-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMoreLogic.v
199 lines (164 loc) · 5.47 KB
/
MoreLogic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(* Chapter 9 More Logic *)
Require Export "Prop".
(* Existential quantification *)
Inductive ex (X:Type) (P:X -> Prop) : Prop :=
ex_intro : forall witness:X, P witness -> ex X P.
Notation "'exists' x , p" :=
(ex _ (fun x => p))
(at level 200, x ident, right associativity) : type_scope.
Notation "'exists' x : X , p" :=
(ex _ (fun x:X => p))
(at level 200, x ident, right associativity) : type_scope.
Example exists_ex_1: exists n, n + (n * n) = 6.
Proof. apply ex_intro with 2. reflexivity. Qed.
Example exists_ex_2: exists n, n + (n * n) = 6.
Proof.
exists 2. (* equivalent to: intros. constructor 1 with 2. *)
reflexivity.
Qed.
Theorem exists_ex_3: forall n,
(exists m, n = 4 + m) -> (exists o, n = 2 + o).
Proof.
intros. inversion H as [m Pm].
exists (2 + m). apply Pm.
Qed.
Lemma exists_ex_4: exists n:nat, even n /\ beautiful n.
Proof.
exists 8. split.
Case "even". unfold even. reflexivity.
Case "beautiful". apply bsum with (n:=3). apply b3. apply b5.
Qed.
(* Exercise: * optional *)
Eval compute in ex nat (fun n => beautiful (S n)).
(* In English: there is a number, n, that is beaufiful if one is added to it. *)
(* Exercise: * *)
Theorem dist_not_exists: forall (X:Type) (P:X -> Prop),
(forall x, P x) -> ~ (exists x, ~ P x).
Proof.
unfold not. intros X P H ex. inversion ex as [x Px].
apply Px. apply H.
Qed.
(* Exercise: *** *)
Theorem not_exists_dist:
excluded_middle ->
forall (X:Type) (P:X -> Prop),
~ (exists x, ~ P x) -> (forall x, P x).
Proof.
intros. unfold excluded_middle, not in *.
Abort.
(* Exercise: ** *)
Theorem dist_exists_or: forall (X:Type) (P Q : X -> Prop),
(exists x, P x \/ Q x) <-> (exists x, P x) \/ (exists x, Q x).
Proof.
unfold iff. intros. split.
Case "->".
intros. inversion H. inversion H0.
SCase "left".
left. exists witness. assumption.
SCase "right".
right. exists witness. assumption.
Case "<-".
intros. inversion H.
SCase "left".
inversion H0. exists witness. left. assumption.
SCase "right".
inversion H0. exists witness. right. assumption.
Qed.
(* Evidence carrying booleans *)
Inductive sumbool (A B : Prop) : Set :=
| left : A -> sumbool A B
| right: B -> sumbool A B.
Notation "{ A } + { B }" := (sumbool A B) : type_scope.
Theorem eq_nat_dec: forall n m : nat, {n = m} + {n <> m}.
Proof.
intros n. induction n.
Case "n=0".
intros m. destruct m.
SCase "0". left. reflexivity.
SCase "S". right. unfold not. intros. inversion H.
Case "S".
intros m. destruct m.
SCase "0". right. unfold not. intros. inversion H.
SCase "S". destruct IHn with (m:=m) as [eq | neq].
SSCase "left".
left. apply f_equal. assumption.
SSCase "right".
right. unfold not. intros. inversion H. unfold not in *. apply neq. assumption.
Defined.
Print eq_nat_dec.
Extraction eq_nat_dec. (* eq_nat_dec ends in defined so that the theorem has
computational value
*)
Definition override' {X:Type} (f:nat -> X) (k:nat) (x:X) : nat -> X :=
fun (k':nat) => if eq_nat_dec k k' then x else f k'.
Theorem override_same': forall (X:Type) x1 k1 k2 (f:nat -> X),
f k1 = x1 -> (override' f k1 x1) k2 = f k2.
Proof.
intros. unfold override'. destruct (eq_nat_dec k1 k2).
Case "left". rewrite <- e. symmetry. apply H.
Case "right". reflexivity.
Qed.
(* Exercise: * *)
Theorem override_shadow': forall (X:Type) x1 x2 k1 k2 (f:nat -> X),
(override' (override' f k1 x2) k1 x1) k2 = (override' f k1 x1) k2.
Proof.
unfold override'. intros. destruct (eq_nat_dec k1 k2).
Case "left". reflexivity.
Case "right". reflexivity.
Qed.
(* Additional exercises *)
(* Exercise: **** advanced *)
Inductive appears_in {X:Type} (a:X) : list X -> Prop :=
| ai_here : forall l, appears_in a (a::l)
| ai_later : forall b l, appears_in a l -> appears_in a (b::l).
(* Exercise: *** *)
Inductive all {X:Type} (P:X -> Prop) : list X -> Prop :=
| nil : all P []
| cons : forall {l:list X} (x:X) (xs:all P l), P x -> all P (x :: l).
Check nil.
Check cons.
Check cons even 4.
Check cons even 3.
Check even. Print even.
Definition t := nil even. Check t.
Definition t2 := cons even 2 t eq_refl. Check t2.
Definition t3 := cons even 4 t2 eq_refl. Check t3.
Definition t4 := cons even 6 t3 eq_refl. Check t4.
(* Definition t5 := cons even 7 t4 eq_refl. *)
(* important properties not visible in spec of [all]: forallb has a *decidable*
test : X -> bool.
[all] only requires a test : X -> Prop
*)
(* Exercise: *** *)
Inductive nostutter: list nat -> Prop :=
| nll : nostutter []
| sgl : forall x : nat, nostutter [x]
| nxt : forall (x y : nat) (p:x <> y) (xs:list nat), nostutter (y::xs) -> nostutter (x::y::xs).
(* 3 cases? gads *)
Example test_nostutter_1: nostutter [3;1;4;1;5;6].
Proof. repeat constructor; apply beq_nat_false; auto. Qed.
Example test_nostutter_2: nostutter [].
Proof. constructor 1. Qed.
Example test_nostutter_3: nostutter [5].
Proof. constructor 2. Qed.
Example test_nostutter_4: not (nostutter [3;1;1;4]).
Proof.
intro. repeat match goal with
h: nostutter _ |- _ => inversion h; clear h; subst
end. apply p0. reflexivity.
Qed.
(* Exercise: **** advanced *)
Lemma app_length: forall (X:Type) (l1 l2 : list X),
length (l1 ++ l2) = length l1 + length l2.
Proof.
intros. induction l1.
Case "[]".
reflexivity.
Case "::".
simpl. apply f_equal. apply IHl1.
Qed.
Lemma appears_in_app_split: forall (X:Type) (x:X) (l:list X),
appears_in x l ->
exists l1, exists l2, l = l1 ++ (x::l2).
Proof.
Admitted.