forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml-sycl.cpp
6351 lines (5356 loc) · 251 KB
/
ggml-sycl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#include <algorithm>
#include <assert.h>
#include <atomic>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <float.h>
#include <limits>
#include <stdint.h>
#include <stdio.h>
#include <vector>
#include <cmath>
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <regex>
#include <sycl/sycl.hpp>
#include <sycl/half_type.hpp>
#include "ggml-sycl.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include "ggml-sycl/backend.hpp"
bool ggml_sycl_loaded(void);
void ggml_sycl_free_data(struct ggml_tensor * tensor);
void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
void ggml_sycl_set_main_device(int main_device);
void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
bool ggml_backend_is_sycl(ggml_backend_t backend);
int ggml_backend_sycl_get_device(ggml_backend_t backend);
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
static inline int get_sycl_env(const char *env_name, int default_val);
static inline int get_work_group_size(const sycl::device& device);
void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
const void *ptr_src, size_t size) {
char *host_buf = (char *)malloc(size);
q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
free(host_buf);
}
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
typedef void (*ggml_sycl_op_mul_mat_t)(
ggml_backend_sycl_context & ctx,
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
const int64_t src1_ncols, const int64_t src1_padded_row_size,
const queue_ptr &stream);
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
static __dpct_inline__ float warp_reduce_sum(float x,
const sycl::nd_item<3> &item_ct1) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
/*
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
kernel that calls this function may be less than "32". The function
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
CPU device. Modify the size of the work-group to ensure that the value
of the right-most dimension is a multiple of "32".
*/
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
}
return x;
}
static __dpct_inline__ sycl::float2
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
mask);
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
mask);
}
return a;
}
static __dpct_inline__ float warp_reduce_max(float x,
const sycl::nd_item<3> &item_ct1) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
/*
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
kernel that calls this function may be less than "32". The function
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
CPU device. Modify the size of the work-group to ensure that the value
of the right-most dimension is a multiple of "32".
*/
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
item_ct1.get_sub_group(), x, mask));
}
return x;
}
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
return a + b;
}
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}
static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
static void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= ne) {
return;
}
int src1_idx = i - offset;
int oz = src1_idx / nb2;
int oy = (src1_idx - (oz * nb2)) / nb1;
int ox = src1_idx % nb1;
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
} else {
dst[i] = x[i];
}
}
static void gelu_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
float xi = x[i];
dst[i] = 0.5f * xi *
(1.0f +
sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
}
static void silu_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
}
static void gelu_quick_f32(const float *x, float *dst, int k,
const sycl::nd_item<3> &item_ct1) {
const float GELU_QUICK_COEF = -1.702f;
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
}
static void tanh_f32(const float *x, float *dst, int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = sycl::tanh((float)(x[i]));
}
static void relu_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = sycl::fmax((float)(x[i]), (float)0);
}
static void hardsigmoid_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
}
static void hardswish_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
}
static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = sycl::fmax((float)(x[i]), (float)0) +
sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
}
static void sqr_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = x[i] * x[i];
}
static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
mean_var.x() += xi;
mean_var.y() += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
/*
DPCT1118:0: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = s_sum[lane_id];
mean_var = warp_reduce_sum(mean_var, item_ct1);
}
const float mean = mean_var.x() / ncols;
const float var = mean_var.y() / ncols - mean * mean;
const float inv_std = sycl::rsqrt(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
}
}
static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (item_ct1.get_group(0) < ne02) { // src0
int offset_src =
nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx + item_ct1.get_group(1) * ne0 +
(item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = y[offset_src];
}
}
static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
int index = item_ct1.get_local_id(0) +
item_ct1.get_group(0) * item_ct1.get_local_range(0);
if (index >= ne10 * ne11 * ne12 * ne13) {
return;
}
// operation
int i10 = index % ne10;
int i11 = (index / ne10) % ne11;
int i12 = (index / (ne10 * ne11)) % ne12;
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
int i00 = i10 / sf0;
int i01 = i11 / sf1;
int i02 = i12 / sf2;
int i03 = i13 / sf3;
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
}
static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
item_ct1.get_group(0) < ne02) {
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
item_ct1.get_group(0) * ne00 * ne01;
dst[offset_dst] = x[offset_src];
} else {
dst[offset_dst] = 0.0f;
}
}
static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
int start = item_ct1.get_group(2) * group_size;
int end = start + group_size;
start += item_ct1.get_local_id(2);
if (end >= ne_elements) {
end = ne_elements;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += block_size) {
tmp += x[j];
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:1: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:2: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
float variance = tmp / group_size;
float scale = sycl::rsqrt(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
}
static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float mean = tmp / ncols;
const float scale = sycl::rsqrt(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = scale * x[row*ncols + col];
}
}
static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
const sycl::nd_item<3> &item_ct1) {
const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (ix >= kx_padded) {
return;
}
const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int i_padded = iy*kx_padded + ix;
block_q8_1 * y = (block_q8_1 *) vy;
const int ib = i_padded / QK8_1; // block index
const int iqs = i_padded % QK8_1; // quant index
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
float amax = sycl::fabs((float)xi);
float sum = xi;
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
item_ct1.get_sub_group(), amax, mask));
sum +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
}
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
y[ib].qs[iqs] = q;
if (iqs > 0) {
return;
}
reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
}
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void k_get_rows(
const void * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12,
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2)) *
2;
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) /
ne12;
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) %
ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
dfloat2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = v.x();
dst_row[iybs + iqs + y_offset] = v.y();
}
template<typename src0_t, typename dst_t>
static void k_get_rows_float(
const src0_t * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12,
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2);
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) /
ne12;
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) %
ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = src0_row[i00];
}
static void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
const sycl::nd_item<3> &item_ct1) {
const sycl::half *x = (const sycl::half *)vx;
const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0);
const int channel_x = channel / (nchannels_y / nchannels_x);
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
float tmp = 0.0f;
for (int col_x0 = 0; col_x0 < ncols_x;
col_x0 += item_ct1.get_local_range(2)) {
const int col_x = col_x0 + item_ct1.get_local_id(2);
if (col_x >= ncols_x) {
break;
}
// x is transposed and permuted
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
const float xi =
sycl::vec<sycl::half, 1>(x[ix])
.convert<float, sycl::rounding_mode::automatic>()[0];
const int row_y = col_x;
// y is not transposed but permuted
const int iy = channel*nrows_y + row_y;
tmp += xi * y[iy];
}
// dst is not transposed and not permuted
const int idst = channel*nrows_dst + row_dst;
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
if (item_ct1.get_local_id(2) == 0) {
dst[idst] = tmp;
}
}
static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
const sycl::nd_item<3> &item_ct1) {
const sycl::half *x = (const sycl::half *)vx;
const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0);
const int channel_x = channel / channel_x_divisor;
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
const int idst = channel*nrows_dst + row_dst;
float tmp = 0.0f;
for (int col_x0 = 0; col_x0 < ncols_x;
col_x0 += item_ct1.get_local_range(2)) {
const int col_x = col_x0 + item_ct1.get_local_id(2);
if (col_x >= ncols_x) {
break;
}
const int row_y = col_x;
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const int iy = channel*nrows_y + row_y;
const float xi =
sycl::vec<sycl::half, 1>(x[ix])
.convert<float, sycl::rounding_mode::automatic>()[0];
tmp += xi * y[iy];
}
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
if (item_ct1.get_local_id(2) == 0) {
dst[idst] = tmp;
}
}
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
sycl::half *dsti = (sycl::half *)cdsti;
*dsti = sycl::vec<float, 1>(*xi)
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
}
static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
const sycl::half *xi = (const sycl::half *)cxi;
sycl::half *dsti = (sycl::half *)cdsti;
*dsti = *xi;
}
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
const sycl::half *xi = (const sycl::half *)cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
const int16_t *xi = (const int16_t *)cxi;
int16_t *dsti = (int16_t *)cdsti;
*dsti = *xi;
}
static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
const int32_t *xi = (const int32_t *)cxi;
int32_t *dsti = (int32_t *)cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1>
static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= ne) {
return;
}
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset);
}
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = sycl::fmax(amax, sycl::fabs((float)v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j]*id;
dsti->qs[j] = sycl::round((float)x0);
}
}
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float)v)) {
amax = sycl::fabs((float)v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK4_0/2 + j]*id;
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = vmin;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (xi[0 + j] - vmin)*id;
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
template <cpy_kernel_t cpy_blck, int qk>
static void cpy_f32_q(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2)) *
qk;
if (i >= ne) {
return;
}
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
cpy_blck(cx + x_offset, cdst + dst_offset);
}
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
}
struct rope_corr_dims {
float v[4];
};
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;