forked from mrgt/EulerLagrangianOT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kelvin_helmoltz.py
154 lines (126 loc) · 4.44 KB
/
kelvin_helmoltz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import MongeAmpere as ma
import numpy as np
import scipy as sp
import pylab
from EulerCommon import *
N = 200000; nt = 2000; eps = 0.005; t = 4.
#N = 500; nt = 40; eps = 0.1; t = 4. #small testcase
bbox = np.array([0., -.5, 2., .5])
integrator = "euler";
class Periodic_density_in_x (ma.ma.Density_2):
def __init__(self, X, f, T, bbox):
self.x0 = np.array([bbox[0],bbox[1]]);
self.x1 = np.array([bbox[2],bbox[3]]);
self.u = self.x1 - self.x0;
ma.ma.Density_2.__init__(self, X,f,T)
def to_fundamental_domain(self,Y):
N = Y.shape[0];
Y = (Y - np.tile(self.x0,(N,1))) / np.tile(self.u,(N,1));
Y = Y - np.floor(Y);
Y = np.tile(self.x0,(N,1)) + Y * np.tile(self.u,(N,1));
return Y;
# FIXME
def kantorovich(self,Y,nu,w):
N = len(nu);
# create copies of the points, so as to cover the neighborhood
# of the fundamental domain.
Y0 = self.to_fundamental_domain(Y)
x = self.u[0]
y = self.u[1]
v = np.array([[0,0], [x,0], [-x,0]]);
Yf = np.zeros((3*N,2))
wf = np.hstack((w,w,w));
for i in xrange(0,3):
Nb = N*i; Ne = N*(i+1)
Yf[Nb:Ne,:] = Y0 + np.tile(v[i,:],(N,1))
# sum the masses of each "piece" of the Voronoi cells
[f,mf,hf] = ma.ma.kantorovich_2(self, Yf, wf);
m = np.zeros(N);
for i in xrange(0,3):
Nb = N*i; Ne = N*(i+1);
m += mf[Nb:Ne]
# adapt the Hessian by correcting indices of points. we use
# the property that elements that appear multiple times in a
# sparse matrix are summed
h = (hf[0], (np.mod(hf[1][0], N), np.mod(hf[1][1], N)))
# remove the linear part of the function
f = f - np.dot(w,nu);
g = m - nu;
H = sp.sparse.csr_matrix(h,shape=(N,N))
return f,m,g,H;
def lloyd(self,Y,w=None):
if w is None:
w = np.zeros(Y.shape[0]);
N = Y.shape[0];
Y0 = self.to_fundamental_domain(Y)
# create copies of the points, so as to cover the neighborhood
# of the fundamental domain.
x = self.u[0]
y = self.u[1]
v = np.array([[0,0], [x,0], [-x,0]]);
Yf = np.zeros((3*N,2))
wf = np.hstack((w,w,w));
for i in xrange(0,3):
Nb = N*i; Ne = N*(i+1)
Yf[Nb:Ne,:] = Y0 + np.tile(v[i,:],(N,1))
# sum the moments and masses of each "piece" of the Voronoi
# cells
[mf,Yf,If] = ma.ma.moments_2(self, Yf, wf);
Y = np.zeros((N,2));
m = np.zeros(N);
for i in xrange(0,3):
Nb = N*i; Ne = N*(i+1);
m += mf[Nb:Ne]
ww = np.tile(mf[Nb:Ne],(2,1)).T
Y += Yf[Nb:Ne,:] - ww * np.tile(v[i,:],(N,1))
# rescale the moments to get centroids
Y /= np.tile(m,(2,1)).T
#Y = self.to_fundamental_domain(Y);
return (Y,m)
# generate density
def sample_rectangle(bbox):
x0 = bbox[0]
y0 = bbox[1]
x1 = bbox[2]
y1 = bbox[3]
x = [x0, x1, x1, x0]
y = [y0, y0, y1, y1]
X = np.vstack((x,y)).T
return X
Xdens = sample_rectangle(bbox);
f = np.ones(4);
w = np.zeros(Xdens.shape[0]);
T = ma.delaunay_2(Xdens,w);
dens = Periodic_density_in_x(Xdens,f,T,bbox)
def project_on_incompressible2(dens,Z,verbose=False):
N = Z.shape[0]
nu = np.ones(N) * dens.mass()/N
w = ma.optimal_transport_2(dens, Z, nu, verbose=verbose)
return dens.lloyd(Z,w)[0],w
X = ma.optimized_sampling_2(dens,N,niter=2)
# tracers
ii = np.nonzero(X[:,1] <= 0);
jj = np.nonzero(X[:,1] > 0);
colors = np.ones((N, 3))
colors[ii,0] = 1.
colors[jj,0] = 0.3; colors[jj,1] = 0.3;
def force(X):
X = dens.to_fundamental_domain(X)
P,w = project_on_incompressible2(dens,X)
return X, 1./(eps*eps)*(P-X), P, w
def sqmom(V):
return np.sum(V[:,0] * V[:,0] + V[:,1] * V[:,1])
def energy(X,P,V):
return .5 * sqmom(V)/N + .5/(eps*eps) * sqmom(X-P)/N
def plot_timestep(X, w, colors, bbox, fname):
img = ma.laguerre_diagram_to_image(dens,X,w, colors, bbox, 1000, 500)
img.save(fname)
# simulation
V = np.zeros((N,2))
v0 = 0.5
V[ii,0] = 1
V[jj,0] = v0
bname="results/kelvin_helmoltz/RT-N=%d-tmax=%g-nt=%g-eps=%g-integ=%s-v0=%g" % (N,t,nt,eps,integrator,v0)
plot_ts = lambda X,P,w,fname: plot_timestep(X,w,colors,bbox,fname)
perform_euler_simulation(X, V, nt, dt=t/nt, bname=bname,
force=force, energy=energy, plot=plot_ts, integrator=integrator)