-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
166 lines (144 loc) · 5.05 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import print_function
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.preprocessing.image import img_to_array
from keras.callbacks import ModelCheckpoint, EarlyStopping
from data import DataGenerator
import numpy as np
import cv2
import os
import MySQLdb
def load_data2():
conn = MySQLdb.Connection(
host='localhost',
user='root',
port=3306,
db='image_classifier',
)
conn.query("""SELECT * FROM images""")
result = conn.store_result()
data = []
for i in range(result.num_rows()):
row = result.fetch_row()
image_id = row[0][0]
rotation = int(row[0][1] / 90)
data.append((image_id, rotation))
data = np.array(data)
# Shuffle data and split 80% 20% for training vs test data
indices = np.random.permutation(len(data))
split = int(len(data) * 4 / 5)
training_idx, test_idx = indices[:split], indices[split:]
data_train = data[training_idx]
data_test = data[test_idx]
return (data_train, data_test)
def load_data():
x = []
y = []
conn = MySQLdb.Connection(
host='localhost',
user='root',
port=3306,
db='image_classifier',
)
conn.query("""SELECT * FROM images""")
result = conn.store_result()
for i in range(result.num_rows()):
row = result.fetch_row()
image_id = row[0][0]
rotation = row[0][1]
path = "data-sanitized/%07d.png" % image_id
if os.path.exists(path):
print(path)
img = cv2.imread(path)
img = img_to_array(img)
x.append(img)
y.append(int(rotation / 90))
x = np.array(x)
y = np.array(y)
# Shuffle data and split 80% 20% for training vs test data
indices = np.random.permutation(x.shape[0])
split = int(x.shape[0] * 4 / 5)
print(split)
training_idx, test_idx = indices[:split], indices[split:]
x_train = x[training_idx, :]
y_train = y[training_idx]
x_test = x[test_idx, :]
y_test = y[test_idx]
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
return ((x_train, y_train), (x_test, y_test))
def main():
batch_size = 32
num_classes = 4
epochs = 100
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_orientation_trained_model.h5'
# (x_train, y_train), (x_test, y_test) = load_data()
# print('x_train shape:', x_train.shape)
# print(x_train.shape[0], 'train samples')
# print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
# y_train = keras.utils.to_categorical(y_train, num_classes)
# y_test = keras.utils.to_categorical(y_test, num_classes)
data_train, data_test = load_data2()
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(128, 128, 3)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
checkpointer = ModelCheckpoint(
filepath=os.path.join(save_dir, 'checkpoint.hdf5'),
verbose=1,
save_best_only=True
)
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
train_generator = DataGenerator(data_train)
val_generator = DataGenerator(data_test)
model.fit_generator(train_generator.flow(batch_size=batch_size),
epochs=epochs,
validation_data=val_generator.flow(batch_size=batch_size),
shuffle=True,
callbacks=[checkpointer, early_stopping])
# Save model and weights
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s' % model_path)
# Score trained model.
scores = model.evaluate_generator(val_generator.flow(batch_size=batch_size))
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
if __name__ == '__main__':
main()