diff --git a/tests/test_offloading.py b/tests/test_offloading.py new file mode 100644 index 0000000000..dc1cb26794 --- /dev/null +++ b/tests/test_offloading.py @@ -0,0 +1,115 @@ +import pytest +from firedrake import (set_offloading_backend, + offloading, solve, FunctionSpace, TestFunction, + TrialFunction, Function, UnitSquareMesh, + SpatialCoordinate, inner, grad, dx, norm, pi, cos, + assemble) +import firedrake_configuration +from pyop2.backends.cpu import cpu_backend + + +AVAILABLE_BACKENDS = [cpu_backend] + +if firedrake_configuration.get_config()["options"].get("cuda"): + from pyop2.backends.cuda import cuda_backend + AVAILABLE_BACKENDS.append(cuda_backend) + + +def allclose(a, b, rtol=1e-05, atol=1e-08): + """ + Prefer this routine over np.allclose(...) to allow pycuda/pyopencl arrays + """ + return bool(abs(a - b) < (atol + rtol * abs(b))) + + +@pytest.mark.parametrize("offloading_backend", AVAILABLE_BACKENDS) +def test_nonlinear_variational_solver(offloading_backend): + set_offloading_backend(offloading_backend) + mesh = UnitSquareMesh(32, 32) + V = FunctionSpace(mesh, "CG", 1) + u = TrialFunction(V) + v = TestFunction(V) + x, y = SpatialCoordinate(mesh) + + a = (inner(grad(u), grad(v)) + inner(u, v)) * dx + f = Function(V) + f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2)) + L = inner(f, v) * dx + fem_soln = Function(V) + sp = {"mat_type": "matfree", + "ksp_monitor_true_residual": None, + "ksp_converged_reason": None} + with offloading(): + solve(a == L, fem_soln, solver_parameters=sp) + + f.interpolate(cos(x*pi*2)*cos(y*pi*2)) + + assert norm(fem_soln-f) < 1e-2 + + with offloading(): + assert norm(fem_soln-f) < 1e-2 + + +@pytest.mark.parametrize("offloading_backend", AVAILABLE_BACKENDS) +def test_linear_variational_solver(offloading_backend): + set_offloading_backend(offloading_backend) + mesh = UnitSquareMesh(32, 32) + V = FunctionSpace(mesh, "CG", 1) + u = TrialFunction(V) + v = TestFunction(V) + f = Function(V) + x, y = SpatialCoordinate(mesh) + f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2)) + + L = assemble(inner(f, v) * dx) + fem_soln = Function(V) + + with offloading(): + + a = assemble((inner(grad(u), grad(v)) + inner(u, v)) * dx, + mat_type="matfree") + solve(a, fem_soln, L, + solver_parameters={"pc_type": "none", + "ksp_type": "cg", + "ksp_monitor": None}) + + f.interpolate(cos(x*pi*2)*cos(y*pi*2)) + + assert norm(fem_soln-f) < 1e-2 + + with offloading(): + assert norm(fem_soln-f) < 1e-2 + + +@pytest.mark.parametrize("offloading_backend", AVAILABLE_BACKENDS) +def test_data_manipulation_on_host(offloading_backend): + set_offloading_backend(offloading_backend) + + mesh = UnitSquareMesh(32, 32) + V = FunctionSpace(mesh, "CG", 1) + u = TrialFunction(V) + v = TestFunction(V) + f = Function(V) + x, y = SpatialCoordinate(mesh) + f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2)) + + L = assemble(inner(f, v) * dx) + fem_soln = Function(V) + + with offloading(): + + a = assemble((inner(grad(u), grad(v)) + inner(u, v)) * dx, + mat_type="matfree") + solve(a, fem_soln, L, + solver_parameters={"pc_type": "none", + "ksp_type": "cg", + "ksp_monitor": None}) + + old_norm = norm(fem_soln) + kappa = 2.0 + fem_soln.dat.data[:] *= kappa # update data on host + + with offloading(): + new_norm = norm(fem_soln) + + allclose(kappa*old_norm, new_norm)