-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbm-utils-cuda.cu
434 lines (365 loc) · 13.2 KB
/
bm-utils-cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#include "bm-utils-cuda.h"
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <mutex>
#include <string>
#include <iostream>
unsigned char h_sbox[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
unsigned char h_rcon[11] = {
0x00, // not used
0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80, 0x1B, 0x36
};
// Function to read key or IV from a file
void read_key_or_iv(unsigned char *data, size_t size, const char *filename) {
FILE *file = fopen(filename, "r");
if (file == NULL) {
fprintf(stderr, "Cannot open file: %s\n", filename);
exit(1);
}
for (size_t i = 0; i < size; i++) {
char buffer[3];
if (fread(buffer, 1, 2, file) != 2) {
fprintf(stderr, "Cannot read value from file: %s\n", filename);
exit(1);
}
buffer[2] = '\0'; // Null-terminate the buffer
data[i] = (unsigned char)strtol(buffer, NULL, 16); // Convert the buffer to a hexadecimal value
}
fclose(file);
}
void read_file_as_binary(unsigned char **data, size_t *size, const char *filename) {
FILE *file = fopen(filename, "rb");
if (file == NULL) {
fprintf(stderr, "Cannot open file: %s\n", filename);
exit(1);
}
// Determine the file size
fseek(file, 0, SEEK_END);
*size = ftell(file);
fseek(file, 0, SEEK_SET);
// Allocate the buffer
*data = new unsigned char[*size];
size_t bytesRead = fread(*data, 1, *size, file);
if (bytesRead != *size) {
fprintf(stderr, "Failed to read the entire file: %s\n", filename);
exit(1);
}
fclose(file);
}
// Add pinned memory allocation
void read_file_as_binary_v2(unsigned char **data, size_t *size, const char *filename) {
FILE *file = fopen(filename, "rb");
if (file == NULL) {
fprintf(stderr, "Cannot open file: %s\n", filename);
exit(1);
}
// Determine the file size
fseek(file, 0, SEEK_END);
*size = ftell(file);
fseek(file, 0, SEEK_SET);
// Allocate pinned memory for data
cudaMallocHost((void**)data, *size * sizeof(unsigned char));
// Read the file into data
if (fread(*data, 1, *size, file) != *size) {
fprintf(stderr, "Cannot read file: %s\n", filename);
exit(1);
}
fclose(file);
}
size_t preprocess(const char *filename, size_t chunkSize, unsigned char ***chunks, size_t **chunkSizes) {
// Read the file into a buffer
unsigned char *buffer;
size_t bufferSize;
read_file_as_binary_v2(&buffer, &bufferSize, filename);
// Calculate the number of chunks
size_t numChunks = (bufferSize + chunkSize - 1) / chunkSize;
// Allocate pinned memory for the chunks and their sizes
cudaMallocHost((void***)chunks, numChunks * sizeof(unsigned char*));
cudaMallocHost((void**)chunkSizes, numChunks * sizeof(size_t));
// Split the buffer into chunks
for (size_t i = 0; i < numChunks; i++) {
// Calculate the size of the current chunk
size_t currentChunkSize = (i < numChunks - 1) ? chunkSize : (bufferSize % chunkSize);
// Allocate pinned memory for the current chunk
cudaMallocHost((void**)&(*chunks)[i], currentChunkSize * sizeof(unsigned char));
printf("Chunk %zu address: %p\n", i, (*chunks)[i]); // Print the address of the current chunk
// Copy the data from the buffer to the current chunk
memcpy((*chunks)[i], buffer + i * chunkSize, currentChunkSize);
// Save the size of the current chunk
(*chunkSizes)[i] = currentChunkSize;
}
// Free the buffer
cudaFreeHost(buffer);
return numChunks;
}
void write_encrypted(const unsigned char *ciphertext, size_t size, const char *filename) {
FILE *file = fopen(filename, "wb");
if (file == NULL) {
fprintf(stderr, "Cannot open file: %s\n", filename);
exit(1);
}
if (fwrite(ciphertext, 1, size, file) != size) {
fprintf(stderr, "Error writing to file: %s\n", filename);
exit(1);
}
fclose(file);
}
void write_encrypted_v2(unsigned char* ciphertext, size_t size, const char* filename) {
FILE* file = fopen(filename, "ab");
if (file == NULL) {
printf("Error opening file: %s\n", filename);
return;
}
if (fwrite(ciphertext, 1, size, file) != size) {
fprintf(stderr, "Error writing to file: %s\n", filename);
exit(1);
}
fclose(file);
}
std::mutex fileMutex;
void write_encrypted_multithreading(const unsigned char *ciphertext, size_t size, const char *filename) {
std::lock_guard<std::mutex> lock(fileMutex);
// Open the file in append mode
FILE *file = fopen(filename, "ab");
if (file == NULL) {
fprintf(stderr, "Cannot open file: %s\n", filename);
exit(1);
}
// Write the data to the file
size_t written = fwrite(ciphertext, 1, size, file);
if (written != size) {
fprintf(stderr, "Failed to write to file: %s\n", filename);
exit(1);
}
fclose(file);
}
std::string getFileExtension(const std::string& filename) {
size_t pos = filename.rfind('.');
return (pos == std::string::npos) ? "" : filename.substr(pos);
}
void appendFileExtension(const std::string& filename, const std::string& extension) {
FILE* file = fopen(filename.c_str(), "ab");
if (file != NULL) {
fwrite(extension.c_str(), 1, extension.size() + 1, file); // +1 to include null terminator
fclose(file);
} else {
std::cerr << "Failed to open file: " << filename << std::endl;
}
}
__device__ unsigned char mul(unsigned char a, unsigned char b) {
unsigned char p = 0;
unsigned char high_bit_mask = 0x80;
unsigned char high_bit = 0;
unsigned char modulo = 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
for (int i = 0; i < 8; i++) {
if (b & 1) {
p ^= a;
}
high_bit = a & high_bit_mask;
a <<= 1;
if (high_bit) {
a ^= modulo;
}
b >>= 1;
}
return p;
}
void KeyExpansionHost(unsigned char *key, unsigned char *expandedKey) {
int i = 0;
while (i < 4) {
for (int j = 0; j < 4; j++) {
expandedKey[i * 4 + j] = key[i * 4 + j];
}
i++;
}
int rconIteration = 1;
unsigned char temp[4];
while (i < 44) {
for (int j = 0; j < 4; j++) {
temp[j] = expandedKey[(i - 1) * 4 + j];
}
if (i % 4 == 0) {
unsigned char k = temp[0];
for (int j = 0; j < 3; j++) {
temp[j] = temp[j + 1];
}
temp[3] = k;
for (int j = 0; j < 4; j++) {
// Use the host-accessible arrays
temp[j] = h_sbox[temp[j]] ^ (j == 0 ? h_rcon[rconIteration++] : 0);
}
}
for (int j = 0; j < 4; j++) {
expandedKey[i * 4 + j] = expandedKey[(i - 4) * 4 + j] ^ temp[j];
}
i++;
}
}
__device__ void SubBytes(unsigned char *state, unsigned char *d_sbox) {
for (int i = 0; i < 16; ++i) {
state[i] = d_sbox[state[i]];
}
}
__device__ void ShiftRows(unsigned char *state) {
unsigned char tmp[16];
/* Column 1 */
tmp[0] = state[0];
tmp[1] = state[5];
tmp[2] = state[10];
tmp[3] = state[15];
/* Column 2 */
tmp[4] = state[4];
tmp[5] = state[9];
tmp[6] = state[14];
tmp[7] = state[3];
/* Column 3 */
tmp[8] = state[8];
tmp[9] = state[13];
tmp[10] = state[2];
tmp[11] = state[7];
/* Column 4 */
tmp[12] = state[12];
tmp[13] = state[1];
tmp[14] = state[6];
tmp[15] = state[11];
memcpy(state, tmp, 16);
}
__device__ void MixColumns(unsigned char *state) {
unsigned char tmp[16];
for (int i = 0; i < 4; ++i) {
tmp[i * 4] =
(unsigned char)(mul(0x02, state[i * 4]) ^ mul(0x03, state[i * 4 + 1]) ^
state[i * 4 + 2] ^ state[i * 4 + 3]);
tmp[i * 4 + 1] =
(unsigned char)(state[i * 4] ^ mul(0x02, state[i * 4 + 1]) ^
mul(0x03, state[i * 4 + 2]) ^ state[i * 4 + 3]);
tmp[i * 4 + 2] = (unsigned char)(state[i * 4] ^ state[i * 4 + 1] ^
mul(0x02, state[i * 4 + 2]) ^
mul(0x03, state[i * 4 + 3]));
tmp[i * 4 + 3] =
(unsigned char)(mul(0x03, state[i * 4]) ^ state[i * 4 + 1] ^
state[i * 4 + 2] ^ mul(0x02, state[i * 4 + 3]));
}
memcpy(state, tmp, 16);
}
__device__ void AddRoundKey(unsigned char *state,
const unsigned char *roundKey) {
for (int i = 0; i < 16; ++i) {
state[i] ^= roundKey[i];
}
}
__device__ void aes_encrypt_block(unsigned char *input, unsigned char *output,
unsigned char *expandedKey,
unsigned char *d_sbox) {
unsigned char state[16];
// Copy the input to the state array
for (int i = 0; i < 16; ++i) {
state[i] = input[i];
}
// Add the round key to the state
AddRoundKey(state, expandedKey);
// Perform 9 rounds of substitutions, shifts, mixes, and round key additions
for (int round = 1; round < 10; ++round) {
SubBytes(state, d_sbox);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, expandedKey + round * 16);
}
// Perform the final round (without MixColumns)
SubBytes(state, d_sbox);
ShiftRows(state);
AddRoundKey(state, expandedKey + 10 * 16);
// Copy the state to the output
for (int i = 0; i < 16; ++i) {
output[i] = state[i];
}
}
__device__ void increment_counter(unsigned char *counter, int increment) {
int carry = increment;
for (int i = AES_BLOCK_SIZE - 1; i >= 0; i--) {
int sum = counter[i] + carry;
counter[i] = sum & 0xFF;
carry = sum >> 8;
if (carry == 0) {
break;
}
}
}
__device__ unsigned char mul_v2(unsigned char a, unsigned char b) {
unsigned char p = 0;
unsigned char high_bit_mask = 0x80;
unsigned char high_bit = 0;
unsigned char modulo = 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
for (int i = 0; i < 8; i++) {
p ^= a * (b & 1); // Use arithmetic instead of conditional
high_bit = a & high_bit_mask;
a <<= 1;
a ^= modulo * (high_bit >> 7); // Use arithmetic instead of conditional
b >>= 1;
}
return p;
}
__device__ void MixColumns_v2(unsigned char *state) {
unsigned char tmp[16];
for (int i = 0; i < 4; ++i) {
tmp[i * 4] = (unsigned char)(mul_v2(0x02, state[i * 4]) ^
mul_v2(0x03, state[i * 4 + 1]) ^
state[i * 4 + 2] ^ state[i * 4 + 3]);
tmp[i * 4 + 1] =
(unsigned char)(state[i * 4] ^ mul_v2(0x02, state[i * 4 + 1]) ^
mul_v2(0x03, state[i * 4 + 2]) ^ state[i * 4 + 3]);
tmp[i * 4 + 2] = (unsigned char)(state[i * 4] ^ state[i * 4 + 1] ^
mul_v2(0x02, state[i * 4 + 2]) ^
mul_v2(0x03, state[i * 4 + 3]));
tmp[i * 4 + 3] =
(unsigned char)(mul_v2(0x03, state[i * 4]) ^ state[i * 4 + 1] ^
state[i * 4 + 2] ^ mul_v2(0x02, state[i * 4 + 3]));
}
memcpy(state, tmp, 16);
}
__device__ void aes_encrypt_block_v2(unsigned char *input,
unsigned char *output,
unsigned char *expandedKey,
unsigned char *d_sbox) {
unsigned char state[16];
// Copy the input to the state array
for (int i = 0; i < 16; ++i) {
state[i] = input[i];
}
// Add the round key to the state
AddRoundKey(state, expandedKey);
// Perform 9 rounds of substitutions, shifts, mixes, and round key additions
for (int round = 1; round < 10; ++round) {
SubBytes(state, d_sbox);
ShiftRows(state);
MixColumns_v2(state);
AddRoundKey(state, expandedKey + round * 16);
}
// Perform the final round (without MixColumns_v2)
SubBytes(state, d_sbox);
ShiftRows(state);
AddRoundKey(state, expandedKey + 10 * 16);
// Copy the state to the output
for (int i = 0; i < 16; ++i) {
output[i] = state[i];
}
}