-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathRel.v
221 lines (175 loc) · 5.42 KB
/
Rel.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
(* Chapter 7: Properties of relations *)
Require Export SfLib.
Definition relation (X:Type) := X -> X -> Prop.
(* le: x <= y *)
Print le.
Check le : nat -> nat -> Prop.
Check le : relation nat.
(* Basic properties of relations *)
Definition partial_function {X:Type} (R:relation X) := forall x y1 y2 : X,
R x y1 -> R x y2 -> y1 = y2.
Theorem le_not_partial_function: ~ (partial_function le).
Proof.
unfold not, partial_function. intros.
assert (0 = 1) as contra.
Case "proof of contra".
apply H with (x:=0). apply le_n. apply le_S. apply le_n.
inversion contra.
Qed.
Definition reflexive {X:Type} (R:relation X) :=
forall a:X, R a a.
Theorem le_reflexive: reflexive le.
Proof.
unfold reflexive. intros.
apply le_n.
Qed.
Definition transitive {X:Type} (R:relation X) :=
forall a b c : X, R a b -> R b c -> R a c.
Theorem le_transitive: transitive le.
Proof.
unfold transitive. intros. induction H0.
Case "b<=c". apply H.
Case "b<=S c". apply le_S. apply IHle.
Qed.
Theorem lt_trans: transitive lt.
Proof.
unfold lt, transitive. intros a b c Hab Hbc.
apply le_S in Hab. apply le_transitive with (a := (S a)) (b := (S b)) (c := c).
apply Hab. apply Hbc.
Qed.
Theorem lt_trans': transitive lt.
Proof.
unfold lt, transitive. intros a b c Hab Hbc. induction Hbc.
Case "b<=0". apply le_S. apply Hab.
Case "b<=S". apply le_S. apply IHHbc.
Qed.
Theorem lt_trans'': transitive lt.
Proof.
unfold lt, transitive. intros n m o Hnm Hmo. induction o.
Case "o=0". inversion Hmo. apply le_S. apply IHo. inversion Hmo.
Admitted.
Theorem le_Sn_le: forall n m, S n <= m -> n <= m.
Proof.
intros. apply le_transitive with (S n).
Case "n<=S n". apply le_S. reflexivity.
Case "S n <= m". apply H.
Qed.
(* Exercise: * *)
Theorem le_S_n: forall n m,
(S n <= S m) -> (n <= m).
Proof.
intros. inversion H. reflexivity.
apply le_Sn_le. apply H1.
Qed.
(* Exercise: * *)
Theorem le_Sn_n: forall n,
~ (S n <= n).
Proof.
unfold not. intros.
apply le_Sn_n in H. apply H.
Qed.
Definition symmetric {X:Type} (R:relation X) :=
forall a b : X, R a b -> R b a.
(* Exercise: ** *)
Theorem le_not_symmetric: ~ (symmetric le).
Proof.
unfold not, symmetric.
intros. assert (1 <= 0) as contra.
Case "proof of assert".
apply H with (b:=1). apply H. apply H. apply le_S. reflexivity.
inversion contra.
Qed.
Definition antisymmetric {X:Type} (R:relation X) := forall a b : X,
R a b -> R b a -> a = b.
(* Exercise: ** *)
Theorem le_antisymmetric: antisymmetric le.
Proof.
unfold antisymmetric. intros a b Hab Hba.
Admitted.
(* Exercise: ** *)
Theorem le_step: forall n m p,
n < m -> m <= S p -> n <= p.
Proof.
intros. apply le_transitive with n.
Case "n<=n". reflexivity.
Case "n<=Sn". unfold "<" in H. rewrite H0 in H. apply le_S_n. apply H.
Qed.
Definition preorder {X:Type} (R:relation X) :=
(reflexive R) /\ (transitive R).
Definition equivalence {X:Type} (R:relation X) :=
(preorder R) /\ (symmetric R).
(* Really a partial order. Coq stdlib calls it order *)
Definition order {X:Type} (R:relation X) :=
(preorder R) /\ (antisymmetric R).
Theorem le_order: order le.
Proof.
unfold order, preorder. split. split.
Case "refl". apply le_reflexive.
Case "trans". apply le_transitive.
Case "antisymmetric". apply le_antisymmetric.
Qed.
(* Reflexive, transitive closure *)
Inductive clos_refl_trans {A:Type} (R:relation A) : relation A :=
| rt_step : forall x y, R x y -> clos_refl_trans R x y
| rt_refl : forall x, clos_refl_trans R x x
| rt_trans : forall x y z, clos_refl_trans R x y ->
clos_refl_trans R y z ->
clos_refl_trans R x z.
Theorem next_nat_closure_is_le : forall n m,
n <= m <-> ((clos_refl_trans next_nat) n m).
Proof.
intros n m. split.
Case "->".
intro H. induction H.
SCase "le_n". apply rt_refl.
SCase "le_S". apply rt_trans with m. apply IHle. apply rt_step. apply nn.
Case "<-".
intro H. induction H.
SCase "rt_step". inversion H. apply le_S. apply le_n.
SCase "rt_refl". apply le_n.
SCase "rt_trans".
apply le_transitive with y. apply IHclos_refl_trans1. apply IHclos_refl_trans2.
Qed.
(* more useful definition of reflexive, transitive closure *)
Inductive refl_step_closure {X:Type} (R:relation X) : relation X :=
| rsc_refl : forall x:X, refl_step_closure R x x
| rsc_step : forall x y z : X, R x y ->
refl_step_closure R y z ->
refl_step_closure R x z.
Tactic Notation "rt_cases" tactic(first) ident(c) :=
first; [
Case_aux c "rt_step"
| Case_aux c "rt_refl"
| Case_aux c "rt_trans"
].
Tactic Notation "rsc_cases" tactic(first) ident(c) :=
first; [
Case_aux c "rsc_refl"
| Case_aux c "rsc_step"
].
(* Need to check that the 2 definitions of reflexive, transitive closure are the
same
*)
Theorem rsc_R: forall (X:Type) (R:relation X) (x y : X),
R x y -> refl_step_closure R x y.
Proof.
intros.
apply rsc_step with y. apply H. apply rsc_refl.
Qed.
(* Exercise: ** *)
Theorem rsc_trans : forall (X:Type) (R:relation X) (x y z : X),
refl_step_closure R x y ->
refl_step_closure R y z ->
refl_step_closure R x z.
Proof.
intros. induction H.
Case "refl". apply H0.
Case "step". apply IHrefl_step_closure in H0.
Admitted.
(* Exercise: *** *)
Theorem rtc_rsc_coincide: forall (X:Type) (R:relation X) (x y : X),
clos_refl_trans R x y <-> refl_step_closure R x y.
Proof.
unfold iff. split. intros.
Case "->".
Admitted.