forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml-kompute.cpp
2038 lines (1774 loc) · 79 KB
/
ggml-kompute.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ggml.h"
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-kompute.h"
// These are generated at build time by cmake custom command
#include "shaderop_scale.h"
#include "shaderop_scale_8.h"
#include "shaderop_add.h"
#include "shaderop_addrow.h"
#include "shaderop_mul.h"
#include "shaderop_silu.h"
#include "shaderop_relu.h"
#include "shaderop_gelu.h"
#include "shaderop_softmax.h"
#include "shaderop_norm.h"
#include "shaderop_rmsnorm.h"
#include "shaderop_diagmask.h"
#include "shaderop_mul_mat_f16.h"
#include "shaderop_mul_mat_q8_0.h"
#include "shaderop_mul_mat_q4_0.h"
#include "shaderop_mul_mat_q4_1.h"
#include "shaderop_mul_mat_q6_k.h"
#include "shaderop_mul_mat_mat_f32.h"
#include "shaderop_getrows_f32.h"
#include "shaderop_getrows_f16.h"
#include "shaderop_getrows_q4_0.h"
#include "shaderop_getrows_q4_1.h"
#include "shaderop_getrows_q6_k.h"
#include "shaderop_rope_f16.h"
#include "shaderop_rope_f32.h"
#include "shaderop_cpy_f16_f16.h"
#include "shaderop_cpy_f16_f32.h"
#include "shaderop_cpy_f32_f16.h"
#include "shaderop_cpy_f32_f32.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <kompute/Kompute.hpp>
#include <vulkan/vulkan.hpp>
#ifdef __linux__
#include <cstdlib> // for setenv
#endif
#define QK4_0 32
#define QR4_0 2
#define QK4_1 32
#define QK_NL 16
typedef ggml_fp16_t half;
static std::string ggml_kompute_format_name(int device) {
return "Kompute" + std::to_string(device);
}
struct ggml_kompute_context {
int device;
std::string name;
std::shared_ptr<vk::DescriptorPool> pool;
ggml_kompute_context(int device)
: device(device), name(ggml_kompute_format_name(device)) {}
};
// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
// and consolidate the init functions and simplify object lifetime management. As it currently stands,
// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
// is only created when a device is set and vulkan is explicitly turned on.
static ggml_kompute_context *s_kompute_context = nullptr;
class kompute_manager {
kp::Manager *s_mgr = nullptr;
public:
kp::Manager *operator()() {
if (s_mgr && !s_mgr->hasInstance()) {
destroy();
}
if (!s_mgr) {
s_mgr = new kp::Manager;
}
return s_mgr;
}
void destroy() {
delete s_mgr;
s_mgr = nullptr;
}
};
static kompute_manager komputeManager;
struct ggml_vk_memory {
void *data = nullptr;
size_t size = 0;
vk::DeviceMemory *primaryMemory = nullptr;
vk::Buffer *primaryBuffer = nullptr;
vk::DeviceMemory *stagingMemory = nullptr;
vk::Buffer *stagingBuffer = nullptr;
};
#ifdef __linux__
__attribute__((constructor))
static void enable_sam() {
setenv("RADV_PERFTEST", "sam", false);
}
#endif
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
vk::PhysicalDeviceFeatures availableFeatures;
physical_device.getFeatures(&availableFeatures);
if (!availableFeatures.shaderInt16)
return false;
vk::PhysicalDeviceVulkan11Features availableFeatures11;
vk::PhysicalDeviceVulkan12Features availableFeatures12;
availableFeatures11.pNext = &availableFeatures12;
availableFeatures12.pNext = nullptr;
vk::PhysicalDeviceFeatures2 features2;
features2.pNext = &availableFeatures11;
physical_device.getFeatures2(&features2);
if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
!availableFeatures11.storageBuffer16BitAccess) {
return false;
}
if (!availableFeatures12.storageBuffer8BitAccess ||
!availableFeatures12.uniformAndStorageBuffer8BitAccess ||
!availableFeatures12.shaderFloat16 ||
!availableFeatures12.shaderInt8) {
return false;
}
return true;
}
static const char * ggml_vk_getVendorName(uint32_t vendorID) {
switch (vendorID) {
case 0x10DE:
return "nvidia";
case 0x1002:
return "amd";
case 0x8086:
return "intel";
default:
return "unknown";
}
}
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
std::vector<ggml_vk_device> results;
if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
return results;
std::vector<vk::PhysicalDevice> physical_devices;
try {
physical_devices = komputeManager()->listDevices();
} catch (vk::SystemError & err) {
std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
return results;
}
uint32_t deviceCount = physical_devices.size();
if (deviceCount == 0)
return results;
std::unordered_map<std::string, size_t> count_by_name;
for (uint32_t i = 0; i < deviceCount; i++) {
const auto & physical_device = physical_devices[i];
VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
if (major < 1 || minor < 2)
continue;
if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
continue;
size_t heapSize = 0;
for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
heapSize = heap.size;
break;
}
}
if (heapSize < memoryRequired)
continue;
auto ext_props = physical_device.enumerateDeviceExtensionProperties();
bool has_maintenance4 = false;
// Check if maintenance4 is supported
for (const auto & properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
has_maintenance4 = true;
}
}
vk::PhysicalDeviceSubgroupProperties subgroup_props;
vk::PhysicalDeviceProperties2 dev_props2;
vk::PhysicalDeviceMaintenance3Properties dev_props3;
vk::PhysicalDeviceMaintenance4Properties dev_props4;
dev_props2.pNext = &dev_props3;
dev_props3.pNext = &subgroup_props;
if (has_maintenance4) {
subgroup_props.pNext = &dev_props4;
}
physical_device.getProperties2(&dev_props2);
if (subgroup_props.subgroupSize < 32)
continue;
ggml_vk_device d;
d.index = i;
d.type = dev_props.deviceType;
d.heapSize = heapSize;
d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
d.subgroupSize = subgroup_props.subgroupSize;
d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
if (has_maintenance4) {
d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
} else {
d.maxAlloc = dev_props3.maxMemoryAllocationSize;
}
std::string name(dev_props.deviceName);
size_t n_idx = ++count_by_name[name];
if (n_idx > 1) {
name += " (" + std::to_string(n_idx) + ")";
}
d.name = strdup(name.c_str());
results.push_back(d);
}
std::stable_sort(results.begin(), results.end(),
[](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
if (lhs.type != rhs.type) {
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
}
return lhs.heapSize < rhs.heapSize;
}
);
return results;
}
// public API returns a C-style array
ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
auto devices = ggml_vk_available_devices_internal(memoryRequired);
*count = devices.size();
if (devices.empty()) {
return nullptr;
}
size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
memcpy(arr, devices.data(), nbytes);
return arr;
}
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
devices.erase(
std::remove_if(devices.begin(), devices.end(),
[&targetVendor](const ggml_vk_device& device) {
return device.vendor != targetVendor;
}),
devices.end()
);
}
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
devices.erase(
std::remove_if(devices.begin(), devices.end(),
[&targetName](const ggml_vk_device& device) {
return device.name != targetName;
}),
devices.end()
);
}
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
if (name.empty())
return false;
auto devices = ggml_vk_available_devices_internal(memoryRequired);
if (name == "amd" || name == "nvidia" || name == "intel") {
ggml_vk_filterByVendor(devices, name);
} else if (name != "gpu") {
ggml_vk_filterByName(devices, name);
}
if (devices.empty())
return false;
*device = devices.front();
return true;
}
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
return ggml_vk_get_device(device, memoryRequired, std::string(name));
}
bool ggml_vk_has_vulkan() {
return komputeManager()->hasVulkan();
}
bool ggml_vk_has_device() {
return komputeManager()->hasDevice();
}
ggml_vk_device ggml_vk_current_device() {
if (!komputeManager()->hasDevice())
return ggml_vk_device();
auto devices = ggml_vk_available_devices_internal(0);
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
GGML_ASSERT(!devices.empty());
return devices.front();
}
static
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
vk::DescriptorPoolSize(
vk::DescriptorType::eStorageBuffer,
3 * size // Descriptor count is number of possible tensors to pass into an algorithm
)
};
vk::DescriptorPoolCreateInfo descriptorPoolInfo(
vk::DescriptorPoolCreateFlags(),
size, // Max sets
static_cast<uint32_t>(descriptorPoolSizes.size()),
descriptorPoolSizes.data());
ctx->pool = std::make_shared<vk::DescriptorPool>();
vk::Result r = komputeManager()->device()->createDescriptorPool(
&descriptorPoolInfo, nullptr, ctx->pool.get());
if (r != vk::Result::eSuccess)
std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
}
static
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
if (ctx->pool) {
komputeManager()->device()->destroy(
*ctx->pool,
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
ctx->pool = nullptr;
}
}
static
vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
vk::BufferCreateInfo bufferCreateInfo;
bufferCreateInfo.size = size;
bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
vk::BufferUsageFlagBits::eTransferSrc |
vk::BufferUsageFlagBits::eTransferDst;
bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::Buffer *vkBuffer = new vk::Buffer;
vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
if (r != vk::Result::eSuccess)
std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
return vkBuffer;
}
static
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
uint32_t memoryTypeIndex = -1;
bool memoryTypeIndexFound = false;
vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
if (memoryHeap.size < size) {
continue;
}
if (requirements.memoryTypeBits & (1 << i)) {
if (((memoryProperties.memoryTypes[i]).propertyFlags &
flags) == flags) {
memoryTypeIndex = i;
memoryTypeIndexFound = true;
if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
*isHostVisible = true;
}
break;
}
}
}
if (!memoryTypeIndexFound) {
throw std::runtime_error(
"Memory type index for buffer creation not found");
}
vk::MemoryAllocateInfo allocInfo;
allocInfo.allocationSize = size;
allocInfo.memoryTypeIndex = memoryTypeIndex;
vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
if (r != vk::Result::eSuccess) {
std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
throw std::runtime_error("Error allocating vulkan memory.");
}
return vkDeviceMemory;
}
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
// If offset is already aligned, return it directly
if (offset % minStorageBufferOffsetAlignment == 0) {
return offset;
}
// Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
}
static ggml_vk_memory ggml_vk_allocate(size_t size) {
ggml_vk_memory memory;
bool isHostVisible = false;
{
memory.primaryBuffer = ggml_vk_allocate_buffer(size);
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
if (isHostVisible) {
vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
if (r != vk::Result::eSuccess)
std::cerr << "Error mapping memory" << vk::to_string(r);
}
}
if (!isHostVisible) {
memory.stagingBuffer = ggml_vk_allocate_buffer(size);
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
vk::MemoryPropertyFlagBits::eHostCoherent |
vk::MemoryPropertyFlagBits::eHostCached;
memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
if (r != vk::Result::eSuccess)
std::cerr << "Error mapping memory" << vk::to_string(r);
}
memory.size = size;
return memory;
}
static void ggml_vk_free_memory(ggml_vk_memory &memory)
{
komputeManager()->device()->destroy(
*memory.primaryBuffer,
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
if (memory.stagingBuffer) {
komputeManager()->device()->destroy(
*memory.stagingBuffer,
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
}
komputeManager()->device()->freeMemory(
*memory.primaryMemory,
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
if (memory.stagingMemory) {
komputeManager()->device()->freeMemory(
*memory.stagingMemory,
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
}
}
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
static
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
// compatibility with ggml-backend
GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
offset = uint64_t(ioffs);
return buf_ctx;
}
static
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
uint64_t originalOffset = 0;
auto * res = ggml_vk_find_tensor(t, originalOffset);
if (!res) {
static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
return nullTensor;
}
// Create a tensor whose memory will be composed of our buffers at the correct offset
const size_t nelements = ggml_nelements(t);
size_t nbytes = ggml_nbytes(t);
size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
if (alignedOffset) {
*alignedOffset = originalOffset - vulkanOffset;
nbytes += *alignedOffset;
}
return komputeManager()->tensor(
t->data,
nelements,
nbytes, kp::Tensor::TensorDataTypes::eFloat,
res->primaryMemory, res->primaryBuffer,
res->stagingMemory, res->stagingBuffer,
vulkanOffset);
}
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
if (size % sizeof(uint32_t) != 0) {
throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
}
const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
size_t count = size / sizeof(uint32_t);
return std::vector<uint32_t>(data_ptr, data_ptr + count);
}
inline static
uint32_t safe_divide(uint32_t a, uint32_t b) {
if (b <= 1) {
return a;
}
if ((a % b) != 0) {
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
GGML_ASSERT(!"safe_divide result would've had remainder");
}
return a / b;
}
static void ggml_vk_add(
kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
int32_t ne0,
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
) {
const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
kp::shader_data::op_add_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t ne00;
int32_t nb00, nb01, nb02, nb03;
int32_t ne10, ne11, ne12, ne13;
int32_t nb10, nb11, nb12, nb13;
int32_t ne0;
int32_t nb0, nb1, nb2, nb3;
} const pushConsts {
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
ne00,
nb00, nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb10, nb11, nb12, nb13,
ne0,
nb0, nb1, nb2, nb3
};
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__)) {
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({inA, inB, out});
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_addrow(kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
uint32_t size, uint32_t row = 0) {
const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
kp::shader_data::op_addrow_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
uint32_t row;
} const pushConsts {
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
row
};
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__))
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({inA, inB, out});
s_algo->setWorkgroup({size});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_mul(
kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
int32_t ne0,
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
) {
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
kp::shader_data::op_mul_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t ne00;
int32_t nb00, nb01, nb02, nb03;
int32_t ne10, ne11, ne12, ne13;
int32_t nb10, nb11, nb12, nb13;
int32_t ne0;
int32_t nb0, nb1, nb2, nb3;
} const pushConsts {
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
ne00,
nb00, nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb10, nb11, nb12, nb13,
ne0,
nb0, nb1, nb2, nb3
};
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__)) {
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({inA, inB, out});
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_scale(kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& in,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inOff, uint32_t outOff,
uint32_t size, float scale) {
const static auto spirv_1 = getSpirvShader(
kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
);
const static auto spirv_8 = getSpirvShader(
kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
);
struct PushConstants {
uint32_t inOff, outOff;
float scale;
} const pushConsts {
safe_divide(inOff, 4), safe_divide(outOff, 4),
scale
};
const auto * spirv = &spirv_1;
std::string name(__func__);
if (size % 8 == 0) {
size /= 8;
name += "_8";
spirv = &spirv_8;
}
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(name)) {
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(name);
s_algo->setTensors({in, out});
s_algo->setWorkgroup({size});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_xxlu(
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& in,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inOff, uint32_t outOff,
uint32_t size
) {
struct PushConstants {
uint32_t inOff, outOff;
} const pushConsts {
safe_divide(inOff, 4), safe_divide(outOff, 4),
};
auto name = std::string(__func__) + "_" + suffix;
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(name)) {
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(name);
s_algo->setTensors({in, out});
s_algo->setWorkgroup({size});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
template <typename... Args>
static void ggml_vk_silu(Args&&... args) {
const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
kp::shader_data::op_silu_comp_spv_len);
ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
}
template <typename... Args>
static void ggml_vk_relu(Args&&... args) {
const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
kp::shader_data::op_relu_comp_spv_len);
ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
}
template <typename... Args>
static void ggml_vk_gelu(Args&&... args) {
const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
kp::shader_data::op_gelu_comp_spv_len);
ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
}
static void ggml_vk_soft_max(
kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
float scale
) {
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
kp::shader_data::op_softmax_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t ne00, ne01, ne02;
float scale;
int32_t mask;
} pushConsts {
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
ne00, ne01, ne02,
scale,
bool(inB)
};
auto & inB_ = inB ? inB : inA;
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__)) {
// FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
const uint32_t local_x = 32;
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({inA, inB_, out});
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_norm_(
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& in,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inOff, uint32_t outOff,
int32_t ne00, int32_t nb01,
int32_t nrows, float epsilon
) {
GGML_ASSERT(nb01%sizeof(float) == 0);
GGML_ASSERT(ne00%sizeof(float) == 0);
struct PushConstants {
uint32_t inOff, outOff;
uint32_t ne00, nb01;
float eps;
} pushConsts {
safe_divide(inOff, 4), safe_divide(outOff, 4),
(uint32_t)ne00, (uint32_t)nb01, epsilon
};
auto name = std::string(__func__) + "_" + suffix;
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(name)) {
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(name);
s_algo->setTensors({in, out});
s_algo->setWorkgroup({(uint32_t)nrows});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
template <typename... Args>
static void ggml_vk_norm(Args&&... args) {
const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
kp::shader_data::op_norm_comp_spv_len);
ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
}
template <typename... Args>
static void ggml_vk_rms_norm(Args&&... args) {
const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
kp::shader_data::op_rmsnorm_comp_spv_len);
ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
}
static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& in,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inOff, uint32_t outOff,
uint32_t n_past,
int32_t ne00, int32_t ne01, int32_t ne02) {
const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
kp::shader_data::op_diagmask_comp_spv_len);
struct PushConstants {
uint32_t inOff, outOff;
uint32_t n_past;
int32_t ne00, ne01;
} pushConsts {
safe_divide(inOff, 4), safe_divide(outOff, 4),
n_past,
ne00, ne01
};
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__))
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({in, out});
s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_mul_mat_f16(
kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
int32_t ne00, int32_t ne01, int32_t ne02,
uint32_t nb00, uint32_t nb01, uint32_t nb02,
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
uint32_t nb10, uint32_t nb11, uint32_t nb12,
int32_t ne0, int32_t ne1,
uint32_t r2, uint32_t r3
) {
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
kp::shader_data::op_mul_mat_f16_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t ne00, ne01, ne02;
uint32_t nb00, nb01, nb02;
int32_t ne10, ne11, ne12;
uint32_t nb10, nb11, nb12;
int32_t ne0, ne1;
uint32_t r2, r3;
} pushConsts {
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
ne00, ne01, ne02,
nb00, nb01, nb02,
ne10, ne11, ne12,
nb10, nb11, nb12,
ne0, ne1,
r2, r3
};
const unsigned ny = unsigned((ne11 + 4 - 1)/4);
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__)) {
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({inA, inB, out});
s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
int32_t ne00, int32_t ne01, int32_t ne02,
uint32_t nb01, uint32_t nb02,
int32_t ne11, int32_t ne12,
uint32_t nb11, uint32_t nb12,
uint32_t nb1, uint32_t nb2) {
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t ne00, ne01, ne02, ne11, ne12;
uint32_t nb01, nb02;
uint32_t nb11, nb12;
uint32_t nb1, nb2;
} pushConsts {
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
ne00, ne01, ne02, ne11, ne12,
nb01, nb02, nb11, nb12,
nb1, nb2
};
const uint32_t local_x = ggml_vk_current_device().subgroupSize;
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__)) {
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
{inA, inB, out}, spirv,
{unsigned(ne01),
unsigned(ne11),
unsigned(std::max(ne12, ne02))
},
{local_x},
{pushConsts});