forked from gustavebesacier/FIN-407-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Data_fitting.py
276 lines (219 loc) · 10.7 KB
/
Data_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import pandas as pd
import numpy as np
from scipy.linalg import pinvh, inv
from tqdm import tqdm
from Utils.Utilities import categorical_finder
"""
This file handles replacing nans efficiently inspired from the paper Missing Financial Data written by Bryzgalova and al..
It tries to rely as much as possible on the numpy library
It builds an estimate based Cross-correctional data and with backward time series
"""
def build_empir_cov(nbr_predictors, P_matrix):
"""
Build the empirical covariance matrix of the predictors
:param nbr_predictors: number of predictors and size of the cov matrix
:param P_matrix: the whole observation of predictors at some time t
:return: empirical covariance matrix of the predictors size (nbr_predictors x nbr_predictors)
"""
# Initialize the covariance matrix
Cov_matrix = np.zeros((nbr_predictors, nbr_predictors))
# Calculate the covariance matrix
for p in range(nbr_predictors):
for l in range(p, nbr_predictors):
# Create boolean masks for non-NaN values
mask = ~np.isnan(P_matrix[:, p]) & ~np.isnan(P_matrix[:, l])
valid_values_p = P_matrix[mask, p]
valid_values_l = P_matrix[mask, l]
# resolve Issue when division by zero happens
if len(valid_values_p) > 0:
Cov_matrix[p, l] = np.dot(valid_values_p, valid_values_l) / len(valid_values_p)
if np.isnan(Cov_matrix[p, l]):
print(f"NaN detected at Cov_optimized[{p}, {l}]")
print(f"valid_values_p: {valid_values_p}")
print(f"valid_values_l: {valid_values_l}")
if p != l:
Cov_matrix[l, p] = Cov_matrix[p, l]
#Check for NaNs
if np.isnan(Cov_matrix[p, l]):
print(f"NaN detected after assignment at Cov_optimized[{p}, {l}]")
# Check for NaNs in the entire matrix and print their positions
# Avoids nan appearances (weird pass)
nan_positions = np.argwhere(np.isnan(Cov_matrix))
if nan_positions.size > 0:
print(f"NaN values found at positions: {nan_positions}")
finite_check = np.isfinite(Cov_matrix)
if not finite_check.all():
print("Non-finite values found in the covariance matrix.")
assert not np.isnan(Cov_matrix).any(), "There are NaN values in the cov matrix."
return Cov_matrix
def build_loadings(empirical_cov, K_factors):
"""
This build the weights matrix: LAMBDA
:param empirical_cov: the empirical covariance matrix of the predictors
:param K_factors: nbr of explenatory factors
:return: LAMBDA
"""
# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eigh(empirical_cov)
# Sort eigenvalues and eigenvectors in descending order
sorted_indices = np.argsort(eigenvalues)[::-1]
sorted_eigenvalues = eigenvalues[sorted_indices]
sorted_eigenvectors = eigenvectors[:, sorted_indices]
# Select the K largest eigenvalues and their associated eigenvectors
D = np.diag(sorted_eigenvalues[:K_factors])
V = sorted_eigenvectors[:, :K_factors]
loadings = V @ np.sqrt(D)
# Checks for nans
assert not np.isnan(loadings).any(), "There are NaN values in the cov matrix."
return loadings
def build_factors(P_matrix, L_matrix, gamma, K_factors, nbr_firms, nbr_predictors):
"""
:param P_matrix:
:param L_matrix:
:param gamma:
:param K_factors:
:param nbr_firms:
:param nbr_predictors:
:return:
"""
# Create a boolean mask where non-NaN values are True and NaN values are False
mask = ~np.isnan(P_matrix)
# Replace True values with 1 and False values with 0
W = mask.astype(int)
F = np.zeros(shape=(nbr_firms, K_factors))
regularize = gamma * np.identity(K_factors)
# Apply rules
for i in range(nbr_firms):
X = np.zeros(shape=(K_factors, K_factors))
Y = np.zeros(K_factors)
for k in range(nbr_predictors):
if W[i, k] != 0:
factors_k = L_matrix[k, :]
X += W[i, k] / nbr_predictors * np.outer(factors_k, factors_k) + regularize
Y += W[i, k] / nbr_predictors * P_matrix[i, k] * factors_k
if not np.all(X == 0):
F[i, :] += inv(X) @ Y
return F, W
def build_time_series_extension(N_t, nbr_predictors, error, P_minus_zeroed, P_hat, W_tilde, W, P):
# Stack the matrices along a new axis to create a 3D matrix
X_stacked = np.stack((P_hat, P_minus_zeroed, error), axis=-1)
P_bar = np.zeros(shape=(N_t, nbr_predictors))
for j in range(nbr_predictors):
X = np.zeros(shape=(3, 3))
Y = np.zeros(3)
for n in range(N_t):
if W[n, j] != 0 and W_tilde[n, j] != 0:
X_vector = X_stacked[n, j, :]
#if X_vector[-1] == 0 and X_vector[-2] == 0:
#X[0, 0] += X_vector[0] ** 2
#Y[0] += P[n, j] * X_vector[0]
#else:
X += np.outer(X_vector, X_vector)
Y += P[n, j] * X_vector
if np.isclose(X[1, 1], 0) and np.isclose(X[2, 2], 0):
if Y[0] == 0:
beta_j = np.zeros(3)
else:
beta_j = Y / X[0, 0]
X_j = X_stacked[:, j, :]
P_j = X_j @ beta_j
assert P_j.shape == (N_t,)
P_bar[:, j] = P_j
else:
#Avoid issue when inverting matrix
beta_j = pinvh(X) @ Y
X_j = X_stacked[:, j, :]
P_j = X_j @ beta_j
assert P_j.shape == (N_t,)
P_bar[:, j] = P_j
return P_bar
def Fit_using_XS_B(data, K_factors, nbr_predictors, gamma):
data = data.replace([np.inf, -np.inf], np.nan)
dates = data['yyyymm'].unique()
data_per_date = data.groupby("yyyymm")
fitted_data = pd.DataFrame()
for i, date in enumerate(tqdm(dates)):
# Fetch previous date if it exists
if i > 0:
dateminus = dates[i - 1]
else:
dateminus = None
# Access the current date
data_t = data_per_date.get_group(date)
# Sort current dataframe by permno
data_t_sorted = data_t.sort_values(by='permno').reset_index(drop=True)
original_index = data_t.index
# Drop specified columns
data_t_dropped = data_t.drop(["yyyymm", "permno"], axis=1)
# Count non-NaN values for each column
#non_nan_counts = data_t_dropped.notna().sum()
# Sort columns by non-NaN counts in descending order
#top_predictor_columns = non_nan_counts.sort_values(ascending=False).head(nbr_predictors).index
# Select the top nbr_predictors columns
#data_t_top_predictors = data_t_sorted[top_predictor_columns]
all_predictors_index = pd.Index(data_t_dropped.columns)
data_prev = data_per_date.get_group(dateminus) if dateminus is not None else None
# Build matrix of predictors
P = data_t_dropped.to_numpy()
P_shape = P.shape
assert P_shape[1] == nbr_predictors, f"The shape of the matrix of predictors is {P.shape}"
# Number of firms observation for time t
N_t = P_shape[0]
# Create P_minus matrix
if data_prev is not None:
data_prev_sorted = data_prev.sort_values(by='permno').reset_index(drop=True)
# Merge previous data with current index
merged_data = pd.merge(data_t_sorted[['permno']], data_prev_sorted, on='permno', how='left')
assert all(
merged_data['permno'].unique() == data_t_sorted['permno'].unique()), f"All permno are not the same!"
# Extract relevant columns for comparison
P_minus = merged_data[all_predictors_index].to_numpy()
else:
# If no previous data, fill P_minus with NaN
P_minus = np.full_like(P, np.nan)
assert P.shape == P_minus.shape, f"Discrepencies between the predictors shape"
# Build the empirical covariance
emp_cov = build_empir_cov(nbr_predictors=nbr_predictors, P_matrix=P)
assert emp_cov.shape == (
nbr_predictors, nbr_predictors), f"The empirical covariance matrix of predictors has shape {emp_cov.shape}"
loadings = build_loadings(empirical_cov=emp_cov, K_factors=K_factors)
assert loadings.shape == (
nbr_predictors, K_factors), f"The empirical covariance matrix of predictors has shape {loadings.shape}"
factors, W = build_factors(P_matrix=P, L_matrix=loadings, gamma=gamma, K_factors=K_factors, nbr_firms=N_t,
nbr_predictors=nbr_predictors)
assert factors.shape == (
N_t, K_factors), f"The empirical covariance matrix of predictors has shape {loadings.shape}"
P_hat = factors @ loadings.T
if data_prev is not None:
# Create a boolean mask where non-NaN values are True and NaN values are False
mask = ~np.isnan(P_minus)
# Replace True values with 1 and False values with 0
W_tilde = mask.astype(int)
# Change nan to 0 to avoid casing
error = np.nan_to_num(P_minus - P_hat, nan=0)
P_minus_zeroed = np.nan_to_num(P_minus, nan=0)
P_bar = build_time_series_extension(N_t = N_t, nbr_predictors=nbr_predictors, error = error,P_minus_zeroed= P_minus_zeroed, P_hat = P_hat, W_tilde = W_tilde, W=W, P = P)
else :
P_bar = np.zeros(shape=(N_t, nbr_predictors))
W_tilde = np.zeros(shape=(N_t, nbr_predictors))
# Replace NaN values in P with 0 before performing element-wise multiplication
P_zeroed = np.nan_to_num(P, nan=0)
# Fills the data using the various predictors
P_filled = W * P_zeroed + (1 - W) * (1-W_tilde)* P_hat + (1 - W) * W_tilde * P_bar
assert np.all(W+ (1 - W) * W_tilde+(1 - W) * (1-W_tilde) == np.ones(shape=(N_t, nbr_predictors)))
# Check for NaNs in the entire matrix and print their positions
nan_positions = np.argwhere(np.isnan(P_filled))
if nan_positions.size > 0:
print(f"NaN values found at positions: {nan_positions}")
assert True, f"Nan values in fitted data"
data_filled_t = pd.DataFrame(P_filled, columns=all_predictors_index, index=original_index)
data_filled_t['permno'] = data_t['permno'].values
data_filled_t['yyyymm'] = date
# Append to the overall fitted data
fitted_data = pd.concat([fitted_data, data_filled_t], ignore_index=False)
return fitted_data
#data = pd.read_csv("../Data/shorter_1000permnos.csv")
#list_cat = categorical_finder(data)
#data = data.drop(columns=list_cat)
#fitted_data = Fit_using_XS_B(data, K_factors=25, nbr_predictors=100, gamma=0.0001)
#fitted_data.to_csv("../Data/short_XS_B_1000_fitted.csv", index=False)