-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathProp.v
279 lines (224 loc) · 6.34 KB
/
Prop.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
(* Chapter 8 Propositions and evidence *)
Require Export Logic Induction.
(* from boolean functions to propositions *)
Definition even (n:nat) : Prop :=
evenb n = true.
(* inductively defined propositions *)
Inductive ev: nat -> Prop :=
| ev_0 : ev 0
| ev_SS : forall n:nat, ev n -> ev (S (S n)).
(* Exercise: * *)
Theorem double_even: forall n,
ev (double n).
Proof.
intros. induction n.
Case "n=0". apply ev_0.
Case "n=S". apply ev_SS. apply IHn.
Qed.
(* computational vs inductive definitions *)
(* sometimes it's preferable to write a testing function to check a boolean
property. this may not always be possible however. other times it's
preferable to encode the property directly as an inductive definition
*)
(* Exercise: * *)
Theorem ev__even: forall n,
ev n -> even n.
Proof.
intros n e. induction e.
Case "e=0". reflexivity.
Case "e=S". unfold even in *. apply IHe.
Qed.
(* to be explained later: induction principle on inductively defined
propositions does not follow quite the same form as that of inductively
defined sets
*)
(* Exercise: * *)
Theorem will_not_succeed: forall n, ev n.
Proof.
intros. induction n.
Case "O". apply ev_0.
Case "S".
Abort.
(* There's no way to have ev n and ev (S n) *)
(* Exercise: ** *)
Theorem ev_sum: forall n m,
ev n -> ev m -> ev (n + m).
Proof.
intros n m en em. induction en.
Case "O". apply em.
Case "S". apply ev_SS. apply IHen.
Qed.
(* Example: beautiful numbers *)
Inductive beautiful : nat -> Prop :=
| b0 : beautiful 0
| b3 : beautiful 3
| b5 : beautiful 5
| bsum : forall n m, beautiful n -> beautiful m -> beautiful (n + m).
Theorem three_is_beautiful: beautiful 3.
Proof. apply b3. Qed.
Theorem eight_is_beautiful: beautiful 8.
Proof.
apply bsum with (n:=3).
apply b3. apply b5.
Qed.
Theorem beautiful_plus_eight: forall n,
beautiful n -> beautiful (8 + n).
Proof.
intros. apply bsum with (n:=8).
apply eight_is_beautiful.
apply H.
Qed.
(* Exercise: ** *)
Theorem b_times2: forall n, beautiful n -> beautiful (2 * n).
Proof.
intros. induction H.
Case "0". apply b0.
Case "3". simpl. apply bsum with (n:=3). apply b3. apply b3.
Case "5". simpl. apply bsum with (n:=5). apply b5. apply b5.
Case "+". apply bsum with (n:=n+m).
apply bsum. apply H. apply H0.
apply bsum with (n:=n+m). apply bsum. apply H. apply H0. apply b0.
Qed.
(* Exercise: *** *)
Theorem b_times_m: forall n m,
beautiful n -> beautiful (m * n).
Proof.
intros n m bn. induction m.
Case "m=0". apply b0.
Case "m=S". apply bsum with (n:=n). apply bn. apply IHm.
Qed.
(* Induction over evidence *)
Inductive gorgeous : nat -> Prop :=
| g0 : gorgeous 0
| g3 : forall n, gorgeous n -> gorgeous (3 + n)
| g5 : forall n, gorgeous n -> gorgeous (5 + n).
(* Exercise: * *)
Theorem gorgeous_plus13: forall n,
gorgeous n -> gorgeous (13 + n).
Proof.
intros. apply g3. apply g5. apply g5. apply H.
Qed.
Theorem gorgeous__beautiful: forall n,
gorgeous n -> beautiful n.
Proof.
intros. induction H.
Case "g0". apply b0.
Case "g3". apply bsum. apply b3. apply IHgorgeous.
Case "g5". apply bsum. apply b5. apply IHgorgeous.
Qed.
Theorem gorgeous__beautiful_failed: forall n,
gorgeous n -> beautiful n.
Proof.
intros. induction n. apply b0.
(* Stuck on: beautiful (S n) *)
Abort.
(* Exercise: ** *)
Theorem gorgeous_sum: forall n m,
gorgeous n -> gorgeous m -> gorgeous (n + m).
Proof.
intros n m gn gm. induction gn.
Case "g0". apply gm.
Case "g3". apply g3, IHgn.
Case "g5". apply g5, IHgn.
Qed.
(* Exercise: *** advanced *)
Theorem beautiful__gorgeous: forall n,
beautiful n -> gorgeous n.
Proof.
intros n bn. induction bn.
Case "b0". apply g0.
Case "b3". apply g3, g0.
Case "b5". apply g5, g0.
Case "b+". apply gorgeous_sum. apply IHbn1. apply IHbn2.
Qed.
(* Exercise: *** *)
Theorem g_times2: forall n, gorgeous n -> gorgeous (2 * n).
Proof.
intros n gn. destruct gn.
Case "g0". apply g0.
Case "g3".
apply gorgeous_sum. apply g3. apply gn.
apply gorgeous_sum. apply g3. apply gn. apply g0.
Case "g5".
apply gorgeous_sum. apply g5. apply gn.
apply gorgeous_sum. apply g5. apply gn. apply g0.
Qed.
(* Inversion on evidence *)
Theorem ev_minus2: forall n,
ev n -> ev (pred (pred n)).
Proof.
intros n evn. inversion evn.
Case "0". apply ev_0.
Case "S". apply H.
Qed.
(* Exercise: * *)
Theorem ev_minus2_destruct: forall n,
ev n -> ev (pred (pred n)).
Proof.
intros n evn. destruct evn.
Case "0". apply ev_0.
Case "S". apply evn.
Qed.
Theorem SSev__even: forall n,
ev (S (S n)) -> ev n.
Proof.
intros n essn. inversion essn as [|n' e']. apply e'.
Qed.
(* inversion revisited *)
(* Exercise: * *)
Theorem SSSSev__even: forall n,
ev (S (S (S (S n)))) -> ev n.
Proof.
intros. inversion H. inversion H1. apply H3.
Qed.
Theorem even5_nonsense: ev 5 -> 2 + 2 = 9.
Proof.
intros. inversion H. inversion H1. inversion H3.
Qed.
(* Exercise: *** advanced *)
Theorem ev_ev__ev: forall n m,
ev (n+m) -> ev n -> ev m.
Proof.
intros n m evnm en. induction en as [|n' evn' ihen'].
Case "0". apply evnm.
Case "S".
apply ihen'. simpl in evnm. apply SSev__even, evnm.
Qed.
(* Exercise: *** optional *)
Theorem ev_plus_plus: forall n m p,
ev (n+m) -> ev (n+p) -> ev (m+p).
Proof.
intros n m p evnm evnp.
apply ev_ev__ev with n. rewrite plus_assoc.
apply ev_sum. apply evnm.
apply ev_ev__ev with n. apply evnp.
apply ev_ev__ev with m. rewrite plus_comm. apply evnm.
Abort.
(* Additional exercises *)
(* Exercise: ** *)
Inductive R : nat -> list nat -> Prop :=
| c1 : R 0 []
| c2 : forall n l, R n l -> R (S n) (n :: l)
| c3 : forall n l, R (S n) l -> R n l.
(* Which of * are provable:
R 2 [1,0]
R 1 [1,2,1,0]
R 6 [3,2,1,0]
*)
Definition t1 := c1. Check t1.
Definition t2 := c2 0 [] t1. Check t2.
Definition t3 := c2 1 [0] t2. Check t3. (* R 2 [1;0] *)
Definition t4 := c2 2 [1;0] t3. Check t4.
Definition t5 := c3 2 [2;1;0] t4. Check t5.
Definition t6 := c3 1 [2;1;0] t5. Check t6.
Definition t7 := c2 1 [2;1;0] t6. Check t7.
Definition t8 := c3 1 [1;2;1;0] t7. Check t8. (* R 1 [1;2;1;0] *)
(* Can't construct the last one. the number should be up-to 1 more than the head
of the list
*)
(* Relations *)
Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_s : forall n m, le n m -> le n (S m).
Notation "m <= n" := (le m n).
(* rest of chapter is basically the Rel chapter... *)