-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
160 lines (145 loc) · 5.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from lightorch.training.supervised import Module
from typing import Sequence, Dict, Any, Tuple
from torch import nn, Tensor
from loss import criterion
import torch
def conv_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
padding: int,
activation: nn.Module,
dropout: float
) -> nn.Sequential:
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm1d(out_channels),
activation(),
nn.Dropout(p=dropout)
)
def trans_conv_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
padding: int,
activation: nn.Module,
dropout: float
) -> nn.Sequential:
return nn.Sequential(
nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm1d(out_channels),
activation(),
nn.Dropout(p=dropout)
)
class Encoder(nn.Module):
def __init__(
self,
input_channels: int,
channels: Sequence[int],
kernel_sizes: Sequence[int],
strides: Sequence[int],
paddings: Sequence[int],
dropout: float,
activation: nn.Module,
latent_dim: int
) -> None:
super().__init__()
self.conv_layers = nn.Sequential(
*[conv_block(in_channel, out_channel, kernel_size, stride, padding, activation, dropout)
for in_channel, out_channel, kernel_size, stride, padding in
zip([input_channels] + list(channels[:-1]), channels, kernel_sizes, strides, paddings)]
)
self.fc_mu = nn.Linear(200, latent_dim)
self.fc_logvar = nn.Linear(200, latent_dim)
def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
x = self.conv_layers(x)
mu = self.fc_mu(x)
logvar = self.fc_logvar(x)
return mu, logvar
class Decoder(nn.Module):
def __init__(
self,
latent_dim: int,
channels: Sequence[int],
kernel_sizes: Sequence[int],
strides: Sequence[int],
paddings: Sequence[int],
dropout: float,
activation: nn.Module,
output_channels: int
) -> None:
super().__init__()
self.fc = nn.Linear(latent_dim, 200)
self.conv_layers = nn.Sequential(
*[trans_conv_block(in_channel, out_channel, kernel_size, stride, padding, activation, dropout)
for in_channel, out_channel, kernel_size, stride, padding in
zip(channels[:-1], channels[1:], kernel_sizes, strides, paddings)]
)
self.final_conv = nn.ConvTranspose1d(channels[-1], output_channels, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
x = self.fc(z)
x = self.conv_layers(x)
x = self.final_conv(x)
return x.squeeze(1)
class BinaryClassifier(nn.LSTM):
def __init__(self, input_size: int, layers: int, dropout: float) -> None:
super().__init__(input_size = input_size, hidden_size = 1, num_layers = layers, dropout = dropout, batch_first = True)
def forward(self, x: Tensor) -> Tensor:
return super().forward(x.transpose(-2, -1))[0].squeeze(-1)
class VAE(nn.Module):
def __init__(
self,
input_channels: int,
encoder_channels: Sequence[int],
decoder_channels: Sequence[int],
kernel_sizes: Sequence[int],
strides: Sequence[int],
paddings: Sequence[int],
dropout: float,
latent_dim: int,
layers: int,
) -> None:
super().__init__()
self.encoder = Encoder(input_channels, encoder_channels, kernel_sizes, strides, paddings, dropout, nn.Tanh, latent_dim)
self.decoder = Decoder(latent_dim, decoder_channels, kernel_sizes[::-1], strides[::-1], paddings[::-1], dropout, nn.Tanh, 1)
self.binary_classifier = BinaryClassifier(input_channels, layers, dropout)
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
var = torch.exp(0.5 * logvar)
eps = torch.randn_like(var, device = 'cuda')
return mu + eps * var
def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
mu, logvar = self.encoder(x)
z = self.reparameterize(mu, logvar)
binary_pred = self.binary_classifier(x)
recon_x = self.decoder(z)
return recon_x, binary_pred, mu, logvar
class Model(Module):
def __init__(self, **hparams: Dict[str, Any]) -> None:
super().__init__(**hparams)
self.vae = VAE(
input_channels=hparams['input_channels'],
encoder_channels=hparams['encoder_channels'],
decoder_channels=hparams['decoder_channels'],
kernel_sizes=hparams['kernel_sizes'],
strides=hparams['strides'],
paddings=hparams['paddings'],
dropout=hparams['dropout'],
latent_dim=hparams['latent_dim'],
layers=hparams['layers'],
)
self.criterion = criterion(hparams['beta'], *hparams['lambdas'])
def loss_forward(self, batch: Tensor, idx: int):
_, input, binary_target = batch
reconstruction, binary_pred, mu, logvar = self(input)
return dict(
input=reconstruction,
target=input[:, 0, :],
logvar=logvar,
mu=mu,
binary_pred=binary_pred,
binary_target=binary_target,
)
def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
return self.vae(x)