-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmoothgrad_utils.py
35 lines (32 loc) · 1.26 KB
/
smoothgrad_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from mxnet import ndarray as nd
from mxnet import autograd
import numpy as np
import mxnet as mx
import cv2
def get_img_grad(net, input_x):
input_x.attach_grad()
with autograd.record(train_mode=False):
out = net(input_x)
model_output = out.asnumpy()
class_id = np.argmax(model_output)
one_hot_target = mx.nd.one_hot(mx.nd.array([class_id]), 1000)
out.backward(one_hot_target, train_mode=False)
return input_x.grad[0].asnumpy()
def to_gray_image(avg_gradients, percentile=99):
img_2d = np.sum(avg_gradients, axis=0)
span = abs(np.percentile(img_2d, percentile))
img_2d[img_2d > span] = span
img_2d -= img_2d.min()
img_2d /= img_2d.max()
return (img_2d * 255).astype(np.uint8)
def visualize_smoothgrad(net, input_x, origin_img, stdev_spread=0.15, n_samples=40):
total_gradients = np.zeros(input_x[0].shape)
stdev = stdev_spread * (np.max(input_x.asnumpy()) - np.min(input_x.asnumpy()))
for i in range(n_samples):
noise = np.random.normal(0, stdev, input_x.shape)
input_x_with_noise = input_x + nd.array(noise)
grad = get_img_grad(net, input_x_with_noise)
total_gradients += (grad * grad)
avg_gradients = total_gradients / n_samples
gray_gradient = to_gray_image(avg_gradients)
return np.hstack((origin_img, cv2.cvtColor(gray_gradient, cv2.COLOR_GRAY2BGR)))