRtxq0A/H967sQfntI6msNTBTR8sZ6UCjsnHF85/DG6cAaGxsH8DvHserPpQC2+KiJwAhRtxu0A/H969oQf9WjWmoNTBTZNXsGpnltVleY7TB5jNVC3Ph/Ii+O6fZlNVca7VlYmI1AsKN2KJIH8f3r+xJ31Ob0x+STmjPljOml0KOC6hMTDyKxj4FNh8YP1X8M65sHe11ZWJiHg8hRuxTJC/D/+9qQdnnd6I/JJybvzvcpJ3Z1tdluew2+Hsu+GWHyGiGWRth/9eBEveVjOViEgNFG7EUsH+vnxwU096tWhEXkk5N/x3Gb/vyba6LM+S2Av+/iu0vQScZTD7Yfh0BBSqr5KISHUUbsRywf6+TL6pJz2TosgrLuf695exfm+O1WV5lqAouOZjGPJv8PGHzbNg0tmwc7HVlYmIeByFG/EIIQG+TL65F92bR5FbXM5IBZwj2WzQ6za4dR40bgW5e2HKUFjwMjgdVlcnIuIxFG7EY4QG+DLl5p50axZJTlEZ1/93GX/sU8A5QnwnuH0BdLoWDCfM/xf8bzjkpVpdmYiIR1C4EY8SFujHh7f0oktiJNmFZVz//jI2pGgI9BECQuGKd2D4RPALhu2/ms1UW+daXZmIiOUUbsTjhAX68dHoXnROjCSrsIyR7y9jY6oCTrW6XGfexYk9Ewr2w8dXwpwnwVFmdWUiIpZRuBGPFB7ox0e39KJT0wgyC0q57r1lbErNs7osz9TkDLh1LvQYbT5f9DpMHgLZuywtS0TEKgo34rEigvz43y29OfO08IqAs5QtaQo41fILgktehas/goAI2LPcbKba8J3VlYmIuJ3CjXi0iGA/Ph7dmw4J4RwoKGXEe8vYmq6Ac1TtLzPnxDmtBxTnwGfXw/f3QVmx1ZWJiLiNwo14vMhgfz4e3Zt28eFk5Jdw7bvL2Jqeb3VZnisqyZzVuO8/zecr3oP/DoSMrZaWJSLiLgo3Ui9Ehfjzya29aRsXRkZ+CVe8vYhJC/6iqFTzu1TLxw8uehZGfgnBjSF1nbk21dppVlcmIlLnbIbRsBapyc3NJSIigpycHMLDw60uR05QZkEpN01ezu97zPlvYsICuGtga67ukYifj7J6tXJT4OvbYMdv5vPO18GQl83h5CIi9cSJ/H4r3Ei943AaTF+zl9fmbGZvdhEASY2DueeiNlzSMR673WZxhR7I6YBf/w0LXjAn/mvcGv42BeLOtLoyEZHjonBTA4Ub71FS7mDqsl1M+HkrBwpKAWgfH879F7dhwBlNsNkUco6wYyF8dSvkpYBPAFz8vDmEXH8rEfFwCjc1ULjxPvkl5XywcDvv/bqNvJJyAHolNeKBi9vQI6mRxdV5oIIDMOMO2DLbfN7uUrj0TQiKtLQsEZGaKNzUQOHGe2UVlDJxwV9MWbyD0nInABe0jeG+QW1oF69/1lUYBix5C+Y+Bc4yiGwGV02Gpj2srkxEpFon8vvtET0w33rrLZKSkggMDKR3794sX778qOdOmTIFm81WZQsMDHRjteKpokL8eWRIOxbcP4ARvRLxsduYtzGdIW/8xrhpa9h1oNDqEj2HzQZ9x8Lo2RDZ3JzN+INBsOg/4HRaXZ2IyCmxPNx89tln3HPPPTz55JOsXr2azp07M2jQINLT04/6nvDwcFJSUlzbzp073VixeLr4iCDGX9GJOXefy9BO8RgGzEjex/mv/MLjM9aTnqsJ7VxO6w5//w06XA7OcpjzBEy9GgoyrK5MROSkWd4s1bt3b3r27MmECRMAcDqdJCYmcuedd/LQQw8dcf6UKVMYN24c2dnZJ3U9NUs1POv35vDS7E38unk/AIF+dm7p14L/69+SiCA/i6vzEIYBq6bAjw9BeTGExsGV70GLc62uTEQEqEfNUqWlpaxatYqBAwe6jtntdgYOHMiSJUuO+r78/HyaN29OYmIil112GX/88cdRzy0pKSE3N7fKJg3LmadF8NEtvfj0trPo2iyS4jInb//yF+e8+DMTf9FEgIDZTNXjZrjtZ4huA/mp8OGl8NPjsGcVlJdaXaGIyHGzNNxkZGTgcDiIjY2tcjw2NpbU1NRq39OmTRs++OADvvnmGz7++GOcTid9+/Zlz5491Z4/fvx4IiIiXFtiYmKtfw+pH/q0bMzXd/Tl3Ru6c0ZsKLnF5bz440b6vzyfj5fupMyhvibEdoDb50PX6wEDFr8B758PLyTCB4NhzpOw8XvI3291pSIiR2Vps9S+ffs47bTTWLx4MX369HEdf+CBB1iwYAHLli075meUlZXRrl07RowYwbPPPnvE6yUlJZSUlLie5+bmkpiYqGapBs7hNPgmeS+vztnMnixzIsDmjYO558IzGNYpQRMBAvz5DSRPhd3LoCjryNcbnQ6JvSGxl/nYpC3Yfdxfp4g0CCfSLOXrppqqFR0djY+PD2lpaVWOp6WlERcXd1yf4efnR9euXdm6tfpFAQMCAggICDjlWsW7+NhtXNGtKUM7xTNt+W7e/HkLOw8Ucte0ZCYt2Mb9g87gvDYxDXsiwPaXmZthwIGtZsjZvQx2L4f9GyFzm7mt/dQ8PyDcHEqe2Bua9jT3AyOs/Q4i0iB5RIfiXr168eabbwJmh+JmzZoxduzYajsUH87hcNChQweGDBnCq6++eszz1aFYqlNQUs7kRdt5Z8HBiQB7JkXxwMVt6amJAI9UlGX2xakMPHtXQenhK7XbIKb9wTs7ib3Muz0NOTCKyEmrV5P4ffbZZ4waNYp33nmHXr168frrr/P555+zceNGYmNjufHGGznttNMYP348AM888wxnnXUWrVq1Ijs7m5dffpkZM2awatUq2rdvf8zrKdxITbIKSplUMRFgScVEgOe3jeG+i9rQPkH/ezkqRzmk/3nwzs6e5ZC148jzgqOrNmUldAG/IHdXKyL1UL1plgK45ppr2L9/P0888QSpqal06dKFH3/80dXJeNeuXdjtB/s9Z2Vlcdttt5GamkpUVBTdu3dn8eLFxxVsRI4lKsSfh4e04+Z+LfjPvC18vnI3P29MZ/6mdC7tnMA9F55B88YhVpfpeXx8Ib6TufW6zTyWl2aGnMrAs28NFGbApu/NDcDuZ77n0MATnmDd9xARr2D5nRt3050bORHbMwp45adNzPw9BQBfu41reyXyz/NbExOumbFPSHkJpKyt2ncnP+3I8yISzaDTtJf5GNcRfDQfkUhDV6+apdxN4UZOxvq9Obw8exMLDpkI8Ka+Lbijf0sigvXDe1IMw1z2Yffyg4EnbT0Yhw3J9w0yZ1I+tO9OsPpBiTQ0Cjc1ULiRU7F02wFe+nEjq3dlAxAe6Mv/9W/Jzf2SCPa3vJW3/ivJNzsnV/bb2b0MinOOPK9x64qg09N8jG4DdstXkxGROqRwUwOFGzlVhmEwb0M6L8/exKa0PACahAXwz/NbcU3PZvj76ke21jidcGBL1aasjM1HnhcYYQ4/T+xt3uWJaQdh8RqZJeJFFG5qoHAjtcXhNPh2rTkR4O5McyLAZo3MiQAv7ayJAOtMYSbsWXEw7OxdBWXVrPgeEA7RrSH6DHNr0sa8wxOVZHaAFpF6ReGmBgo3UttKy51MW7GLN+ZtJSPfnA27bVwY9w9qw/ltG/hEgO7gKDf76lT23UlJhsztYBxlzTAff2jU0gw+lYGnyRlmU5d/sFtLF5Hjp3BTA4UbqSuFpeVMXrSDSQv+Iq/YnAiwR3NzIsBeLdQB1q3KS8zZk/dvgowtkLHp4H550dHfF9HMDDqVgSe6jRmA1IFZxHIKNzVQuJG6ll1YyqQF25i8aLtrIsABbZpw5/mt6Nw0El8f9cmxjNMJObvNfjsZmysCT8VjUebR3xfc+LDAU9HUFd5UHZlF3EThpgYKN+IuabnFvDFvC9NW7MbhNP81C/H3oUuzSLo3b0T35lF0bRZJeKCGknuEgoyDYefQ4JOz++jv8Quu6NdzSPCJPsNcZsLX3321izQACjc1ULgRd9uRUcB/5m1h7p9prnWrKtls0CY2jO7No+jePIoezRuR2ChI/XQ8SUm+OWIrY0tF4NkE+zdD5l/gLK/+PXZfiGpR0aensjNzRefmgDD31i/iJRRuaqBwI1ZxOA22pOexckcWq3dmsXJnFrsyjxzl0yQsgO7NouiRFEW35lGcmRCh4eWeyFFmdlzO2Hww8GRU9Os5YhHRQ4SfdljgaQNN2kJoE/fVLlIPKdzUQOFGPEl6XjGrd2axqiLsrN+bQ5mj6r+SAb52OjeNpFvzKHpU3OGJClGTh8cyDMjde1hn5orgU7D/6O8LjatYn6szxFWs0xXZXHP1iFRQuKmBwo14suIyB+v25rByhxl4Vu3MJKuw7IjzTm8S4go63Zs3omWTEDVl1QeFmdV3Zs7eBVTzn+LAiIqg0/lg6IluDXYft5cuYjWFmxoo3Eh9YhgG2zIKzKCzI4uVOzP5a3/BEedFBvvRvVkU3ZPMfjudmkYQ6KcfwHqjJN+cqyfld0hday4wmr4RnEcGW3yDIO7Mg3d34jpBTHvw00Ku4t0UbmqgcCP1XVZBKat3HWzKWrs72zXkvJKfj40OCREVnZTN0BMTph+/eqW8BPZvNINOyu+Q+jukrqt+Nma7r9lvx3WXp5O5mro6L4sXUbipgcKNeJvScid/puSyckemK/Dszys54rzERkH0aN7I1XfnjNgwfLRERP3idMCBv8ygk5J8MPQUZVV/fqOWB+/uVDZthUS7tWSR2qJwUwOFG/F2hmGwJ6uoIuhksnJHFpvS8jj83/SwAF+6NIukR8WcO12aRRIaoDWX6h3DgJw95h2e1N/NwJOyFvL2VX9+WMIhd3cqmrYiEtVxWTyewk0NFG6kIcorLmPNruyKTspZrNmVRUFp1bWX7DZoFx/umnOne/MoTovUnDv1VkFGRZPWIaEn86/qzw2KOrLjcuOW6rgsHkXhpgYKNyJQ7nCyKS3PFXZW7shib/aRay7FhQdWCTvtE8Lx0/IR9Vdx7sGOy5WhZ//G6icj9Aup2nE5vjM0aaeZl8UyCjc1ULgRqV5qTrGrKWv1ziz+2JdLubPqfx4C/ex0ahrp6qjcrZnm3Kn3yoph/4aDHZdT1kLaH9UvMGr3g5i2ZtCJPROCGkFAKPiHVjyGHXzuH6p1t6RWKdzUQOFG5PgUlpbz+54c192dVTuzyCmqfs6dyhmVuzeP4vToUOzqqFy/OcrhwNZDmrQqHotzTuxz/EKOHn5cj2HH99wvSP2CGjiFmxoo3IicHKfTnHNndcXdnVU7s6qdcyciyI9uzSLpkdSIbs2i6JwYQbC/OirXe4YB2TsPjtDavxFK8sw5ekrzKx4rnhuOY3/eibL5HBZ6jhaGqgtRlc9DzLtPdh+w2c3PtFc++hz22MDvOhkGGE5zhJ7hMB+d5QePOcurP25UPK9cVLYWKdzUQOFGpPZkFZSyZneWa0bltXuyKS6rOueOj91G+8M6KidEBllUsdQ5w4Dy4qph5/Dwc9Tn+WZgOvR5Tet01TVbdcHHfuTzo4YkezXnV3Ou65yjnOt0HhYkHIccKz8sgDgOO15dGDnkfNe51XzeqUjsDaN/qp1/DhUUbmqgcCNSd8ocTjak5Lrm21m1I4vU3OIjzouPCKRb8yhXc1a7eHVUlqNwOqGs4Ojh55jPDw1RBQd/5A3nsa8tR+cKdb5Vg5jd19xP6ArXTavVSyrc1EDhRsS99mUXVem382dKLo5qOip3ruio3F0dlcUdDKNiq+5OhvNgAKry2uHPK485a/ic6l5zHvb+mq7hPOyOju8hd358q97pOeKuz9HOPSSEVPv+4zjXgv5PCjc1ULgRsVZhaTlrd+ewelcWK3dksnpXdrUdlVs2CanSlKWOyiINm8JNDRRuRDyL2VE5/+CcOzuz2HaUxUG7NTt4Z6dLYiRB/ppkTqShULipgcKNiOfLLChlza6DTVnVdVT2tdtonxDuCjzqqCzi3RRuaqBwI1L/lDmc/LnP7Ki8atfROyonRATSOTGSZo2DSYwKpmlUEImNgjktMohAP93lEanPFG5qoHAjUv8ZhsG+ihmVV9fQUflQMWEBJDYKJjEqiKZRwSQ2CqoIQMHERwZqtJaIh1O4qYHCjYh3KigpZ+2ebP7cl8uerCJ2Zxaaj1mFFJbWPGeH3QbxEUGuOz1No8zgU7kfGx6Ijzozi1hK4aYGCjciDYthGGQWlLqCzu7MIvZkFbI7y3zck1VEaXnNc574+dhIiKwMPOadn0ODUJPQAK2eLlLHTuT3W3Oii4hXs9lsNA4NoHFoAJ0TI4943ek02J9fYgaezKp3fPZkFbEvu4gyh8HOA4XsPFBY7TUC/ewHA88hwadyPzLYT+FHxI0UbkSkQbPbbcSGBxIbHkj35ke+Xu5wkppb7Grqct3xqbgDlJJbTHGZk63p+WxNr36pgNAAX5oe0dfn4J2fsEC/Ov6WIg2LmqVERE5BabmTfdlFhzR7Vb3zsz+v5JifERHkR+NQf6JDAmgU4k+jUH+iQ/xpFOJv3nWqeGwU4k9UsB++6vwsDZCapURE3MTf105SdAhJ0SHVvl5U6mBvdsUdn0Pu/OzONANQdmEZOUXmVt3khYez2SAyyK9K8Kkagszn0a4w5K/O0NLgKNyIiNShIH8fWsWE0SomrNrX84rLSMkp5kB+KQcKSsgsKCUjv5TMKvulHMgvIbuoDMOArMIysgrL+Os4w1BUcEUAOiT8NA4JoHGo+WiGIfN4pMKQeAGFGxERC4UF+pl9bmKPfW65w0l2UZkrCB04JPgcKKjcr3itoJTsQjMMZVa8tvU46rEfGoYOCT/m/sHmscYh/hW1+xLs76MO0+JRFG5EROoJXx870aEBRIcGANXfCTpUucNJVmGZeUcov5SMglIy8yvuCBWUknlIEMqsCENOAw4UlHKgoJQt6cdXl90GIQG+hAf6ERrgS2igL2GBvoQG+LoCkLl/8DGs4tywwIrzA/wI9LMrJEmtULgREfFSvj52moQF0CQs4LjOL3M4ySosPXhHqOKu0OFNZQfyS8ksLCWvuByH08BpQF5xOXnF5adWr91G6KGh6JDwc7SgFBp4MFRVnhvgq6U2GjqFGxERAcDPx05MWCAxYYHHdb5hGBSXOckrKSOvuJz8ioCTX/Hc3De3vOLDjhVXHKt43TCg3GmQXVhGdmEZUHTS38Pfx35YKPIlNMCP8EBfoiqa2KIPaW6r7Hyt5jXvoXAjIiInxWazEeTvQ5C/D0fpL31cnE6DwjJH1cBztKBUXO4KU4cHpYKKZTZKHU5X09qJCPSzH9LR2p9GIQFEh1Z2wg44GIoqXtdirJ5L4UZERCxlt9vMJqYAX+Iiju+uUXUcToOC0vJD7iJVDUq5xWVkHdLcdqCiiS0jv4SScifFZU72ZhexN/v47hqFBvhW6XhdORrt0GH5lWGpUYi/Fmd1I4UbERHxCj52G+GBfoSf4IzPhmFQWOqo6Ft0cBRaxiEj0jLyS6qMRitzGK4mt12Z1S/LcbiIIL+qw/FDA6pO1nhIGNL8RKdG4UZERBo0m81GSIAvIQG+JDYKPub5hmGQV1JuBp1D7gC59gvMztfmXaFSsgpLcTiNg5M1ZpzY/EQhAb4E+dkJ9PMhqGILqHgM9LObx/wPHjv0uOuY/8FjgX4+BPh698g0hRsREZETYLMdvEPU4igzUx/KWRFsKucmOrxZ7NDjmQVmGDp0fqK6+Q4Q6HtI4PH3IdDXDEGV4SjQFZQqwpGvnUD/Q45VPB4amirfH1LRZGcVhRsREZE6ZLfbiArxJyrEn1Yxxz6/cn6iygkaC0sdFJc7KCp1UFzupLjUQVGZg+Kyg4/FZU6KSg99XrnvrHKszGEuJ2kYUFRxThZltf6dOzeN4JuxZ9f65x4vhRsREREPUnV+olMYhlaNcoeT4nIzCB0agiqD0+HHDw9HBwOUs0q4KipzUHzIZwT5WzuSTOFGRESkgfD1sRPqYyc0oG5//g3DqNPPPxaNSxMREZFaZXVnZYUbERER8SoKNyIiIuJVFG5ERETEqyjciIiIiFdRuBERERGvonAjIiIiXkXhRkRERLyKR4Sbt956i6SkJAIDA+nduzfLly+v8fwvvviCtm3bEhgYSMeOHfnhhx/cVKmIiIh4OsvDzWeffcY999zDk08+yerVq+ncuTODBg0iPT292vMXL17MiBEjGD16NGvWrGH48OEMHz6c9evXu7lyERER8UQ2w+I5knv37k3Pnj2ZMGECAE6nk8TERO68804eeuihI86/5pprKCgoYObMma5jZ511Fl26dGHSpEnHvF5ubi4RERHk5OQQHh5ee19ERERE6syJ/H5beuemtLSUVatWMXDgQNcxu93OwIEDWbJkSbXvWbJkSZXzAQYNGnTU80tKSsjNza2yiYiIiPeyNNxkZGTgcDiIjY2tcjw2NpbU1NRq35OamnpC548fP56IiAjXlpiYWDvFi4iIiEeyvM9NXXv44YfJyclxbbt377a6JBEREalDdbvm+TFER0fj4+NDWlpaleNpaWnExcVV+564uLgTOj8gIICAgADX88ouRmqeEhERqT8qf7ePp6uwpeHG39+f7t27M2/ePIYPHw6YHYrnzZvH2LFjq31Pnz59mDdvHuPGjXMdmzNnDn369Dmua+bl5QGoeUpERKQeysvLIyIiosZzLA03APfccw+jRo2iR48e9OrVi9dff52CggJuvvlmAG688UZOO+00xo8fD8Bdd91F//79eeWVVxg6dCjTpk1j5cqVvPvuu8d1vYSEBHbv3k1YWBg2m61Wv0tubi6JiYns3r1bI7HqkP7O7qG/s3vo7+w++lu7R139nQ3DIC8vj4SEhGOea3m4ueaaa9i/fz9PPPEEqampdOnShR9//NHVaXjXrl3Y7Qe7BvXt25epU6fy2GOP8cgjj9C6dWtmzJjBmWeeeVzXs9vtNG3atE6+S6Xw8HD9i+MG+ju7h/7O7qG/s/vob+0edfF3PtYdm0qWz3PjTTSHjnvo7+we+ju7h/7O7qO/tXt4wt/Z60dLiYiISMOicFOLAgICePLJJ6uMzpLap7+ze+jv7B76O7uP/tbu4Ql/ZzVLiYiIiFfRnRsRERHxKgo3IiIi4lUUbkRERMSrKNyIiIiIV1G4qSVvvfUWSUlJBAYG0rt3b5YvX251SV5n/Pjx9OzZk7CwMGJiYhg+fDibNm2yuiyv9sILL2Cz2aosdyK1Z+/evVx//fU0btyYoKAgOnbsyMqVK60uy6s4HA4ef/xxWrRoQVBQEC1btuTZZ589rvWJ5Oh+/fVXhg0bRkJCAjabjRkzZlR53TAMnnjiCeLj4wkKCmLgwIFs2bLFbfUp3NSCzz77jHvuuYcnn3yS1atX07lzZwYNGkR6errVpXmVBQsWMGbMGJYuXcqcOXMoKyvjoosuoqCgwOrSvNKKFSt455136NSpk9WleKWsrCz69euHn58fs2bN4s8//+SVV14hKirK6tK8yosvvsjEiROZMGECGzZs4MUXX+Sll17izTfftLq0eq2goIDOnTvz1ltvVfv6Sy+9xBtvvMGkSZNYtmwZISEhDBo0iOLiYvcUaMgp69WrlzFmzBjXc4fDYSQkJBjjx4+3sCrvl56ebgDGggULrC7F6+Tl5RmtW7c25syZY/Tv39+46667rC7J6zz44IPG2WefbXUZXm/o0KHGLbfcUuXYFVdcYYwcOdKiirwPYEyfPt313Ol0GnFxccbLL7/sOpadnW0EBAQYn376qVtq0p2bU1RaWsqqVasYOHCg65jdbmfgwIEsWbLEwsq8X05ODgCNGjWyuBLvM2bMGIYOHVrlf9dSu7799lt69OjB3/72N2JiYujatSvvvfee1WV5nb59+zJv3jw2b94MwNq1a1m4cCGDBw+2uDLvtX37dlJTU6v89yMiIoLevXu77XfR8oUz67uMjAwcDodroc9KsbGxbNy40aKqvJ/T6WTcuHH069fvuBdNleMzbdo0Vq9ezYoVK6wuxatt27aNiRMncs899/DII4+wYsUK/vnPf+Lv78+oUaOsLs9rPPTQQ+Tm5tK2bVt8fHxwOBw899xzjBw50urSvFZqaipAtb+Lla/VNYUbqZfGjBnD+vXrWbhwodWleJXdu3dz1113MWfOHAIDA60ux6s5nU569OjB888/D0DXrl1Zv349kyZNUripRZ9//jmffPIJU6dOpUOHDiQnJzNu3DgSEhL0d/ZiapY6RdHR0fj4+JCWllbleFpaGnFxcRZV5d3Gjh3LzJkzmT9/Pk2bNrW6HK+yatUq0tPT6datG76+vvj6+rJgwQLeeOMNfH19cTgcVpfoNeLj42nfvn2VY+3atWPXrl0WVeSd7r//fh566CGuvfZaOnbsyA033MDdd9/N+PHjrS7Na1X+9ln5u6hwc4r8/f3p3r078+bNcx1zOp3MmzePPn36WFiZ9zEMg7FjxzJ9+nR+/vlnWrRoYXVJXueCCy5g3bp1JCcnu7YePXowcuRIkpOT8fHxsbpEr9GvX78jpjLYvHkzzZs3t6gi71RYWIjdXvWnzsfHB6fTaVFF3q9FixbExcVV+V3Mzc1l2bJlbvtdVLNULbjnnnsYNWoUPXr0oFevXrz++usUFBRw8803W12aVxkzZgxTp07lm2++ISwszNV2GxERQVBQkMXVeYewsLAj+jCFhITQuHFj9W2qZXfffTd9+/bl+eef5+qrr2b58uW8++67vPvuu1aX5lWGDRvGc889R7NmzejQoQNr1qzh1Vdf5ZZbbrG6tHotPz+frVu3up5v376d5ORkGjVqRLNmzRg3bhz/+te/aN26NS1atODxxx8nISGB4cOHu6dAt4zJagDefPNNo1mzZoa/v7/Rq1cvY+nSpVaX5HWAarfJkydbXZpX01DwuvPdd98ZZ555phEQEGC0bdvWePfdd60uyevk5uYad911l9GsWTMjMDDQOP30041HH33UKCkpsbq0em3+/PnV/vd41KhRhmGYw8Eff/xxIzY21ggICDAuuOACY9OmTW6rz2YYmqZRREREvIf63IiIiIhXUbgRERERr6JwIyIiIl5F4UZERES8isKNiIiIeBWFGxEREfEqCjciIiLiVRRuRKTBs9lszJgxw+oyRKSWKNyIiKVuuukmbDbbEdvFF19sdWkiUk9pbSkRsdzFF1/M5MmTqxwLCAiwqBoRqe9050ZELBcQEEBcXFyVLSoqCjCbjCZOnMjgwYMJCgri9NNP58svv6zy/nXr1nH++ecTFBRE48aNuf3228nPz69yzgcffECHDh0ICAggPj6esWPHVnk9IyODyy+/nODgYFq3bs23335bt19aROqMwo2IeLzHH3+cK6+8krVr1zJy5EiuvfZaNmzYAEBBQQGDBg0iKiqKFStW8MUXXzB37twq4WXixImMGTOG22+/nXXr1vHtt9/SqlWrKtd4+umnufrqq/n9998ZMmQII0eOJDMz063fU0RqiduW6BQRqcaoUaMMHx8fIyQkpMr23HPPGYZhrgb/97//vcp7evfubdxxxx2GYRjGu+++a0RFRRn5+fmu17///nvDbrcbqamphmEYRkJCgvHoo48etQbAeOyxx1zP8/PzDcCYNWtWrX1PEXEf9bkREcudd955TJw4scqxRo0aufb79OlT5bU+ffqQnJwMwIYNG+jcuTMhISGu1/v164fT6WTTpk3YbDb27dvHBRdcUGMNnTp1cu2HhIQQHh5Oenr6yX4lEbGQwo2IWC4kJOSIZqLaEhQUdFzn+fn5VXlus9lwOp11UZKI1DH1uRERj7d06dIjnrdr1w6Adu3asXbtWgoKClyvL1q0CLvdTps2bQgLCyMpKYl58+a5tWYRsY7u3IiI5UpKSkhNTa1yzNfXl+joaAC++OILevTowdlnn80nn3zC8uXL+e9//wvAyJEjefLJJxk1ahRPPfUU+/fv58477+SGG24gNjYWgKeeeoq///3vxMTEMHjwYPLy8li0aBF33nmne7+oiLiFwo2IWO7HH38kPj6+yrE2bdqwceNGwBzJNG3aNP7xj38QHx/Pp59+Svv27QEIDg5m9uzZ3HXXXfTs2ZPg4GCuvPJKXn31VddnjRo1iuLiYl577TXuu+8+oqOjueqqq9z3BUXErWyGYRhWFyEicjQ2m43p06czfPhwq0sRkXpCfW5ERETEqyjciIiIiFdRnxsR8WhqOReRE6U7NyIiIuJVFG5ERETEqyjciIiIiFdRuBERERGvonAjIiIiXkXhRkRERLyKwo2IiIh4FYUbERER8SoKNyIiIuJV/h/rzeEted5CTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgD0lEQVR4nO3dd3xT9f7H8VeS7skqHcgoQ5bIFMSNoiy54gQXiKA/vaAo14WooF7BiVzH1eu9InpFQRzoFQGx4kBkCLKkbKSMDsropCs5vz/Spi0tpYUkp03fz8cjj+acnCSfFCVvvtNiGIaBiIiIiI+wml2AiIiIiDsp3IiIiIhPUbgRERERn6JwIyIiIj5F4UZERER8isKNiIiI+BSFGxEREfEpCjciIiLiUxRuRERExKco3IiI21gsFqZOnVrj5/35559YLBZmz57t9ppEpP5RuBHxMbNnz8ZisWCxWFi+fHmFxw3DoHnz5lgsFq6++moTKnSPb775BovFQlxcHA6Hw+xyRKQWUbgR8VFBQUF89NFHFc7/+OOP7N+/n8DAQBOqcp85c+bQqlUrkpOT+f77780uR0RqEYUbER81ePBg5s+fT1FRUbnzH330ET179iQmJsakys5cTk4OX375JRMnTqR79+7MmTPH7JJOKicnx+wSROodhRsRH3XzzTdz+PBhli5d6jpXUFDAp59+yi233FLpc3Jycvjb3/5G8+bNCQwMpH379rz88ssYhlHuuvz8fB588EGioqIIDw/nL3/5C/v376/0NQ8cOMCdd95JdHQ0gYGBdO7cmVmzZp3RZ/viiy84fvw4N954IyNGjODzzz8nLy+vwnV5eXlMnTqVs88+m6CgIGJjY7nuuuvYtWuX6xqHw8E//vEPunTpQlBQEFFRUQwcOJDffvsNqHo80IljjKZOnYrFYmHLli3ccsstNGzYkIsuugiAjRs3cscdd9C6dWuCgoKIiYnhzjvv5PDhw5X+zsaMGUNcXByBgYHEx8dz7733UlBQwO7du7FYLLz66qsVnrdixQosFgsff/xxTX+lIj7Fz+wCRMQzWrVqRd++ffn4448ZNGgQAIsWLSIjI4MRI0bw2muvlbveMAz+8pe/sGzZMsaMGUO3bt1YsmQJDz/8MAcOHCj3ZTp27Fg+/PBDbrnlFi644AK+//57hgwZUqGG1NRUzj//fCwWC+PHjycqKopFixYxZswYMjMzeeCBB07rs82ZM4d+/foRExPDiBEjeOyxx/jf//7HjTfe6LrGbrdz9dVXk5CQwIgRI5gwYQJZWVksXbqUzZs306ZNGwDGjBnD7NmzGTRoEGPHjqWoqIiff/6ZlStX0qtXr9Oq78Ybb6Rdu3ZMmzbNFQyXLl3K7t27GT16NDExMfzxxx+88847/PHHH6xcuRKLxQLAwYMH6d27N8eOHePuu++mQ4cOHDhwgE8//ZTc3Fxat27NhRdeyJw5c3jwwQcr/F7Cw8O55pprTqtuEZ9hiIhPee+99wzAWLNmjfHGG28Y4eHhRm5urmEYhnHjjTca/fr1MwzDMFq2bGkMGTLE9bwFCxYYgPH3v/+93OvdcMMNhsViMXbu3GkYhmGsX7/eAIy//vWv5a675ZZbDMCYMmWK69yYMWOM2NhYIz09vdy1I0aMMCIjI1117dmzxwCM995775SfLzU11fDz8zP+/e9/u85dcMEFxjXXXFPuulmzZhmAMWPGjAqv4XA4DMMwjO+//94AjPvvv/+k11RV24mfd8qUKQZg3HzzzRWuLfmsZX388ccGYPz000+ucyNHjjSsVquxZs2ak9b0r3/9ywCMxMRE12MFBQVGkyZNjFGjRlV4nkh9o24pER920003cfz4cb7++muysrL4+uuvT9ol9c0332Cz2bj//vvLnf/b3/6GYRgsWrTIdR1Q4boTW2EMw+Czzz5j6NChGIZBenq66zZgwAAyMjJYt25djT/T3LlzsVqtXH/99a5zN998M4sWLeLo0aOuc5999hlNmjThvvvuq/AaJa0kn332GRaLhSlTppz0mtNxzz33VDgXHBzsup+Xl0d6ejrnn38+gOv34HA4WLBgAUOHDq201aikpptuuomgoKByY42WLFlCeno6t91222nXLeIrFG5EfFhUVBT9+/fno48+4vPPP8dut3PDDTdUeu3evXuJi4sjPDy83PmOHTu6Hi/5abVaXd06Jdq3b1/u+NChQxw7dox33nmHqKiocrfRo0cDkJaWVuPP9OGHH9K7d28OHz7Mzp072blzJ927d6egoID58+e7rtu1axft27fHz+/kve+7du0iLi6ORo0a1biOqsTHx1c4d+TIESZMmEB0dDTBwcFERUW5rsvIyACcv7PMzEzOOeecKl+/QYMGDB06tNxsuDlz5tCsWTMuv/xyN34SkbpJY25EfNwtt9zCXXfdRUpKCoMGDaJBgwZeed+StWduu+02Ro0aVek15557bo1ec8eOHaxZswaAdu3aVXh8zpw53H333TWstGona8Gx2+0nfU7ZVpoSN910EytWrODhhx+mW7duhIWF4XA4GDhw4Gmt0zNy5Ejmz5/PihUr6NKlC1999RV//etfsVr1b1YRhRsRH3fttdfyf//3f6xcuZJ58+ad9LqWLVvy3XffkZWVVa71ZuvWra7HS346HA5Xy0iJbdu2lXu9kplUdrud/v37u+WzzJkzB39/f/773/9is9nKPbZ8+XJee+01kpKSaNGiBW3atGHVqlUUFhbi7+9f6eu1adOGJUuWcOTIkZO23jRs2BCAY8eOlTtf0pJVHUePHiUhIYGnn36ap556ynV+x44d5a6LiooiIiKCzZs3n/I1Bw4cSFRUFHPmzKFPnz7k5uZy++23V7smEV+miC/i48LCwnjrrbeYOnUqQ4cOPel1gwcPxm6388Ybb5Q7/+qrr2KxWFwzrkp+njjbaubMmeWObTYb119/PZ999lmlX9aHDh2q8WeZM2cOF198McOHD+eGG24od3v44YcBXNOgr7/+etLT0yt8HsA1g+n666/HMAyefvrpk14TERFBkyZN+Omnn8o9/s9//rPadZcEMeOEKfUn/s6sVivDhg3jf//7n2sqemU1Afj5+XHzzTfzySefMHv2bLp06VLjljARX6WWG5F64GTdQmUNHTqUfv36MXnyZP7880+6du3Kt99+y5dffskDDzzgGmPTrVs3br75Zv75z3+SkZHBBRdcQEJCAjt37qzwms8//zzLli2jT58+3HXXXXTq1IkjR46wbt06vvvuO44cOVLtz7Bq1Sp27tzJ+PHjK328WbNm9OjRgzlz5vDoo48ycuRIPvjgAyZOnMjq1au5+OKLycnJ4bvvvuOvf/0r11xzDf369eP222/ntddeY8eOHa4uop9//pl+/fq53mvs2LE8//zzjB07ll69evHTTz+xffv2atceERHBJZdcwosvvkhhYSHNmjXj22+/Zc+ePRWunTZtGt9++y2XXnopd999Nx07diQ5OZn58+ezfPnyct2KI0eO5LXXXmPZsmW88MIL1a5HxOeZN1FLRDyh7FTwqpw4FdwwDCMrK8t48MEHjbi4OMPf399o166d8dJLL7mmIJc4fvy4cf/99xuNGzc2QkNDjaFDhxr79u2rMDXaMJxTt8eNG2c0b97c8Pf3N2JiYowrrrjCeOedd1zXVGcq+H333WcAxq5du056zdSpUw3A2LBhg2EYzunXkydPNuLj413vfcMNN5R7jaKiIuOll14yOnToYAQEBBhRUVHGoEGDjLVr17quyc3NNcaMGWNERkYa4eHhxk033WSkpaWddCr4oUOHKtS2f/9+49prrzUaNGhgREZGGjfeeKNx8ODBSn9ne/fuNUaOHGlERUUZgYGBRuvWrY1x48YZ+fn5FV63c+fOhtVqNfbv33/S34tIfWMxjBPaSUVEpM7o3r07jRo1IiEhwexSRGoNjbkREamjfvvtN9avX8/IkSPNLkWkVlHLjYhIHbN582bWrl3LK6+8Qnp6Ort37yYoKMjsskRqDbXciIjUMZ9++imjR4+msLCQjz/+WMFG5ARquRERERGfopYbERER8SkKNyIiIuJT6t0ifg6Hg4MHDxIeHn5Gu/6KiIiI9xiGQVZWFnFxcafcQ63ehZuDBw/SvHlzs8sQERGR07Bv3z7OOuusKq+pd+GmZEPAffv2ERERYXI1IiIiUh2ZmZk0b9683Ma+J1Pvwk1JV1RERITCjYiISB1TnSElGlAsIiIiPkXhRkRERHyKwo2IiIj4FIUbERER8SkKNyIiIuJTTA03P/30E0OHDiUuLg6LxcKCBQtO+ZwffviBHj16EBgYSNu2bZk9e7bH6xQREZG6w9Rwk5OTQ9euXXnzzTerdf2ePXsYMmQI/fr1Y/369TzwwAOMHTuWJUuWeLhSERERqStMXedm0KBBDBo0qNrXv/3228THx/PKK68A0LFjR5YvX86rr77KgAEDPFWmiIiI1CF1aszNr7/+Sv/+/cudGzBgAL/++utJn5Ofn09mZma5m4iIiPiuOhVuUlJSiI6OLncuOjqazMxMjh8/Xulzpk+fTmRkpOumfaVERER8W50KN6dj0qRJZGRkuG779u0zuyQRERHxoDq1t1RMTAypqanlzqWmphIREUFwcHClzwkMDCQwMNAb5YmIiEgtUKfCTd++ffnmm2/KnVu6dCl9+/Y1qSIRERExDIMCu4PjBXZyC+xYLBAbWXmjgzeYGm6ys7PZuXOn63jPnj2sX7+eRo0a0aJFCyZNmsSBAwf44IMPALjnnnt44403eOSRR7jzzjv5/vvv+eSTT1i4cKFZH0FERKROODGA5BbYi+8XuY5zC4o4Xlj28SJyTriu5PnHC+3k5Bc5jwvt2B2G6716xzfik/8zr+HB1HDz22+/0a9fP9fxxIkTARg1ahSzZ88mOTmZpKQk1+Px8fEsXLiQBx98kH/84x+cddZZ/Oc//9E0cBER8RkOh0FOQRE5+XZyCorIzS8OFoXOYJGTXzGAlISOnEoCSNnwUjaAeIq/zYLV4vG3qZLFMAzPf9JaJDMzk8jISDIyMoiIiDC7HBERqeMMwyCv0EF2fhE5+UWunzkFRWTnO8NI2fMVzhUHmZLHcwvsHq85wGYlOMBGSIDN9TPE36/0foBf8U9bmev8CPEvfjzQ+Xiwf+n1Jdf52zwzV6km3991asyNiIiIOxQUOU4IF6WhwxVOThJETjznqRYRP6uFkAAboYF+5QJISGBx2PCvPICElg0jXg4gtYXCjYiI1HmGYZCVX0RaZh6pmfmklvmZluW8n5aVR3aes5WkwO7wSB2hxWEkLNCP0EA/QgNtZe4Xnw8ofz4sqPR8WPFzQgP9CPSzYrGY3L9TRynciIhIrZaTX+QKK86gUia4uM7lc7yw5t05gX7WE8KHrfR+QCXnKgktJT9D/G1YzR5sIoDCjYiImCSv0E5aZj6pZQKLs+WlOLxkOcNLdn5RtV8zIsiP6IggoiOCaBoR6Lwf7vwZFR5IRLB/meBiw8/Hu2fqK4UbERFxq4IiB4eyS1pWyncTlW15yTheWO3XDA2wlQ8sEUE0DS+9Hx0RSNPwIIIDbB78ZFJXKNyIiNRjhmFgdxgUOZxroBQWOZz3i38W2h3Ft/L38wrtHMrKLw0vWaUtL4dzCqr9/oF+VmIig4gOLxtcAovDS3FoiQgiLFBfV1J9+q9FROq8zLxC1icdY13SUfYezsUCWCwWLBawWsBqsWCxWFz3rZayj1sqvcZSfM2Jz7Ge4nU5yXOqel3AFR6K7M6QUVQcIgqKzxXaHRQ6HBQWGRQ5nCGjoMz9E59fWPZ5xY8X2R0UuK4rfo7DgScWBPG3WVzhpFw3UXiZlpaIICKC/DRoVtxO4UZE6hTDMNiTnsPavUdZl3SMdXuPsj0tyyNf0PWVzWrB32bB32rF38+Kn9WCv83qPGez4m+zEuBnJSo80BlewoMqdBk1CPbX4FoxjcKNiNRquQVFbNiXwbqko6zbe5R1SUc5mltxrEaLRiH0aNGADrER2CwWHIaBAc6fhnPVV4dRclz6WOm58tfgetx5zjAMHA4qvq5R/nUdDjAo85wy1xjlnlP+nL/Nip/NQkDxz5IQ4W+z4GezElDmvr/Nir/V4goeAX5W/KzOx8veL3mNktcr/9qWE97T6go0CiVS1ynciEitYRgG+48edwWZtUlHSUzOqrBAWoCfla5nRdKjRUN6tGxI9xYNaBoeZFLVIlLbKNyIiGnyCu38cTDD2cW09xhrk45yKCu/wnUxEUH0bOkMMj1aNKBzXCQBfprCKyKVU7gREa9JzcwrDjLOVpk/DmRWWCnWz2qhc7NIerRo4Aw0LRoS1yDYpIpFpC5SuBERjyi0O0hMziw38PfAseMVrmsSFuDqXurZsiFdmkUS5K+1SkTk9CnciIhbHM7OZ13SseIwc5SN+4+RV1i+VcZqgQ4xEfRoWdoq06JRiKYCi4hbKdyISI3ZHQbbU7NcQWbd3qP8eTi3wnWRwf70aNGAHi2crTLnNm+gxdhExOP0t4yInFLG8UJ+d03FPsb6fccq3e+nXdMwV4tMj5YNad0kVNOKRcTrFG5ExCW/yM7+o8dJOpzL3sM5bE1xts7sSMuucG1YoB/dmjdwzWDq3rwhkSH+JlQtIlKewo1IPZOdX8TewzkkHc7lz8O5JB3JYe/hXPYezuVgxvGTrvTbqnFIcZBxdjGdHR2OTa0yIlILKdyI+BjDMDicU1AcWJzBJelI6f1TbWoYEmCjRaMQWjYOoU1UGN1bOFtmGocFeukTiIicGYUbkTrI7jBIzjjuanHZe6RMS8zhHHIK7FU+v1FoAC0ahdCqcQgtGofSsjjMtGwcSpOwAM1eEpE6TeFGpJbKK7Sz/2iuK8AkHcnlz+LupP1Hj1dY/K4siwViI4Jo0TiEVo1DadE4hJaNQmnZOIQWjUOICNLYGBHxXQo3IibKzCssHrzrbH3Zm17aCpOcmVflTtf+NgvNG5a2uLQo0/pyVsNgLYQnIvWWwo2IF+w7ksvqPUfYe6T8OJgjpxj/Ehpgo0Xj0OLuo9LWl5aNQ4iNDNaAXhGRSijciHjQ0ZwC/pGwgw9X7qXIUXkzTOPQgNLuozKtLy0bh9A4VONfRERqSuFGxAPyi+x8sGIvr3+/g8w852J33Zo3oGNsOC3KtL60aBRCuMa/iIi4lcKNiBsZhsE3m1J4YfFWko44tyPoEBPO5CEdubhdlMnViYjUDwo3Im6yLukozy1MZO3eowBEhQfy0FVnc0PP5hobIyLiRQo3Imdo35FcXli8la83JgMQ5G/l7kva8H+XtCa0rm4SWXgcVr0Nh7ZBywug7ZUQEWt2VSIi1VJH/+YVMV/G8ULeXLaT2b/8SYHdgcUCN/Q4i79d1Z6YyCCzyzs9hgFbFsC3T0FGkvPcho+dP2POhXZXOW9n9QKrppqLSO2kcCNSQ4V2B3NW7uUfCTs4mlsIwIVtG/P44I50jos0ubozkLIJFj0Ge5c7jyOawTnXwd4VcGAdpGx03n5+GYIbQtv+zqDT5goIbWxu7SJSOzgckHMIivKgYUvTylC4EakmwzBYuiWV5xdtZXd6DgBtm4bx+OAO9GvftO5O2c45DMv+Dmtng+EAvyC48AG4cAIEhDivyT4EO7+DHd/CrgQ4fhQ2zXfesDhbctoNgHZXOlt4rFYTP5CIeEx+FmQcgIz9kLnf+bPsLfMA2Aug9WUw8kvTyrQYRlVroPqezMxMIiMjycjIICIiwuxypI7YtD+Dvy/cwqo9RwDn2jQPXHk2N5/XHD9bHf0itxfCmv/AD9MhL8N5rvO1cOUz0KBFFc8rgv1rnEFnx7eQurn842HRzjE67a6ENv0gqA63ZonUJ/ZCyEouDS8Z+0oDS8lxyd8VVbJAi75w5yK3lleT72+FG5EqHDx2nJeXbOPz3w8AEOBnZexF8dx7WZu6vT7NzgRYPAnStzmPo7vAoOeh1UU1f62MA7BzKexYCruWQWFO6WNWP+dfcu2udHZhRXVwbnwlIt5lGM4W15LAUlmLS1ays/X2VIIiIeIsiCy5NYPI5qXH4bFgc//fjwo3VVC4kerIzi/irR928p+f95Bf5PyffVi3OB4e2IFmDYJNru4MHN4F3z4B275xHgc3giuehB6j3DNAuCjfOUZnx1Jnq87hHeUfj2xRGnTiL4aA0DN/T/G+/GznF2JQJIQ28cgXmdRQ4fHiFpd95VtaXK0w+6Ho+Klfx+pfGlYimpUJMMW3iGYQZM53p8JNFRRupCpFdgfzftvHq0u3k57t3Pepd6tGTB7Ska7NG5hb3JnIz4KfXoaV/3T2h1v9oPfdcOkjzsHBnnJkd2nQ2fMz2PNLH7MFOluKzi4eq9OotefqkNNjL4TDOyH1D0hLhLQtztvRP8tfF9QAQqMgrKkz7IRGVbyVPBYYoda7mnLYITu1NLyc2FWUcQBy06v3WqFNi8PLWScEmOKWl9CoWjtmTuGmCgo3UhnDMPhh+yGmLUxkR1o2AK0ah/DYoI4M6BxddwcLOxywcS58N9X5lyNAm8th4PMQ1d67tRTkwp8/O4PO9m9Lp5qXaNy2dKp5ywvAL9C79dVnDofzS7IkvKRucYaZ9O3gKKz8OYERUJBdvW6MsmwBlQSfssdNnF/AJfd9oVXIYXf+AyM/E/Iyy/+s7FxeZpnrM5zdRY6iU7+Pf+jJu4oimjlv/nV0mQoUbqqkcCMnSkzOZNo3ify8w/kvnwYh/ky4oh239mlJgF/t/BdMtexbA4sfhQNrnceNWsOAaXD2QPP/5WwYzgUCSwYlJ/1a/i9v/1DnbIt2xQOTI88yrVSfk5NeJsCU3BKdQaUyAWHQtCM07eS8RRf/DG3iDEXHjzqn/uakFf9Md/7MTiu9n1N8/2TvUZXghicPPmFNyz/miVYhe2Fx2Mg4IXSUDSIZzvOVhpTM0/vcJ7LYICKu8q6ikltQA/P/3/YghZsqKNxIidTMPGZ8u51P1u7DMMDfZuGOC1oxvl87IkPq8L8WM5OdLTUb5zqPA8Lgkofh/Htrb2tIXgbs/qE47CwtbWUqEX1O6Vids3qDTatYnFJBDqRthbTiLqWSrqWctMqvt/pDk7OLw0tHaNrZ+bNBC/d9YRbkOrtPsg8Vh57KbunOYJSbfhqtQoGVBJ+SbrKmzqBUdLySkJJxklaTzOqNU6lJfUERzhAWGF56Pyiy+Gfxedf94sfCYyAspt7/d69wUwWFG8ktKOKdn3bzrx93c7zQDsCQLrE8OrADLRqHmFzdGSjMg5Vvwk+vlM5Y6nYbXPEUhEebW1tNOByQusnZdbXjW+e0c8r8NRUU6exaazfAuZBgWD3fkLRkXEzZ7qS0PyqOiymrYavS8FLSEtO4be3qAnK1CqVVDD5lW4jOpFWoJvxDTxJMygaUE4NJyfXF92vrPy7qCIWbKijc1F92h8Fn6/bzyrfbSM10Dmzt3qIBTwzpSM+WjUyu7gwYBmxdCN9OLv1CO+s8GPQCNOtpamlukXMYdn0PO5Y4FxI8frT843E9SsfqxHWvtYMhz5hhwLGk0vCSlugMM1WNiwltWhxgOpd2K0W1h8Aw79buDdVpFco9Av4hlYSP8BNaT05oRQmMqPetJrWBwk0VFG7qp192pvP3hYkkJmcCcFbDYB4d2IGrz42tu4OFwfnltvgx2POj8zg8Fvo/DV1u9M0veYfdOYaoZKxO8obyj4c0cQ5GDowAvwDnasu24p/ljgNP8lhgFc8L9N7vNOdwxe6ktEQoyKr8+qrGxYj4CIWbKijc1C8707KY9s1Wvt/qHGcQHuTHfZe3ZWTfVgT51+GNH3OPOFcWXvMuGHbnF+8F4+Giib75r/KTyUwusy3EspN/+buL1e80AlPJY4HF4an4MVtg6Xl7IRzaWtq1ZOa4GJFaqibf32pnE5+Unp3PzO+28/HqfdgdBn5WC7ed35L7r2hHo9AAs8s7ffYiWPseLHuutHumw9Vw1d+hUby5tZkhIhZ63O68FRXAvpWQstm5aV9RvnNdnaIC57E933mu5FbuseKf5a4tvl92vI+jyPNjO0o0bFWxJaa2jYsRqaUUbsSn5BXaeXf5Ht76YRfZ+c6pxVd2imbSoA60jqrjLRp7fnLu2p32h/O4aScYON05ZVqcrSHxlzhv7mIYzkBzsuBTVSiqyWMWi7NFpqQ1xlfHxYh4icKN+ASHw+CrDQd5ack2DhxzTt08p1kEkwd3om+bxiZXd4aO/uncMiHxf87joAZw+RPQc7QGOXqaxeJsKbH5gya6iNQZ+ptR6rzVe47w3MItbNjv3K02NjKIRwa255quzbBa6/A4hIIc+HkGrHjd+a9+ixV6jYF+j0NIHZ7dJSLiYQo3UmftSc/h+UWJLPnDueBbaICNv/Zry5iL4uv2YGHDgE3zYekUyDroPBd/iXPLhOjO5tYmIlIHKNxInXM0p4B/JOzgw5V7KXIYWC0woncLHux/NlHhdbzv4MA6WPQo7F/tPG7QEgY85xw0rNkwIiLVonAjdUpiciYjZ63mUJZzEb7L2kfx+OCOnB0dbnJlZygrFRKegfVzAMO50NjFf4O+4+v0RnciImZQuJE64/eko4yatZrMvCLaRIUy9S+dubhdHV96v6gAVr0FP75UukbLucOh/1TnJnkiIlJjCjdSJ6zYlc7Y938jt8BOjxYNeO+O3nV7c0vDgO1LYMnjcGSX81xcdxj0IjTvbW5tIiJ1nMKN1HrfbUnlrx+to6DIwUVtm/Cv23sSGliH/9M9tN25ZcKuBOdxaFNnS03Xm31zywQRES+rw98QUh98uf4AEz/ZgN1hcGWnaF6/uXvdnQl1/Bj8+AKsfse5MJzVH/r+FS5+yLlJn4iIuIXCjdRaH61KYvKCTRgGXNu9GS/ecC7+tjrYsuFwwO//hYSnIfew89zZg5yzoBq3Mbc2EREfZPo3xZtvvkmrVq0ICgqiT58+rF69+qTXFhYW8swzz9CmTRuCgoLo2rUrixcv9mK14i3/+nEXj3/hDDa3nd+CV27sWjeDTfIGePdK+N/9zmDT5Gy47TO4Za6CjYiIh5j6bTFv3jwmTpzIlClTWLduHV27dmXAgAGkpVW+I+4TTzzBv/71L15//XW2bNnCPffcw7XXXsvvv//u5crFUwzD4JVvtzF90VYA7r2sDc9ec07dW2k4LwO+eQTeuQwO/AYBYXDVc3DvCmjb3+zqRER8msUwDOPUl3lGnz59OO+883jjjTcAcDgcNG/enPvuu4/HHnuswvVxcXFMnjyZcePGuc5df/31BAcH8+GHH1brPWuyZbp4l8Nh8MzXW5i94k8AHhnYnr9e1tbcomrKMGDTp/DtZMh2rpxM5+ucXVCa2i0ictpq8v1t2pibgoIC1q5dy6RJk1znrFYr/fv359dff630Ofn5+QQFlV/QLDg4mOXLl3u0VvG8IruDxz7fxKdr9wPw7DWdub1vK3OLqqlD22Dh3+DPn53HjdrAkJehzeXm1iUiUs+YFm7S09Ox2+1ER0eXOx8dHc3WrVsrfc6AAQOYMWMGl1xyCW3atCEhIYHPP/8cu91+0vfJz88nPz/fdZyZmemeDyBuk19k54G561m0OQWb1cJLN5zLdT3OMrus6ivIhZ9ecm5w6SgEvyDnDKgL7we/Or4dhIhIHVSnRmj+4x//oF27dnTo0IGAgADGjx/P6NGjsVaxNsj06dOJjIx03Zo3b+7FiuVUjhfYueuDtSzanEKAzcqbt/SoW8Fm6zfwZh9YPsMZbNoNgHGr4NKHFWxERExiWrhp0qQJNpuN1NTUcudTU1OJiYmp9DlRUVEsWLCAnJwc9u7dy9atWwkLC6N169YnfZ9JkyaRkZHhuu3bt8+tn0NOX2ZeISNnreKn7YcI9rfx7h29GHhO5X/2tc7RP+GjETD3ZshIgsjmMOIjuGUeNGxldnUiIvWaaeEmICCAnj17kpCQ4DrncDhISEigb9++VT43KCiIZs2aUVRUxGeffcY111xz0msDAwOJiIgodxPzHc7O55Z/r2TNn0cJD/Ljw7G968Y+UUX58NPL8Ob5sH0RWP3gogedrTUdhmjnbhGRWsDURfwmTpzIqFGj6NWrF71792bmzJnk5OQwevRoAEaOHEmzZs2YPn06AKtWreLAgQN069aNAwcOMHXqVBwOB4888oiZH0NqKCUjj9veXcXOtGwahwbw/p29OadZpNllndquZfDNQ3B4p/O41cUw+GVo2sHcukREpBxTw83w4cM5dOgQTz31FCkpKXTr1o3Fixe7BhknJSWVG0+Tl5fHE088we7duwkLC2Pw4MH897//pUGDBiZ9AqmppMO53PruSvYdOU5sZBD/HdOHtk3DzC6rapnJzqndmz9zHoc2dU7t7nKjWmpERGohU9e5MYPWuTHP9tQsbvvPKtKy8mnZOIQ5Y/twVsMQs8s6OXsRrPk3fP8cFGSBxQrn3QX9HofgBmZXJyJSr9SJdW6kftm4/xijZq3maG4h7aPD+e+Y3jSNCDr1E82ybzV8PRFSNzmPm/WEITMgrpupZYmIyKkp3IjHrdp9mDHv/0Z2fhFdmzfg/dHn0SAkwOyyKpdzGL6b4tzoEiCoAfSfCj1GQRVLDoiISO2hcCMetWxbGvf8dy35RQ7Ob92I/4w6j7DAWvifXcnO3d9NgeNHnee63QZXPg2hTcytTUREaqQWfsuIr1i4MZkH5v1Ood3g8g5N+eetPQjyt5ldVkXJG2HhRNi/xnnctDNcPQNanG9uXSIicloUbsQjPlmzj8c+34jDgKFd45hxU1f8bbWsWycvE5ZNg9X/AsPh3Lm73+PQ+26w+ZtdnYiInCaFG3G7Wcv38MzXWwAYcV5znru2CzZrLZoybRjOad1LJkN2ivNc52thwDTt3C0i4gMUbsRtDMPgtYSdvPrddgDuujiexwd3xFKb1oI5tB2++Rvs+cl53KgNDH4J2l5hbl0iIuI2CjfiFoZhMO2bRP798x4AJl55Nvdd3rb2BJuCXPj5ZfjlNe3cLSLi4xRu5IzZHQZPLNjEx6udm5I+dXUn7rwo3uSqyti2CL55xLnBJUC7q2DQi9CoFtUoIiJuo3AjZ6TQ7uDBeev5emMyVgs8f/253NSrudllOR3dC4sfg23fOI8jzoJBL2iDSxERH6dwI6ctr9DOX+es4/utafjbLMwc3p0h58aaXRYUFcCvr8OPL0HRcefO3X3Hw6WPQECo2dWJiIiHKdzIacnOL2Ls+2tYufsIQf5W3r6tJ5e1b2p2WbD7R+fO3enOQc3auVtEpP5RuJEaO5pTwB3vrWbD/gzCAv2Ydcd59I5vZG5RWSnOqd2bP3Ueh0bBVc/BuTepC0pEpJ5RuJEaScvM4/Z3V7MtNYuGIf68f2dvzj2rgXkF2YtgzX9g2XOQn1m8c/dY6DdZO3eLiNRTCjdSbfuO5HLbu6vYeziXpuGBzBnbh3bR4SYWtAYWPggpxTt3x/VwbpsQ1928mkRExHQKN1ItO9Oyuf3dVSRn5NG8UTBzxpxPi8Yh5hSTewS+mwrr3nceBzWA/lOKd+6uhXtXiYiIVyncyCltPpDBqFmrOZxTQNumYXw4pg8xkUHmFLP7B/hsLOQcch53uxX6Pw1hUebUIyIitY7CjVRp7d4j3PHeGrLyiujSLJL37+xNo9AA7xfisMOPL8KPLwAGRHWAq1+Flhd4vxYREanVFG7kpH7ecYi7P1jL8UI757VqyLt3nEdEkAm7ZWenOVtr9vzoPO4x0rnCsH+w92sREZFaT+FGKrV4cwr3f/w7BXYHl54dxdu39SQ4wITxLHt+hs/GQHYq+IfA1TOh63Dv1yEiInWGwo1U8Pm6/Tz86UbsDoPBXWKYObw7AX5W7xbhcMDPr8AP08BwQFRHuOl9iGrv3TpERKTOUbiRcv776588+eUfANzQ8yyev64LfjYvB5ucdPj8Ltj1vfO4260w+CVtnSAiItWicCMu//xhJy8u3gbAHRe04qmrO2G1enl1370r4NM7ISsZ/IJhyCvQ/Vbv1iAiInWawo1gGAYvLN7G2z/uAuD+y9vy4JVnY/HmtgUOB/wyE77/Oxh2aHI23Pg+RHfyXg0iIuITFG7qOYfD4KmvNvPhyiQAHh/cgbsvaePdInKPwBf/Bzu+dR6fOxyGzIDAMO/WISIiPkHhpp579LONzF+7H4sFnhvWhVv6tPBuAUmr4NPRkHkA/IKcU7x7jNRmlyIictoUbuqxnWnZzF+7H5vVwoybunJNt2bee3PDgBWvQ8LT4CiCxm2d3VAx53ivBhER8UkKN/XYHwczAOjevIF3g03uEVjwV9i+yHl8zvUw9B8QaOImnCIi4jMUbuqxLQczAegYG+G9N93/G8wfDRlJYAuEgdOh153qhhIREbdRuKnHtiQ7w02nOC+EG8OAlW/B0qfAUQgN452L8sV29fx7i4hIvaJwU48lJnup5eb4MfhyHGz92nnc6Rr4y+sQFOnZ9xURkXpJ4aaeSsvKIz27AKsF2kd7cKzLgXUw/w44thdsAXDVc9D7LnVDiYiIxyjc1FMl421aR4V5ZkNMw4DV/4ZvJ4O9ABq0hBtnQ7Me7n8vERGRMhRu6qktnuySysuAr+6HLQucxx2uhmvehOAG7n8vERGREyjc1FOJyVkAdHJ3uDm43tkNdXQPWP3gymfh/HvVDSUiIl6jcFNPbSle46ZjrJvG2xgG/DYLFj/m7IaKbO7shjqrl3teX0REpJoUbuqh4wV29qTnAG6aBp6fBf+bAJs/cx6fPQiG/RNCGp35a4uIiNSQwk09tC01C4cBTcICaRoedGYvlrIZ5o+CwzvBYoP+U+GC+9QNJSIiplG4qYdKVyY+gy4pw4B1H8CiR6AoDyKawQ3vQYs+bqpSRETk9Cjc1EOJZ7oycX42LJwIG+c5j9teCdf+C0Ibu6lCERGR06dwUw+5tl04nZlSqVuc3VDp253dUJc/ARc+AFare4sUERE5TQo39YzDYbD1dMPN73Ng4d+g6DiEx8INs6DlBR6oUkRE5PQp3NQzSUdyySmwE+hnJb5JaPWeVJAL3zwE6+c4j9tcDte+A2FRnitURETkNCnc1DMlXVLtY8Lxs1WjK+nQNvhkFBxKBIsVLnscLv6buqFERKTWUripZxJr0iW1YS58/SAU5kJYNFz/H4i/xMMVioiInBmFm3qmdBp4FeGm8Dh88zD8/l/ncfylzmAT1tQLFYqIiJwZhZt65pTTwNN3OLuh0v4ALHDZY3DJw2D1wM7hIiIiHqBwU48czSngYEYeAB1iKlnAb9Onzm0UCrIhNAqu+ze06eflKkVERM6Mwk09UtJq06JRCOFB/qUPFObBkknOjS8BWl4EN7wL4TEmVCkiInJmFG7qkUoX7zu8y7koX8omwOKcCXXZJLDpPw0REamb9A1Wj5SEG9dg4uNH4d0rIfcwhDSG696Btv1NrFBEROTMKdzUI4nJWUCZwcSJXzuDTcNWcMc3ENnMvOJERETcRCux1RMFRQ52pp0Qbv74wvmz+20KNiIi4jMUbuqJHWlZFNoNIoL8iIsMgtwjsPsH54OdrjW1NhEREXdSuKknynZJWSwW2Po1GHaI7gJN2ppcnYiIiPuYHm7efPNNWrVqRVBQEH369GH16tVVXj9z5kzat29PcHAwzZs358EHHyQvL89L1dZdFVYmLumS6jzMnIJEREQ8xNRwM2/ePCZOnMiUKVNYt24dXbt2ZcCAAaSlpVV6/UcffcRjjz3GlClTSExM5N1332XevHk8/vjjXq687im3p1TOYdj9o/OBzuqSEhER32JquJkxYwZ33XUXo0ePplOnTrz99tuEhIQwa9asSq9fsWIFF154IbfccgutWrXiqquu4uabbz5la099ZxhG6Ro3cRGw9X/OLqmYLtC4jcnViYiIuJdp4aagoIC1a9fSv3/puipWq5X+/fvz66+/VvqcCy64gLVr17rCzO7du/nmm28YPHiwV2quqw5m5JFxvBA/q4W2TcPgjwXOB9RqIyIiPsi0dW7S09Ox2+1ER0eXOx8dHc3WrVsrfc4tt9xCeno6F110EYZhUFRUxD333FNlt1R+fj75+fmu48zMTPd8gDoksXi8TdumYQTmH4U9Pzkf6DTMvKJEREQ8xPQBxTXxww8/MG3aNP75z3+ybt06Pv/8cxYuXMizzz570udMnz6dyMhI16158+ZerLh2KLftQmJxl1RsV3VJiYiITzKt5aZJkybYbDZSU1PLnU9NTSUmpvING5988kluv/12xo4dC0CXLl3Iycnh7rvvZvLkyVitFbPapEmTmDhxous4MzOz3gWcxLLjbUpmSanVRkREfJRpLTcBAQH07NmThIQE1zmHw0FCQgJ9+/at9Dm5ubkVAozNZgOcg2YrExgYSERERLlbfVPScnNuw0L482fnSU0BFxERH2Xq3lITJ05k1KhR9OrVi969ezNz5kxycnIYPXo0ACNHjqRZs2ZMnz4dgKFDhzJjxgy6d+9Onz592LlzJ08++SRDhw51hRwpLyuvkL2HcwHonPETGA6I7QaNWptbmIiIiIeYGm6GDx/OoUOHeOqpp0hJSaFbt24sXrzYNcg4KSmpXEvNE088gcVi4YknnuDAgQNERUUxdOhQnnvuObM+Qq23LcW5MnFsZBChO79ynlSrjYiI+DCLcbL+HB+VmZlJZGQkGRkZ9aKL6oNf/+SpL//gmnb+/GP/cGfLzf3roVG82aWJiIhUW02+v+vUbCmpuZLBxFf7/eYMNnHdFWxERMSnKdz4uJI9pbpn/+A8oYX7RETExync+LAiu4OtKVk0IYPG6WucJztdY25RIiIiHqZw48P+PJxDfpGDoQG/YTEcENcDGrYyuywRERGPUrjxYX8Ud0ldF1jcaqMuKRERqQcUbnxYYnIWURyjc+Em5wl1SYmISD1Q43DTqlUrnnnmGZKSkjxRj7jRluRMBtjWYMWAZj2hYUuzSxIREfG4GoebBx54gM8//5zWrVtz5ZVXMnfu3HK7bkvtkZicydW2lc4DdUmJiEg9cVrhZv369axevZqOHTty3333ERsby/jx41m3bp0napTTkJaVB1kp9LZsdZ5Ql5SIiNQTpz3mpkePHrz22mscPHiQKVOm8J///IfzzjuPbt26MWvWrJNuZCnekZicxSDbaqwWA5r1ggYtzC5JRETEK057b6nCwkK++OIL3nvvPZYuXcr555/PmDFj2L9/P48//jjfffcdH330kTtrlRpITM5kiG2V80BdUiIiUo/UONysW7eO9957j48//hir1crIkSN59dVX6dChg+uaa6+9lvPOO8+thUrN7E/azd2Wbc4DdUmJiEg9UuNwc95553HllVfy1ltvMWzYMPz9/StcEx8fz4gRI9xSoJyemAPfYrUYZDTpTmSD5maXIyIi4jU1Dje7d++mZcuqpxSHhoby3nvvnXZRcmbyCu30zv0JrGDtPMzsckRERLyqxgOK09LSWLVqVYXzq1at4rfffnNLUXJmdu3aQa/iLqmw7tebXI2IiIh31TjcjBs3jn379lU4f+DAAcaNG+eWouTM5G38AqvFYHtAJyzqkhIRkXqmxuFmy5Yt9OjRo8L57t27s2XLFrcUJWemyd5vANgbc5XJlYiIiHhfjcNNYGAgqampFc4nJyfj53faM8vFXTIP0jJnIwD2Dn8xuRgRERHvq3G4ueqqq5g0aRIZGRmuc8eOHePxxx/nyiuvdGtxUnOOPxYAsMZxNq3bnG1uMSIiIiaocVPLyy+/zCWXXELLli3p3r07AOvXryc6Opr//ve/bi9QaqZg42cEAYuNvkxqEmp2OSIiIl5X43DTrFkzNm7cyJw5c9iwYQPBwcGMHj2am2++udI1b8SLMg4QlOycsbaz8eX42U57dw0REZE667QGyYSGhnL33Xe7uxY5U1u+BGC1oz3RZ8WbXIyIiIg5TnsE8JYtW0hKSqKgoKDc+b/8RYNYTfPHFwAstJ9Pp9gIk4sRERExx2mtUHzttdeyadMmLBaLa/dvi8UCgN1ud2+FUj0Z+2H/ahxYWGTvzRtxkWZXJCIiYooaD8qYMGEC8fHxpKWlERISwh9//MFPP/1Er169+OGHHzxQolRLcZfUGkd70mhIh9hwkwsSERExR41bbn799Ve+//57mjRpgtVqxWq1ctFFFzF9+nTuv/9+fv/9d0/UKafi6pLqQ/NGwUQEaXC3iIjUTzVuubHb7YSHO1sFmjRpwsGDBwFo2bIl27Ztc291Uj3HkmD/GoziLqmOMRpvIyIi9VeNW27OOeccNmzYQHx8PH369OHFF18kICCAd955h9atW3uiRjmV4i6p3SHnciivIZ3iFG5ERKT+qnG4eeKJJ8jJyQHgmWee4eqrr+biiy+mcePGzJs3z+0FSjUUr0q8xOgLoJlSIiJSr9U43AwYMMB1v23btmzdupUjR47QsGFD14wp8aKje+HAbxhY+G9mVwA6KtyIiEg9VqMxN4WFhfj5+bF58+Zy5xs1aqRgY5biLqncuPNJtkcSHuTHWQ2DTS5KRETEPDUKN/7+/rRo0UJr2dQmWxYAsL3xFYCz1UZBU0RE6rMaz5aaPHkyjz/+OEeOHPFEPVITR/fCgbVgsfKD9XxA421ERERqPObmjTfeYOfOncTFxdGyZUtCQ8vvPL1u3Tq3FSenUNxqQ8sLWZPuXNdGM6VERKS+q3G4GTZsmAfKkNNSvHCf0WkYWxZnAmq5ERERqXG4mTJliifqkJo6+icc/B0sVtLOuopjuZvws1po2zTM7MpERERMVeMxN1JLFK9tQ6uL2JwRCECbqDCC/G3m1SQiIlIL1Ljlxmq1VjkbRzOpvKS4S4rO15KYXNwlpfE2IiIiNQ83X3zxRbnjwsJCfv/9d95//32efvpptxUmVTiyB5LXg8UKHYay5cskQONtRERE4DTCzTXXXFPh3A033EDnzp2ZN28eY8aMcUthUoWSWVKtLoawKLYcdC6qqJWJRURE3Djm5vzzzychIcFdLydVKdMllZ1fxN4juQB0jA03sSgREZHawS3h5vjx47z22ms0a9bMHS8nVTmyG5I3gMUGHYeyLSUTw4DoiEAahwWaXZ2IiIjpatwtdeIGmYZhkJWVRUhICB9++KFbi5NKlMySir8YQpuwZdNeQONtREREStQ43Lz66qvlwo3VaiUqKoo+ffrQsGFDtxYnlSjTJQWw5aBmSomIiJRV43Bzxx13eKAMqZbDuyBlo7NLqsNQALYUTwPXYGIRERGnGo+5ee+995g/f36F8/Pnz+f99993S1FyEiWzpOIvgdDG2B0G21K07YKIiEhZNQ4306dPp0mTJhXON23alGnTprmlKDmJE7qk9qTnkFfoINjfRsvGoVU8UUREpP6ocbhJSkoiPj6+wvmWLVuSlJTklqKkEuk7IWWTa5YU4FqZuENsODbryVeNFhERqU9qHG6aNm3Kxo0bK5zfsGEDjRs3dktRUoktxa02rS+DkEbOU8nqkhIRETlRjcPNzTffzP3338+yZcuw2+3Y7Xa+//57JkyYwIgRIzxRowD88aXzZ+dhrlMlM6U0mFhERKRUjWdLPfvss/z5559cccUV+Pk5n+5wOBg5cqTG3HhK+g5I3QRWP+hwteu0NswUERGpqMbhJiAggHnz5vH3v/+d9evXExwcTJcuXWjZsqUn6hMoXbivTJdUenY+aVn5WCzQIUbbLoiIiJSocbgp0a5dO9q1a+fOWuRkSmZJdRrmOlXSahPfOJSQgNP+YxQREfE5NR5zc/311/PCCy9UOP/iiy9y4403uqUoKePQdkj7o7hLaojrtGu8jbqkREREyqlxuPnpp58YPHhwhfODBg3ip59+cktRUkbJwn2t+7m6pEAzpURERE6mxuEmOzubgICACuf9/f3JzMw8rSLefPNNWrVqRVBQEH369GH16tUnvfayyy7DYrFUuA0ZMuSkz6nTTli4r0Siwo2IiEilahxuunTpwrx58yqcnzt3Lp06dapxAfPmzWPixIlMmTKFdevW0bVrVwYMGEBaWlql13/++eckJye7bps3b8Zms/lml9ihbZC2Baz+0KG0tSyv0M6uQzmApoGLiIicqMYjUZ988kmuu+46du3axeWXXw5AQkICH330EZ9++mmNC5gxYwZ33XUXo0ePBuDtt99m4cKFzJo1i8cee6zC9Y0aNSp3PHfuXEJCQnwz3JTMkmrTD4JLd1zfkZqN3WHQKDSA6IhAc2oTERGppWocboYOHcqCBQuYNm0an376KcHBwXTt2pXvv/++QvA4lYKCAtauXcukSZNc56xWK/379+fXX3+t1mu8++67jBgxgtDQyvdWys/PJz8/33V8ul1npjhJl9SW5AwAOsaGY7Fo2wUREZGyatwtBTBkyBB++eUXcnJy2L17NzfddBMPPfQQXbt2rdHrpKenY7fbiY6OLnc+OjqalJSUUz5/9erVbN68mbFjx570munTpxMZGem6NW/evEY1miZtKxxKdHZJtS8/gLtkppTG24iIiFR0WuEGnLOmRo0aRVxcHK+88gqXX345K1eudGdtp/Tuu+/SpUsXevfufdJrJk2aREZGhuu2b98+L1Z4BkpmSbW5HIIblHsoMTkL0MrEIiIilalRt1RKSgqzZ8/m3XffJTMzk5tuuon8/HwWLFhwWoOJmzRpgs1mIzU1tdz51NRUYmJiqnxuTk4Oc+fO5ZlnnqnyusDAQAID6+C4lJN0SRmG4ZoppcHEIiIiFVW75Wbo0KG0b9+ejRs3MnPmTA4ePMjrr79+Rm8eEBBAz549SUhIcJ1zOBwkJCTQt2/fKp87f/588vPzue22286ohlopLREObQVbALQfVO6h/UePk5VfRIDNSpuoMJMKFBERqb2q3XKzaNEi7r//fu699163brswceJERo0aRa9evejduzczZ84kJyfHNXtq5MiRNGvWjOnTp5d73rvvvsuwYcNo3Lix22qpNVyzpCp2Sf1RPN6mXXQY/rbT7lUUERHxWdUON8uXL+fdd9+lZ8+edOzYkdtvv50RI0accQHDhw/n0KFDPPXUU6SkpNCtWzcWL17sGmSclJSE1Vr+S3zbtm0sX76cb7/99ozfv9YxjJN2SYFWJhYRETkVi2EYRk2ekJOTw7x585g1axarV6/GbrczY8YM7rzzTsLDa//u1JmZmURGRpKRkUFERC0MCKlb4K2+zi6ph3dCUGS5h+/64DeWbkllytBOjL4w3qQiRUREvKsm39817tcIDQ3lzjvvZPny5WzatIm//e1vPP/88zRt2pS//OUvp120FCtptWnbv0KwgTIbZqrlRkREpFJnNGijffv2vPjii+zfv5+PP/7YXTXVX4ZROgW807AKD2ccL+TAseOAwo2IiMjJuGVEqs1mY9iwYXz11VfueLn6K20LpG8HW2CFWVJQullmswbBRAb7e7s6ERGROkHTbWqTcl1SFVtmXDuBa/E+ERGRk1K4qS0Mo3QKeOdhlV6ibRdEREROTeGmtkj9Aw7vcHZJnT2w0ku2aGViERGRU1K4qS1KuqTaXVlpl1Sh3cGO1GwAOqtbSkRE5KQUbmqDUyzcB7DrUDYFdgfhgX6c1TDYi8WJiIjULQo3tUHqZjiyq7hLakCll5TdLNNisXizOhERkTpF4aY2KNslFVj5Ks+uwcTqkhIREamSwo3ZqtElBWUHE9f+LS5ERETMpHBjtpRNcGQ3+AWddJaUYRgkJmcB0Cm24pYMIiIiUkrhxmzluqTCKr0kNTOfIzkF2KwW2kVXfo2IiIg4KdyYqZpdUiWDidtEhRLkb/NGZSIiInWWwo2ZkjfA0T3gFwztKp8lBaXjbbQysYiIyKkp3JipZAfwKrqkoHSmlFYmFhEROTWFG7NUs0sKtGGmiIhITSjcmCV5PRz909kldZKF+wByC4rYczgHUMuNiIhIdSjcmKWk1ebsARAQetLLtqZkYRjQNDyQJmGBXipORESk7lK4MYNhwB8LnPc7D6vyUq1MLCIiUjMKN2Y4+Dsc2wv+IdDuqiov3ZKswcQiIiI1oXBjhmp2SUGZwcQKNyIiItWicONthlE6BbzTsCovtTsMthZvu6CWGxERkepRuPG2g+vgWFK1uqT2Hs7heKGdIH8r8U2qbuERERERJ4Ubb3N1SQ2EgJAqLy0Zb9MhJgKb1eLpykRERHyCwo03GQb88aXz/ikW7gOtTCwiInI6FG686cA6yEgC/1DnlgunoJWJRUREak7hxpv++Nz5s/1A8A8+5eWlG2aGe7IqERERn6Jw4y2GAVuq3yV1ODuf1Mx8LBZoH6OWGxERkepSuPGWA2shYx8EhEHb/qe8PLF4CnirxqGEBfp5ujoRERGfoXDjLWVnSVWrSyoDgI7qkhIREakRhRtvcDjK7CV16i4pKG250crEIiIiNaNw4w0HfoPM/dXukgJNAxcRETldCjfeUNJq034Q+Aed8vK8Qju7DmUDmgYuIiJSUwo3nuZwlO4lVc0uqZ1p2RQ5DBqG+BMTceowJCIiIqUUbjxt/xrIPAAB4dDmimo9pWyXlMWibRdERERqQuHG00pabToMrlaXFJRdvE9dUiIiIjWlcONJZWdJdRpW7aeVhBsNJhYREak5hRtP2r8asg5CYAS0ubxaTzEMQ3tKiYiInAGFG08qWbivffW7pPYfPU5WXhEBNittosI8WJyIiIhvUrjxFIejzF5Sw6r9tJIuqbZNwwjw0x+PiIhITenb01P2rYKs5Bp1SQHqkhIRETlDCjeeUtIl1WEI+AVW+2lamVhEROTMKNx4Qrkuqeot3FciMUXTwEVERM6Ewo0n7FsJ2SkQGAmt+1X7aRnHC9l35DigcCMiInK6FG48oVyXVEC1n7a1eLxNswbBRIb4e6IyERERn6dw424O++l3SWnxPhERkTOmcONuSSshOxWCIqH1ZTV6aum2C+EeKExERKR+ULhxN1eX1NU16pICSEzOAjQNXERE5Ewo3LjTGXRJFdodbEt1hht1S4mIiJw+hRt32rsCctIgqAHEX1qjp+4+lENBkYOwQD+aNwzxTH0iIiL1gMKNO21Z4Px5Wl1SJYOJw7FaLW4uTEREpP5QuHGXM+iSgtLBxOqSEhEROTMKN+6y9xfIOeTskmpdsy4pKLOnlMKNiIjIGfEzuwCfER4Hfe4B/xCw1WwBPsMwtKeUiIiIm5jecvPmm2/SqlUrgoKC6NOnD6tXr67y+mPHjjFu3DhiY2MJDAzk7LPP5ptvvvFStVVo0hYGvQD9p9T4qWlZ+RzOKcBqgfYxWuNGRETkTJjacjNv3jwmTpzI22+/TZ8+fZg5cyYDBgxg27ZtNG3atML1BQUFXHnllTRt2pRPP/2UZs2asXfvXho0aOD94t2oZLxNm6gwgvxtJlcjIiJSt5kabmbMmMFdd93F6NGjAXj77bdZuHAhs2bN4rHHHqtw/axZszhy5AgrVqzA39/Z9dOqVStvluwR6pISERFxH9O6pQoKCli7di39+/cvLcZqpX///vz666+VPuerr76ib9++jBs3jujoaM455xymTZuG3W4/6fvk5+eTmZlZ7lbbuAYTa2ViERGRM2ZauElPT8dutxMdHV3ufHR0NCkpKZU+Z/fu3Xz66afY7Xa++eYbnnzySV555RX+/ve/n/R9pk+fTmRkpOvWvHlzt34Od9A0cBEREfcxfUBxTTgcDpo2bco777xDz549GT58OJMnT+btt98+6XMmTZpERkaG67Zv3z4vVnxquQVF7EnPATQNXERExB1MG3PTpEkTbDYbqamp5c6npqYSExNT6XNiY2Px9/fHZisddNuxY0dSUlIoKCggIKDiqsCBgYEEBga6t3g32paShWFAVHggUeG1t04REZG6wrSWm4CAAHr27ElCQoLrnMPhICEhgb59+1b6nAsvvJCdO3ficDhc57Zv305sbGylwaYuUJeUiIiIe5naLTVx4kT+/e9/8/7775OYmMi9995LTk6Oa/bUyJEjmTRpkuv6e++9lyNHjjBhwgS2b9/OwoULmTZtGuPGjTPrI5wxrUwsIiLiXqZOBR8+fDiHDh3iqaeeIiUlhW7durF48WLXIOOkpCSs1tL81bx5c5YsWcKDDz7IueeeS7NmzZgwYQKPPvqoWR/hjJVOA9fifSIiIu5gMQzDMLsIb8rMzCQyMpKMjAwiIsxtLXE4DM6ZuoTcAjvfTbyEtk0VcERERCpTk+/vOjVbytfsPZJLboGdIH8r8U3CzC5HRETEJyjcmKikS6p9dDg2q8XkakRERHyDwo2JtDKxiIiI+yncmEjTwEVERNxP4cZEmgYuIiLifgo3JjmSU0ByRh4AHRRuRERE3EbhxiQlrTYtG4cQFmjqckMiIiI+ReHGJOqSEhER8QyFG5OUrkyscCMiIuJOCjcm2aKWGxEREY9QuDFBfpGdnWnZgNa4ERERcTeFGxPsSM2myGEQGexPbGSQ2eWIiIj4FIUbE5QdTGyxaNsFERERd1K4MYFWJhYREfEchRsTaE8pERERz1G48TLDMFzTwDVTSkRExP0UbrzswLHjZOYV4W+z0LZpmNnliIiI+ByFGy9LTM4CoG3TcAL89OsXERFxN327elnpysThJlciIiLimxRuvEx7SomIiHiWwo2XbdFMKREREY9SuPGirLxCko7kAmq5ERER8RSFGy/amuIcTBwXGUSDkACTqxEREfFNCjdeVDqYWK02IiIinqJw40VamVhERMTzFG68aItmSomIiHicwo2XFNkdrjE36pYSERHxHIUbL9mTnkNBkYPQABstGoWYXY6IiIjPUrjxkpIuqQ6xEVitFpOrERER8V0KN16i8TYiIiLeoXDjJSXTwDVTSkRExLMUbrykZBq4BhOLiIh4lsKNF6Rl5ZGeXYDVAu2jtRu4iIiIJynceEFJl1R8k1CCA2wmVyMiIuLb/MwuoD5ITHaub9MpLtLkSkREfIvdbqewsNDsMsRNAgICsFrPvN1F4cYLNFNKRMS9DMMgJSWFY8eOmV2KuJHVaiU+Pp6AgDPbXFrhxgu2HMwAoGOsxtuIiLhDSbBp2rQpISEhWCxaP6yuczgcHDx4kOTkZFq0aHFGf6YKNx52vMDOnvQcQNPARUTcwW63u4JN48aNzS5H3CgqKoqDBw9SVFSEv7//ab+OBhR72LbULBwGNAkLoGl4kNnliIjUeSVjbEJCtJWNrynpjrLb7Wf0Ogo3Hqb1bUREPENdUb7HXX+mCjce5lqZWOFGREQ8oFWrVsycOdPsMmoVhRsPc82U0ngbEZF6zWKxVHmbOnXqab3umjVruPvuu91bbB2nAcUe5HAYbNU0cBERAZKTk133582bx1NPPcW2bdtc58LCwlz3DcPAbrfj53fqr+moqCj3FuoD1HLjQUlHcskpsBPgZyW+SajZ5YiIiIliYmJct8jISCwWi+t469athIeHs2jRInr27ElgYCDLly9n165dXHPNNURHRxMWFsZ5553Hd999V+51T+yWslgs/Oc//+Haa68lJCSEdu3a8dVXX3n505pL4caDSgYTd4gJx8+mX7WIiKcYhkFuQZEpN8Mw3PY5HnvsMZ5//nkSExM599xzyc7OZvDgwSQkJPD7778zcOBAhg4dSlJSUpWv8/TTT3PTTTexceNGBg8ezK233sqRI0fcVmdtp24pDyoZb9MxRl1SIiKedLzQTqenlpjy3lueGUBIgHu+Tp955hmuvPJK13GjRo3o2rWr6/jZZ5/liy++4KuvvmL8+PEnfZ077riDm2++GYBp06bx2muvsXr1agYOHOiWOms7NSd4kGumlAYTi4hINfTq1avccXZ2Ng899BAdO3akQYMGhIWFkZiYeMqWm3PPPdd1PzQ0lIiICNLS0jxSc22klhsPStRMKRERrwj2t7HlmQGmvbe7hIaWH5/50EMPsXTpUl5++WXatm1LcHAwN9xwAwUFBVW+zomr+1osFhwOh9vqrO0UbjzkWG4BBzPyAOeYGxER8RyLxeK2rqHa5JdffuGOO+7g2muvBZwtOX/++ae5RdUB6pbykJLxNi0ahRAedPr7Y4iISP3Vrl07Pv/8c9avX8+GDRu45ZZb6lULzOlSuPGQkvE22glcRERO14wZM2jYsCEXXHABQ4cOZcCAAfTo0cPssmo9i+HOOWx1QGZmJpGRkWRkZBAR4bmxMH/7ZAOfrdvPg/3PZkL/dh57HxGR+iYvL489e/YQHx9PUJA2JPYlVf3Z1uT7Wy03HqJtF0RERMyhcOMBBUUOdqZlAeqWEhER8TaFGw/YmZZNod0gIsiPZg2CzS5HRESkXqkV4ebNN9+kVatWBAUF0adPH1avXn3Sa2fPnl1hJ9Xa1ufqWpk4NgKLxWJyNSIiIvWL6eFm3rx5TJw4kSlTprBu3Tq6du3KgAEDqlxJMSIiguTkZNdt7969Xqz41LR4n4iIiHlMDzczZszgrrvuYvTo0XTq1Im3336bkJAQZs2addLnlN1JNSYmhujoaC9WfGqubRdiFW5ERES8zdRwU1BQwNq1a+nfv7/rnNVqpX///vz6668nfV52djYtW7akefPmXHPNNfzxxx8nvTY/P5/MzMxyN08yDKNct5SIiIh4l6nhJj09HbvdXqHlJTo6mpSUlEqf0759e2bNmsWXX37Jhx9+iMPh4IILLmD//v2VXj99+nQiIyNdt+bNm7v9c5SVnJFHxvFC/KwW2kWHefS9REREpCLTu6Vqqm/fvowcOZJu3bpx6aWX8vnnnxMVFcW//vWvSq+fNGkSGRkZrtu+ffs8Wl9Jl1TbpmEE+rlvMzURERGpHlPDTZMmTbDZbKSmppY7n5qaSkxMTLVew9/fn+7du7Nz585KHw8MDCQiIqLczZNcg4nVJSUiIm522WWX8cADD7iOW7VqxcyZM6t8jsViYcGCBWf83u56HW8wNdwEBATQs2dPEhISXOccDgcJCQn07du3Wq9ht9vZtGkTsbGxniqzRrQysYiIVGbo0KEMHDiw0sd+/vlnLBYLGzdurNFrrlmzhrvvvtsd5blMnTqVbt26VTifnJzMoEGD3PpenmJ6t9TEiRP597//zfvvv09iYiL33nsvOTk5jB49GoCRI0cyadIk1/XPPPMM3377Lbt372bdunXcdttt7N27l7Fjx5r1EcrRYGIREanMmDFjWLp0aaVjRN977z169erFueeeW6PXjIqKIiQkxF0lVikmJobAwECvvNeZMj3cDB8+nJdffpmnnnqKbt26sX79ehYvXuwaZJyUlERycrLr+qNHj3LXXXfRsWNHBg8eTGZmJitWrKBTp05mfQSX7Pwi9h7OBRRuRESkvKuvvpqoqChmz55d7nx2djbz589n2LBh3HzzzTRr1oyQkBC6dOnCxx9/XOVrntgttWPHDi655BKCgoLo1KkTS5curfCcRx99lLPPPpuQkBBat27Nk08+SWFhIeBcKPfpp59mw4YNroVyS+o9sVtq06ZNXH755QQHB9O4cWPuvvtusrOzXY/fcccdDBs2jJdffpnY2FgaN27MuHHjXO/lSX4ef4dqGD9+POPHj6/0sR9++KHc8auvvsqrr77qhapqbmtxq01MRBCNQgNMrkZEpB4xDCjMNee9/UOgGqvR+/n5MXLkSGbPns3kyZNdK9jPnz8fu93Obbfdxvz583n00UeJiIhg4cKF3H777bRp04bevXuf8vUdDgfXXXcd0dHRrFq1ioyMjHLjc0qEh4cze/Zs4uLi2LRpE3fddRfh4eE88sgjDB8+nM2bN7N48WK+++47ACIjIyu8Rk5ODgMGDKBv376sWbOGtLQ0xo4dy/jx48uFt2XLlhEbG8uyZcvYuXMnw4cPp1u3btx1112n/DxnolaEG1+hlYlFRExSmAvT4sx578cPQkBotS698847eemll/jxxx+57LLLAGeX1PXXX0/Lli156KGHXNfed999LFmyhE8++aRa4ea7775j69atLFmyhLg45+9i2rRpFcbJPPHEE677rVq14qGHHmLu3Lk88sgjBAcHExYWhp+fX5UTez766CPy8vL44IMPCA11fvY33niDoUOH8sILL7h6Xxo2bMgbb7yBzWajQ4cODBkyhISEBI+HG9O7pXzJFs2UEhGRKnTo0IELLrjAtQr/zp07+fnnnxkzZgx2u51nn32WLl260KhRI8LCwliyZAlJSUnVeu3ExESaN2/uCjZApZNz5s2bx4UXXkhMTAxhYWE88cQT1X6Psu/VtWtXV7ABuPDCC3E4HGzbts11rnPnzthspcuixMbGVrm9kruo5caNSta40XgbEREv8w9xtqCY9d41MGbMGO677z7efPNN3nvvPdq0acOll17KCy+8wD/+8Q9mzpxJly5dCA0N5YEHHqCgoMBtpf7666/ceuutPP300wwYMIDIyEjmzp3LK6+84rb3KMvf37/cscViweFweOS9ylK4cZMiu4OtKVmAuqVERLzOYql215DZbrrpJiZMmMBHH33EBx98wL333ovFYuGXX37hmmuu4bbbbgOcY2i2b99e7QkzHTt2ZN++fSQnJ7uWR1m5cmW5a1asWEHLli2ZPHmy69yJm08HBARgt9tP+V6zZ88mJyfH1Xrzyy+/YLVaad++fbXq9SR1S7nJn4dzyC9yEBJgo2Uj70zLExGRuicsLIzhw4czadIkkpOTueOOOwBo164dS5cuZcWKFSQmJvJ///d/FRa5rUr//v05++yzGTVqFBs2bODnn38uF2JK3iMpKYm5c+eya9cuXnvtNb744oty17Rq1Yo9e/awfv160tPTyc/Pr/Bet956K0FBQYwaNYrNmzezbNky7rvvPm6//fZasZm1wo2bpGXm0zDEnw4x4Vitpx41LyIi9deYMWM4evQoAwYMcI2ReeKJJ+jRowcDBgzgsssuIyYmhmHDhlX7Na1WK1988QXHjx+nd+/ejB07lueee67cNX/5y1948MEHGT9+PN26dWPFihU8+eST5a65/vrrGThwIP369SMqKqrS6eghISEsWbKEI0eOcN5553HDDTdwxRVX8MYbb9T8l+EBFsMwDLOL8KbMzEwiIyPJyMhw+1YMhmGQnV9EeJD/qS8WEZHTkpeXx549e4iPjycoKMjscsSNqvqzrcn3t1pu3MhisSjYiIiImEzhRkRERHyKwo2IiIj4FIUbERER8SkKNyIiIuJTFG5ERKROqmeTfesFd/2ZKtyIiEidUrKkf26uSbuAi8eUbDVRdj+q06HtF0REpE6x2Ww0aNDAtQFjSEgIFosWT63rHA4Hhw4dIiQkBD+/M4snCjciIlLnxMTEAHhlh2nxHqvVSosWLc44rCrciIhInWOxWIiNjaVp06YUFhaaXY64SUBAAFbrmY+YUbgREZE6y2aznfH4DPE9GlAsIiIiPkXhRkRERHyKwo2IiIj4lHo35qZkgaDMzEyTKxEREZHqKvners5Cf/Uu3GRlZQHQvHlzkysRERGRmsrKyiIyMrLKayxGPVu/2uFwcPDgQcLDw92+6FNmZibNmzdn3759REREuPW1pZR+z96h37N36PfsPfpde4enfs+GYZCVlUVcXNwpp4vXu5Ybq9XKWWed5dH3iIiI0P84XqDfs3fo9+wd+j17j37X3uGJ3/OpWmxKaECxiIiI+BSFGxEREfEpCjduFBgYyJQpUwgMDDS7FJ+m37N36PfsHfo9e49+195RG37P9W5AsYiIiPg2tdyIiIiIT1G4EREREZ+icCMiIiI+ReFGREREfIrCjZu8+eabtGrViqCgIPr06cPq1avNLsnnTJ8+nfPOO4/w8HCaNm3KsGHD2LZtm9ll+bTnn38ei8XCAw88YHYpPunAgQPcdtttNG7cmODgYLp06cJvv/1mdlk+xW638+STTxIfH09wcDBt2rTh2Wefrdb+RHJyP/30E0OHDiUuLg6LxcKCBQvKPW4YBk899RSxsbEEBwfTv39/duzY4bX6FG7cYN68eUycOJEpU6awbt06unbtyoABA0hLSzO7NJ/y448/Mm7cOFauXMnSpUspLCzkqquuIicnx+zSfNKaNWv417/+xbnnnmt2KT7p6NGjXHjhhfj7+7No0SK2bNnCK6+8QsOGDc0uzae88MILvPXWW7zxxhskJibywgsv8OKLL/L666+bXVqdlpOTQ9euXXnzzTcrffzFF1/ktdde4+2332bVqlWEhoYyYMAA8vLyvFOgIWesd+/exrhx41zHdrvdiIuLM6ZPn25iVb4vLS3NAIwff/zR7FJ8TlZWltGuXTtj6dKlxqWXXmpMmDDB7JJ8zqOPPmpcdNFFZpfh84YMGWLceeed5c5dd911xq233mpSRb4HML744gvXscPhMGJiYoyXXnrJde7YsWNGYGCg8fHHH3ulJrXcnKGCggLWrl1L//79XeesViv9+/fn119/NbEy35eRkQFAo0aNTK7E94wbN44hQ4aU++9a3Ourr76iV69e3HjjjTRt2pTu3bvz73//2+yyfM4FF1xAQkIC27dvB2DDhg0sX76cQYMGmVyZ79qzZw8pKSnl/v6IjIykT58+XvterHcbZ7pbeno6drud6Ojocuejo6PZunWrSVX5PofDwQMPPMCFF17IOeecY3Y5PmXu3LmsW7eONWvWmF2KT9u9ezdvvfUWEydO5PHHH2fNmjXcf//9BAQEMGrUKLPL8xmPPfYYmZmZdOjQAZvNht1u57nnnuPWW281uzSflZKSAlDp92LJY56mcCN10rhx49i8eTPLly83uxSfsm/fPiZMmMDSpUsJCgoyuxyf5nA46NWrF9OmTQOge/fubN68mbffflvhxo0++eQT5syZw0cffUTnzp1Zv349DzzwAHFxcfo9+zB1S52hJk2aYLPZSE1NLXc+NTWVmJgYk6rybePHj+frr79m2bJlnHXWWWaX41PWrl1LWloaPXr0wM/PDz8/P3788Udee+01/Pz8sNvtZpfoM2JjY+nUqVO5cx07diQpKcmkinzTww8/zGOPPcaIESPo0qULt99+Ow8++CDTp083uzSfVfLdZ+b3osLNGQoICKBnz54kJCS4zjkcDhISEujbt6+JlfkewzAYP348X3zxBd9//z3x8fFml+RzrrjiCjZt2sT69etdt169enHrrbeyfv16bDab2SX6jAsvvLDCUgbbt2+nZcuWJlXkm3Jzc7Fay3/V2Ww2HA6HSRX5vvj4eGJiYsp9L2ZmZrJq1SqvfS+qW8oNJk6cyKhRo+jVqxe9e/dm5syZ5OTkMHr0aLNL8ynjxo3jo48+4ssvvyQ8PNzVdxsZGUlwcLDJ1fmG8PDwCmOYQkNDady4scY2udmDDz7IBRdcwLRp07jppptYvXo177zzDu+8847ZpfmUoUOH8txzz9GiRQs6d+7M77//zowZM7jzzjvNLq1Oy87OZufOna7jPXv2sH79eho1akSLFi144IEH+Pvf/067du2Ij4/nySefJC4ujmHDhnmnQK/MyaoHXn/9daNFixZGQECA0bt3b2PlypVml+RzgEpv7733ntml+TRNBfec//3vf8Y555xjBAYGGh06dDDeeecds0vyOZmZmcaECROMFi1aGEFBQUbr1q2NyZMnG/n5+WaXVqctW7as0r+PR40aZRiGczr4k08+aURHRxuBgYHGFVdcYWzbts1r9VkMQ8s0ioiIiO/QmBsRERHxKQo3IiIi4lMUbkRERMSnKNyIiIiIT1G4EREREZ+icCMiIiI+ReFGREREfIrCjYjUexaLhQULFphdhoi4icKNiJjqjjvuwGKxVLgNHDjQ7NJEpI7S3lIiYrqBAwfy3nvvlTsXGBhoUjUiUtep5UZETBcYGEhMTEy5W8OGDQFnl9Fbb73FoEGDCA4OpnXr1nz66aflnr9p0yYuv/xygoODady4MXfffTfZ2dnlrpk1axadO3cmMDCQ2NhYxo8fX+7x9PR0rr32WkJCQmjXrh1fffWVZz+0iHiMwo2I1HpPPvkk119/PRs2bODWW29lxIgRJCYmApCTk8OAAQNo2LAha9asYf78+Xz33Xflwstbb73FuHHjuPvuu9m0aRNfffUVbdu2LfceTz/9NDfddBMbN25k8ODB3HrrrRw5csSrn1NE3MRrW3SKiFRi1KhRhs1mM0JDQ8vdnnvuOcMwnLvB33PPPeWe06dPH+Pee+81DMMw3nnnHaNhw4ZGdna26/GFCxcaVqvVSElJMQzDMOLi4ozJkyeftAbAeOKJJ1zH2dnZBmAsWrTIbZ9TRLxHY25ExHT9+vXjrbfeKneuUaNGrvt9+/Yt91jfvn1Zv349AImJiXTt2pXQ0FDX4xdeeCEOh4Nt27ZhsVg4ePAgV1xxRZU1nHvuua77oaGhREREkJaWdrofSURMpHAjIqYLDQ2t0E3kLsHBwdW6zt/fv9yxxWLB4XB4oiQR8TCNuRGRWm/lypUVjjt27AhAx44d2bBhAzk5Oa7Hf/nlF6xWK+3btyc8PJxWrVqRkJDg1ZpFxDxquRER0+Xn55OSklLunJ+fH02aNAFg/vz59OrVi4suuog5c+awevVq3n33XQBuvfVWpkyZwqhRo5g6dSqHDh3ivvvu4/bbbyc6OhqAqVOncs8999C0aVMGDRpEVlYWv/zyC/fdd593P6iIeIXCjYiYbvHixcTGxpY71759e7Zu3Qo4ZzLNnTuXv/71r8TGxvLxxx/TqVMnAEJCQliyZAkTJkzgvPPOIyQkhOuvv54ZM2a4XmvUqFHk5eXx6quv8tBDD9GkSRNuuOEG731AEfEqi2EYhtlFiIicjMVi4YsvvmDYsGFmlyIidYTG3IiIiIhPUbgRERERn6IxNyJSq6nnXERqSi03IiIi4lMUbkRERMSnKNyIiIiIT1G4EREREZ+icCMiIiI+ReFGREREfIrCjYiIiPgUhRsRERHxKQo3IiIi4lP+H2+xpk3l+hwuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the loss of training and validation\n", + "plt.plot(history_Incep.history['loss'])\n", + "plt.plot(history_Incep.history['val_loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train', 'Validation'], loc='upper right')\n", + "plt.show()\n", + "\n", + "\n", + "# Plot the accuracy of training and validation\n", + "plt.plot(history_Incep.history['accuracy'])\n", + "plt.plot(history_Incep.history['val_accuracy'])\n", + "plt.title('Model Accuracy')\n", + "plt.ylabel('Accuracy')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train', 'Validation'], loc='lower right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "eeba505b", + "metadata": { + "papermill": { + "duration": 0.692403, + "end_time": "2024-05-09T16:26:46.316704", + "exception": false, + "start_time": "2024-05-09T16:26:45.624301", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

5.2. ResNet50

" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "e3365f29", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T16:26:47.779606Z", + "iopub.status.busy": "2024-05-09T16:26:47.778737Z", + "iopub.status.idle": "2024-05-09T16:26:48.345517Z", + "shell.execute_reply": "2024-05-09T16:26:48.344637Z" + }, + "papermill": { + "duration": 1.320008, + "end_time": "2024-05-09T16:26:48.347458", + "exception": false, + "start_time": "2024-05-09T16:26:47.027450", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt+UlEQVR4nO3dd3hUddrG8e9MyqT3CgRCL9J7sICCIiCKYkMU7KuCK+66q6xlLa9i765lV2VddVFU0LUhImABpAbpHRIkBUgPqTPn/eOQgUAIIUwyk8n9ua65Mjlz5pxnRtfc+6sWwzAMRERERLyE1d0FiIiIiLiSwo2IiIh4FYUbERER8SoKNyIiIuJVFG5ERETEqyjciIiIiFdRuBERERGvonAjIiIiXkXhRkRERLyKwo2IeDyLxcLDDz98yu/bvXs3FouFmTNn1nreokWLsFgsLFq0qF71iYhnUbgRkTqZOXMmFosFi8XCzz//fNzrhmGQlJSExWLhoosuckOFIiImhRsROSUBAQF8+OGHxx1fvHgxe/fuxWazuaEqEZEjFG5E5JSMHj2a2bNnU1lZWe34hx9+SL9+/UhISHBTZSIiJoUbETklEyZM4ODBg8yfP995rLy8nE8++YRrrrmmxvcUFxfz5z//maSkJGw2G507d+bZZ5/FMIxq55WVlXH33XcTGxtLaGgoF198MXv37q3xmr///js33ngj8fHx2Gw2zjjjDN555x3XfVBg9uzZ9OvXj8DAQGJiYrj22mv5/fffq52TmZnJDTfcQKtWrbDZbCQmJnLJJZewe/du5zkrV65k5MiRxMTEEBgYSNu2bbnxxhtdWquIHOHr7gJEpGlJTk4mJSWF//73v4waNQqAb775hvz8fK6++mpefvnlaucbhsHFF1/MwoULuemmm+jduzfz5s3jL3/5C7///jsvvPCC89ybb76Z999/n2uuuYYhQ4bwww8/MGbMmONqyMrKYvDgwVgsFqZOnUpsbCzffPMNN910EwUFBUybNu20P+fMmTO54YYbGDBgADNmzCArK4uXXnqJX375hTVr1hAREQHA+PHj2bBhA3feeSfJyclkZ2czf/580tLSnL9fcMEFxMbGct999xEREcHu3bv57LPPTrtGETkBQ0SkDt59910DMFasWGG8+uqrRmhoqHHo0CHDMAzjiiuuMM4991zDMAyjTZs2xpgxY5zvmzt3rgEY//d//1ftepdffrlhsViM7du3G4ZhGKmpqQZg3HHHHdXOu+aaawzA+Pvf/+48dtNNNxmJiYnGgQMHqp179dVXG+Hh4c66du3aZQDGu+++W+tnW7hwoQEYCxcuNAzDMMrLy424uDije/fuRklJifO8L7/80gCMhx56yDAMw8jNzTUA45lnnjnhtefMmeP83kSkcahbSkRO2ZVXXklJSQlffvklhYWFfPnllyfskvr666/x8fHhj3/8Y7Xjf/7znzEMg2+++cZ5HnDcece2whiGwaeffsrYsWMxDIMDBw44HyNHjiQ/P5/Vq1ef1udbuXIl2dnZ3HHHHQQEBDiPjxkzhi5duvDVV18BEBgYiL+/P4sWLSI3N7fGa1W18Hz55ZdUVFScVl0iUjcKNyJyymJjYxkxYgQffvghn332GXa7ncsvv7zGc/fs2UOLFi0IDQ2tdrxr167O16t+Wq1W2rdvX+28zp07V/t9//795OXl8dZbbxEbG1vtccMNNwCQnZ19Wp+vqqZj7w3QpUsX5+s2m42nnnqKb775hvj4eM455xyefvppMjMznecPHTqU8ePH88gjjxATE8Mll1zCu+++S1lZ2WnVKCInpjE3IlIv11xzDbfccguZmZmMGjXK2ULR0BwOBwDXXnstkydPrvGcnj17NkotYLYsjR07lrlz5zJv3jwefPBBZsyYwQ8//ECfPn2wWCx88sknLFu2jP/973/MmzePG2+8keeee45ly5YREhLSaLWKNBdquRGRern00kuxWq0sW7bshF1SAG3atGHfvn0UFhZWO75582bn61U/HQ4HO3bsqHbeli1bqv1eNZPKbrczYsSIGh9xcXGn9dmqajr23lXHql6v0r59e/785z/z3XffsX79esrLy3nuueeqnTN48GAef/xxVq5cyQcffMCGDRuYNWvWadUpIjVTuBGRegkJCeH111/n4YcfZuzYsSc8b/To0djtdl599dVqx1944QUsFotzxlXVz2NnW7344ovVfvfx8WH8+PF8+umnrF+//rj77d+/vz4fp5r+/fsTFxfHG2+8Ua376JtvvmHTpk3OGVyHDh2itLS02nvbt29PaGio8325ubnHTXnv3bs3gLqmRBqIuqVEpN5O1C10tLFjx3Luuedy//33s3v3bnr16sV3333H559/zrRp05xjbHr37s2ECRP4xz/+QX5+PkOGDGHBggVs3779uGs++eSTLFy4kEGDBnHLLbfQrVs3cnJyWL16Nd9//z05OTmn9bn8/Px46qmnuOGGGxg6dCgTJkxwTgVPTk7m7rvvBmDr1q0MHz6cK6+8km7duuHr68ucOXPIysri6quvBuDf//43//jHP7j00ktp3749hYWF/POf/yQsLIzRo0efVp0iUjOFGxFpUFarlS+++IKHHnqIjz76iHfffZfk5GSeeeYZ/vznP1c795133iE2NpYPPviAuXPnct555/HVV1+RlJRU7bz4+HiWL1/Oo48+ymeffcY//vEPoqOjOeOMM3jqqadcUvf1119PUFAQTz75JPfeey/BwcFceumlPPXUU87xRUlJSUyYMIEFCxbwn//8B19fX7p06cLHH3/M+PHjAXNA8fLly5k1axZZWVmEh4czcOBAPvjgA9q2beuSWkWkOotxbHupiIiISBOmMTciIiLiVRRuRERExKso3IiIiIhXUbgRERERr6JwIyIiIl5F4UZERES8SrNb58bhcLBv3z5CQ0OxWCzuLkdERETqwDAMCgsLadGiBVZr7W0zzS7c7Nu377gFwURERKRpSE9Pp1WrVrWe0+zCTWhoKGB+OWFhYW6uRkREROqioKCApKQk59/x2jS7cFPVFRUWFqZwIyIi0sTUZUiJBhSLiIiIV1G4EREREa+icCMiIiJepdmNuREREe9ht9upqKhwdxniIv7+/ied5l0XCjciItLkGIZBZmYmeXl57i5FXMhqtdK2bVv8/f1P6zoKNyIi0uRUBZu4uDiCgoK0KKsXqFpkNyMjg9atW5/WP1OFGxERaVLsdrsz2ERHR7u7HHGh2NhY9u3bR2VlJX5+fvW+jgYUi4hIk1I1xiYoKMjNlYirVXVH2e3207qOwo2IiDRJ6oryPq76Z6pwIyIiIl5F4UZERKQJS05O5sUXX3R3GR5F4UZERKQRWCyWWh8PP/xwva67YsUKbr31VtcW28RptpQnsVcCBvjUf4S4iIh4poyMDOfzjz76iIceeogtW7Y4j4WEhDifG4aB3W7H1/fkf6ZjY2NdW6gXUMuNuzkcsPsX+PJueK4TPJUMubvdXZWIiLhYQkKC8xEeHo7FYnH+vnnzZkJDQ/nmm2/o168fNpuNn3/+mR07dnDJJZcQHx9PSEgIAwYM4Pvvv6923WO7pSwWC//617+49NJLCQoKomPHjnzxxReN/GndSy037rTmffjhcSjcV/34pi9hyFT31CQi0gQZhkFJxelNH66vQD8fl83yue+++3j22Wdp164dkZGRpKenM3r0aB5//HFsNhvvvfceY8eOZcuWLbRu3fqE13nkkUd4+umneeaZZ3jllVeYOHEie/bsISoqyiV1ejqFG3fJ3Q1f/BEMO9jCoetYwIDUD2D3Two3IiKnoKTCTreH5rnl3hsfHUmQv2v+nD766KOcf/75zt+joqLo1auX8/fHHnuMOXPm8MUXXzB16on/Tlx//fVMmDABgCeeeIKXX36Z5cuXc+GFF7qkTk+ncOMuS14xg03boTBxNvjaYN+aw+HmF3P8jY/+8YiINCf9+/ev9ntRUREPP/wwX331FRkZGVRWVlJSUkJaWlqt1+nZs6fzeXBwMGFhYWRnZzdIzZ5Ifz3doTALVv/HfH7OX8xgA5DQEwLCoTQfMtZCq37uq1FEpAkJ9PNh46Mj3XZvVwkODq72+z333MP8+fN59tln6dChA4GBgVx++eWUl5fXep1jty6wWCw4HA6X1enpFG7cYdk/wF4GrQZA8llHjlt9oM1ZsOUr2LVY4UZEpI4sFovLuoY8yS+//ML111/PpZdeCpgtObt373ZvUU2AZks1tpI8WPG2+fysP8Gxg9DanmP+3P1To5YlIiKep2PHjnz22Wekpqaydu1arrnmmmbVAlNfCjeNbcW/oLwQYrtCpxoGdlWFm7RlUFl7s6OIiHi3559/nsjISIYMGcLYsWMZOXIkffv2dXdZHs9iGIbh7iIaU0FBAeHh4eTn5xMWFuay65ZW2NmbW4LdYdA5IbTmk8oPwYs94NABuPQt6HXV8ecYBjzTwTznhm+hTYrLahQR8QalpaXs2rWLtm3bEhAQ4O5yxIVq+2d7Kn+/1XLjImvS8hjx/GJu/2BVLSe9b4aWiNbQfXzN51gs0PZs8/muH11fqIiIiJdTuHGR8EBzZHpBSUXNJzjs5vRvgCF/rH2ad7LCjYiISH0p3LhIWKAZVgpKKqmxp2/vCshPMxfs63Nt7RdrO/Twe5ZDRYmLKxUREfFuCjcuUtVyU253UFpRw0j2Tf8zf3YaCX6BtV8suj2EJoK9HNJ/dXGlIiIi3s1jws2TTz6JxWJh2rRptZ43e/ZsunTpQkBAAD169ODrr79unAJPItjfF+vhWd0Fpcd0TRnGkXDT9aKTX8xiOTJrapemhIuIiJwKjwg3K1as4M0336y2XHRNlixZwoQJE7jppptYs2YN48aNY9y4caxfv76RKj0xq9VC2OHWm/xjx91krYe8PeAbAB1G1O2CGncjIiJSL24PN0VFRUycOJF//vOfREZG1nruSy+9xIUXXshf/vIXunbtymOPPUbfvn159dVXG6na2oUFnGBQ8aYvzZ/th4N/MHVS1XKzbzWUFbqoQhEREe/n9nAzZcoUxowZw4gRJ2/RWLp06XHnjRw5kqVLlzZUeack/EQtN6fSJVUlso05ZdxRqa4pERGRU+DWjThmzZrF6tWrWbFiRZ3Oz8zMJD4+vtqx+Ph4MjMzT/iesrIyysrKnL8XFBTUr9g6cE4HP3rMTc5OyN4AFp+aVySuTZexsOw1WP4mdBntwkpFRES8l9tabtLT07nrrrv44IMPGnSFyRkzZhAeHu58JCUlNdi9qqaD5x86KtxUdUklnwVBUad2wcG3maFo5yLYl+qSGkVEpOkaNmxYtYk3ycnJvPjii7W+x2KxMHfu3NO+t6uu0xjcFm5WrVpFdnY2ffv2xdfXF19fXxYvXszLL7+Mr68vdrv9uPckJCSQlZVV7VhWVhYJCQknvM/06dPJz893PtLT013+WaocabmpPHJw8+Fw03XsqV/w6JWMl7x8mtWJiIg7jR07lgsvrLkF/6effsJisfDbb7+d0jVXrFjBrbfe6orynB5++GF69+593PGMjAxGjRrl0ns1FLeFm+HDh7Nu3TpSU1Odj/79+zNx4kRSU1Px8fE57j0pKSksWLCg2rH58+eTknLi/ZdsNhthYWHVHg2lakCxc8xNYeaRdWq6jKnfRc/8o/lzwxzI3X16BYqIiNvcdNNNzJ8/n7179x732rvvvkv//v1POmv4WLGxsQQFBbmqxFolJCRgs9ka5V6ny23hJjQ0lO7du1d7BAcHEx0dTffu3QGYNGkS06dPd77nrrvu4ttvv+W5555j8+bNPPzww6xcuZKpU6e662NUc9xU8M1fmT9b9oewFvW7aEIPc5aV4YClr7mgShERcYeLLrqI2NhYZs6cWe14UVERs2fPZty4cUyYMIGWLVsSFBREjx49+O9//1vrNY/tltq2bRvnnHMOAQEBdOvWjfnz5x/3nnvvvZdOnToRFBREu3btePDBB6moMP9uzZw5k0ceeYS1a9disViwWCzOeo/tllq3bh3nnXcegYGBREdHc+utt1JUVOR8/frrr2fcuHE8++yzJCYmEh0dzZQpU5z3akhuHVB8MmlpaVitR/LXkCFD+PDDD3nggQf429/+RseOHZk7d64zDLlb2LH7Szm7pE5hllRNzrwLdiyA1f+BofdBcPTpXU9ExNsYBlQccs+9/YLMxVdPwtfXl0mTJjFz5kzuv/9+LIffM3v2bOx2O9deey2zZ8/m3nvvJSwsjK+++orrrruO9u3bM3DgwJNe3+FwcNlllxEfH8+vv/5Kfn5+jQvjhoaGMnPmTFq0aMG6deu45ZZbCA0N5a9//StXXXUV69ev59tvv+X7778HIDw8/LhrFBcXM3LkSFJSUlixYgXZ2dncfPPNTJ06tVp4W7hwIYmJiSxcuJDt27dz1VVX0bt3b2655ZaTfp7T4VHhZtGiRbX+DnDFFVdwxRVXNE5Bp6jaVPCSvCML8HWpx3ibo7U9BxJ7Q0YqrPgnDLvv9K4nIuJtKg7BE/VsIT9df9tX5zXMbrzxRp555hkWL17MsGHDALNLavz48bRp04Z77rnHee6dd97JvHnz+Pjjj+sUbr7//ns2b97MvHnzaNHC/C6eeOKJ48bJPPDAA87nycnJ3HPPPcyaNYu//vWvBAYGEhISgq+vb63jWT/88ENKS0t57733CA42P/urr77K2LFjeeqpp5wzmyMjI3n11Vfx8fGhS5cujBkzhgULFjR4uHH7OjfeJCzg8OaZpZWwbb65Rk1sF4jpcHoXtljM1huAX9+Ecjf9vxMRETktXbp0YciQIbzzzjsAbN++nZ9++ombbroJu93OY489Ro8ePYiKiiIkJIR58+aRlpZWp2tv2rSJpKQkZ7ABahyT+tFHH3HmmWeSkJBASEgIDzzwQJ3vcfS9evXq5Qw2AGeeeSYOh4MtW7Y4j51xxhnVxtAmJiaSnZ19SveqD49quWnqwo/ulqrqkupyml1SVbpeDJHJ5qDiJS+r9UZE5Gh+QWYLirvufQpuuukm7rzzTl577TXeffdd2rdvz9ChQ3nqqad46aWXePHFF+nRowfBwcFMmzaN8vJyl5W6dOlSJk6cyCOPPMLIkSMJDw9n1qxZPPfccy67x9H8/Pyq/W6xWHA4athc2sXUcuNCVeGmtKQYtpt9lfWeJXUsH18493BT4uKntOeUiMjRLBaza8gdjzqMtznalVdeidVq5cMPP+S9997jxhtvxGKx8Msvv3DJJZdw7bXX0qtXL9q1a8fWrVvrfN2uXbuSnp5ORkaG89iyZcuqnbNkyRLatGnD/fffT//+/enYsSN79uypdo6/v3+Ny7Ece6+1a9dSXFzsPPbLL79gtVrp3LlznWtuKAo3LlQ1oLhHxVooL4LQFtCij+tu0PMK6H2tOXPqk5ugMOvk7xEREY8SEhLCVVddxfTp08nIyOD6668HoGPHjsyfP58lS5awadMm/vCHPxy3tlttRowYQadOnZg8eTJr167lp59+4v777692TseOHUlLS2PWrFns2LGDl19+mTlz5lQ7Jzk5mV27dpGamsqBAweqrfJfZeLEiQQEBDB58mTWr1/PwoULufPOO7nuuuuO20nAHRRuXKhqnZsLrCvNA13GnHKiP6nRz0BcNyjOhk9vAkft6VpERDzPTTfdRG5uLiNHjnSOkXnggQfo27cvI0eOZNiwYSQkJDBu3Lg6X9NqtTJnzhxKSkoYOHAgN998M48//ni1cy6++GLuvvtupk6dSu/evVmyZAkPPvhgtXPGjx/PhRdeyLnnnktsbGyN09GDgoKYN28eOTk5DBgwgMsvv5zhw4d7zEbWFsMwDHcX0ZgKCgoIDw8nPz+/QRb0O+PBr1lk/QOxlgK4bi60P9fl92D/VnhrGFQUw9B74dy/uf4eIiIeqrS0lF27dtG2bdsG3b5HGl9t/2xP5e+3Wm5cbIhtF7GWAuz+YeZ+Ug0hthOMfcl8vvhpc+8pERERARRuXO58q7nD+cEWw8DHr/aTT0fPK6Df9YABX94Nlcf3iYqIiDRHCjeuZBicbTf3kkqPO6/h73f+YxCSADk7Yaln9HOKiIi4m8KNK+3fQqJ9H2WGLzsjBjf8/QLC4ILHzOc/Pgv5x2/GJiIi0two3LjS4YX7fnF052CFf+Pcs8cV0DrFXHr8uwdOfr6IiJdoZvNhmgVX/TNVuHGlw7uAf+fof2TzzIZmscCop8FihQ1zYOfixrmviIibVK16e+iQtqLxNlWrMR+9ZUN9aPsFV8n/HfatxsDCAntfLmiscAOQ2BP632RuqvnNvXDbTw07mFlExI18fHyIiIhw7lEUFBTk3GFbmi6Hw8H+/fsJCgrC1/f04onCjatkrAWrH9mh3dhfGmFuntmYzv0bbPgM9m+CFW/D4Nsa9/4iIo2oasfqxtiEURqP1WqldevWpx1WFW5cpcto+OtOVi9LhW8LyW/MlhuAoCgYNh2+vgdW/1vhRkS8msViITExkbi4OCoqGvm/t9Jg/P39sVpPf8SMwo0rBYThE9sJWNV4Y26O1uNy+PY+yN4IB7ZBTMfGr0FEpBH5+Pic9vgM8T4aUOxiVZtnuiXcBEZC26Hm842fN/79RUREPIDCjYuFV4WbUjc1k3a72Py56Qv33F9ERMTNFG5crKrlJr+kwj1rMHS5yJwWnrEWcnc3/v1FRETcTOHGxapabirsBiUV9sYvIDgG2pxpPt+o1hsREWl+FG5cLNjfBx+rOYWtoKSRp4NX6XaJ+VNdUyIi0gwp3LiYxWIhLMCchNbo08GrdLnI/Ll3hbm4oIiISDOicNMA3D6oOCwRkg5v3Lnpf+6pQURExE0UbhqAc1DxITcuLKVZUyIi0kwp3DQAt7fcAHQ9HG72LIEiLU8uIiLNh8JNAwgLODId3G0ikqBFX8BQ15SIiDQrCjcN4MgqxW6aLVWlqmtq81furUNERKQRKdw0gLBAN8+WqtLxAvNn2jKwa2M5ERFpHhRuGoBHjLkBiO0KARFQUQwZv7m3FhERkUaicNMAPGLMDYDVCm2GmM/3/OLeWkRERBqJwk0DCA/0kHADR4WbJe6tQ0REpJEo3DQAZ7eUJ4Sb1ofDTdoScDjcW4uIiEgjcGu4ef311+nZsydhYWGEhYWRkpLCN998c8LzZ86cicViqfYICAhoxIrrJsyTwk1iT/ALhtJ8yN7o7mpEREQanFvDTatWrXjyySdZtWoVK1eu5LzzzuOSSy5hw4YNJ3xPWFgYGRkZzseePXsaseK6OTKg2M1TwQF8/CBpoPk8bal7axEREWkEbg03Y8eOZfTo0XTs2JFOnTrx+OOPExISwrJly074HovFQkJCgvMRHx/fiBXXTdXGmUVllVTaPaArqM2Z5k8NKhYRkWbAY8bc2O12Zs2aRXFxMSkpKSc8r6ioiDZt2pCUlHTSVh6AsrIyCgoKqj0aWlW3FEChJ7TeHD2o2DDcW4uIiEgDc3u4WbduHSEhIdhsNm677TbmzJlDt27dajy3c+fOvPPOO3z++ee8//77OBwOhgwZwt69e094/RkzZhAeHu58JCUlNdRHcfLzsRLk7wN4yIyplv3Axx+KsiBnp7urERERaVBuDzedO3cmNTWVX3/9ldtvv53JkyezcWPNA19TUlKYNGkSvXv3ZujQoXz22WfExsby5ptvnvD606dPJz8/3/lIT09vqI9Sjccs5AfgFwAt+5vP1TUlIiJezu3hxt/fnw4dOtCvXz9mzJhBr169eOmll+r0Xj8/P/r06cP27dtPeI7NZnPOxqp6NAaPWcivita7ERGRZsLt4eZYDoeDsrKyOp1rt9tZt24diYmJDVzVqQv3lM0zq2ilYhERaSZ83Xnz6dOnM2rUKFq3bk1hYSEffvghixYtYt68eQBMmjSJli1bMmPGDAAeffRRBg8eTIcOHcjLy+OZZ55hz5493Hzzze78GDUK86RVisGcDm7xgbw0yEuHiIYfeyQiIuIObg032dnZTJo0iYyMDMLDw+nZsyfz5s3j/PPPByAtLQ2r9UjjUm5uLrfccguZmZlERkbSr18/lixZcsIByO7kMTuDV7GFQmIv2LfaXO9G4UZERLyUW8PN22+/XevrixYtqvb7Cy+8wAsvvNCAFbmORw0ortJmiBlu9vwCPa90dzUiIiINwuPG3HgLjxtQDEfG3aT96t46REREGpDCTQPxqM0zq8Qd7r7L3aVNNEVExGsp3DQQjxtQDBDeCixWqCw1F/QTERHxQgo3DcSjNs+s4uMHYa3M53met+GoiIiIKyjcNJCqzTM9qlsKILKN+TNX4UZERLyTwk0DCQ/ywDE3cCTcqOVGRES8lMJNA4kI9Acgr6QCu8ODduKOSDZ/5u52ZxUiIiINRuGmgcSE+GO1gN1hcLC4bttJNIrIZPOnuqVERMRLKdw0EF8fKzEhNgCy8j0p3KhbSkREvJvCTQOKDwsAIKug1M2VHCXicLjJ3wuV5e6tRUREpAEo3DSg+LDDLTeFHhRuQuLANxAwID/d3dWIiIi4nMJNA3K23OR7ULixWNQ1JSIiXk3hpgEd6ZbyoDE3cKRrSjOmRETECyncNCCP7JYCLeQnIiJeTeGmAVW13GR6UrcUHJkOrm4pERHxQgo3Dagq3GQXemq3lMKNiIh4H4WbBpRwONzkFJdTVml3czVHidSYGxER8V4KNw0oIsgPfx/zK872pEHFVS03JTlQVujeWkRERFxM4aYBWSwW4g4PKs72pEHFAWEQGGU+V9eUiIh4GYWbBpbgqdPB1TUlIiJeSuGmgWnGlIiISONSuGlgcZ661o1mTImIiJdSuGlgCZ64BQOoW0pERLyWwk0D8/gtGNQtJSIiXkbhpoF5bLdU1Zib3D1gGG4tRURExJUUbhqYx3ZLhScBFqgsgaJsd1cjIiLiMgo3DayqW6q43E5RWaWbqzmKrz+EtTSfq2tKRES8iMJNAwu2+RJq8wUgq8DDWm+O7poSERHxEgo3jcA57sbTuqaqZkzl7XZrGSIiIq6kcNMInDOmPG1QcYSmg4uIiPdRuGkEnrsFQ7L5U91SIiLiRdwabl5//XV69uxJWFgYYWFhpKSk8M0339T6ntmzZ9OlSxcCAgLo0aMHX3/9dSNVW39xHrsFg9a6ERER7+PWcNOqVSuefPJJVq1axcqVKznvvPO45JJL2LBhQ43nL1myhAkTJnDTTTexZs0axo0bx7hx41i/fn0jV35q4j1xZ3CAyLbmz/y9UOlhrUoiIiL15NZwM3bsWEaPHk3Hjh3p1KkTjz/+OCEhISxbtqzG81966SUuvPBC/vKXv9C1a1cee+wx+vbty6uvvtrIlZ8aj+2WCokDWxgYDsjZ6e5qREREXMJjxtzY7XZmzZpFcXExKSkpNZ6zdOlSRowYUe3YyJEjWbp06QmvW1ZWRkFBQbVHY/PYbimLBaI7mM8PbHNvLSIiIi7i9nCzbt06QkJCsNls3HbbbcyZM4du3brVeG5mZibx8fHVjsXHx5OZmXnC68+YMYPw8HDnIykpyaX118XR3VKGp211ENPJ/Hlgq3vrEBERcRG3h5vOnTuTmprKr7/+yu23387kyZPZuHGjy64/ffp08vPznY/09HSXXbuu4kLNlpsKu0HuoYpGv3+tYg633Bzc7t46REREXMTX3QX4+/vToYP5B7Zfv36sWLGCl156iTfffPO4cxMSEsjKyqp2LCsri4SEhBNe32azYbPZXFv0KfL3tRId7M/B4nIy80uJCvZ3az3VqOVGRES8jNtbbo7lcDgoK6t54G1KSgoLFiyodmz+/PknHKPjSTx2Ib/ojubPA9u0O7iIiHgFt7bcTJ8+nVGjRtG6dWsKCwv58MMPWbRoEfPmzQNg0qRJtGzZkhkzZgBw1113MXToUJ577jnGjBnDrFmzWLlyJW+99ZY7P0adxIfZ2JgB2Z62v1RUO7BYoazA3B08NP7k7xEREfFgbg032dnZTJo0iYyMDMLDw+nZsyfz5s3j/PPPByAtLQ2r9Ujj0pAhQ/jwww954IEH+Nvf/kbHjh2ZO3cu3bt3d9dHqLN454wpD5sO7hdgbsOQu8vsmlK4ERGRJs6t4ebtt9+u9fVFixYdd+yKK67giiuuaKCKGo7HdksBxHQ0w83BbdD2bHdXIyIiclo8bsyNt3KGG09b6waOGlSstW5ERKTpU7hpJFVr3Xhky40W8hMRES+icNNI4j11CwbQdHAREfEqCjeNpCrcHCgqo8LucHM1x4g5PB08Lw0qPLBlSURE5BQo3DSS6GB/gv19MAzYsb/I3eVUFxwLAeGAATk73F2NiIjIaVG4aSRWq4WerSIASE3Lc2stx7FYqi/mJyIi0oQp3DSiPq0jAFjjaeEGNGNKRES8hsJNI+qdFAFAanqeW+uokXMDTYUbERFp2hRuGlHvwy03W7MLKSz1tN3BNWNKRES8g8JNI4oLDaBlRCCGAev25ru7nOqcY262awNNERFp0hRuGllV680aT+uaimoLFh8oL4TCTHdXIyIiUm8KN42sz+FxNx43qNjXBpFtzOfqmhIRkSZM4aaRVc2YSk3Pw/C07p+qcTcaVCwiIk2Ywk0jO6NFOH4+Fg4UlbE3t8Td5VQXo7VuRESk6VO4aWQBfj50TQwDPHBKuBbyExERL6Bw4wYeO+5GC/mJiIgXULhxg97OcTe57i3kWFXdUvnpUOFhXWYiIiJ1pHDjBr2TIgFYv6+A8koP2iE8KBr8QwHD3CFcRESkCVK4cYPk6CAigvwor3SwKaPA3eUcYbEcmQ6eu8e9tYiIiNSTwo0bWCwWz91nKjLZ/JmncCMiIk2Two2b9DncNbUmzcPG3URUtdzsdmsZIiIi9aVw4ya9j1rMz6NUdUup5UZERJoohRs36d0qAoDdBw+RU1zu3mKOFqExNyIi0rQp3LhJeJAfbaKDANic6UGDitVyIyIiTZzCjRt1jAsFYFtWkZsrOUpEa/NnaT6UeNh4IBERkTpQuHGjjvEhAGzNKnRzJUfxD4bgWPO5uqZERKQJUrhxo06Hw822bA9quYEj427UNSUiIk2Qwo0bHemWKsQwDDdXcxQt5CciIk2Ywo0btY8NwWKB3EMVHPTEGVNquRERkSZI4caNAv19aB1lzpjyqHE3arkREZEmTOHGzTrGHR5341EzptRyIyIiTZdbw82MGTMYMGAAoaGhxMXFMW7cOLZs2VLre2bOnInFYqn2CAgIaKSKXa9j/OFxN9ke2HKTlwaeNBZIRESkDtwabhYvXsyUKVNYtmwZ8+fPp6KiggsuuIDi4uJa3xcWFkZGRobzsWdP021hqGq52epJLTfhSWCxQmUpFGW5uxoREZFT4uvOm3/77bfVfp85cyZxcXGsWrWKc84554Tvs1gsJCQkNHR5jaLT4Zab7Z40HdzHD8JaQn66Oe4m1Du+axERaR48asxNfn4+AFFRUbWeV1RURJs2bUhKSuKSSy5hw4YNjVFeg6iaMZVTXM6BojJ3l3OExt2IiEgT5THhxuFwMG3aNM4880y6d+9+wvM6d+7MO++8w+eff87777+Pw+FgyJAh7N27t8bzy8rKKCgoqPbwJIH+PiRFasaUiIiIq3hMuJkyZQrr169n1qxZtZ6XkpLCpEmT6N27N0OHDuWzzz4jNjaWN998s8bzZ8yYQXh4uPORlJTUEOWflqqVij2qa8rZcrPbrWWIiIicKo8IN1OnTuXLL79k4cKFtGrV6pTe6+fnR58+fdi+fXuNr0+fPp38/HznIz093RUlu1SHwysVq+VGRETk9Ll1QLFhGNx5553MmTOHRYsW0bZt21O+ht1uZ926dYwePbrG1202Gzab7XRLbVDOPaY8acaUxtyIiEgT5dZwM2XKFD788EM+//xzQkNDyczMBCA8PJzAwEAAJk2aRMuWLZkxYwYAjz76KIMHD6ZDhw7k5eXxzDPPsGfPHm6++Wa3fY7T5dxjypO6papabvJ/B3sl+Lj1XxUREZE6c+tfrNdffx2AYcOGVTv+7rvvcv311wOQlpaG1Xqk9yw3N5dbbrmFzMxMIiMj6devH0uWLKFbt26NVbbLdYirPmMqJsQDWppCEsDHBvYyKNgLkcnurkhERKRO3N4tdTKLFi2q9vsLL7zACy+80EAVuUegvw+tIgNJzylhW1aRZ4QbqxUikuDgdnPcjcKNiIg0ER4xoFigU5wnbsOQbP7M3e3OKkRERE6Jwo2H6KBBxSIiIi6hcOMhOmk6uIiIiEso3HiITvEeOGNKLTciItIEKdx4iPZxwYA5Y+qgp+wxpZYbERFpghRuPESQvy9JUebaPhv2ecj+V1UtN8XZUH7IvbWIiIjUUb3CTXp6erWNKpcvX860adN46623XFZYczSobTQAi7bsd3MlhwVGgi3MfK6uKRERaSLqFW6uueYaFi5cCEBmZibnn38+y5cv5/777+fRRx91aYHNyYiucQAs2JxVpzWAGpzFcmQ6eM4ut5YiIiJSV/UKN+vXr2fgwIEAfPzxx3Tv3p0lS5bwwQcfMHPmTFfW16yc1TEWfx8rew4eYsf+YneXY4pqZ/7MVbgREZGmoV7hpqKiwrkZ5ffff8/FF18MQJcuXcjIyHBddc1MiM2XQe2iAPhhc5abqzks6vBmpjk73VuHiIhIHdUr3Jxxxhm88cYb/PTTT8yfP58LL7wQgH379hEdHe3SApub4V3MrqnvN2W7uZLDqlpu1C0lIiJNRL3CzVNPPcWbb77JsGHDmDBhAr169QLgiy++cHZXSf0M7xoPwKo9ueQdKndzNUCkWm5ERKRpqdfGmcOGDePAgQMUFBQQGRnpPH7rrbcSFBTksuKao6SoIDrFh7A1q4jFW/dzSe+W7i2oquUmPx3sFeDj5956RERETqJeLTclJSWUlZU5g82ePXt48cUX2bJlC3FxcS4tsDmqar1Z4AldU6GJ4BsAjkoz4IiIiHi4eoWbSy65hPfeew+AvLw8Bg0axHPPPce4ceN4/fXXXVpgc1Q17mbRlmwq7A73FmO1ajq4iIg0KfUKN6tXr+bss88G4JNPPiE+Pp49e/bw3nvv8fLLL7u0wOaoT+tIIoP8KCitZNWeXHeXc9SgYo27ERERz1evcHPo0CFCQ82NHr/77jsuu+wyrFYrgwcPZs8erWR7unysFs7tfHhBv00eMCW8alBx7m63liEiIlIX9Qo3HTp0YO7cuaSnpzNv3jwuuOACALKzswkLC3Npgc2Vc9zNZg8Yd6O1bkREpAmpV7h56KGHuOeee0hOTmbgwIGkpKQAZitOnz59XFpgc3V2pxh8rRZ27i9me3ahe4txhhuNuREREc9Xr3Bz+eWXk5aWxsqVK5k3b57z+PDhw3nhhRdcVlxzFhbgx5AOMQDc/O+V7M11467cR2/B4HDzAGcREZGTqFe4AUhISKBPnz7s27fPuUP4wIED6dKli8uKa+7+75LutIoMZPfBQ1zxxlK2Zxe5p5DwJLD4QGUpFGp7DRER8Wz1CjcOh4NHH32U8PBw2rRpQ5s2bYiIiOCxxx7Dof9n7zKto4OYfVsK7WODycgv5ao3l7L+9/zGL8THDyJam8+1gaaIiHi4eoWb+++/n1dffZUnn3ySNWvWsGbNGp544gleeeUVHnzwQVfX2Kwlhgfy8R9S6N4yjIPF5Ux4axnbstwwBkfTwUVEpImoV7j597//zb/+9S9uv/12evbsSc+ePbnjjjv45z//ycyZM11cokSH2PjwlsH0bR1BYVklH/ya1vhFaFCxiIg0EfUKNzk5OTWOrenSpQs5OTmnXZQcLyzAjz8MbQ/Aj9v2N34BarkREZEmol7hplevXrz66qvHHX/11Vfp2bPnaRclNUtpH43P4enhjT57yrmQn1puRETEs9VrV/Cnn36aMWPG8P333zvXuFm6dCnp6el8/fXXLi1QjggL8KN3UgSr9uTy87YDXD2wdePd3NlyswsMAyyWxru3iIjIKahXy83QoUPZunUrl156KXl5eeTl5XHZZZexYcMG/vOf/7i6RjnK2R3NtW9+2nagcW8c2cb8WVYAh9T1KCIinstiGIbhqoutXbuWvn37YrfbXXVJlysoKCA8PJz8/PwmuVXEqj25jH99CeGBfqx+8Hx8rI3YgvJ8Nyj4HW76HpIGNN59RUSk2TuVv9/1XsRP3KNXq3BCA3zJL6lgXWOveaNxNyIi0gQo3DQxvj5Wzmx/uGtqayPPmtIGmiIi0gQo3DRBZ3dy07gbhRsREWkCTmm21GWXXVbr63l5ead08xkzZvDZZ5+xefNmAgMDGTJkCE899RSdO3eu9X2zZ8/mwQcfZPfu3XTs2JGnnnqK0aNHn9K9m7JzOsYCsDotl8LSCkID/BrnxkfPmBIREfFQp9RyEx4eXuujTZs2TJo0qc7XW7x4MVOmTGHZsmXMnz+fiooKLrjgAoqLi0/4niVLljBhwgRuuukm1qxZw7hx4xg3bhzr168/lY/SpCVFBZEcHUSlw2DZzkacuaSF/EREpAlw6Wyp07V//37i4uJYvHgx55xzTo3nXHXVVRQXF/Pll186jw0ePJjevXvzxhtvnPQeTX22VJUH567nP8v2MCmlDY9e0r1xblpaAE8mmc/vS4eApvv9iYhI09JkZ0vl55uzf6Kiok54ztKlSxkxYkS1YyNHjmTp0qU1nl9WVkZBQUG1hzc46/B6Nz835ribgDAIMu+rGVMiIuKpPCbcOBwOpk2bxplnnkn37iduicjMzCQ+Pr7asfj4eDIzM2s8f8aMGdW6zpKSklxat7s4t2I4UEx6TiNuxVDVNXVwR+PdU0RE5BR4TLiZMmUK69evZ9asWS697vTp08nPz3c+0tPTXXp9dwkL8KNPUgTQyLOmojuYP3MUbkRExDN5RLiZOnUqX375JQsXLqRVq1a1npuQkEBWVla1Y1lZWSQkJNR4vs1mIywsrNrDWwzrbM6a+vK3fY1302i13IiIiGdza7gxDIOpU6cyZ84cfvjhB9q2bXvS96SkpLBgwYJqx+bPn+/cwLM5ubRvKywWWLLjIHsOnniGmUtVtdwo3IiIiIdya7iZMmUK77//Ph9++CGhoaFkZmaSmZlJSUmJ85xJkyYxffp05+933XUX3377Lc899xybN2/m4YcfZuXKlUydOtUdH8GtWkYEOte8+WhFI3W3OcPN9sa5n4iIyClya7h5/fXXyc/PZ9iwYSQmJjofH330kfOctLQ0MjIynL8PGTKEDz/8kLfeeotevXrxySefMHfu3FoHIXuzqweYA6Rnr9pLpd3R8DesGlBckqPdwUVExCOd0grFrlaXJXYWLVp03LErrriCK664ogEqanqGd40nOtif/YVlLNyyn/O7xZ/8TafDPxhCW0DhPnMxv6ATT9sXERFxB48YUCz15+9r5fJ+5iDsj1akNc5No9ubP9U1JSIiHkjhxgtcebhr6ofN2WTmlzb8DRVuRETEgynceIH2sSEMTI7CYcAnqxphYLFmTImIiAdTuPESVx1uvfloZToORwNvF6YZUyIi4sEUbrzE6B6JhAb4kp5TwtKdBxv2ZlFV3VI7wHP2XRUREQEUbrxGoL8P43q3BODtnxt4U8vIZLBYoaIYirJOerqIiEhjUrjxItefmYyP1cIPm7NZsqMB95vy9YeINuZzdU2JiIiHUbjxIu1jQ7hmYGsAnvh6U8OOvdGMKRER8VAKN15m2oiOhNp8Wf97AXPW/N5wN9KMKRER8VAKN14mOsTGHeeawePZ77ZQUm5voBsp3IiIiGdSuPFCN5yZTMuIQDLyS3n7550Nc5OqPabULSUiIh5G4cYLBfj58NcLOwPw+qIdZBc2wKrFVS03ubvA0UCtQyIiIvWgcOOlxvZsQa9W4RSX25nx9eY6bVJ6SsJbgY8N7OWQ3wirIouIiNSRwo2XslotPHhRN6wWmLPmd9evfWP1gai25nONuxEREQ+icOPF+idHcf+YbgA8/vUmvt/o4gX3NKhYREQ8kMKNl7vxzGSuGdQaw4A/zlrDxn0Frru41roREREPpHDj5SwWC49cfAZndojmULmdm/+9guwCFw0wrtpjKkctNyIi4jkUbpoBPx8r/7imH+1ig9mXX8ofZ61xzQBj7Q4uIiIeSOGmmQgP8uOdyQPw97WybGcOS3e4YOfwqnCTlwaV5ad/PRERERdQuGlGkmOCnXtPvbRg2+lfMCQO/EPAcEDu7tO/noiIiAso3DQzfxjaDn8fK7/uymHZztNsvbFYjhpU7IKwJCIi4gIKN81MYnggVw5oBcArP7ggkGjcjYiIeBiFm2bo9mEd8POx8Mv2g6zcnXN6F4vuaP5UuBEREQ+hcNMMtYwI5PJ+ZuvNyz+cZiipark5oHAjIiKeQeGmmbpjWAd8rBZ+3LqfNWm59b9QjLqlRETEsyjcNFNJUUFc1qclAC9+v63+695ULeRXnA2l+S6qTkREpP4UbpqxKed2wNdqYfHW/cxZ83v9LhIQBiEJ5nN1TYmIiAdQuGnGkmOCmTbCHBD80OcbSM85VL8LxWhQsYiIeA6Fm2bu9mEd6N8mkqKySv70cSp2Rz26p7TWjYiIeBCFm2bOx2rhhat6E2LzZcXuXN5YXI9NMDUdXEREPIjCjZAUFcTDF58BwAvzt/Lb3rxTu4Cmg4uIiAdxa7j58ccfGTt2LC1atMBisTB37txaz1+0aBEWi+W4R2ZmZuMU7MXG923J6B4JVDoMps1KpaC0ou5vPnrMjcPRMAWKiIjUkVvDTXFxMb169eK11147pfdt2bKFjIwM5yMuLq6BKmw+LBYLj4/rQUJYADsPFHPXf9fUffxNRBuw+kJlCRTua9hCRURETsLXnTcfNWoUo0aNOuX3xcXFERER4fqCmrnIYH/emtSPK95YysIt+3n6281MH9315G/08YXItuaA4gPbILxVwxcrIiJyAk1yzE3v3r1JTEzk/PPP55dffqn13LKyMgoKCqo95MR6torg2St6AfDmjzv5ZNXeur1R08FFRMRDNKlwk5iYyBtvvMGnn37Kp59+SlJSEsOGDWP16tUnfM+MGTMIDw93PpKSkhqx4qZpbK8WTD3XHCT8t8/WsWpPHbZncE4HV7gRERH3shj1XnfftSwWC3PmzGHcuHGn9L6hQ4fSunVr/vOf/9T4ellZGWVlZc7fCwoKSEpKIj8/n7CwsNMp2as5HAa3vb+K7zZmERNi4+u7ziIuNODEb1j1b/jfH6H9cLjus8YrVEREmoWCggLCw8Pr9Pe7SbXc1GTgwIFs337i1gKbzUZYWFi1h5yc9fD6N53jQzlQVMafPlqLo7YBxtHaQFNERDxDkw83qampJCYmursMrxRs8+W1iX0I8LPy8/YDvPXTzhOfXDXmJi8NKkobp0AREZEauDXcFBUVkZqaSmpqKgC7du0iNTWVtLQ0AKZPn86kSZOc57/44ot8/vnnbN++nfXr1zNt2jR++OEHpkyZ4o7ym4UOcaE8PNZc4O/ZeVtYk3aC8TfBsWALBwzIqSUEiYiINDC3hpuVK1fSp08f+vTpA8Cf/vQn+vTpw0MPPQRARkaGM+gAlJeX8+c//5kePXowdOhQ1q5dy/fff8/w4cPdUn9zcdWAJMb0TKTSYfDHWWuOW+DPMAywWDSoWEREPILHDChuLKcyIEmOyC+pYMzLP7E3t4SzOsSQFBXEjuwitmUXUmE3eO+mgfRdeS/89hEMfwjO/rO7SxYRES/SrAYUS+MID/Tjpav74GO18PP2A/x3eRrLd+eQe6iCorJK7v3kNyojq1pu6rH5poiIiIu4dYViaVr6tYnk+St7MX9jFsnRwXSMD6FlRCC3vb+KbdlFzM8KZRSYqxSLiIi4icKNnJJLerfkkt4tqx178KJu3DUrldfXWxnli7kNg4iIiJuoW0pO28W9WnBOp1i2VcaaB0py4VCOe4sSEZFmS+FGTpu5o3h3DL8gfjeizYPqmhIRETdRuBGXSIoK4u4RndjlSAAgN32DmysSEZHmSuFGXObGs9pyMKgdAF989z3vLd2NvbYtG0RERBqAwo24jJ+PlTPPPg+AzsZOHvp8A+NfX8KmjAI3VyYiIs2Jwo24VEyHgQD09U8n1GYlNT2Pi175mRlfb+JQeaWbqxMRkeZA4UZcK7Yz+NjwryzihxvbcuEZCdgdBm/+uJPzn/+R+Ruz3F2hiIh4OYUbcS0fP4jvBkBs0SbeuK4fb0/uT8uIQH7PK+GW91Zyy3srySrQzuEiItIwFG7E9RJ7mT8z1gIwvGs88/90DrcPa4+v1cL8jVlc/sYS0nMOubFIERHxVgo34nrOcPOb81CQvy/3XtiFr+86m+ToINJzSrj6rWWkHVTAERER11K4Edc7uuXmmE3nO8WHMuvWFNrFBPN7XglXvrmUXQeK3VCkiIh4K4Ubcb24M8DiA4cOQMG+415OCA9g1h8G0zEuhMyCUq56cynbs4vcUKiIiHgjhRtxPb8AiO1iPj887uZYcaEB/PfWwXRJCCW7sIwJ/1zGjv0KOCIicvoUbqRhVHVNZf52wlNiQmx8eIsZcPYXlnHNP5epi0pERE6bwo00jGNmTJ1IVLA/H9w8iM7xoWQVlDHhrWXsOaiAIyIi9adwIw2jjuEGIDrExge3DHKOwZnw1jJNExcRkXpTuJGGkdAdsEDB71C0/6SnxxwOOO1ig9mXX8rol37iXz/tpLzS0fC1ioiIV1G4kYZhC4Xo9ubzzJO33oA5yHjWLYPp2SqcwrJK/u+rTVz44o/8sDkLw9Du4iIiUjcKN9JwaljM72TiwgKYc8eZPD2+JzEh/uw8UMyNM1dyy3uryC0ub6BCRUTEmyjcSMM5hXE3R/OxWrhyQBIL7xnGH4a2w8/HwvebsrjolZ9JTc9zfZ0iIuJVFG6k4dQz3FQJDfBj+qiufD7lLJKjg/g9r4Qr3ljCf5buVjeViIickMKNNJyEnubP3F1Qml/vy3RrEcYXd57FhWckUGE3ePDzDdzy3iqW78pRyBERkeMo3EjDCYqCiNbm88x1p3WpsAA/Xr+2Lw+M6Yqv1eymuvLNpVzwwo+8+8su8g9VuKBgERHxBgo30rCqWm/2pZ72pSwWCzef3Y7/3XkWVw9IItDPh23ZRTzyv42c9fQPfJ76+2nfQ0REmj6FG2lYrfqbP3ctdtkluyaG8eT4niy/fziPjetOp/gQCksruWtWKnfNWkNBqVpxRESaM4UbaVidRpk/dy6GskKXXjo0wI/rBrfh6z+ezd0jOuFjtfB56j5GvfgTy3fluPReIiLSdCjcSMOK7QxR7cBeBtsXNMgtfH2s3DWiI7NvS6F1lDmr6so3lzJt1hpt4yAi0gwp3EjDslig82jz+ZavG/RWfVtH8vVdZ3NV/yQA5qbuY/hzi3nsy41aAFBEpBlxa7j58ccfGTt2LC1atMBisTB37tyTvmfRokX07dsXm81Ghw4dmDlzZoPXKaepy0Xmz63zwN6w42FCbL48dXlP/jf1LM7sEE253cHbP+9i6DMLWbUnt0HvLSIinsGt4aa4uJhevXrx2muv1en8Xbt2MWbMGM4991xSU1OZNm0aN998M/PmzWvgSuW0JA2EoBgozYM9Sxrllj1ahfP+TYP4940D6ZIQSkFpJbe8t5I9B4sb5f4iIuI+FsNDVkGzWCzMmTOHcePGnfCce++9l6+++or169c7j1199dXk5eXx7bff1uk+BQUFhIeHk5+fT1hY2OmWLXU1dwqkvg+DboNRTzXqrYvLKrnqraWs/72AdrHBfHb7ECKC/Bu1BhEROT2n8ve7SY25Wbp0KSNGjKh2bOTIkSxdutRNFUmddTk87mbz19DIeTrY5ss7kwfQIjyAnfuLufU/qyirtDdqDSIi0nh83V3AqcjMzCQ+Pr7asfj4eAoKCigpKSEwMPC495SVlVFWVub8vaCgoMHrlBq0Oxd8AyE/zVytOLFno94+LiyAd24YwBWvL2X5rhz+Mvs3rh6QRFmlg7JKB3aHQUiAL+GBfkQE+hEe6EdogC++Pk0q/4uICE0s3NTHjBkzeOSRR9xdhvgHQfvzYMtX5qypRg43AF0SwvjHtX254d0VfLF2H1+s3XfS9wT7+xB2OOxc2D2B24a2J8DPpxGqFRGR+mpS/7c0ISGBrKysaseysrIICwursdUGYPr06eTn5zsf6enpjVGq1MTZNfWV20o4u2MsL13dhy4JoXSKD6FHy3D6tYlkYHIUXRPDaBkRSLD/kfBSXG4nI7+UzZmFvPj9NkY8v5j5G7O0YaeIiAdrUi03KSkpfP119bVS5s+fT0pKygnfY7PZsNlsDV2a1EWnC8FihczfIC8dIpLcUsaYnomM6ZlY6zkVdgeFpZUUlFRQUFrBtqwinv1uC3tzS7jlvZWc2zmWBy7qRvvYkEaqWkRE6sqtLTdFRUWkpqaSmpoKmFO9U1NTSUtLA8xWl0mTJjnPv+2229i5cyd//etf2bx5M//4xz/4+OOPufvuu91Rvpyq4BhIGmQ+b+AF/U6Xn4+VqGB/kmOC6dkqgvH9WvH9n4Zy+7D2+PlYWLhlPyOeX8wdH6zit7157i5XRESO4tZws3LlSvr06UOfPn0A+NOf/kSfPn146KGHAMjIyHAGHYC2bdvy1VdfMX/+fHr16sVzzz3Hv/71L0aOHOmW+qUeqhb0+/VNqGxaqwYH23y598IufDvtHEZ0jcMw4Ot1mVz86i9M/Ncylu086O4SRUQED1rnprFonRs3KyuEl/tCcTZc8H8w5E53V1RvmzMLeHPxTr5Yuw+7w/yf0ZgeiUwf3YVWkUFurk5ExLucyt9vhRtpfKv/A19MBVsY3LkaQmLdXdFp2Zt7iNcX7eC/y9NwGBDgZ+X2oR34w9B2mlklIuIiXruIn3iJ3hMhsReUFcDC/3N3NaetVWQQj1/ag6/+eDaD2kZRWuHghe+3MuL5xfy0bb+7yxMRaXYUbqTxWa1w4eEtGFb9GzJ+c289LtI1MYxZtw7m1Wv60CI8gL25JVz39nLumb2WvENNa3yRiEhTpnAj7tEmBc64DDDg2+mNviVDQ7FYLFzUswXf/Wko1w9JxmKBT1btZcTzPzJreRq7DxTjcHjHZxUR8VQacyPuk5cOr/aHylK47F/Q8wp3V+Ryq/bkcO+n69ieXeQ8FmLzpVtiGJ0SQogPDSAuzEZcWACtIgLpEBeCxWJxY8UiIp5JA4proXDjYX54HH582nze73oY8TAERrqzIpcrq7Tzzx93Mn9jFpsyCymvdJzw3PgwG0M7xXJu5zjO7BhDWIBfI1YqIuK5FG5qoXDjYSpK4es/w5r3zd+DYmDkE9DzSvDCFowKu4Md+4vY8HsBuw4Uk11YSlZBGdmFZew6UERpxZHg4+9r5eGxZ3DNoNZurFhExDMo3NRC4cZD7f4FvrwbDmwxf+9yEVz+Lvj6u7euRlRaYWf5rhwWbdnPoi3Z7DxQDMAdw9pzzwWdsVq9L+yJiNSVwk0tFG48WGU5LH0FFj0F9jIz4FwxE3yaX9eMYRi8tGAbL36/DYBxvVvw9OW98PfVHAARaZ4UbmqhcNMEbF8A/51gBpyuF8Pl7zTLgAMwe2U60z9bR6XDYGDbKAYmR5F7qJzcQ+WUlNu5pHdLLundQoOQRcTrKdzUQuGmidg2H2ZdA/Zyc8r4Zf8Enya1ib3L/Lh1P3d8sJqissoaXz+3cyyPX9qDFhGBjVyZiEjjUbiphcJNE7LlG/joOnBUmAHn0jfA1+buqtxic2YB/1m6Bx+rhcggf6JD/NlfWMabi3dSbncQYvNl+ugunNMxloLSCgpKKjlUXsmAtlGacSUiXkHhphYKN03Mpi9h9mRwVELrIXD1BxAU5e6qPMb27EL++slvrE7Lq/H1hLAAPr1jCC3VqiMiTZz2lhLv0fUiuOZjc5PNtCXwr+FwYLu7q/IYHeJCmX3bEB68qBthAb7YfK3EhdroEBdCTIg/mQWlTH5nObnF2v5BRJoPtdxI05C9CT64EvLTICACRj0NkckQEG4+gmOb7ZicKoZhVBtYvC+vhPGvLyEjv5Q+rSP44OZBBPmb39GBojI+XplOdkEZsaE24kJtxIcF0CEuRGN3RMQjqVuqFgo3TVhRtjnIeO+K418LiYfxb0Pbsxu/Lg+2LauQy99YSn5JBcM6x3LPBZ3595LdfJ66j3J7zSslD24XxRX9khjVI8EZhkRE3E3hphYKN01cRQl8/wikLYXS/CMPww5WXxj1FAy42d1VepRVe3KZ+K9l1VY/BuidFMGgdlEcKCwnu7CU7IIytmYXOvcwDbH5ckG3eAa0jaJP6wg6xoXio4UERcRNFG5qoXDjhcoPwRdTYf2n5u/9bzS7rZrp2jg1+WFzFre+twoDGNU9gRvPakvf1sfv4bUvr4TPVu9l9qq97Dl4qNprwf4+9G4dwTkdYzm3SxwdtcmniDQihZtaKNx4KcOAn5+HBY8BBsR2gZA4sFeYa+X42KD1IEg+G1oPBv9gd1fc6NIOHsLmZyU+LOCk5xqGwYrdufy4dT9r0nNZm55/3Do7LSMCOa9LHJOHtKFDXGhDlS0iAijc1Erhxstt+QY+vQXKC098jtUPkgbByMehRe9GK60pszsMtmcXsXTHARZu2c/SnQedu5tbLDC6eyJ3nNueM1qEu7lSEfFWCje1ULhpBvL3mhtxWn3Ax9/snirJhd0/w64fIT/dPM83EC57E7pd4t56m6CScjtLdx7goxXpzNuQ5Tx+dscY4sMCKK90UF7pwGqFawe3YUj7GDdWKyLeQOGmFgo3zZxhQO4u+PovsP1789iwv8HQv5pNEHLKtmQW8trC7Xz52z4cNfzXxMdq4e9juzEpJbnRaxMR76FwUwuFGwHAXgnzH4Rl/zB/P+MyGPOcVj8+DTv3FzFvQxYGBjZfH/x9razYlcMXa/cBcN3gNvx9bDd8fcy1QwtLK1j3ez7J0cFaW0dETkrhphYKN1LNqn/DV38yt3ew+kGnkdDrauh4QbPdx8qVDMPgzR938tS3mzEMOKtDDL2Swlmy4yC/7c3H7jDwsVq4qGcifzinPd1a6H+TIlIzhZtaKNzIcXb/At/eB5m/HTkWEAEt+kB0B4jpaD7anKnAU0/zNmRy90epHCq3VzseF2oju7DM+fvQTrH0bR1JTnEZB4vLOVhUTtvYYKYN70hcHWZ5iYj3UriphcKNnFDWRvhtFvz2MRRmHP96fHeYOBvCWjR+bV5g474Cnvh6E3FhNoa0jyGlfTQtIwJZtzefN37cwTfrMmocswPmgoJ3n9+JySltnN1aJ3LsNhQi4h0UbmqhcCMn5bDD76vhwBY4sA0Oboc9v5gzrsJawbWfQFxXd1fpdfYcLOaDX9MoLK0gKtif6GAboQG+vP9rGmvT8wDoHB/KLee0w8cKFZUGZXYHecXl7DpQzK6Dxew+UExJhZ1zOsZyYfcEhneNJzzQXMxxf2EZW7MKyTtUwdDOsYTYtLWESFOicFMLhRupl9w98P54OLjN3Kjz6g8h+awjrzsc5mwrtRi4nMNh8NHKdJ7+djO5hypO6b2+VgvdWoTxe24JB4/aGb1tTDCvXtNH6/KINCEKN7VQuJF6O5QD/70a0n8118/pMAKKsqAgw/wZEgcdz4eOI6HdMLCFuLtir5JbXM7LP2xjw+8F+PtazYePldAAX5JjgkmODqZtTDAOw+C7DZl8sz6TbdlFzvdbLJAcHUxRWSX7C8vw97Xy97HduGZga3VjiTQBCje1ULiR01JRAp/eDJu/rP08H3+ITAbDYT4cdghPgjPvMgOQ/pg2iu3ZRWzKKKBNdBAd40IJ9Pch71A5f/54LQs2ZwNwUc9EerYKZ29uCXtzS8jMLyU5JoiU9jGktIumfWywwo+IB1C4qYXCjZw2hx02zDHH4IQmHn7Ew/7NsPU72DYPcnef+P0t+8O506H9cIUcN3E4DP75006enrcF+4lGMR8WF2pjXJ+W3D60PZHB/o1UoYgcS+GmFgo30uAMAw7uMGdcWX3A4mMe3/w/WP4vqCwxf2/RBzqPNruwWvQFn1oGuFaUmLufB0c3ePnNycrdOfzrp13Y/Ky0jAikVWQQsaE2NmUUsHTHQVal5Tr30Aq1+fKHoe248ay2BPlrMLJIY2ty4ea1117jmWeeITMzk169evHKK68wcODAGs+dOXMmN9xwQ7VjNpuN0tLSOt1L4UbcqjALfnkJVr4NlUf9O+sfCq36gX+IuReWj7/ZQpSfbg5mLso0z+t+OVz0AgTo393GUFph56dtB3h+/lY2ZRQAEBtq46KeicSFBhAT4k9MqI2yCju7Dx5iz8Fi9hw8RIjNlyv7J3Fulzh8rGqdE3GFJhVuPvroIyZNmsQbb7zBoEGDePHFF5k9ezZbtmwhLi7uuPNnzpzJXXfdxZYtW5zHLBYL8fHxdbqfwo14hMIs2PIV7FxkbuZZklv390a2hStmakfzRuRwGPzvt308991W0nIO1fl9LSMCuWZQay7u1YKYEBsBflaN3xGppyYVbgYNGsSAAQN49dVXAXA4HCQlJXHnnXdy3333HXf+zJkzmTZtGnl5efW6n8KNeByH3VwdOWsj2MuPPAwDwltBZBuISIacHfDJjWZrjo8/nP8Y9LoK/ILM38Ec97P7Z/ORkWquqjzqKbCFuvMTeo3ySgdfrN3H1qxCDhSVcaConAOFZfj5WkmODqJNVBCto4PZmlXIxyvTyTtm6rqv1UJIgC8twgP5w9B2XNyrhcKOSB01mXBTXl5OUFAQn3zyCePGjXMenzx5Mnl5eXz++efHvWfmzJncfPPNtGzZEofDQd++fXniiSc444wzarxHWVkZZWVHlncvKCggKSlJ4UaappJc+Hzq8bO1LD5md1ZlDd2zsV3MdXmi2zdOjQKYXVpf/ZbB+7/uITU9j5r+S9srKYIHx3Slf3IUhmGQlnOI5bty2LG/mOToILq3DKdjfAg2X5/G/wAiHuZUwo1bR8UdOHAAu91+XJdSfHw8mzdvrvE9nTt35p133qFnz57k5+fz7LPPMmTIEDZs2ECrVq2OO3/GjBk88sgjDVK/SKMLjISr3odf34RFT0BpvnncsEOlHXwDIWkgJJ8NUW1h3v1ma84/z4Xxb5vT0A0Divebqy8Hx0BsZ/d+Ji8V4OfD+H6tGN+vFQ6HwaEKO0WllRSWVvDt+kxeX7yDtel5XP7GUvq3iSQt51C1fbaq+PlYaB8bgs3PB7vDQaXdTEnDu8Zx29D2hAb4NfZHE/F4bm252bdvHy1btmTJkiWkpKQ4j//1r39l8eLF/Prrrye9RkVFBV27dmXChAk89thjx72ulhvxavYKqDhkzqSqLDG3h/A9arpyYSZ8dB3sXQ5YzHE6OTuPhCKA1ikw8FboOtZs/ZFGkV1Yygvzt/LRinTnnlp+PhZ6toqgS0Iouw8Ws/73AvJLTrwqc0yIP9NGdOLqAUkn3XNLpKlrMi03MTEx+Pj4kJWVVe14VlYWCQkJdbqGn58fffr0Yfv27TW+brPZsNm0k7N4KR8/8Ak3t4SoSWgCXP8lfPNXWDUT9q05/IIFIpKgYB+kLTUfoYkw4GYYfDv4B1e/jsMOqR9AxlroNAranwdW/TE9HXGhAcy4rCc3nNmWZTsP0ik+lN5JEQT4HemCMgyDvbklbMsuxOEAHx8LflYrB4rKeHnBNnYeKOaBuev595LdTBzUmh6tIuiWGEagvw8Oh8HmzEKW7DjA8l05RIf4c9NZ7egQp5Wzxft5xIDigQMH8sorrwDmgOLWrVszderUGgcUH8tut3PGGWcwevRonn/++ZOerwHF0mzt/sXcJiK2M0S1B78Ac+uIVTNh1bvma2CGnOEPQc+rzQCTvhy+vscMNlUik6H/jdD72hOvveOww75UiD/DvJe4VIXdwQfL9vDSgm3V9tzysVpoHxvM/sKy4/bislhgbM8W/HF4BzrEhVJQWsHGfQVs2FdARl4JBmavpYFBVJA/1wxqTXSI/s+heIYmM6AYzKngkydP5s0332TgwIG8+OKLfPzxx2zevJn4+HgmTZpEy5YtmTFjBgCPPvoogwcPpkOHDuTl5fHMM88wd+5cVq1aRbdu3U56P4UbkRpUlpurLi98HPL2mMcSe0FMZ1j3sfm7LRy6jIYtXx/p1vKxmSHn7D+Ze2tVSVsGX//FnAUW2dZcm6f9uY37mZqJ/JIK3l+2h5W7c1j3ewEHio50wwf5+zCwbRSD2kazak8u328yA6zFYk5T35tbUuu1QwN8ufO8DkweklxtUHNOcTmr9+SyJauQLZnmIyO/hBFd45k2ohOto4Ma5sNKs9akwg3Aq6++6lzEr3fv3rz88ssMGjQIgGHDhpGcnMzMmTMBuPvuu/nss8/IzMwkMjKSfv368X//93/06dOnTvdSuBGpRUUpLH8TfnwWygqOHO9zLQx/GEJizfE96z+FFf880prjFwSDboMeV8DPz8O62cdfu+dVMPIJcxCzNAjDMMgqKGNjRj7hgX70bBWB31Fjcdb/ns/LC7bx3cYjQwFaRgRyRoswkmOCsVoszh1Bfty6nw37zH8HWkcFcdNZbdl1oJhlOw+yObPwhDX4Wi1cNSCJO8/rSEK4WuzEdZpcuGlMCjcidVB8ABY/bQ4+HnYftOp//DmGATt+gB/+D/atPuZFC/SdBGdNg2VvwPK3AMOc7dWijzkQ2l4OjkpzQPOZ08zgdKoO5ZjdaXFdT/29zdj27CKyCkrpmhhG1An2y7I7DD5bvZdn5m2pcRZXh7gQurcIo3NCGJ0TQgjy9+X1RTtYvHU/ADZfK+N6t+TSvi0ZmByFVSs1y2lSuKmFwo2IixmG2VX1w+OQvQGSBpkLB7Y4qjV17yr4312Qta7ma/gFw+DbYMidZgDK32suRLhnibmb+pCp4BdY/T17V8J/rzantfe+FkY+DoERR14vzTdboHYuNFuVel2jQdD1UFxWyZs/7mTpjgN0SQgjpX00A9tGEXOCsTi/7jzIs99tYcXuI6tut4wI5JLeLQgJ8CXt4CH2HDxEeu4hissqqXQY2B0GlQ6D6GB/erYKp2erCHonRdCjVThhx0x1tzsM5m3I5O2fd5Gec4jXJvZlQHJUg34H4hkUbmqhcCPSQBwOyN0FUe1q3u3cXgFb50F50ZH9sypKYdlrR2ZxBYRDYJR5naPFdTPX6Yk/PK5u4+fw2a3VFy0MbQEXvwztzoXVM2HhE3Do4JHXWw2A0c+e2rYVhmEGreDYmgdFOxywca6511eHEXW/rpczDIPlu3L4bPXvfL0ug8Kyynpdx2KBzvGhDEiOon9yJLnF5bzzy+5qW2CE2nz54JZB9GwV4aLqxVMp3NRC4UbEwxgGbP7KHMycvdE8ZrFCYm+zFWj9J2brjG8AXPB/5g7p8x8CDOg4Egb9wZzNlbPTfG9oCyjcZz6P7ghdxsCKf5mhymKFftdD23MgJMEcBB0Sb17b6mP+Na0sh7QlsOUb85G3xww3Q++FvpOPrCOUsRa+vBt+X2X+Pv5t6HF5I35xTUNphZ35G7OYtyETPx8rraOCaB0VRJvoICKC/PCxWvG1WrBaLezNOcTavXms3ZvP2vS8Ew54jgjy47rBbfh1Vw7Ld+UQEeTHrFsH0yXhyH/TV+3J5edtB2gXG0y/NpG0iAis8VrSdCjc1ELhRsRDOeywY6G52nLrwUfW7inKhrl3wPb51c8feCuMnAE+vuYg5x8eg2Wv4xzbM2y6OZPLx89cz+e7B82gVBvL4RlBhr3m1yOTYdjfzDFGy98Cw2G+x7CbLVHXzYHks07+WQ2j5tYtqSa7sJRVu3NZsTuXlXtysDsMrh6QxPh+rQjy96WorJJr//Urqel5xITY+O8tg9iSVci/ftpFanpetWu1CA+gb5tIurcMp2tiGF0TQ4kLDaC80kFaTjE79heTnnOIVpGBpLSPITzwSHeYw2Hw2+/5LN6ynwA/KyPPSCA55pi1oKTBKdzUQuFGpAkyDHPLifkPmt1bF84wFxs8VvoKSP8Vel8DQTWMw9j1k7mmT/7v5kDkoixzhedjBcdCp5HmgoXJZ5mzvxY/DcXZ1c/rPt7cwPTbe2HT/8xAduO86gOcK8vNVp69Kw4/VpqbnwZFmfepeoQe1ZIUFG22UJUXQVmh+Twwwnyt6hHeSgEJyD9UwdX/XMamjAIsFpx7ePn7WDm3Syz78krZmFGA3XH8n7qIID8KSyuPe81qgd5JEZzVMZbsglIWbM5m/zGDqrsmhjGmRwJ9WkdiGOAwDOyGQWyIjTNahGlD1AagcFMLhRuRJiwvDcqLXTc7yjDMcFNZZrYcOSrN1pjQBLOb6mhlRWbL0JKXzXAx+pkja/dUlMB7l5jBKqwVXPsJZK4zB1pv+x7KTzx1ut5a9IXzHzG72E7mUI45IPvYQdle4kBRGVe9uZQd+4uJCvbnusFtuHZwG2JDzUHPxWWVrN2bx5q0PDZmFLApo4DdB4qd214E+/vQLjaEpKhAtmQWsmN/8XH3CLH5cnbHGIrKKlmy42CNYalK39YR3HpOey7oFn/cLDGHwzilmWOVdgdWi0WzzVC4qZXCjYicFnsFWH2PbzU5lANvnw8Ha9gKJigaWg00p9QnDYToDuYO78X7zWn3Va1IRdnmfmAlOebaQf4hYAsxN0QtzTvqnAwziIE5kHnEw+bu7/l7IXe3+di/xRzDlL3RvI9/KAy4EQZPgdD442s8WkWp2boU2dbs9quPkjxzjJMttG4tTIdyzK49W/22h8gvqWD1nlxS2kdX28LihOWV29l1wAxD8WG2ai0te3MP8fO2AyzbeZCIIH/O6xLHoHZRzoUMc4vL+W5jJt+sz2Rvbgk+h8OH1QLbsoootzsAaBcTzEU9E8kqKGPngSJ2HSgmp7ic5JhgOsWF0ikhlA5xIYTafLH5WZ11b8oo4Lf0fNbuzWNrViEOAwL8rAT5+xLk78OlfVoybUQnfJpZ4FG4qYXCjYg0mNzd8PZIKMo0Z3h1HgWdR5utLK6chl6UDT8+AyvfORxyLGaQONFYoaP52MxuuyF3QnT741/f/BV8dY85KNs/FFoPgjZDzM+Tl2aGpgNbzZloXS82B3Qf3QWYs8scHL7uE8Aw7xcca65jFBxnBquqwdxF2eYq1hm/mfez+kGbFOh4gfmI6dTkut6yC0v595Ld/GfpHgpK6zdLrC7O7RzLSxP6HDdV3psp3NRC4UZEGlRJnjlWJrxVw98rZ6e5vlDVQGkfG0S2MQc+R3cwA0l8N3Mbjd0/wU/PH94h/rC255gzwLpcZLYkffNX2PSF+ZrFanbRnYxfMPS/AXpdDavfg5XvguPEO5mfkvDW0H6YOb2/3bDqIaqyzOxW9NB9y4rKKlk4/3+U700lI/lSkhJiaR8bQmSwPzv3F7E1q4htGXkUZu8mzR5DaaWDkgo7lXaDDnEh9EoKp1erCLq3DMff10pJuZ2SCjup6Xk8OHc9ZZUOOsSF8Pbk/rSJDmbH/iI+XbWXr9ZlEODrw7g+Lbmsb0viw47/fsx1hRxU2s31hcDsdquxJShnF2z9FnpPNJc8cCOFm1oo3IiI1ynIMH+GxNfeQmQY5sKIP78A278HDv/nPyDCDDJlBebsrzP/COf8xQxPe5bAnl/g4A4zNMV0NMMSmGsUZdawMGP74ebmqzEdzW634gPmYOyiLCjMMlu2CrMgKBISekFCD0jobrbkbPvOfOz+2VzF2skCYS3NMVLlRUdeC46FiNbmIzzJDECBkeZnsoWY46HKisz3lOaZrU+5uyF3j3m/LqPhwier7412IntXmuOW4s+o/bySXHO5gtXvmb+HtoCR/wdnXIZz1POm/5lrMe3fBMlnm1uTJPY8cg17pbnf2/pPISLJXPYg+SzwC+C3vXnc8t5KsgrKiAjyIzk6+LjZYWAOjB7aKZbuLcNJyznE7oOH2HOwmLxDNYfPIH8fQgN8iQzyp2N8KMMDtzJm41/wK88nv+0ofhvyCgeLyjlQVEZOcTk5xeUcKConsDidnp07cs1ZXQi21bMbsw4UbmqhcCMigvnHPfUDWPMBFOw1j7XoCxe/YgaNujAMMyT99Ly5NlDLfub4n7oMcj6ZsiIzWO1caC4RsH/T6V/zRAIizDWU+lxbczfYwR3w3QPmAHEs5lpJI/5uhqijGQZs+Ay+ue/IzLrguCPPk88277HsH0f2ZXM6vGXJOfeY4e6Xl49sYlvFNxDaDYWW/cgLTOLRJaXMzwyhkCB8rBaGdorlsr4tKS6rZPbKvazck0vtDPpYtpNoOcgvju7kc2S806XWn3jK7y38LUe6Om8p/xPzHdW3YpnkM49H/f5NheHDZks7HK1T6DJwJLZ2Q2qesXgaFG5qoXAjInIUhx12LjJbG8649PhZYnVVfshs1WioMTIFGeaAaVvI4YHWoWZrU/5eMwTkpZlT/EtyzRaaklwzIPkFmufaDr8nPAkiDnfdYcC39x0JGm3PgQE3m2OCQuPN+yx5GZb+w+xqq1rTCCAoxgxE3S6B9GWwc7G511rmb+brMZ1h7EvmNiRLXoafnqu+orZ/CAy+w3z/T8+ZoehYQdHmWk3F+2Hrd0cWpzxGqV8EPlHJ+EUnm92SDjvk7qZs/w4suXsot/iTFdWPspZDsHUaRnSQP4Fb5+C38VOshwOUYfWjNOkcDrYdQ8X+nbTd8CoAi32HsLM8ghusX3PAEsW9Cf8iMDSSmBAbPSvWMm79VKw1jPUqDEgk4C8bq23ceroUbmqhcCMiIk72SrMlZeETUFnzisiA2dV24QwzaHz1Z9i/2Tx+7NgkH384+x5z01jfo/bfyt0D8/4Gu348vKns3RAcc+T1PUsPB63Uw/up3Ql9rgP/IPN1w4CsDbBjAezfCjk7zBalY9deOlV+wRDe0hwkfqyz7obzHgJ7Gbw+xOym7H8TXPS82bX31rnmzL6eV1Ex9G+s/ukrstYtpFvFBtJsnRg2fa5Lp7Ar3NRC4UZERI6Ts8ucgXZg25Gp+ZWl5sDskU+Ys7eqWqUqy83xRoufNscAhbWEtkPNlp/259U+1b621akdDnPqfmxnc2XtuigrPDKGKG+P+dzqB1FtD7dQtTEHue/+0VzEMv1Xc4Zdh/PN7UI6jwL/YHMW3PrPzBakvDRz89t+1x+5z64f4d9jzefXfgbz/25uhNuiD9zwjXMNpfJKB5+u3kvLMD/O6ZJYt89QRwo3tVC4ERGRkzIMcxCyf8iJw0hJntkFFtGm6UxZryw3w01Vi9CxDMPs1qppfaPPp8Ca94+0VgXHwq2LGmdmIKf299uFCy+IiIh4CYvl5AsQBkaYY3eaSrABc+PXEwUbMD/LiRZuPP8xM9AYDnMhyyvfa7Rgc6oUbkREROTkgqLgktfMqe0Xv2Iu7uihGm5CuoiIiHiXTiPhzw04Ld9F1HIjIiIiXkXhRkRERLyKwo2IiIh4FYUbERER8SoKNyIiIuJVFG5ERETEqyjciIiIiFdRuBERERGvonAjIiIiXkXhRkRERLyKwo2IiIh4FYUbERER8SoKNyIiIuJVFG5ERETEq/i6u4DGZhgGAAUFBW6uREREROqq6u921d/x2jS7cFNYWAhAUlKSmysRERGRU1VYWEh4eHit51iMukQgL+JwONi3bx+hoaFYLBaXXrugoICkpCTS09MJCwtz6bWbE32PrqHv0TX0PbqGvkfXaM7fo2EYFBYW0qJFC6zW2kfVNLuWG6vVSqtWrRr0HmFhYc3uX7qGoO/RNfQ9uoa+R9fQ9+gazfV7PFmLTRUNKBYRERGvonAjIiIiXkXhxoVsNht///vfsdls7i6lSdP36Br6Hl1D36Nr6Ht0DX2PddPsBhSLiIiId1PLjYiIiHgVhRsRERHxKgo3IiIi4lUUbkRERMSrKNy4yGuvvUZycjIBAQEMGjSI5cuXu7skjzZjxgwGDBhAaGgocXFxjBs3ji1btlQ7p7S0lClTphAdHU1ISAjjx48nKyvLTRU3DU8++SQWi4Vp06Y5j+l7rJvff/+da6+9lujoaAIDA+nRowcrV650vm4YBg899BCJiYkEBgYyYsQItm3b5saKPY/dbufBBx+kbdu2BAYG0r59ex577LFqewHpezzejz/+yNixY2nRogUWi4W5c+dWe70u31lOTg4TJ04kLCyMiIgIbrrpJoqKihrxU3gYQ07brFmzDH9/f+Odd94xNmzYYNxyyy1GRESEkZWV5e7SPNbIkSONd99911i/fr2RmppqjB492mjdurVRVFTkPOe2224zkpKSjAULFhgrV640Bg8ebAwZMsSNVXu25cuXG8nJyUbPnj2Nu+66y3lc3+PJ5eTkGG3atDGuv/5649dffzV27txpzJs3z9i+fbvznCeffNIIDw835s6da6xdu9a4+OKLjbZt2xolJSVurNyzPP7440Z0dLTx5ZdfGrt27TJmz55thISEGC+99JLzHH2Px/v666+N+++/3/jss88MwJgzZ0611+vynV144YVGr169jGXLlhk//fST0aFDB2PChAmN/Ek8h8KNCwwcONCYMmWK83e73W60aNHCmDFjhhuralqys7MNwFi8eLFhGIaRl5dn+Pn5GbNnz3aes2nTJgMwli5d6q4yPVZhYaHRsWNHY/78+cbQoUOd4UbfY93ce++9xllnnXXC1x0Oh5GQkGA888wzzmN5eXmGzWYz/vvf/zZGiU3CmDFjjBtvvLHascsuu8yYOHGiYRj6Huvi2HBTl+9s48aNBmCsWLHCec4333xjWCwW4/fff2+02j2JuqVOU3l5OatWrWLEiBHOY1arlREjRrB06VI3Vta05OfnAxAVFQXAqlWrqKioqPa9dunShdatW+t7rcGUKVMYM2ZMte8L9D3W1RdffEH//v254ooriIuLo0+fPvzzn/90vr5r1y4yMzOrfY/h4eEMGjRI3+NRhgwZwoIFC9i6dSsAa9eu5eeff2bUqFGAvsf6qMt3tnTpUiIiIujfv7/znBEjRmC1Wvn1118bvWZP0Ow2znS1AwcOYLfbiY+Pr3Y8Pj6ezZs3u6mqpsXhcDBt2jTOPPNMunfvDkBmZib+/v5ERERUOzc+Pp7MzEw3VOm5Zs2axerVq1mxYsVxr+l7rJudO3fy+uuv86c//Ym//e1vrFixgj/+8Y/4+/szefJk53dV0//O9T0ecd9991FQUECXLl3w8fHBbrfz+OOPM3HiRAB9j/VQl+8sMzOTuLi4aq/7+voSFRXVbL9XhRtxuylTprB+/Xp+/vlnd5fS5KSnp3PXXXcxf/58AgIC3F1Ok+VwOOjfvz9PPPEEAH369GH9+vW88cYbTJ482c3VNR0ff/wxH3zwAR9++CFnnHEGqampTJs2jRYtWuh7lEalbqnTFBMTg4+Pz3GzT7KyskhISHBTVU3H1KlT+fLLL1m4cCGtWrVyHk9ISKC8vJy8vLxq5+t7rW7VqlVkZ2fTt29ffH198fX1ZfHixbz88sv4+voSHx+v77EOEhMT6datW7VjXbt2JS0tDcD5Xel/57X7y1/+wn333cfVV19Njx49uO6667j77ruZMWMGoO+xPurynSUkJJCdnV3t9crKSnJycprt96pwc5r8/f3p168fCxYscB5zOBwsWLCAlJQUN1bm2QzDYOrUqcyZM4cffviBtm3bVnu9X79++Pn5Vftet2zZQlpamr7XowwfPpx169aRmprqfPTv35+JEyc6n+t7PLkzzzzzuKUItm7dSps2bQBo27YtCQkJ1b7HgoICfv31V32PRzl06BBWa/U/Kz4+PjgcDkDfY33U5TtLSUkhLy+PVatWOc/54YcfcDgcDBo0qNFr9gjuHtHsDWbNmmXYbDZj5syZxsaNG41bb73ViIiIMDIzM91dmse6/fbbjfDwcGPRokVGRkaG83Ho0CHnObfddpvRunVr44cffjBWrlxppKSkGCkpKW6sumk4eraUYeh7rIvly5cbvr6+xuOPP25s27bN+OCDD4ygoCDj/fffd57z5JNPGhEREcbnn39u/Pbbb8Yll1zS7KcwH2vy5MlGy5YtnVPBP/vsMyMmJsb461//6jxH3+PxCgsLjTVr1hhr1qwxAOP555831qxZY+zZs8cwjLp9ZxdeeKHRp08f49dffzV+/vlno2PHjpoKLqfvlVdeMVq3bm34+/sbAwcONJYtW+bukjwaUOPj3XffdZ5TUlJi3HHHHUZkZKQRFBRkXHrppUZGRob7im4ijg03+h7r5n//+5/RvXt3w2azGV26dDHeeuutaq87HA7jwQcfNOLj4w2bzWYMHz7c2LJli5uq9UwFBQXGXXfdZbRu3doICAgw2rVrZ9x///1GWVmZ8xx9j8dbuHBhjf89nDx5smEYdfvODh48aEyYMMEICQkxwsLCjBtuuMEoLCx0w6fxDBbDOGrpSBEREZEmTmNuRERExKso3IiIiIhXUbgRERERr6JwIyIiIl5F4UZERES8isKNiIiIeBWFGxEREfEqCjci0uxZLBbmzp3r7jJExEUUbkTEra6//nosFstxjwsvvNDdpYlIE+Xr7gJERC688ELefffdasdsNpubqhGRpk4tNyLidjabjYSEhGqPyMhIwOwyev311xk1ahSBgYG0a9eOTz75pNr7161bx3nnnUdgYCDR0dHceuutFBUVVTvnnXfe4YwzzsBms5GYmMjUqVOrvX7gwAEuvfRSgoKC6NixI1988UXDfmgRaTAKNyLi8R588EHGjx/P2rVrmThxIldffTWbNm0CoLi4mJEjRxIZGcmKFSuYPXs233//fbXw8vrrrzNlyhRuvfVW1q1bxxdffEGHDh2q3eORRx7hyiuv5LfffmP06NFMnDiRnJycRv2cIuIi7t65U0Sat8mTJxs+Pj5GcHBwtcfjjz9uGIa5g/xtt91W7T2DBg0ybr/9dsMwDOOtt94yIiMjjaKiIufrX331lWG1Wo3MzEzDMAyjRYsWxv3333/CGgDjgQcecP5eVFRkAMY333zjss8pIo1HY25ExO3OPfdcXn/99WrHoqKinM9TUlKqvZaSkkJqaioAmzZtolevXgQHBztfP/PMM3E4HGzZsgWLxcK+ffsYPnx4rTX07NnT+Tw4OJiwsDCys7Pr+5FExI0UbkTE7YKDg4/rJnKVwMDAOp3n5+dX7XeLxYLD4WiIkkSkgWnMjYh4vGXLlh33e9euXQHo2rUra9eupbi42Pn6L7/8gtVqpXPnzoSGhpKcnMyCBQsatWYRcR+13IiI25WVlZGZmVntmK+vLzExMQDMnj2b/v37c9ZZZ/HBBx+wfPly3n77bQAmTpzI3//+dyZPnszDDz/M/v37ufPOO7nuuuuIj48H4OGHH+a2224jLi6OUaNGUVhYyC+//MKdd97ZuB9URBqFwo2IuN23335LYmJitWOdO3dm8+bNgDmTadasWdxxxx0kJiby3//+l27dugEQFBTEvHnzuOuuuxgwYABBQUGMHz+e559/3nmtyZMnU1paygsvvMA999xDTEwMl19+eeN9QBFpVBbDMAx3FyEiciIWi4U5c+Ywbtw4d5ciIk2ExtyIiIiIV1G4EREREa+iMTci4tHUcy4ip0otNyIiIuJVFG5ERETEqyjciIiIiFdRuBERERGvonAjIiIiXkXhRkRERLyKwo2IiIh4FYUbERER8SoKNyIiIuJV/h8/4ahzniZ+nAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2T0lEQVR4nO3dd3hUddrG8e9Mei+kEVrovTcpFhQFVBQVBUQpYgcb664FFV1XUde1ra6+qIAFAVHBLiJFRDpI772lEEJ6nznvH4cMhISQwCQzCffnunLN5MyZM8+cBObOrx2LYRgGIiIiIjWE1dUFiIiIiDiTwo2IiIjUKAo3IiIiUqMo3IiIiEiNonAjIiIiNYrCjYiIiNQoCjciIiJSoyjciIiISI2icCMiIiI1isKNiDiNxWLh+eefr/Dz9u/fj8ViYdq0aU6vSUQuPgo3IjXMtGnTsFgsWCwWli5dWuJxwzCoV68eFouF66+/3gUVOsdPP/2ExWIhNjYWu93u6nJExI0o3IjUUL6+vnzxxRcltv/+++8cPnwYHx8fF1TlPNOnTycuLo74+HgWLlzo6nJExI0o3IjUUNdeey2zZ8+msLCw2PYvvviCzp07ExMT46LKLlxWVhbffvst48ePp2PHjkyfPt3VJZ1VVlaWq0sQuego3IjUUMOGDeP48ePMnz/fsS0/P5+vvvqK22+/vdTnZGVl8be//Y169erh4+ND8+bNef311zEMo9h+eXl5PPbYY0RGRhIUFMQNN9zA4cOHSz3mkSNHuOuuu4iOjsbHx4fWrVszZcqUC3pvc+bMIScnh1tvvZWhQ4fyzTffkJubW2K/3Nxcnn/+eZo1a4avry+1a9fm5ptvZs+ePY597HY7b7/9Nm3btsXX15fIyEj69+/PmjVrgLLHA505xuj555/HYrGwdetWbr/9dsLCwujduzcAGzduZNSoUTRq1AhfX19iYmK46667OH78eKnnbMyYMcTGxuLj40PDhg154IEHyM/PZ+/evVgsFt58880Sz1u2bBkWi4UZM2ZU9JSK1Cieri5ARCpHXFwcPXr0YMaMGQwYMACAn3/+mbS0NIYOHco777xTbH/DMLjhhhtYtGgRY8aMoUOHDsybN4+///3vHDlypNiH6d13383nn3/O7bffTs+ePVm4cCHXXXddiRoSExO55JJLsFgsjBs3jsjISH7++WfGjBlDeno6jz766Hm9t+nTp9OnTx9iYmIYOnQoTz75JN9//z233nqrYx+bzcb111/PggULGDp0KI888ggZGRnMnz+fzZs307hxYwDGjBnDtGnTGDBgAHfffTeFhYX88ccfrFixgi5dupxXfbfeeitNmzbl5ZdfdgTD+fPns3fvXkaPHk1MTAxbtmxh8uTJbNmyhRUrVmCxWAA4evQo3bp1IzU1lXvvvZcWLVpw5MgRvvrqK7Kzs2nUqBG9evVi+vTpPPbYYyXOS1BQEDfeeON51S1SYxgiUqNMnTrVAIzVq1cb7777rhEUFGRkZ2cbhmEYt956q9GnTx/DMAyjQYMGxnXXXed43ty5cw3A+Ne//lXseIMHDzYsFouxe/duwzAMY/369QZgPPjgg8X2u/322w3AmDhxomPbmDFjjNq1axvJycnF9h06dKgREhLiqGvfvn0GYEydOvWc7y8xMdHw9PQ0PvzwQ8e2nj17GjfeeGOx/aZMmWIAxhtvvFHiGHa73TAMw1i4cKEBGA8//PBZ9ymrtjPf78SJEw3AGDZsWIl9i97r6WbMmGEAxpIlSxzbRowYYVitVmP16tVnren//u//DMDYtm2b47H8/HwjIiLCGDlyZInniVxs1C0lUoPddttt5OTk8MMPP5CRkcEPP/xw1i6pn376CQ8PDx5++OFi2//2t79hGAY///yzYz+gxH5ntsIYhsHXX3/NwIEDMQyD5ORkx1e/fv1IS0tj3bp1FX5PM2fOxGq1cssttzi2DRs2jJ9//pkTJ044tn399ddERETw0EMPlThGUSvJ119/jcViYeLEiWfd53zcf//9Jbb5+fk57ufm5pKcnMwll1wC4DgPdruduXPnMnDgwFJbjYpquu222/D19S021mjevHkkJydzxx13nHfdIjWFwo1IDRYZGUnfvn354osv+Oabb7DZbAwePLjUfQ8cOEBsbCxBQUHFtrds2dLxeNGt1Wp1dOsUad68ebHvjx07RmpqKpMnTyYyMrLY1+jRowFISkqq8Hv6/PPP6datG8ePH2f37t3s3r2bjh07kp+fz+zZsx377dmzh+bNm+Ppefbe9z179hAbG0t4eHiF6yhLw4YNS2xLSUnhkUceITo6Gj8/PyIjIx37paWlAeY5S09Pp02bNmUePzQ0lIEDBxabDTd9+nTq1KnDlVde6cR3IlI9acyNSA13++23c88995CQkMCAAQMIDQ2tktctWnvmjjvuYOTIkaXu065duwodc9euXaxevRqApk2blnh8+vTp3HvvvRWstGxna8Gx2Wxnfc7prTRFbrvtNpYtW8bf//53OnToQGBgIHa7nf79+5/XOj0jRoxg9uzZLFu2jLZt2/Ldd9/x4IMPYrXqb1YRhRuRGu6mm27ivvvuY8WKFcyaNeus+zVo0IDffvuNjIyMYq0327dvdzxedGu32x0tI0V27NhR7HhFM6lsNht9+/Z1ynuZPn06Xl5efPbZZ3h4eBR7bOnSpbzzzjscPHiQ+vXr07hxY1auXElBQQFeXl6lHq9x48bMmzePlJSUs7behIWFAZCamlpse1FLVnmcOHGCBQsW8MILL/Dcc885tu/atavYfpGRkQQHB7N58+ZzHrN///5ERkYyffp0unfvTnZ2NnfeeWe5axKpyRTxRWq4wMBA3n//fZ5//nkGDhx41v2uvfZabDYb7777brHtb775JhaLxTHjquj2zNlWb731VrHvPTw8uOWWW/j6669L/bA+duxYhd/L9OnTufTSSxkyZAiDBw8u9vX3v/8dwDEN+pZbbiE5ObnE+wEcM5huueUWDMPghRdeOOs+wcHBREREsGTJkmKP/+9//yt33UVBzDhjSv2Z58xqtTJo0CC+//57x1T00moC8PT0ZNiwYXz55ZdMmzaNtm3bVrglTKSmUsuNyEXgbN1Cpxs4cCB9+vRhwoQJ7N+/n/bt2/Prr7/y7bff8uijjzrG2HTo0IFhw4bxv//9j7S0NHr27MmCBQvYvXt3iWO+8sorLFq0iO7du3PPPffQqlUrUlJSWLduHb/99hspKSnlfg8rV65k9+7djBs3rtTH69SpQ6dOnZg+fTpPPPEEI0aM4NNPP2X8+PGsWrWKSy+9lKysLH777TcefPBBbrzxRvr06cOdd97JO++8w65duxxdRH/88Qd9+vRxvNbdd9/NK6+8wt13302XLl1YsmQJO3fuLHftwcHBXHbZZbz22msUFBRQp04dfv31V/bt21di35dffplff/2Vyy+/nHvvvZeWLVsSHx/P7NmzWbp0abFuxREjRvDOO++waNEiXn311XLXI1LjuW6ilohUhtOngpflzKnghmEYGRkZxmOPPWbExsYaXl5eRtOmTY1///vfjinIRXJycoyHH37YqFWrlhEQEGAMHDjQOHToUImp0YZhTt0eO3asUa9ePcPLy8uIiYkxrrrqKmPy5MmOfcozFfyhhx4yAGPPnj1n3ef55583AGPDhg2GYZjTrydMmGA0bNjQ8dqDBw8udozCwkLj3//+t9GiRQvD29vbiIyMNAYMGGCsXbvWsU92drYxZswYIyQkxAgKCjJuu+02Iykp6axTwY8dO1aitsOHDxs33XSTERoaaoSEhBi33nqrcfTo0VLP2YEDB4wRI0YYkZGRho+Pj9GoUSNj7NixRl5eXonjtm7d2rBarcbhw4fPel5ELjYWwzijnVRERKqNjh07Eh4ezoIFC1xdiojb0JgbEZFqas2aNaxfv54RI0a4uhQRt6KWGxGRambz5s2sXbuW//znPyQnJ7N37158fX1dXZaI21DLjYhINfPVV18xevRoCgoKmDFjhoKNyBnUciMiIiI1ilpuREREpEZRuBEREZEa5aJbxM9ut3P06FGCgoIu6Kq/IiIiUnUMwyAjI4PY2NhzXkPtogs3R48epV69eq4uQ0RERM7DoUOHqFu3bpn7XHThpuiCgIcOHSI4ONjF1YiIiEh5pKenU69evWIX9j2biy7cFHVFBQcHK9yIiIhUM+UZUqIBxSIiIlKjKNyIiIhIjaJwIyIiIjWKwo2IiIjUKAo3IiIiUqMo3IiIiEiN4tJws2TJEgYOHEhsbCwWi4W5c+ee8zmLFy+mU6dO+Pj40KRJE6ZNm1bpdYqIiEj14dJwk5WVRfv27XnvvffKtf++ffu47rrr6NOnD+vXr+fRRx/l7rvvZt68eZVcqYiIiFQXLl3Eb8CAAQwYMKDc+3/wwQc0bNiQ//znPwC0bNmSpUuX8uabb9KvX7/KKlNERESqkWo15mb58uX07du32LZ+/fqxfPlyF1UkIiIi7qZaXX4hISGB6OjoYtuio6NJT08nJycHPz+/Es/Jy8sjLy/P8X16enql1ykiIiKuU61abs7HpEmTCAkJcXzpiuAiIiI1W7UKNzExMSQmJhbblpiYSHBwcKmtNgBPPfUUaWlpjq9Dhw5VRakiIiIXHbvdIDE9l4PHs11aR7XqlurRowc//fRTsW3z58+nR48eZ32Oj48PPj4+lV2aiIhIjWCzGxw+kc3OxEx2JWWQkplP/zYxdIkLL7HvpsNpzF57iH3JWRw+kcOREznk2+xc2jSCz8Z0d0H1JpeGm8zMTHbv3u34ft++faxfv57w8HDq16/PU089xZEjR/j0008BuP/++3n33Xf5xz/+wV133cXChQv58ssv+fHHH131FkRERKrcoZRsFu9I4s/dxwnw8eSSRuFc0qgW9cL9AcgrtLEvOYudiZnk5tsID/AmPNCbiAAfPD0spGTlczwrn5SsPBLT8zhyIofDJ7I5fCKHgynZ5BXai73eR0v30blBGPde1oi+LaP5Y9cx/u/3vSzfe7xEbVYLFNjsJbZXJYthGIarXnzx4sX06dOnxPaRI0cybdo0Ro0axf79+1m8eHGx5zz22GNs3bqVunXr8uyzzzJq1Khyv2Z6ejohISGkpaURHBzshHchIiLuwG43sFot5/Xc/EI7S3Yew8/bg7Z1Qwj29XJydcUZhsHq/SdYcyCFy5tF0jo25JzPOXwim+krD/Lb1kR2JWWWuk+dUD98vKwcOJ6NzX7+H+8+nlYaRwbSLDoQq8XCDxvjyT8ZWIJ8PMnIKwTA02rh+na16d00krphftQJ9SMmxBcvD+ePeqnI57dLw40rKNyIiNQs+YV2np27mW/+OkxUkC9NowNpGhVI85hgrm4ZTYj/2YNKfqGdr9Ye5r1FuzmSmuPY3igigHZ1Q+jdNJIBbWII8CnZ0XEsI4+DKdnk5NvIzi8kp8BGem4hKZlmi8jxrHwAOtUP45JGtWgRE4QB/Lolgf9bspf1h1Idx+rdJIJ7L2vEpU0jsFiKB7TNR9KYvGQvP26KdwQWD6uFzvXDuLx5JNn5hazYm8KGQ6kUnhZognw9aRYdRJCvp9lSk5lPSlY+BTa72ZIT4E2tQG8iA32oG+ZP3TA/6ob5Uy/cvPU4LSgmpecybdl+Pl9xgPTcQgK8PRjWrT539W5IbGjpY16dTeGmDAo3IiI1R3Z+IQ98vo7fdx4r9XFfLys3tq/DnT0a0KaO2TpS1GWzal8K//f7XkeoiQj0wc/byqGUnGLH8Pf24Nq2tRncuS4+nlYWbU9i0Y5jbDqSVqFaQ/29CPD2dLyet6eVzvXDWLU/xRFamkcHUb+Wv+M5KVn5rD1wwvF9rya1GNK1Ppc3jSwR2rLzC/nrYCp2w6BpVBDRwT4lghKYrUalbS+PzLxCNh5OpXVsCCF+ldu6dSaFmzIo3IiIVJ2M3AIOn8ghIT2XljHBxIT4Vuj5iem5zPnrCN+sO0xaTgGDOtRhePcG1K/lz4msfEZPW836Q6n4ell5a0gHwgN82JWUwa7ETJbvOc6OxAzHsVrVDia30FaiyyYqyIf7L2/M7d3r4+vlwfHMPDYeSeOvAyf4bsNR9pcx86dumB+BPp74enng7+1BgI8nEYHeJ1tGfMgtsLFqXwqr96eQnW8DIMTPixE9GjCiRxyRQT4cSsnm46X7mLX6EDkFthKv4WG1cF3b2tx7WSNHQLsYKdyUQeFGRKTyGIbBj5vi+XjpPvYkZZKeW+h4zNNqYWD7WO69rBEta5/9/9/DJ7JZvuc4P2yM549dxzhz6IjFAlc0i+TQiRx2J2US4ufFlFFd6dwgrEQtaw6c4LPlB/h5czwFtuJdNk2jAhnYPpZh3cxQc7b3s/bACb5ed5gfNsQDcFmzSK5oHskVzaOIDCrfbNwCm53NR9JITM/jsmYR+HuX7OZKzc5n4fakYoN5PSwWejQ+NVD4YqZwUwaFGxGpyXLybUz5cx+NIwPp3ybGKcfckZDBwu1JJGfmOWbZ5OQX0qlBGH2aR9G5QRheHlaW7UnmlZ+3s/Fw8e6a8ABvQv292Hssy7Ht0qYR9G4SQVHviGHArqRMVuw9zuETxbuFusaFMbhzXUL9vfl8xQH+2JXseCwm2JdPx3SjWXRQme/hWEYef+w6RkSgD82iz95lUxa73cCAYmNRpOoo3JRB4UZEaqrdSRmMnf6Xoyvmv8M6MrB9bLF90nML+NuXG0jLLuA/t7U/a4uAYRgs33ucyUv2snhH6eNZigT5ehJXK8AxBiXA24N7LmvEtW1rUyfUzzEYd+PhVCYv2ctPm+JLtMaczsNqoV3dEC5tGsnNHesQFxFQ7PF9yVlMX3GAwydyeOb6ltQNc1KrxvE94BsCARHOOZ44lcJNGRRuRKQm+mrtYZ6du5mcAhvenlbyC+14e1iZdldXejY2P6xPZOUzcuoqR8tKRKAPU0d1pW3dU+M4DMPg162JvLdot2M/iwWubB5Fk6hAxywbi8XCn7uTWbwjiRPZBYDZ7TS8e30euqopEYFn7645lGJOaU5Kzy22PTrEl0sa1aJzgzACS5mdVKn2/wmfXG/ej+sNrW+CFgMhMLJq65CzUrgpg8KNiFRHWXmFLN2dzKLtSazcl4KH1UJ4gDcRgd7k5NtYdLJ1pXeTCN64rT3Pf7+FnzYlEOTjyewHehAe4M2dH61iR2IG9fwL6eiXxMGUbHw8rTzerzld27dn9XEvXvl5u2N2jo+nlVu71OXu3o1KtJ4UsdkNNhxOZVt8Or0aR5x1P7f3xVDY+XPxbRYrdL0bBrwG5zm7qELsdjixD8IbVc3rnQ/DgJS9LqlR4aYMCjci4k6SM/NYsz+FiJNrjUQF+WC1WjiWkcfGw6lsOJzG2gMprN53wrGIWmmsFni0bzPG9mmCh9VCboGNER+vYtX+FKKDfQjw9mRvchb9A3bxnuebeOSlFnt+IZ48lD+Wn+3d8fWyclevhozp3ZBaZbTAVKpdv0FeGrS5pfJfK2UvvNMJMOCOryFhE2yZC/HrzcevfR263VN5r2+3w/Yf4PdXIXEztLoRbvkYPKp2qnW5/P5vWPQvM/Rd958qfWmFmzIo3Ii4UFYy+IWBtfSZKeeUnw32AnNcRDWRlJLKwcQUWjdugJ/3qfedmVfIh0v28uEfex1ThAG8PawE+3mSnJlf4lj1w/25skUUlzeLxMfTSnJWPimZeaTlFHJZswg61i8+Wygtu4DBHyxzrGb7QOAf/MP+IRZ7IfjXwvAONBd1y88lxnKCQsPKrAbP03fwfUQHl3PKdn4WrJkCm78G/wiIbA5RLSGyJdRuDx7n0b2UsBn+7zIwbHDzR9Du1oofoyJ+eRpWvAdN+prhpsjy92De0+DhDWN+hdiOzn3d/GzYPR9+f80MNadreQMMnnLugJOZZP67Ol1YHHhXwuyq+A3w4ZVgPzkD7paPoe1g57/OWSjclEHhRqQcDAP2/wHZx6HVIOc0P+9ZCJ/fYh5v8JSKHzMjAT6+BvLS4b4/ILRexWvITIJdv5o1+ARW/PkVYORlsP7r12mw42P8yONe+xN4NLqMK1tEYbMbvLdotyPANIwIoNBu52hqrmP9FYsFmkQG0q5uKO3rhdCrSQSNIgIqPMPnaGoOIz9axriCqdyY9725se2tcMN/wcsPwzD49M89tFkzgc6pv4DFAwZ/bI45KUtRqPnzbcg6y4DjsIZw2d+h3ZDyhxzDgKkD4OBy83uvALjvd4hoWr7nV1ReJrzR0vy9Gv4VNL26eC0zh8OOH83AcN+SCwvWx3bAhhmQtB2ObYMTB4CTH8E+wdD9fjMczn0AbPnQciAMnlp6wDm+B5b8GzbOAuOMFj2/cLj232arl7O6jgrz4cM+ZggLjIbMRPAOhHt/h4gmp/YryIGF/4JGVxQ/l06gcFMGhRuRMhiGGUIWvwKHV5nbnPHXmWHA5MvNv/wAbv4Q2t1WfJ+8DPjxbxBUG/pMAE/vU4/lZ8HUa091E7S8AYZ8VrEajqyDmbdDRjw0GwDDZpT+H39mEsRvhGMnP4CSd5sfaI4WieYQ0+7sf1HnZZK19H3sf75DkD3dsTnN8Ofm/BfYY9RxbGsYEcDf+zVnQJsYLBYLhTY7iRl5pGTm0zAywDmDao+sxfj1WSwH/jS/v/JZuPRvJd+73QbfjoMNX5gB58b3oEHPU4/nZ0HyDvMDOmkb7F8K2SdbDEIbQK+HzTEqSdvNcxe/HnJPTgkPizNDTpvB4HWOFqENM2HOfeDpBzFt4PBqiGoNd/9WsdYIW6FZX0AUWMu4ztHqj8zfu1pNYOzqkvvmnDBbkVIPmr93t31q/q7unAfbvjMfj2wOkS3Mr+jW4H/G1bNthfDnW2a3k+2MFrmAKOg8Ci554NTzdv4Ks4afCjjX/As4+fPKTYUV7xcPNf61Tj1uyzeDGpjPve4NCIw61Uq09Tvz30BE01M1R7aAoJiyg9DCl2DJa2br3APL4Ku74MBSiG5j/my8/ODgSvj2QTi+G4Ji4eF15nYnUbgpg8KNXLR2/2b+xxTbofTHDyyD+c+ZHyanC20A41aD5znGXuScMINRswElP4R2/Awzhp763jcUxq40/0MF8z//GUPN/3wBGvSC2z6DgFrmh+6sO82/nv3CIDfd7K6442uzG6E8Nn8Dcx+EwtPWT7np/6D90OL7bfoK5txvdn2VJaoV3DkXe0AUaTkFJ6+unE920l46LR5JcM5hAPYbMexv9QCXZ/yI5fAq0nzrMj74dQ7l+XNnjziGdq137gsM5mfDljnmB31Mu5IfQBmJsGeB+fOJbAm1Gpv3j6yFxa/Crnnmfl7+cPNk8wPvbOw2+O4hWD+97JqKFIWWdkNKhr28TFjzMfz5zqkQZLGarTmRLSCqBTS/Dup2PvWc3DT4bxfISoKrnoMOd8AHvc3vO40wW5vOZCs0B+EmbTOD17FtZsA6vsv8oPf0Mz/Io1qaP7f2wyAo2nyuYcB73SB5Jwz4N3S/t/T3eXgtTOln/l7U7WqGX1te6ftarBB3KbQeZIahzETzd68omDe+CpoPOHkOWp592vmu+War0dleB6BpP7jiCahz2jkszIelb5itOvZC899MXG/YvRAKss5+LN8Q8/cnsjnEtIVm/SC0vvnY0fVmd5Rhg1s/Md9berz5s8lONn9OfqFmNx6G+QfKwLfNYziRwk0ZFG7konR4DXx0lTl24LbPoHn/4o9v+x5mjzL/M/T0hS5joNvdMGUAZCZAv0nQ48GzHz9pmxlOTuyHptfAsFmn/gI+vdWmxzizuyt+AzS/FoZ+Ye7z49/MD0JPP7B6Qn6GGapunwXrPjPHQ3j4wMjvYetcWPE/CG8MDy4vGbqyU4o306/6EH5/xbzf9BrzL82lb2D4hjCtwyw+2ZTLPZc1YnjMUfj0BvMDMbwxxLRhS0EsH2zxIMSSRVPLYVp4HKWNZR8BZLOPOgzLn0CCPRSAupZjzPD6F/WsxzhsRDDd7w4G3vEIreqGm2MiPrrKPD91u5nvw9PH/MDbMsdsHer7PEQ2K/5ebIUwY4gZTMEMBq0HQbP+pwa9HvgTR9cGmK0uIXXMlgYwP2zbDTFDSK3GZ/8ZFrHbYN4E+Otz88OsiIcX1Gp6KphEtYKGl517TEh+Fqz+2PyZZcSf8aDF7Iq56jkzEP/8JKx833ydB5aZrXd7F8Ong8z32P9VCK59qvXo2HazleDM1pCy+Iaas5/a3QZ7F8FnN4F3EPxtG/iUsRDgivfhlydPfV+rqfmzCG90MlTtgKStkHrgtLdnNb/shWZ4GPCa+bMob1fR7t/gh8eKj6kpCk+X/714qDlTwiazeyth06ltIfWh9Y3mv4HkXeb5S9pmhsMzu7bAPH7rm2D9DEjaYnbn3vbJqcf3LITPbqbY71+H4dDvJTNUOZnCTRkUbuSiNHO4ORsDwOoFQz4/FXC2fgdfjTb/A251o/kXbNFftms/ge8fNv+jeni9+dfZmXbOg6/GmIGkSN/nofdj5v3tP8HMYebYiUc3mWHp/y43/wq+abL5l9+8pwGL2dVUq6n5gX5ivxm0Ck+uhTJ4ijmGIDcN3u1q/kV85bNw2ePm48m7zFaHorEaZ+oxDq7+J4ZhJ/3dKwg5sZnfbB25u+Bx4iwJzAt6EZ/8VGhxPdz2Gcv2pjBiyioK7QYhfl6k5ZitOfUticzw/hd1LMfZbY9lWP4Ewn0Mpln/SW0jiUTPOnzf8UPuuOaS4kv6H9sJH/c166/b1ez+Ov2DMCAKRv1g/uUMZigsCn0ePuYHYtG5OFNsJ3OQ9rEdp7okLB4nQ83j5Qs1lc0wzJ/Zse1my8rBZbD1W/OxsIbQ6xH4cbz5IXvnHGh85annLpp0KqCWxssfIpqd7DZscSqABZ8MeUnbzBadrd+e+rBvfq3ZvbT/D+j+AAwo4/hF9S9/z3xOy4Fm91NpISVlnxnAT59t1WwADHzrVEtlVbEVwNpp5nlvPsD8PSmt5oJcs6WrKDQeXG625J4eWvwjzNbWM1uaFr1sdrdVUmvN6RRuyqBwIxed5F1mGMCAhpfDvt9PBRxb/qlg0/ZWs6vm9JlMtkL4oJf5gdTrUbj6hVOPGQYsfxd+fdY8doPe0Owas2vL4gGjfoT6l5jjFRI2mmGn7/Pmc5f82xx06B1o/mWPAde8BD3HmY9np8CXI8wPHjD/sr/0bxxJzSEzt5DmST/DN/eYLT1jV5gtTwv/VfqHv2+IeexOd7IrMYMXvt9K4p71/OD9ND6WQr6s9SBdjn1DI2sCaeFtCbn/V3an2rj5f8tIzy1kYPtY3h7SgbxCO0dSczh8IpuArEO0X3AH3llHsddqitWWZ36Ihjc2A0pwbMk6APb9YbYUFHV7efmbrUnHd5sDNQOizFadqBanZuoUhb5Gfcwupi1zzZ9hUctBqxtPdR8YBqQfNT+owhpCWIOK/75UpV2/meE5/cipbWe2DoDZmvTlCNh7cvBqUfdJUYgJqV/2uJoitgJz7MviV0/rerTAQ2srJwCm7IP8TLOlxF3XrTmbjATz39WWuWarzaAPSrb4gvk7d2Sd2fXnW7mfqQo3ZVC4kYvOdw/Buk/Nv1Rv+xS+vtv8y9LqBRgng81tcNMHpU/R3vGL2ZLi4WMOEAypC4dWweJJZrM0QKeR5logHl7wzb2w6UtzQGGfp8zX9w6ERzaaY2jADE0fXXXqL9suY8w1M07/ACjMh2XvmAMSL3mQ7YkZ3PTeMnILbXx+Vzd6LR1pdsl4BZwaS9CoD9zwDoQUn0mVllPIm7/t5LMVB7DZDbw9rHzU+HcuO/i+Y5/DRgRDbP9iwpArmPTzNg6l5NC5QRjT7+5e+kUVU/bBtOsh3Rxfc85gc/r53PGjOfai6dXgHWCGuU9ugMRNEBBptmIUhcbTQ19NlJsGvz5j/o56B5qtAyF1K/c1E7eaXTbx682WuqHlHGMkLqVwUwaFG3EqWyHsXwLbfzS7GU4X3QZ6PlQ5602cKfMYLH3T/LBs3OfU9owEeKut2UJz169Qv7tZ89djzIADZQcbMP8ym3adGSSaXmP+Fb1ngfmY1dP88O1+36lgkpcJk68wWw+K9B4PfScWP27SNph+q9m6M+iDMqcKp2bnc8O7f3IwJRuAqCAffr09gtBPTw5y9A4y+/k7jSgWkGx2g5mrD/KfX3eSkmWOy7imVTQTrmtJg1Af+PhqOLoOwyeIiRFv8OmeU6vrNqjlzzcP9Cx7EbuUffDFEHP8zO1fmuNBzld2ijnm5/QxEqWFvpoqYZPZklVVXWi2QrNrrE5nM2CK21O4KYPCjZRgt5ktEfW6lX9xuQPLzSmz236AnJSz7xfeGAb9z/wAL4+MBHMMzNa55uDEBr3MAX3N+p19sGNmEnwy0Ow6snrCrdNOzYiZP9Fshq93CYyZd+o5tkJzDIPV0xxoeq73fXgtfHTaGAirpznr5NK/QXjDkvsnbjFnVxTmFmu1WXvgBD6eVppEBZqtIXb7ObsTbHaDUVNX8ceuZOqG+eHjaWXPsSyubBHFxx33YDm00gxPZ6x7k5yZx0Nf/MXyvccBaBoVyMSBrend9LQxAycOwB//gY53kBvTmRFTVrFqXwohfl5882BPGkeWYy2cov9CnRFATg84TfqaA7PPZxE8kRpI4aYMCjdSws9PwMoPoPNoc9DfuWz+xhynUsS/1skBhqf1qxfkmuNRMuIBC/QYa67dcnorTkGuOdaiaMbCgWUnB8OW8k/Sw8dslel+PzS89NT2YsHGyxxHYPU0F/5qdAW82docYDp0BrS4tuLn5nTfPwp/fQYdbjdDTVhc2ftvmGlOgb3qOej9KD9sPMq4L/4CzNNUP9yfplFBtIoNpn3dENrVDSUyqGQryaSft/F/v+/F18vKNw/0wmKBG9/7k/xCO89d34q7epcMV+sPpfLA52uJT8slwNuDx/s1545LGpxz2nVGbgFfrDzI5c0jaRHjov8f8jLMNWQa9Tn3mjAiFxGFmzIo3EgxR9ebq24WTYO84xtoctXZ9z++x5zpk59h9tV3u8ccSFvaX9c5qeaU2vWfm997+JhTsYsUZJU+/bJuV3NQZZ3O5lTQrXPNEFSkQW+44klzQGVRsAmKhZHfmcu4b/rSDDhNrjYvBBjRHB5cUb4Bl2UxDLPeilw6oTAfPL0xDIOB7y5l85F0fDyt5BWWfo2kOqF+NIsOpG6YP3XD/MgvtPOf+TsBeGdYR25ob45n+XT5fp77dgveHla+ebAnbeqcWjV21uqDPDt3C/k2O40iA5h8Z2eaRJUxxVdEqgWFmzIo3IiD3Q5TrjEXrfMNMQc2BteFB5eVvsR6Qa45lTdhE9Tvac5qKU+Xwa758N3DkHG05GNnLpzVfEDJwZSGYXbzrJlitpwUrenhHWSGrOA6Zi21GptdbHMfMFcvLXLje9DxjvKfl0qwYu9xhk5ega+XleVPXkWh3WBXUgY7EzLYdCSdDYdT2XMsk7P9b3TfZY146tqWju8Nw+Dez9Yyf2si4QHeRAf7kpNfSFa+jWMZ5qJn17SK5j+3tSfI1w0vPigiFaZwUwaFm4uQrdAMFkXTZYus+wy+G2eOCblvCXx+s7m2ytlWQv3hMTNg+NeC+5eee1ZMsRoKIO1Q8W1eAeay6BUZq5F2xBw4vO4TM+ScHmyKnB5wgmLhkQ3FL2XgAnd/sobftiVyxyX1+degtqXuk5FbwJaj6exPzuLwiRzHtOum0UG8eGMbPKzFz9OJrHyufecP4tOKT/+2WuBv1zTngcsbY7VeBANxRS4SCjdlULi5yNgKzdCy73dzQbP+r5jXb8lOgXe7mBeGLJpqu3+pOSsISi7tv+krc4YRFrjjq/Iv+19Z0o6Yi/K1uK70abN2mznmpXZ7c9l+F9p7LJOr3vgdw4CFf7ucRuUZpFtOiem5rD+Uip+XB/7eHvh6eRAT4ktEWTOcRKRaqsjnt4bhS822eJIZbMBsydi7GK5/yxzLkn3c7BLqfp/5eFxv6HYfrPo/sxup7wvmNWeObYPdJ6c+X/o31wcbMJfXL6q7NFYP6Di86uoB7HaD+PRcYkN8i125euqf+zEM6NsyyqnBBiA62Jd+rat41VcRcXsKN1Jz7f7NnOYLcPmTsOUbM6zMHHZqn+teL35tnL4TYdev5rVWvrm7+PEaXg5XPFX5dbupQpudhPRcgv28CPLxxGKxYLMbrN6fwk+b4vllcwJJGXn0bx3Dq4PbEeLnRWp2PrPXmt1xY3o3cvE7EJGLhcKNVD85qeaso7IWx0s/aq6UiwFd7jJXyu39GCx+GZb915z10/Y2s7XmdN4BcMtH5pWh/cLMpd0jW5q3cZddlGuOZOYVMnPVQaYs3cfRk+NbvD2shAV4UWAzHIvjFfllSwJb4tN4d1gnlu5OJrfATuvYYC5pFO6K8kXkIqQxN+L+dv5qroibtM28sFtmAgTGwIhvzdBxJluhOUX64DJzBtKY34qvF3JkLexZZE7jLm1WlADmIngfL93H5ysOkJFbCICH1WytOV2QryfXtIrhunYxhPh58eis9RxKycHLw4KvlwcZuYW8OaQ9N3Ws5CX1RaRG04DiMijcuJmsZHMWUovroP3Qko+vnQbfP1L6cwMiT15k8NQUYQrz4JcnzVlN3kFw3+/ucUVkFyuw2Xn6m01sS0gnJ99mfhXYaFs3lNdvbUdUUPHF4nYnZTL8oxUkppvTqhtFBnDPpY24qWMdAI5n5ZOSmU++zUbbOqF4e55aQyctp4AnvtrIL1sSAIgO9uGPf1xZbB8RkYpSuCmDwo2b+envsGqyef/a183WlCJ7FsLng81rB7UZbK64G9XSnD49c7h5penTA86RdfDtWPOyBWCu0tvm5ip/S+5o+soDTJizudTH6ob5MW10V8dCd1uPpnPnxys5npVPo8gAnuzfgr4toys0rdowDD5dfoApf+7j8WuaM7B9BabNi4iUQuGmDAo3biT9KLzd/tSidHAq4CRuhSn9zEsHtBsCN/1f8fVgslPg0xvNgOMfAW0Hw6oPzSDkHwHXvwGtbqz69+SGcgts9Hl9MfFpudx3WSOuaB6Fv7cH+TY7f5+9gf3Hswn29eTDEV3w9rQycsoq0nMLaVMnmE/v6k54gGvXyBERAYWbMincuJEfH4fVH5qr/dbrCn++bW7v84y5SF3aIfOxEXPNqy6f6fSAU6TNLTDgNQiIKLn/RWran/t4/vut1A7xZdHjV5gXrDwpJSufuz9ZzbqDqXh7WPHysJCVb6NzgzCmju5KsFb3FRE3UZHPb3WCi2ukHTEDDJgzmfq+AL1Ojq1Z9C8z2IQ3hqHTSw82YC7GN+Jb84rXQbFw22cweIqCzWly8m28t3gPAGP7NCkWbADCA7z54p5LGNAmhnybnax8Gz0b1+LTu7op2IhItXXxzWsV97D0TbM7qkFvaHiZua3vC+btn2+DXzgMn20GmLL4h8Ndv5j3K3IZg2pm7l9HeP77LTw/sDWDTg7qPV1+oZ3vNhylXd0QmkWfukjk5ysOcCwjjzqhftzWpV6px/b18uC92zsx+Y+9HM/M42/XNC8RgkREqhOFG6l6aYdPtdpc8eSp7RaLGXAaX2XOcCrtsgKlqcGhBuBQSjYT5mwiK9/GE19vpEXtIFrEnGqSNQyDCXM2MXvtYTytFsZd2YQHr2hCgc3O+7+brTYPX9WkzNlKVquF+y/XrDIRqRkUbqTqFWu1ubT4YxYLNLrcNXW5IcMwePKbjWTl2/CwWsgrtPPg9HV8N643gT7mP9+P/tjH7LWHASi0G7z12y7mbUmkQ70QUrLyaVDLn5s7aY0ZEbl4aMyNVK20w7DuU/P+6a02UqrpKw/y5+7j+HpZ+fK+HsQE+7L3WBYT5mzCMAwWbU/i5Z+3AfDc9a14Z1hHwvy92BafzoxV5mUPHrmqKV4e+qcuIhcPtdxI1frr87O32kgxh1KymfSTGVz+0a8FnRuE8d/bOzJ08gq+XX+U2iF+fL7iAIYBw7rVY3SvOCwWCz0a1eLZuZv5ZUsCLWKCuLFDyTE6IiI1mcKNVK0dP5m3HYaVvd9Fzm43eOJrszuqW1w4o3rGAdA1LpzHr2nOq79s54OT42m6NwznhRvaOK7EHRnkw/t3dGJbfAaxob54VGDxPRGRmkBt1VJ10o9C/AbAAk37uboat/bx0n0s22N2R702uF2x1YHvu6wRfZpHAlAv3I/37+hcYrCwxWKhVWwwof5agE9ELj5quZGqs/PklO26XSAw0rW1uLHPlu/npZPdUU/2b0FcRECxx61WC/+9vRNz1h2mb6torSAsInIGhRupOjtOhptm/V1bhxv7dPl+nvt2C2C20Iw82R11pkAfT+7sUfpjIiIXO3VLSdXIz4Z9v5v3mw9wbS0usPVoOkt2Hitzn2LB5vJGPDmghWMcjYiIlJ9abqRq7F0MhbkQUh+iWrm6miq1+UgaN7+/jPxCO+P6NOFv1zQrFloMw+CjP/Y5uqLuu7wRT/ZXsBEROV8KN1I1dv5s3jbvX+NXFD5danY+93++lvxCOwDvLtpNdr6NZ69vicViITu/kKe+2cS3648CCjYiIs6gcCOVz26Hnb+a95tdPLOk7HaDx2at5/CJHOqH+zOsW31e/WU7U/7cR05BIfde1pgHPl/L9oQMPKwWJlzb0rFWjYiInD+FG6l88eshMwG8AyHu4lm4791Fu1m04xg+nlbev6MTrWNDiAj05omvNzJj1SG+XHMYm90gItCH927vSPdGtVxdsohIjaBwI5WvaAp44z7g6ePaWqrI7zuP8eZvOwH416A2tI4NAeDWLvXw9fLgsVnrKbQbdKwfyvvDOxMT4uvKckVEahSFG6l8O06Ot2l2ccyS2nwkjYdn/OW4LMKtXeoVe3xg+1hqh/iyNT6doV3rl3m1bhERqTiFG6lcaUcgYSPmqsTXuLqaSrf5SBp3fLyStJwCOtYPZeLA1qXu1yUunC5x4VVcnYjIxUHhRirXrnnmbd2uNX5V4s1H0hj+0alg88ld3fD18nB1WSIiFx2FG6lcB1eat02ucm0dlcgwDDYeTmPElFXFgk2wr5erSxMRuSgp3Ejlit9g3tbu4NIynCkrr5B//biN9YdSScnKIyUrnwKbAUDH+qF8elc3ghRsRERcRuFGKk9+NiTvMO/Xbu/aWpzo1V+2M2PVwRLbL20awf+Gd1KwERFxMYUbqTxJW8GwQ0AUBMW4upoKMQyj1MX0Vu1L4dPlBwB4+aa2tK0TQnigN7UCvDW+RkTETSjcSOWJX2/e1m7n1pdcyMwrZMG2RHYmZrAzMZPdSZkcy8hjaNd6PHVtSzysZu25BTae/HojAEO61OP27vVdWbaIiJyFwo1UHsd4G/fskkpKz2XKn/uZvvIAGbmFJR7/aOk+9h/P5p1hHfD39uTtBbvYm5xFVJAPT1/X0gUVi4hIeSjcSOWJN1s53C3cJKXn8vqvO5j711HybeYFLRtGBNCjcS2aRgXSLDqIxPRcnvxmE79tS2TY5BU8enUzJi/ZC5grDof4aVyNiIi7UriRylGYb465AbcKN3mFNkZNXc3W+HQAujQI497LGtG3ZTRWa/Gus/rh/tzz6Ro2HE5j9NTVAFzfrjbXtK5e44dERC42Ll/3/b333iMuLg5fX1+6d+/OqlWrytz/rbfeonnz5vj5+VGvXj0ee+wxcnNzq6haKbdj28GWD74hENrA1dU4vPLzdrbGpxMe4M3XD/Tgqwd6ck3rmBLBBsxVhL95sBcNavkDEObvxfM3lL7isIiIuA+XttzMmjWL8ePH88EHH9C9e3feeust+vXrx44dO4iKiiqx/xdffMGTTz7JlClT6NmzJzt37mTUqFFYLBbeeOMNF7wDOauEk11SMe4zmHjBtkSm/rkfgNdvbUfnBue+/EHDiAC+eaAnU/7cx9WtYogIvDgu/CkiUp25tOXmjTfe4J577mH06NG0atWKDz74AH9/f6ZMmVLq/suWLaNXr17cfvvtxMXFcc011zBs2LBztvaIC7jZYOLE9Fwen23WNLpXHFe2iC73c2sF+vD3fi3oUC+0kqoTERFnclm4yc/PZ+3atfTt2/dUMVYrffv2Zfny5aU+p2fPnqxdu9YRZvbu3ctPP/3Etddee9bXycvLIz09vdiXVAE3Cjc2u8GjM9dzIruA1rHBPDmghatLEhGRSuSybqnk5GRsNhvR0cX/go6Ojmb79u2lPuf2228nOTmZ3r17YxgGhYWF3H///Tz99NNnfZ1JkybxwgsvOLV2OQe7DRI2m/ddHG5y8m289NNWlu89jr+3B/8d1hEfTy22JyJSk7l8QHFFLF68mJdffpn//e9/rFu3jm+++YYff/yRF1988azPeeqpp0hLS3N8HTp0qAorvkgd3wMFWeDlD7WauKyMxTuSuOat3/l8hXmphH/e2IZGkYEuq0dERKqGy1puIiIi8PDwIDExsdj2xMREYmJKn2r77LPPcuedd3L33XcD0LZtW7Kysrj33nuZMGECVmvJrObj44OPjwaBVqmiLqnoNmCt+laSpIxc/vn9Vn7YGA9AbIgvL9zYhqtblX+cjYiIVF8ua7nx9vamc+fOLFiwwLHNbrezYMECevToUepzsrOzSwQYDw/zw9MwjMorViomwXXjbfYcy+TGd//kh43xWC1wd++GzB9/uYKNiMhFxKVTwcePH8/IkSPp0qUL3bp146233iIrK4vRo0cDMGLECOrUqcOkSZMAGDhwIG+88QYdO3ake/fu7N69m2effZaBAwc6Qo64ARcNJt4Wn86dH68kOTOfxpEBvD20I23qhFRpDSIi4nouDTdDhgzh2LFjPPfccyQkJNChQwd++eUXxyDjgwcPFmupeeaZZ7BYLDzzzDMcOXKEyMhIBg4cyEsvveSqtyBnMgyXhJsNh1IZMWUVaTkFtKodzGdjulFLa9KIiFyULMZF1p+Tnp5OSEgIaWlpBAcHu7qcmufEAXi7HVi94Omj4Old6S+5en8Ko6euJjOvkI71Q5k2upuu/SQiUsNU5PNb15YS53IMJm5VJcFmxd7jjJ66mpwCG5c0CuejkV0J9NGvtYjIxUyfAuJcVdgltXzPce6aZgabS5tG8OGILvh6aeyViMjFTuFGnOvYyQUYo9tU6sucHmwuaxbJ5Ds7K9iIiAhQzRbxk2rgxAHzNrxRpb2Ego2IiJRF4UacxzDgxD7zflhcpbzEtvh0xnyiYCMiImencCPOk30c8jMBC4TUc/rhkzPzuPuTNWTn2+jRqJaCjYiIlErhRpznxH7zNjgWvHydeui8Qhv3f7aWI6k5xNXy5/07OinYiIhIqRRuxHmKwk1YQ6ce1jAMJszZzJoDJwjy9eSjkV0J9a/8aeYiIlI9KdyI86RUznibj/7Yx1drD2O1wHu3d6JJlK7sLSIiZ6dwI87jaLmJc9ohv1h5kJd/3gbAs9e34rJmkU47toiI1Exa50acx8nh5qM/9vKvH81gM6pnHKN6Oue4IiJSsynciPM4Mdy8u3AXr/+6E4D7Lm/Ek/1bYLFYLvi4IiJS8ynciHMU5kH6EfN++PkPKDYMg3/P28H/Fu8BYPzVzXjoyiYKNiIiUm4KN+IcqQcBA7wDwb/WeR3Cbjf45w9bmbZsPwATrm3JPZdV3krHIiJSMynciHOc3iV1Hq0sNrvB099sYtaaQwC8OKgNd17SwHn1iYjIRUPhRpzjAsbbFNjsPD57A9+uP4rVAv8e3J5bOtd1ankiInLxULgR5zjPcJNfaGfcF+v4dWsinlYLbw/tyHXtaju9PBERuXgo3IhznOcCfpOX7OHXrYl4e1p5f3gnrmoZ7fzaRETkoqJF/MQ5zuPSC4dSsnl30W4AXr2lrYKNiIg4hcKNXDjDOK9uqRd/2EpugZ1LGoUzqEOdSilNREQuPgo3cuGykqEgC7BAaL1yPWXR9iTHOJt/3thG69iIiIjTKNzIhTtxcrxNSF3w9Dnn7rkFNp7/fgsAd/VuSLPooMqsTkRELjIKN3LhKtglNXnJXg4czyY62IeHr2paaWWJiMjFSeFGLpwj3Jx70b3dSZm8d3IQ8TPXtSLQRxP2RETEuRRu5MKVs+Vm7YET3PZ/y8krtNOzcS2u13o2IiJSCfRns1w4xxo3Z58G/svmeB6ZuZ68Qjtt64Tw9tCOGkQsIiKVQuFGLtw51rj5eOk+/vXjVgwDrmoRxX9v74i/t371RESkcugTRi5MQS5kHDXvn9EtlZNv4/nvtjguhnnnJQ2YOLAVnh7qDRURkcqjcCMXJvWgeesdBP7hjs27kzIYO/0vdiRmYLHAUwNacM+ljdQVJSIilU7hRi7M6YOJTwaXr9ce5pm5m8kpsBEZ5MPbQzrQs0mEy0oUEZGLi8KNXJiiBfxOTgOf9uc+nv9+KwC9m0Tw5pAORAade2E/ERERZ1G4kQtT1HIT3hDDMPhoqRl27rusEf/o3wIPq7qhRESkamlkp1yY07ql1h08weETOQR4e/Bo32YKNiIi4hIKN3JhThwwb0Mb8O16c9ZUvzYx+Hl7uLAoERG5mCncyPkzDMdsqYLgevywMR6AGzvUcWVVIiJykVO4kfOXcwLyMwBYdsyflKx8IgK96dW4losLExGRi5nCjVTIkdQclu1Oxjit1YaAKOZsPg7A9e1itUifiIi4lGZLSbkV2uzc+dFK9iZn8ez1rRgTboYbW0g9ft2aCMCNHWJdWaKIiIhabqT8ftqcwN7kLABe+nEru3eZ69nEW6LIzrfRoJY/HeqFurBCERERhRspJ8MweH/xHgBiQ3yxG7By3V8AbMgMAeDG9rG6vIKIiLicwo2Uy+Idx9gWn06Atwdzx/WiW1w4UfYkAJYfDwDgBs2SEhERN6BwI+VS1Gpze/f6RAX58v4dnWjoaQ4iPmiPoE2dYJpEBbqyRBEREUADiqUc1uxPYdX+FLw8LIzp3QiAWgHehHoehwI4bERyu1ptRETETajlRs7pfydbbW7pVJeYEF9zY84JPAoyAbi2d1fuuKSBq8oTEREpRi03UqZt8eks3J6E1QL3Xd741ANFa9wERvP4dR1cUpuIiEhp1HIjZfrgd7PVZkDb2jSMCDj1QFG4Ca3vgqpERETOTuFGzio5M48fT14v6oHTW20AUosumKlwIyIi7kXhRs7q2/VHKbQbtK8bQps6IcUfVMuNiIi4KYUbKZVhGMxecwiAwZ3rltxB4UZERNyUwo2UasvRdLYnZODtYeWG9qVM81a4ERERN6VwI6X6au1hAK5uHU2Iv1fxB0+/IniopoCLiIh7UbiREvIL7Xy7/ghwli6pnBOQb65xQ0gpj4uIiLiQwo2UsHB7IieyC4gK8uHSJhEldyiaKRUYDV5+VVuciIjIOSjcSAlFXVI3d6qLp0cpvyIabyMiIm5M4UaKOZaRx6IdxwAY3Pks14tSuBERETemcCPFzP3rCDa7QYd6oTSJCip9Jw0mFhERN6ZwIw6GYTB7rbm2za1dyhgorJYbERFxYy4PN++99x5xcXH4+vrSvXt3Vq1aVeb+qampjB07ltq1a+Pj40OzZs346aefqqjamu3LNYfYmZiJn5cH17eLPfuOCjciIuLGXHpV8FmzZjF+/Hg++OADunfvzltvvUW/fv3YsWMHUVFRJfbPz8/n6quvJioqiq+++oo6depw4MABQkNDq774GuZYRh4v/bgNgPFXNyPEz6v0HbXGjYiIuDmXhps33niDe+65h9GjRwPwwQcf8OOPPzJlyhSefPLJEvtPmTKFlJQUli1bhpeX+eEbFxdXlSXXWP/8YSvpuYW0jg1mdK+4s++oNW5ERMTNuaxbKj8/n7Vr19K3b99TxVit9O3bl+XLl5f6nO+++44ePXowduxYoqOjadOmDS+//DI2m62qyq6RFm1P4vsNR7Fa4JWb25U+/buIY42bGPDyrZoCRUREKsBlLTfJycnYbDaio6OLbY+Ojmb79u2lPmfv3r0sXLiQ4cOH89NPP7F7924efPBBCgoKmDhxYqnPycvLIy8vz/F9enq6895EDZCVV8gzczcDcFevhrStG1L2E06cDDcabyMiIm7K5QOKK8JutxMVFcXkyZPp3LkzQ4YMYcKECXzwwQdnfc6kSZMICQlxfNWrV68KK3Z/b87fyZHUHOqE+vHY1c3O/QQNJhYRETfnsnATERGBh4cHiYmJxbYnJiYSExNT6nNq165Ns2bN8PDwcGxr2bIlCQkJ5Ofnl/qcp556irS0NMfXoUOHnPcmqrmdiRlM+XMfAP8a1IYAn3I05CnciIiIm3NZuPH29qZz584sWLDAsc1ut7NgwQJ69OhR6nN69erF7t27sdvtjm07d+6kdu3aeHt7l/ocHx8fgoODi32J6bVfdmA34JpW0fRpUXJ2WqkUbkRExM25tFtq/PjxfPjhh3zyySds27aNBx54gKysLMfsqREjRvDUU0859n/ggQdISUnhkUceYefOnfz444+8/PLLjB071lVvodpaeyCF37YlYrXAP/o3L/8T08zrThGq7j0REXFPLp0KPmTIEI4dO8Zzzz1HQkICHTp04JdffnEMMj548CBW66n8Va9ePebNm8djjz1Gu3btqFOnDo888ghPPPGEq95CtWQYBq/+vAOAWzvXO/tlFkqTnWzeBkRWQmUiIiIXzmIYhlGRJ8TFxXHXXXcxatQo6tevfl0T6enphISEkJaWdtF2US3cnshd09bg42ll8d+voHaIX/meaBjwYiTYC+DRzWq9ERGRKlORz+8Kd0s9+uijfPPNNzRq1Iirr76amTNnFptqLe7NZjd47Rez1WZUz7jyBxuA/Cwz2AD4h1dCdSIiIhfuvMLN+vXrWbVqFS1btuShhx6idu3ajBs3jnXr1lVGjeJE364/wvaEDIJ9PXngisYVe3JOinnr4QNe/s4vTkRExAnOe0Bxp06deOeddzh69CgTJ07ko48+omvXrnTo0IEpU6ZQwd4uqQJ5hTbemL8TgPuvaEyof+kzzM4q+2S48QsDi8XJ1YmIiDjHeQ8oLigoYM6cOUydOpX58+dzySWXMGbMGA4fPszTTz/Nb7/9xhdffOHMWuUCzduSyOETOUQG+TC6Z8OKH6Co5UZdUiIi4sYqHG7WrVvH1KlTmTFjBlarlREjRvDmm2/SokULxz433XQTXbt2dWqhcuG+WmtO4x7WtR5+3h7n2LsUjpYbhRsREXFfFQ43Xbt25eqrr+b9999n0KBBjqtzn65hw4YMHTrUKQWKcySk5bJ01zEAbul8nlfzzjlh3vqHOakqERER56twuNm7dy8NGjQoc5+AgACmTp163kWJ83297jB2A7o1DKdBrYDzO0hRuFHLjYiIuLEKDyhOSkpi5cqVJbavXLmSNWvWOKUocS7DMPj6ZJfU4PNttYHiA4pFRETcVIXDzdixY0u9+OSRI0d0GQQ3te5gKnuTs/Dz8uDatrXP/0AaUCwiItVAhcPN1q1b6dSpU4ntHTt2ZOvWrU4pSpyraCDxgLYxBJbnyt9no24pERGpBiocbnx8fEhMTCyxPT4+Hk9Pl16qSkqRk2/jhw1HAfM6UhckWy03IiLi/iocbq655hqeeuop0tLSHNtSU1N5+umnufrqq51anFy4X7cmkJFXSN0wP7o3vMBQkqMxNyIi4v4q3NTy+uuvc9lll9GgQQM6duwIwPr164mOjuazzz5zeoFyYYq6pG7pVBer9QJXFdY6NyIiUg1UONzUqVOHjRs3Mn36dDZs2ICfnx+jR49m2LBhpa55I65zNDWHpbuTgQucJQVgt0HuydY6dUuJiIgbO69BMgEBAdx7773OrkWc7Ku1hzEM6N4wnHrhF3ihy9w04OT1wtQtJSIibuy8RwBv3bqVgwcPkp+fX2z7DTfccMFFyYWz2w2+XGNO2R/S9QIHEsOpLimfYPBQC52IiLiv81qh+KabbmLTpk1YLBbH1b8tJ68SbbPZnFuhnJfle49z+EQOQT6eDGhzAWvbFHEMJg698GOJiIhUogrPlnrkkUdo2LAhSUlJ+Pv7s2XLFpYsWUKXLl1YvHhxJZQo52PmarPV5saOsed3kcwzaTCxiIhUExVuuVm+fDkLFy4kIiICq9WK1Wqld+/eTJo0iYcffpi//vqrMuqUCkjNzmfelgQAhnSp75yDanViERGpJirccmOz2QgKCgIgIiKCo0fNBeIaNGjAjh07nFudnJe5fx0hv9BOy9rBtKkT7JyDanViERGpJircctOmTRs2bNhAw4YN6d69O6+99hre3t5MnjyZRo0aVUaNUgGGYTi6pIZ2recYC3XBtDqxiIhUExUON8888wxZWVkA/POf/+T666/n0ksvpVatWsyaNcvpBUrFbDqSxvaEDLw9rQzqUMd5B9bqxCIiUk1UONz069fPcb9JkyZs376dlJQUwsLCnNdKIOdt1slWm/6tYwjxd+KUbQ0oFhGRaqJCY24KCgrw9PRk8+bNxbaHh4cr2LiBnHwb3603x0A5ZW2bYgdXt5SIiFQPFQo3Xl5e1K9fX2vZuKmfN8eTkVdIvXA/ejSq5dyDa0CxiIhUExWeLTVhwgSefvppUlJSKqMeuQBFKxLf2rnehV8k80zZJ8ONv8bciIiIe6vwmJt3332X3bt3ExsbS4MGDQgICCj2+Lp165xWnJTfgeNZrNibgsXihItklkYDikVEpJqocLgZNGhQJZQhF+qrtYcB6N0kgthQP+cevCAXCrLN++qWEhERN1fhcDNx4sTKqEMugM1uOMLNbV2cPJAYTo23sXiAb4jzjy8iIuJEFR5zI+7nz93JxKflEuLnxdWtop3/Aqd3SWlWnIiIuLkKt9xYrdYyp31rJlXVKxpIPKhDLL5eTrhI5pmyNd5GRESqjwqHmzlz5hT7vqCggL/++otPPvmEF154wWmFSfmkZufz65ZEAG6tjC4p0Bo3IiJSrVQ43Nx4440ltg0ePJjWrVsza9YsxowZ45TCpHy+XX+UfFvRRTIraTyMVicWEZFqxGljbi655BIWLFjgrMNJORV1Sd3WpRKmfxcpGlCslhsREakGnBJucnJyeOedd6hTx4kXapRz2nI0jS1H0/H2cPJFMs+kNW5ERKQaqXC31JkXyDQMg4yMDPz9/fn888+dWpyU7adN8QD0bRVFWIB35b1Q0erECjciIlINVDjcvPnmm8XCjdVqJTIyku7duxMWpg+/qrTpSDoAvZpEVO4LaUCxiIhUIxUON6NGjaqEMqSiDMNg69E0AFrVDq7cF9OAYhERqUYqPOZm6tSpzJ49u8T22bNn88knnzilKDm3pIw8kjPzsVqgRUwlhxsNKBYRkWqkwuFm0qRJRESU7AaJiori5ZdfdkpRcm5bTrbaNI4MxM+7EhbuO12OWm5ERKT6qHC4OXjwIA0bNiyxvUGDBhw8eNApRcm5bTk53qZ1bCW32hjGqZYbDSgWEZFqoMLhJioqio0bN5bYvmHDBmrVquWUouTcthwtCjeVfCHLvHSwF5r31S0lIiLVQIXDzbBhw3j44YdZtGgRNpsNm83GwoULeeSRRxg6dGhl1Cil2BJvdktVestN0WBiTz/w8qvc1xIREXGCCs+WevHFF9m/fz9XXXUVnp7m0+12OyNGjNCYmyqSllPAoZQcAFpVdrjRYGIREalmKhxuvL29mTVrFv/6179Yv349fn5+tG3blgYNGlRGfVKKbfFml1SdUD9C/Stx8T7Q6sQiIlLtVDjcFGnatClNmzZ1Zi1STqfG21Ryqw1odWIREal2Kjzm5pZbbuHVV18tsf21117j1ltvdUpRUraiaeCV3iUFWp1YRESqnQqHmyVLlnDttdeW2D5gwACWLFnilKKkbFuraqYUnDYNXOFGRESqhwqHm8zMTLy9S47z8PLyIj093SlFydnlFtjYlZQJVFW3lFpuRESkeqlwuGnbti2zZs0qsX3mzJm0atXKKUXJ2e1MzMBmNwjz96J2iG/lv6AGFIuISDVT4QHFzz77LDfffDN79uzhyiuvBGDBggV88cUXfPXVV04vUIo7ffG+06/OXml00UwREalmKhxuBg4cyNy5c3n55Zf56quv8PPzo3379ixcuJDwcH0AVraiwcRV0iUFGlAsIiLVznlNBb/uuuu47rrrAEhPT2fGjBk8/vjjrF27FpvN5tQCpbiilpsqmSkFGlAsIiLVToXH3BRZsmQJI0eOJDY2lv/85z9ceeWVrFixwpm1yRlsdoPt8RlAFc2UMgzIOm7e99d1w0REpHqoUMtNQkIC06ZN4+OPPyY9PZ3bbruNvLw85s6dq8HEVWBfciY5BTb8vDxoGBFQ+S+Ymwr5ZpgipE7lv56IiIgTlLvlZuDAgTRv3pyNGzfy1ltvcfToUf773/9WZm1yhqIuqRa1g/CwVsFg4hMHzNuAKF00U0REqo1yt9z8/PPPPPzwwzzwwAO67IIL5BbY+H5DPFCFg4lTD5q3ofWr5vVEREScoNwtN0uXLiUjI4POnTvTvXt33n33XZKTkyuzNjlpy9E0Bv53Kb9tSwSgX+uYqnlhhRsREamGyh1uLrnkEj788EPi4+O57777mDlzJrGxsdjtdubPn09GRsZ5F/Hee+8RFxeHr68v3bt3Z9WqVeV63syZM7FYLAwaNOi8X9ud2e0Gk5fsYdB7f7IrKZOIQB+mje7KpU0jq6YAhRsREamGKjxbKiAggLvuuoulS5eyadMm/va3v/HKK68QFRXFDTfcUOECZs2axfjx45k4cSLr1q2jffv29OvXj6SkpDKft3//fh5//HEuvfTSCr9mdfHavB28/NN2CmwGV7eKZt6jl3JF86iqK0DhRkREqqHzngoO0Lx5c1577TUOHz7MjBkzzusYb7zxBvfccw+jR4+mVatWfPDBB/j7+zNlypSzPsdmszF8+HBeeOEFGjVqdL7luzXDMJj71xEAnr62BZPv7EytQJ+qLcIRbhpU7euKiIhcgAsKN0U8PDwYNGgQ3333XYWel5+fz9q1a+nbt++pgqxW+vbty/Lly8/6vH/+859ERUUxZsyYc75GXl4e6enpxb6qg4Mp2SSk5+LlYeHOS+Kq5lILpzMMtdyIiEi15JRwc76Sk5Ox2WxER0cX2x4dHU1CQkKpz1m6dCkff/wxH374YbleY9KkSYSEhDi+6tWrd8F1V4WVe83LHrSvG4qft0fVF5Bz4tQaN6HV45yJiIiAi8NNRWVkZHDnnXfy4YcfEhERUa7nPPXUU6SlpTm+Dh06VMlVOsfKfWa46dbQRZc9KGq1CYzWGjciIlKtnNe1pZwlIiICDw8PEhMTi21PTEwkJqbkdOc9e/awf/9+Bg4c6Nhmt9sB8PT0ZMeOHTRu3LjYc3x8fPDxqeKxKk6wcp952YPujVx02QN1SYmISDXl0pYbb29vOnfuzIIFCxzb7HY7CxYsoEePHiX2b9GiBZs2bWL9+vWOrxtuuIE+ffqwfv36atPldC5HUnM4fCIHD6uFzg3CXFOEwo2IiFRTLm25ARg/fjwjR46kS5cudOvWjbfeeousrCxGjx4NwIgRI6hTpw6TJk3C19eXNm3aFHt+aGgoQInt1dnKvWarTZs6IQT6uOhHpHAjIiLVlMvDzZAhQzh27BjPPfccCQkJdOjQgV9++cUxyPjgwYNYrdVqaNAFKxpMfImrxtuAwo2IiFRbLg83AOPGjWPcuHGlPrZ48eIynztt2jTnF+Rip8bbKNyIiIhU1MXVJFINJKbnsv94NhYLdG7gonBTbI0bLeAnIiLVi8KNm1lxcrxNq9rBhPh5uaaI09e4CanrmhpERETOk8KNmyla36Z7QxdNAQetcSMiItWawo2bKZoppfE2IiIi50fhxo0kZ+ax51gWAN3iFG5ERETOh8KNG1l1skuqRUwQYQHerisk9YB5q8HEIiJSDSncuJGiLimXXU+qiFpuRESkGlO4cSNrDpwAFG5EREQuhMKNmzAMg33J5niblrWDXVmI1rgREZFqTeHGTRzLzCM734bFAnXDXDj9OucE5Gea97XGjYiIVEMKN27i4PFsAGJD/PDx9HBdIUWDiQNjwMvXdXWIiIicJ4UbN7H/ZLhpUMvftYVovI2IiFRzCjdu4uBxc7xNg1oBri1E4UZERKo5hRs3UdRyE6eWGxERkQuicOMmDqSoW0pERMQZFG7cxAF1S4mIiDiFwo0bSMsuIDW7AID64S5sudEaNyIiUgMo3LiBAylmq01kkA8BPp6uKyQ3VWvciIhItadw4wbcZjBx+lHz1r+W1rgREZFqS+HGDRRNA68f7uLxNunx5m1QrGvrEBERuQAKN27AfVpujpi3wQo3IiJSfSncuAHHTKkIV7fcnOyWCq7t2jpEREQugMKNGzhQdOkFV86UAsgoCjd1XFuHiIjIBVC4cbHs/EKSMvIAiHP1GjdFLTdBarkREZHqS+HGxQ6eXJk4xM+LEH8v1xZTNKBYY25ERKQaU7hxsf3JbjKYGDSgWEREagSFGxc7mOIml13IzzYX8QOFGxERqdYUblysaBq4yy+YmXGyS8orAHyCXVuLiIjIBVC4cTG3uWCmYxp4LFgsrq1FRETkAijcuNgBd2m50Ro3IiJSQyjcuFB+oZ2jqTmAG4QbrXEjIiI1hMKNCx0+kY3dAH9vDyIDfVxbjNa4ERGRGkLhxoWKuqTqh/tjcfU4l9PH3IiIiFRjCjcutP/kYGKXr0wMCjciIlJjKNy4kGMwcYQbLOCXodWJRUSkZlC4cSHHNPBwF7fc2AohM9G8H6RwIyIi1ZvCjQsdSHGTSy9kJoJhB6snBES6thYREZELpHDjIscy8tiXbLbcNIkOdG0xp8+UsupXQkREqjd9krnI4h1JGAa0qRNMVJCva4vJ0DRwERGpORRuXGTh9iQArmwR7eJK0EwpERGpURRuXCC/0M6SnccAuKpFlIurQeFGRERqFIUbF1i1L4WsfBsRgT60rRPi6nIUbkREpEZRuHGBBdvNaddXtojEanWDK3AXrXGjMTciIlIDKNxUMcMwWLDNjcbbAKQfMW910UwREakBFG6q2J5jWRxMycbbw8qlTSNcXQ4YBqQXrU6slhsREan+FG6q2MKTXVKXNK5FgI+ni6sBslPAlmfeV7eUiIjUAAo3VayoS8otZknBqTVu/CPA08e1tYiIiDiBwk0VSssuYM2BEwBc6S7hRjOlRESkhlG4qUK/7zqGzW7QLDqQeuFucCVwULgREZEaR+GmCi3cVjQF3E1mSYHCjYiI1DgKN1XEbjdYXLQqcUs36ZKC064rpXAjIiI1g8JNFYlPzyU1uwBPq4UO9UJdXc4parkREZEaRuGmihxIzgKgXrg/Xh5udNq1xo2IiNQwbvQpW7PtP54NQINabjKQuIij5UarE4uISM2gcFNFDhw3W27iagW4uJLT5GVCXpp5Xwv4iYhIDaFwU0X2O8KNG7XcFF1TyjsIfINdW4uIiIiTKNxUkf3JJ7ulItyo5ebEAfM2rIFr6xAREXEitwg37733HnFxcfj6+tK9e3dWrVp11n0//PBDLr30UsLCwggLC6Nv375l7u8O7HaDAylu2C2VWhRu4lxahoiIiDO5PNzMmjWL8ePHM3HiRNatW0f79u3p168fSUlJpe6/ePFihg0bxqJFi1i+fDn16tXjmmuu4ciRI1VcefklZeSRW2DHw2qhbpifq8s55cR+8zZULTciIlJzuDzcvPHGG9xzzz2MHj2aVq1a8cEHH+Dv78+UKVNK3X/69Ok8+OCDdOjQgRYtWvDRRx9ht9tZsGBBFVdefkXjbeqG+bnXNPCicKOWGxERqUFc+kmbn5/P2rVr6du3r2Ob1Wqlb9++LF++vFzHyM7OpqCggPDw8Moq84IVzZRq4E5dUqAxNyIiUiN5uvLFk5OTsdlsREcXv9ZSdHQ027dvL9cxnnjiCWJjY4sFpNPl5eWRl5fn+D49Pf38Cz5P+04OJnarmVKGoTE3IiJSI7lRH0nFvfLKK8ycOZM5c+bg6+tb6j6TJk0iJCTE8VWvXr0qrtJN17jJOQF5J4NeaH3X1iIiIuJELg03EREReHh4kJiYWGx7YmIiMTExZT739ddf55VXXuHXX3+lXbt2Z93vqaeeIi0tzfF16NAhp9ReEUWrE8dFuFHLTdF4m8AY8HKjQc4iIiIXyKXhxtvbm86dOxcbDFw0OLhHjx5nfd5rr73Giy++yC+//EKXLl3KfA0fHx+Cg4OLfVUlwzDcc8yNYzCxxtuIiEjN4tIxNwDjx49n5MiRdOnShW7duvHWW2+RlZXF6NGjARgxYgR16tRh0qRJALz66qs899xzfPHFF8TFxZGQkABAYGAggYGBLnsfZ3MsI4/sfBtWC9QLc6OWG423ERGRGsrl4WbIkCEcO3aM5557joSEBDp06MAvv/ziGGR88OBBrNZTDUzvv/8++fn5DB48uNhxJk6cyPPPP1+VpZdLUZdUnTA/vD3daIiT1rgREZEayuXhBmDcuHGMGzeu1McWL15c7Pv9+/dXfkFOtN8dBxPDadPA41xahoiIiLO5UVNCzXRqvI0bdUnBad1SarkREZGaReGmkjlmSrlTy43dBqknZ42pW0pERGoYhZtKtj/ZDbul0o+CvQCsXhAc6+pqREREnErhphKZ08DdeI2b0Hpg9XBpKSIiIs6mcFOJjmflk5lXiMUCdTUNXEREpEoo3FSiosHEsSF++Hq5UQuJpoGLiEgNpnBTiRwXzHSnLinQNHAREanRFG4qkVtedgF06QUREanRFG4q0alp4G7WcqMxNyIiUoMp3FQit2y5yc+GzJNXYdeYGxERqYEUbiqJYRjsc8c1blIPmrc+IeAX5tpaREREKoHCTSU5kV1ARm4h4GaXXnB0SdUHi8W1tYiIiFQChZtKUtRqUzvE1z2ngWu8jYiI1FAKN5Wk6LILDSPcqEsKTk0D13gbERGpoRRuKoljvI3bhZv95q1abkREpIZSuKkk+07OlGroToOJQdPARUSkxlO4qSRu2S1lGGq5ERGRGk/hphIUmwbuTuEmOwXyM837IfVcW4uIiEglUbipBMcy8sjOt2G1QP1wN5oGnrzDvA2qDV6+rq1FRESkkijcVIKiVpu6Yf54e7rRKd7+o3nboKdr6xAREalEbvTJW3O4ZZeUYcCWueb91je5tBQREZHKpHBTCU7NlHKjLqnDayD9MHgHQpO+rq5GRESk0ni6uoCaaL87ttxsnWveNusPXn4uLUVExFlsNhsFBQWuLkOcxNvbG6v1wttdFG4qwT53mwZut6tLSkRqFMMwSEhIIDU11dWliBNZrVYaNmyIt7f3BR1H4cbJ7HaDA8ezATcKN0fWntYldZWrqxERuWBFwSYqKgp/f38suhBwtWe32zl69Cjx8fHUr1//gn6mCjdOFp+eS16hHU+rhTqhbtL9s2WOedt8gLqkRKTas9lsjmBTq1YtV5cjThQZGcnRo0cpLCzEy8vrvI+jAcVOtu+Y2SVVv5Y/nh5ucHrt9lPjbVoNcmUlIiJOUTTGxt/fjSZtiFMUdUfZbLYLOo4bfPrWLG53TakjayD9iGZJiUiNo66omsdZP1OFGydzu5lSji6pa7UqsYhIDRQXF8dbb73l6jLcisKNk7nVTCm7HbZ+a95vPcilpYiIXOwsFkuZX88///x5HXf16tXce++9zi22mtOAYidzq6uBO7qkgqCxZkmJiLhSfHy84/6sWbN47rnn2LFjh2NbYGCg475hGNhsNjw9z/0xHRkZ6dxCawC13DhRoc3OwRRzGrhbdEvt+Nm8bXaNuqRERFwsJibG8RUSEoLFYnF8v337doKCgvj555/p3LkzPj4+LF26lD179nDjjTcSHR1NYGAgXbt25bfffit23DO7pSwWCx999BE33XQT/v7+NG3alO+++66K361rKdw40eETORTaDXw8rdQOdoMwsXu+edv0GtfWISJSyQzDIDu/0CVfhmE47X08+eSTvPLKK2zbto127dqRmZnJtddey4IFC/jrr7/o378/AwcO5ODBg2Ue54UXXuC2225j48aNXHvttQwfPpyUlBSn1enu1C3lREUzpeJqBWC1ungUf0YCJGwy76tLSkRquJwCG62em+eS1976z374ezvn4/Sf//wnV199teP78PBw2rdv7/j+xRdfZM6cOXz33XeMGzfurMcZNWoUw4YNA+Dll1/mnXfeYdWqVfTv398pdbo7tdw40amZUm6w9sLuk82WsZ0gUP2xIiLVQZcuXYp9n5mZyeOPP07Lli0JDQ0lMDCQbdu2nbPlpl27do77AQEBBAcHk5SUVCk1uyO13DjRqZlSgefYswrs+tW8bXp12fuJiNQAfl4ebP1nP5e9trMEBBQfr/n4448zf/58Xn/9dZo0aYKfnx+DBw8mPz+/zOOcubqvxWLBbrc7rU53p3DjRKfCjYtbbmyFsGexeb+Jwo2I1HwWi8VpXUPu5M8//2TUqFHcdJN50ePMzEz279/v2qKqAXVLOdH+08bcuNThVZCXBn7hUKeTa2sREZHz1rRpU7755hvWr1/Phg0buP322y+qFpjzpXDjJHmFNo6cyAGgYaSLw01Rl1STq8DqvOZSERGpWm+88QZhYWH07NmTgQMH0q9fPzp10h+t51Lz2vBc5FBKNnYDArw9iAz0cW0xu04OJlaXlIiIWxo1ahSjRo1yfH/FFVeUOqU8Li6OhQsXFts2duzYYt+f2U1V2nFSU1PPu9bqSC03TnI0NReLxVy8z6UXc0uPh8RNgMVsuREREbnIqOXGSS5rFsn2F/uTml3g2kKKpoDX6QQBEa6tRURExAUUbpzIx9OD6GAXj3FxjLdRl5SIiFyc1C1VneSkwoZZkLKv9MdtBbB3sXlfl1wQEZGLlFpuqpO5D8KOH837tdtDq0HQrB9kp8Cx7XB4NeSlg38tiO3o0lJFRERcReGmujj618lgYwGLBeI3mF8LXii5b/NrwapGORERuTgp3FQXi181b9sNgX4vwbbvYetcOLAcgmtDZAvzK6oltLjepaWKiIi4ksJNdXD0L9j5M1iscNnfzVlQXUabXyIiIlKM+i6qg8WvmLdtb4OIJq6tRURExM0p3Li7I+tg5y9mq83l/3B1NSIi4kJXXHEFjz76qOP7uLg43nrrrTKfY7FYmDt37gW/trOOUxUUbtxdUatNuyFQq7FraxERkfM2cOBA+vfvX+pjf/zxBxaLhY0bN1bomKtXr+bee+91RnkOzz//PB06dCixPT4+ngEDBjj1tSqLwo0zbfsBju0s/bGCXPhiKHzUF7Z+B+W5quuRtbBrHlg8zLE2IiJSbY0ZM4b58+dz+PDhEo9NnTqVLl260K5duwodMzIyEn9/f2eVWKaYmBh8fFx87cRyUrhxlk1fwaw7YPpgyEou+fivE8xBwYdXw5d3wge9Yeu3Zw85djvMn2jeV6uNiEi1d/311xMZGcm0adOKbc/MzGT27NkMGjSIYcOGUadOHfz9/Wnbti0zZswo85hndkvt2rWLyy67DF9fX1q1asX8+fNLPOeJJ56gWbNm+Pv706hRI5599lkKCsxLB02bNo0XXniBDRs2YLFYsFgsjnrP7JbatGkTV155JX5+ftSqVYt7772XzMxMx+OjRo1i0KBBvP7669SuXZtatWoxduxYx2tVJs2WcpZGV0BYHJzYBzOGwcjvwMvPfGzzN7D6I/N+xzvNUJO0Bb4cYS62N/xrCKhV/HhrPob9f4CXP1zxRFW+ExGR6scwoCDbNa/t5W+uP3YOnp6ejBgxgmnTpjFhwgTHRZZnz56NzWbjjjvuYPbs2TzxxBMEBwfz448/cuedd9K4cWO6det2zuPb7XZuvvlmoqOjWblyJWlpacXG5xQJCgpi2rRpxMbGsmnTJu655x6CgoL4xz/+wZAhQ9i8eTO//PILv/1mXqswJCSkxDGysrLo168fPXr0YPXq1SQlJXH33Xczbty4YuFt0aJF1K5dm0WLFrF7926GDBlChw4duOeee875fi6Ewo2zBETA8Nlmt9PhVTD3Abhlihl2vnvY3Kf3eOg7Ea55EVa8b34d/Qtm3g4jvgUvX3O/E/tPtdr0fd4MTSIicnYF2fByrGte++mj4B1Qrl3vuusu/v3vf/P7779zxRVXAGaX1C233EKDBg14/PHHHfs+9NBDzJs3jy+//LJc4ea3335j+/btzJs3j9hY81y8/PLLJcbJPPPMM477cXFxPP7448ycOZN//OMf+Pn5ERgYiKenJzExMWd9rS+++ILc3Fw+/fRTAgLM9/7uu+8ycOBAXn31VaKjowEICwvj3XffxcPDgxYtWnDdddexYMGCSg836pZypoimMHQ6WL1gyxyY/yzMHgn5GVC/J/SZYO7nFwZ9noa7fwOfEDi0Ar590OyKstvh23FQkAUNekPXyv0FEBGRqtOiRQt69uzJlClTANi9ezd//PEHY8aMwWaz8eKLL9K2bVvCw8MJDAxk3rx5HDx4sFzH3rZtG/Xq1XMEG4AePXqU2G/WrFn06tWLmJgYAgMDeeaZZ8r9Gqe/Vvv27R3BBqBXr17Y7XZ27Njh2Na6dWs8PE5dULp27dokJSVV6LXOh1punC2uN9zwX5h7Pyx/19zmHwGDPwaPM053ZHMY8hl8fjNs/hrCG0Fg9KnuqBvf1WUURETKw8vfbEFx1WtXwJgxY3jooYd47733mDp1Ko0bN+byyy/n1Vdf5e233+att96ibdu2BAQE8Oijj5Kfn++0UpcvX87w4cN54YUX6NevHyEhIcycOZP//Oc/TnuN03l5eRX73mKxYC/PhJoLpHBTGToMM7ujfn8VsMDNkyH4LM2ljS6HgW/Dt2Nhyb/Bw9vc3vcFCG9YZSWLiFRrFku5u4Zc7bbbbuORRx7hiy++4NNPP+WBBx7AYrHw559/cuONN3LHHXcA5hianTt30qpVq3Idt2XLlhw6dIj4+Hhq164NwIoVK4rts2zZMho0aMCECRMc2w4cOFBsH29vb2w22zlfa9q0aWRlZTlab/7880+sVivNmzcvV72VyS2aBd577z3i4uLw9fWle/furFq1qsz9Z8+eTYsWLfD19aVt27b89NNPVVRpBVzxlBlahs2AJleVvW/HO+DSv5n3bfkQdyl0vbvyaxQRkSoXGBjIkCFDeOqpp4iPj2fUqFEANG3alPnz57Ns2TK2bdvGfffdR2JiYrmP27dvX5o1a8bIkSPZsGEDf/zxR7EQU/QaBw8eZObMmezZs4d33nmHOXPmFNsnLi6Offv2sX79epKTk8nLyyvxWsOHD8fX15eRI0eyefNmFi1axEMPPcSdd97pGG/jSi4PN7NmzWL8+PFMnDiRdevW0b59e/r163fWPrlly5YxbNgwxowZw19//cWgQYMYNGgQmzdvruLKz8Figc6joHk5Fzzq8wx0fwBqd1B3lIhIDTdmzBhOnDhBv379HGNknnnmGTp16kS/fv244ooriImJYdCgQeU+ptVqZc6cOeTk5NCtWzfuvvtuXnrppWL73HDDDTz22GOMGzeODh06sGzZMp599tli+9xyyy3079+fPn36EBkZWep0dH9/f+bNm0dKSgpdu3Zl8ODBXHXVVbz77rsVPxmVwGIYhuHKArp3707Xrl0dJ8Rut1OvXj0eeughnnzyyRL7DxkyhKysLH744QfHtksuuYQOHTrwwQcfnPP10tPTCQkJIS0tjeDgYOe9ERERqRK5ubns27ePhg0b4uvr6+pyxInK+tlW5PPbpc0D+fn5rF27lr59+zq2Wa1W+vbty/Lly0t9zvLly4vtD9CvX7+z7p+Xl0d6enqxLxEREam5XBpukpOTsdlsJfrnoqOjSUhIKPU5CQkJFdp/0qRJhISEOL7q1avnnOJFRETELdX4gR1PPfUUaWlpjq9Dhw65uiQRERGpRC6dCh4REYGHh0eJ0eCJiYlnXRkxJiamQvv7+PhUmwt9iYiIyIVzacuNt7c3nTt3ZsGCBY5tdrudBQsWlLqqIpirLZ6+P8D8+fPPur+IiIhcXFy+iN/48eMZOXIkXbp0oVu3brz11ltkZWUxevRoAEaMGEGdOnWYNGkSAI888giXX345//nPf7juuuuYOXMma9asYfLkya58GyIiUsVcPNlXKoGzfqYuDzdDhgzh2LFjPPfccyQkJNChQwd++eUXx6DhgwcPYj1tzZeePXvyxRdf8Mwzz/D000/TtGlT5s6dS5s2bVz1FkREpAoVLemfnZ2Nn5+fi6sRZyq61MTp16M6Hy5f56aqaZ0bEZHqLz4+ntTUVKKiovD398disbi6JLlAdrudo0eP4uXlRf369Uv8TCvy+e3ylhsREZGKKppEUhVXmJaqY7VaSw02FaVwIyIi1Y7FYqF27dpERUVRUFDg6nLESby9vYsNRTlfCjciIlJteXh4XPD4DKl5avwifiIiInJxUbgRERGRGkXhRkRERGqUi27MTdHMd10dXEREpPoo+twuzwo2F124ycjIANDVwUVERKqhjIwMQkJCytznolvEr2iRoKCgIKcv+pSenk69evU4dOiQFgi8ADqPzqHz6Bw6j86h8+gcF/N5NAyDjIwMYmNjzzld/KJrubFardStW7dSXyM4OPii+6WrDDqPzqHz6Bw6j86h8+gcF+t5PFeLTRENKBYREZEaReFGREREahSFGyfy8fFh4sSJ+Pj4uLqUak3n0Tl0Hp1D59E5dB6dQ+exfC66AcUiIiJSs6nlRkRERGoUhRsRERGpURRuREREpEZRuBEREZEaReHGSd577z3i4uLw9fWle/furFq1ytUlubVJkybRtWtXgoKCiIqKYtCgQezYsaPYPrm5uYwdO5ZatWoRGBjILbfcQmJioosqrh5eeeUVLBYLjz76qGObzmP5HDlyhDvuuINatWrh5+dH27ZtWbNmjeNxwzB47rnnqF27Nn5+fvTt25ddu3a5sGL3Y7PZePbZZ2nYsCF+fn40btyYF198sdi1gHQeS1qyZAkDBw4kNjYWi8XC3Llziz1ennOWkpLC8OHDCQ4OJjQ0lDFjxpCZmVmF78LNGHLBZs6caXh7extTpkwxtmzZYtxzzz1GaGiokZiY6OrS3Fa/fv2MqVOnGps3bzbWr19vXHvttUb9+vWNzMxMxz7333+/Ua9ePWPBggXGmjVrjEsuucTo2bOnC6t2b6tWrTLi4uKMdu3aGY888ohju87juaWkpBgNGjQwRo0aZaxcudLYu3evMW/ePGP37t2OfV555RUjJCTEmDt3rrFhwwbjhhtuMBo2bGjk5OS4sHL38tJLLxm1atUyfvjhB2Pfvn3G7NmzjcDAQOPtt9927KPzWNJPP/1kTJgwwfjmm28MwJgzZ06xx8tzzvr372+0b9/eWLFihfHHH38YTZo0MYYNG1bF78R9KNw4Qbdu3YyxY8c6vrfZbEZsbKwxadIkF1ZVvSQlJRmA8fvvvxuGYRipqamGl5eXMXv2bMc+27ZtMwBj+fLlrirTbWVkZBhNmzY15s+fb1x++eWOcKPzWD5PPPGE0bt377M+brfbjZiYGOPf//63Y1tqaqrh4+NjzJgxoypKrBauu+4646677iq27eabbzaGDx9uGIbOY3mcGW7Kc862bt1qAMbq1asd+/z888+GxWIxjhw5UmW1uxN1S12g/Px81q5dS9++fR3brFYrffv2Zfny5S6srHpJS0sDIDw8HIC1a9dSUFBQ7Ly2aNGC+vXr67yWYuzYsVx33XXFzhfoPJbXd999R5cuXbj11luJioqiY8eOfPjhh47H9+3bR0JCQrHzGBISQvfu3XUeT9OzZ08WLFjAzp07AdiwYQNLly5lwIABgM7j+SjPOVu+fDmhoaF06dLFsU/fvn2xWq2sXLmyymt2BxfdhTOdLTk5GZvNRnR0dLHt0dHRbN++3UVVVS92u51HH32UXr160aZNGwASEhLw9vYmNDS02L7R0dEkJCS4oEr3NXPmTNatW8fq1atLPKbzWD579+7l/fffZ/z48Tz99NOsXr2ahx9+GG9vb0aOHOk4V6X9O9d5POXJJ58kPT2dFi1a4OHhgc1m46WXXmL48OEAOo/noTznLCEhgaioqGKPe3p6Eh4eftGeV4UbcbmxY8eyefNmli5d6upSqp1Dhw7xyCOPMH/+fHx9fV1dTrVlt9vp0qULL7/8MgAdO3Zk8+bNfPDBB4wcOdLF1VUfX375JdOnT+eLL76gdevWrF+/nkcffZTY2FidR6lS6pa6QBEREXh4eJSYfZKYmEhMTIyLqqo+xo0bxw8//MCiRYuoW7euY3tMTAz5+fmkpqYW21/ntbi1a9eSlJREp06d8PT0xNPTk99//5133nkHT09PoqOjdR7LoXbt2rRq1arYtpYtW3Lw4EEAx7nSv/Oy/f3vf+fJJ59k6NChtG3bljvvvJPHHnuMSZMmATqP56M85ywmJoakpKRijxcWFpKSknLRnleFmwvk7e1N586dWbBggWOb3W5nwYIF9OjRw4WVuTfDMBg3bhxz5sxh4cKFNGzYsNjjnTt3xsvLq9h53bFjBwcPHtR5Pc1VV13Fpk2bWL9+veOrS5cuDB8+3HFf5/HcevXqVWIpgp07d9KgQQMAGjZsSExMTLHzmJ6ezsqVK3UeT5OdnY3VWvxjxcPDA7vdDug8no/ynLMePXqQmprK2rVrHfssXLgQu91O9+7dq7xmt+DqEc01wcyZMw0fHx9j2rRpxtatW417773XCA0NNRISElxdmtt64IEHjJCQEGPx4sVGfHy84ys7O9uxz/3332/Ur1/fWLhwobFmzRqjR48eRo8ePVxYdfVw+mwpw9B5LI9Vq1YZnp6exksvvWTs2rXLmD59uuHv7298/vnnjn1eeeUVIzQ01Pj222+NjRs3GjfeeONFP4X5TCNHjjTq1KnjmAr+zTffGBEREcY//vEPxz46jyVlZGQYf/31l/HXX38ZgPHGG28Yf/31l3HgwAHDMMp3zvr372907NjRWLlypbF06VKjadOmmgouF+6///2vUb9+fcPb29vo1q2bsWLFCleX5NaAUr+mTp3q2CcnJ8d48MEHjbCwMMPf39+46aabjPj4eNcVXU2cGW50Hsvn+++/N9q0aWP4+PgYLVq0MCZPnlzscbvdbjz77LNGdHS04ePjY1x11VXGjh07XFSte0pPTzceeeQRo379+oavr6/RqFEjY8KECUZeXp5jH53HkhYtWlTq/4cjR440DKN85+z48ePGsGHDjMDAQCM4ONgYPXq0kZGR4YJ34x4shnHa0pEiIiIi1ZzG3IiIiEiNonAjIiIiNYrCjYiIiNQoCjciIiJSoyjciIiISI2icCMiIiI1isKNiIiI1CgKNyJy0bNYLMydO9fVZYiIkyjciIhLjRo1CovFUuKrf//+ri5NRKopT1cXICLSv39/pk6dWmybj4+Pi6oRkepOLTci4nI+Pj7ExMQU+woLCwPMLqP333+fAQMG4OfnR6NGjfjqq6+KPX/Tpk1ceeWV+Pn5UatWLe69914yMzOL7TNlyhRat26Nj48PtWvXZty4ccUeT05O5qabbsLf35+mTZvy3XffVe6bFpFKo3AjIm7v2Wef5ZZbbmHDhg0MHz6coUOHsm3bNgCysrLo168fYWFhrF69mtmzZ/Pbb78VCy/vv/8+Y8eO5d5772XTpk189913NGnSpNhrvPDCC9x2221s3LiRa6+9luHDh5OSklKl71NEnMTVV+4UkYvbyJEjDQ8PDyMgIKDY10svvWQYhnkF+fvvv7/Yc7p372488MADhmEYxuTJk42wsDAjMzPT8fiPP/5oWK1WIyEhwTAMw4iNjTUmTJhw1hoA45lnnnF8n5mZaQDGzz//7LT3KSJVR2NuRMTl+vTpw/vvv19sW3h4uON+jx49ij3Wo0cP1q9fD8C2bdto3749AQEBjsd79eqF3W5nx44dWCwWjh49ylVXXVVmDe3atXPcDwgIIDg4mKSkpPN9SyLiQgo3IuJyAQEBJbqJnMXPz69c+3l5eRX73mKxYLfbK6MkEalkGnMjIm5vxYoVJb5v2bIlAC1btmTDhg1kZWU5Hv/zzz+xWq00b96coKAg4uLiWLBgQZXWLCKuo5YbEXG5vLw8EhISim3z9PQkIiICgNmzZ9OlSxd69+7N9OnTWbVqFR9//DEAw4cPZ+LEiYwcOZLnn3+eY8eO8dBDD3HnnXcSHR0NwPPPP8/9999PVFQUAwYMICMjgz///JOHHnqoat+oiFQJhRsRcblffvmF2rVrF9vWvHlztm/fDpgzmWbOnMmDDz5I7dq1mTFjBq1atQLA39+fefPm8cgjj9C1a1f8/f255ZZbeOONNxzHGjlyJLm5ubz55ps8/vjjREREMHjw4Kp7gyJSpSyGYRiuLkJE5GwsFgtz5sxh0KBBri5FRKoJjbkRERGRGkXhRkRERGoUjbkREbemnnMRqSi13IiIiEiNonAjIiIiNYrCjYiIiNQoCjciIiJSoyjciIiISI2icCMiIiI1isKNiIiI1CgKNyIiIlKjKNyIiIhIjfL/E/GbRV0H2HgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the loss of training and validation\n", + "plt.plot(history_Res.history['loss'])\n", + "plt.plot(history_Res.history['val_loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train', 'Validation'], loc='upper right')\n", + "plt.show()\n", + "\n", + "\n", + "# Plot the accuracy of training and validation\n", + "plt.plot(history_Res.history['accuracy'])\n", + "plt.plot(history_Res.history['val_accuracy'])\n", + "plt.title('Model Accuracy')\n", + "plt.ylabel('Accuracy')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train', 'Validation'], loc='lower right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "754f8de8", + "metadata": { + "papermill": { + "duration": 0.684086, + "end_time": "2024-05-09T16:26:49.715786", + "exception": false, + "start_time": "2024-05-09T16:26:49.031700", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# **6. Save model**" + ] + }, + { + "cell_type": "markdown", + "id": "6b5b1a51", + "metadata": { + "papermill": { + "duration": 0.733476, + "end_time": "2024-05-09T16:26:51.132306", + "exception": false, + "start_time": "2024-05-09T16:26:50.398830", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

6. Save model

" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "28a7eb46", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T16:26:52.557085Z", + "iopub.status.busy": "2024-05-09T16:26:52.556730Z", + "iopub.status.idle": "2024-05-09T16:26:52.561132Z", + "shell.execute_reply": "2024-05-09T16:26:52.560080Z" + }, + "papermill": { + "duration": 0.745341, + "end_time": "2024-05-09T16:26:52.563025", + "exception": false, + "start_time": "2024-05-09T16:26:51.817684", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "path_save_model = '/kaggle/working/'" + ] + }, + { + "cell_type": "markdown", + "id": "493faa7c", + "metadata": { + "papermill": { + "duration": 0.683977, + "end_time": "2024-05-09T16:26:53.933545", + "exception": false, + "start_time": "2024-05-09T16:26:53.249568", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

6.1. InceptionV3

" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "13f9bf4e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T16:26:55.380665Z", + "iopub.status.busy": "2024-05-09T16:26:55.380255Z", + "iopub.status.idle": "2024-05-09T16:26:56.096650Z", + "shell.execute_reply": "2024-05-09T16:26:56.095866Z" + }, + "papermill": { + "duration": 1.475068, + "end_time": "2024-05-09T16:26:56.098848", + "exception": false, + "start_time": "2024-05-09T16:26:54.623780", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "model_trans_InceptionV3.save('model_trans_InceptionV3.h5')" + ] + }, + { + "cell_type": "markdown", + "id": "1de8046d", + "metadata": { + "papermill": { + "duration": 0.70238, + "end_time": "2024-05-09T16:26:57.489975", + "exception": false, + "start_time": "2024-05-09T16:26:56.787595", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "

6.2. ResNet50

" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "15eefe2b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-09T16:26:58.933574Z", + "iopub.status.busy": "2024-05-09T16:26:58.932728Z", + "iopub.status.idle": "2024-05-09T16:26:59.744956Z", + "shell.execute_reply": "2024-05-09T16:26:59.744106Z" + }, + "papermill": { + "duration": 1.565611, + "end_time": "2024-05-09T16:26:59.747299", + "exception": false, + "start_time": "2024-05-09T16:26:58.181688", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "model_trans_ResNet50.save('model_trans_ResNet50.h5')" + ] + } + ], + "metadata": { + "kaggle": { + "accelerator": "nvidiaTeslaT4", + "dataSources": [ + { + "datasetId": 4830635, + "sourceId": 8164081, + "sourceType": "datasetVersion" + } + ], + "dockerImageVersionId": 30698, + "isGpuEnabled": true, + "isInternetEnabled": true, + "language": "python", + "sourceType": "notebook" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + }, + "papermill": { + "default_parameters": {}, + "duration": 2660.759448, + "end_time": "2024-05-09T16:27:04.173760", + "environment_variables": {}, + "exception": null, + "input_path": "__notebook__.ipynb", + "output_path": "__notebook__.ipynb", + "parameters": {}, + "start_time": "2024-05-09T15:42:43.414312", + "version": "2.5.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}