forked from alofgran/Drug-Price-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbokeh_app.py
181 lines (144 loc) · 8.35 KB
/
bokeh_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import ColumnDataSource, Select, DataRange1d, HoverTool
from bokeh.plotting import figure
import dill
from sklearn import base
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
#Import data
Price_Patent_Reg = dill.load(open('data/features_created.pkd', 'rb'))
Price_Patent_Reg = pd.get_dummies(Price_Patent_Reg, drop_first = True).copy()
#Train-test split data
train_data, test_data = train_test_split(Price_Patent_Reg,
test_size = 0.2,
random_state = 1,
# shuffle = True
) #shuffle data to avoid correlation to the natural order of the data
class GroupbyEstimator(base.BaseEstimator, base.RegressorMixin):
def __init__(self, groupby_column, pipeline_factory):
# column is the value to group by; estimator_factory can be called to produce estimators
self.groupby_column = groupby_column
self.pipeline_factory = pipeline_factory
def fit(self, dataframe, label):
# Create an estimator and fit it with the portion in each group (create and fit a model per city
self.drugs_dict = {}
self.label = label
self.coefs_dict = {}
self.intercepts_dict = {}
dataframe = pd.get_dummies(dataframe) #onehot encoder had problems with the data, so I'm getting the dummies with pandas here
for name, values in dataframe.groupby(self.groupby_column):
y = values[label]
X = values.drop(columns = [label, self.groupby_column], axis = 1)
self.drugs_dict[name] = self.pipeline_factory().fit(X, y)
self.coefs_dict[name] = self.drugs_dict[name].named_steps["lin_reg"].coef_
self.intercepts_dict[name] = self.drugs_dict[name].named_steps["lin_reg"].intercept_
return self
#Method to get the coefficients for each regression
def get_coefs(self):
return self.coefs_dict
#Method to get the intercepts for each regression
def get_intercepts(self):
return self.intercepts_dict
def predict(self, test_data):
price_pred_list = []
for idx, row in test_data.iterrows():
name = row[self.groupby_column] #get drug name from drug column
regression_coefs = self.drugs_dict[name] #get coefficients from fitting in drugs_dict
row = pd.DataFrame(row).T
X = row.drop(columns = [self.label, self.groupby_column], axis = 1).values.reshape(1, -1) #Drop ndc and price cols
drug_price_pred = regression_coefs.predict(X)
price_pred_list.append([name, drug_price_pred])
return price_pred_list
def pipeline_factory():
return Pipeline([
('lin_reg', LinearRegression())
])
lin_model = GroupbyEstimator('ndc', pipeline_factory).fit(train_data,'nadac_per_unit')
# Prep data for plotting (from training/testing data)
def format_data(dataframe, filename, test = False):#########
#change columns to datetime
dataframe.loc[:, 'ndc'] = dataframe.loc[:, 'ndc'].astype('int64') #int64 needed due to size of numbers
if test:
dataframe.loc[:, ['effective_date_year', 'effective_date_month', 'effective_date_day']] = dataframe.loc[:, ['effective_date_year', 'effective_date_month', 'effective_date_day']].astype(str)
dataframe.rename(columns = {'effective_date_year': 'year', 'effective_date_month': 'month', 'effective_date_day': 'day'}, inplace = True)
dataframe.loc[:, 'date'] = pd.to_datetime(dataframe[['year', 'month', 'day']], format = '%Y-%m-%d')
dataframe.rename({'year': 'effective_date_year', 'month': 'effective_date_month', 'day': 'effective_date_day'}, inplace = True)
dataframe.loc[:, ['year', 'month', 'day']] = dataframe.loc[:, ['year', 'month', 'day']].astype(float).astype(int)
dataframe.sort_values(['ndc', 'date'])
else:
dataframe.rename(columns = {'effective_date_year': 'year', 'effective_date_month': 'month', 'effective_date_day': 'day'}, inplace = True)
#Keep only unique values
dataframe.loc[:, 'year'] = dataframe.loc[:, 'year'].astype(int)
dataframe.loc[:, 'month'] = dataframe.loc[:, 'month'].astype(int)
dataframe.loc[:, 'day'] = dataframe.loc[:, 'day'].astype(int)
dataframe.loc[:, 'nadac_per_unit'] = dataframe.loc[:, 'nadac_per_unit'].astype('float16')
return dataframe
#Save formatted data as follows
historical_data = format_data(train_data, 'historical_data', test = True).copy()
prediction_data = format_data(test_data, 'pred_data').copy()
# historical_data = historical_data.drop('date', axis=1)
#Plotting session
# Set up initial data
historical_data = historical_data.loc[:, ['ndc', 'date', 'nadac_per_unit']]
hist_temp = historical_data[historical_data.loc[:, 'ndc']==781593600].sort_values('date')
historical_source = ColumnDataSource(data = hist_temp)
#Get initial prediction
date = dt.datetime.strptime('-'.join(('2020', '3', '31')), '%Y-%m-%d')
new_prediction_data = prediction_data[prediction_data.loc[:, 'ndc']==781593600] #working
new_prediction_data.loc[:, 'year'] = date.year
new_prediction_data.loc[:, 'month'] = date.month
new_prediction_data.loc[:, 'day'] = date.day
new_prediction_data = lin_model.predict(new_prediction_data)
new_prediction_data = pd.DataFrame(data = {'ndc':new_prediction_data[0][0], 'nadac_per_unit':new_prediction_data[0][1][0]}, index = [0]) #these element slices are correct
new_prediction_data['date'] = pd.to_datetime(date, format='%Y-%m-%d')
new_prediction_data['ndc'] = new_prediction_data['ndc'].astype(float).astype('int64')
new_prediction_data['nadac_per_unit'] = new_prediction_data['nadac_per_unit'].astype('float16')
prediction_source = ColumnDataSource(data=new_prediction_data)
id_list = list(prediction_data['ndc'].astype(str))
# Set up plot
plot = figure(plot_height=800, plot_width=800, title='Drug Price Over Time',
x_axis_type = 'datetime',
tools="crosshair, pan, reset, save, wheel_zoom")
plot.xaxis.axis_label = 'Time'
plot.yaxis.axis_label = 'Price ($)'
plot.axis.axis_label_text_font_style = 'bold'
plot.grid.grid_line_alpha = 0.8
plot.title.text_font_size = '16pt'
plot.x_range = DataRange1d(range_padding = .01)
plot.add_tools(HoverTool(tooltips=[('Date', '@date{%F}'), ('Price', '@nadac_per_unit')],
formatters = {'date': 'datetime'}))
plot.line('date', 'nadac_per_unit', source=historical_source, legend_label='Historical Price')
plot.scatter('date', 'nadac_per_unit', source=prediction_source, fill_color='red', size=8, legend_label='Predicted Price')
# Set up widgets
id_select = Select(title='Select a Drug ID Number', value='781593600', options=id_list)
# Set up callbacks
def update_data(attrname, old, new):
#Get the current select value
curr_id = id_select.value
# Generate the new data
new_historical = historical_data[historical_data.loc[:, 'ndc']==int(curr_id)]
new_historical = new_historical.sort_values('date')
new_prediction_data = prediction_data[prediction_data.loc[:, 'ndc']==int(curr_id)] #working
date = dt.datetime.strptime('-'.join(('2020', '3', '31')), '%Y-%m-%d')
new_prediction_data.loc[:, 'year'] = date.year
new_prediction_data.loc[:, 'month'] = date.month
new_prediction_data.loc[:, 'day'] = date.day
new_prediction_data = lin_model.predict(new_prediction_data)
new_prediction_data = pd.DataFrame(data = {'ndc':new_prediction_data[0][0], 'nadac_per_unit':new_prediction_data[0][1][0]}, index = [0]) #these element slices are correct
new_prediction_data['date'] = pd.to_datetime(date, format='%Y-%m-%d')
new_prediction_data['ndc'] = new_prediction_data['ndc'].astype(float).astype('int64')
# Overwrite current data with new data
historical_source.data = ColumnDataSource.from_df(new_historical)
prediction_source.data = ColumnDataSource.from_df(new_prediction_data)
# Action when select menu changes
id_select.on_change('value', update_data)
# Set up layouts and add to document
inputs = column(id_select)
curdoc().add_root(row(inputs, plot, width = 1000))
curdoc().title = 'Drug Price Predictor'