-
Notifications
You must be signed in to change notification settings - Fork 0
/
pix2pix_TF2_hw_train_scalar.py
437 lines (318 loc) · 15.9 KB
/
pix2pix_TF2_hw_train_scalar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#Restore checkpoints and run; if it's the first job, run from initial condition.
import tensorflow as tf
import os
import time
#from matplotlib import pyplot as plt
#from IPython import display
import argparse #added this
import psutil #Memory check
import gc #garbage collector for memory
import numpy as np
#import shutil
import glob
#parser arguments
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", help="path to folder containing training and testing images") #=$SLURM_TMPDIR
parser.add_argument("--output_dir", required=True,
help="where to put output files") #/scratch/hannn/pix2pix-for-swot/blabla
parser.add_argument("--batch_size", type=int, default=1,
help="number of images in batch")
parser.add_argument("--max_epochs", type=int, help="number of training epochs")
parser.add_argument("--LAMBDA", type=int, help="parameter LAMBDA")
parser.add_argument("--n_layers", type=int, help="number of layers in the discriminator. Default from master_scalar.bash: 3, which corresponds to 30-by-30 patches in the output")
a = parser.parse_args()
PATH = a.input_dir
BUFFER_SIZE = 3000 #3000 is way larger than the training set we have in all ES1-5. For other projects, this may need to be modified.
BATCH_SIZE = a.batch_size
IMG_WIDTH = 256 #Size after random cropping
IMG_HEIGHT = 256
OUTPUT_CHANNELS = 1 #Changed from 3 to 1
INPUT_CHANNELS = 1 #changed from 3 to 1
NLAYERS=a.n_layers
#Generator:
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
kernel_initializer=initializer, use_bias=False))
if apply_batchnorm:
result.add(tf.keras.layers.BatchNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
result.add(tf.keras.layers.BatchNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
def Generator():
inputs = tf.keras.layers.Input(shape=[256,256,INPUT_CHANNELS])
down_stack = [
downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
downsample(128, 4), # (bs, 64, 64, 128)
downsample(256, 4), # (bs, 32, 32, 256)
downsample(512, 4), # (bs, 16, 16, 512)
downsample(512, 4), # (bs, 8, 8, 512)
downsample(512, 4), # (bs, 4, 4, 512)
downsample(512, 4), # (bs, 2, 2, 512)
downsample(512, 4), # (bs, 1, 1, 512)
]
up_stack = [
upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
upsample(512, 4), # (bs, 16, 16, 1024)
upsample(256, 4), # (bs, 32, 32, 512)
upsample(128, 4), # (bs, 64, 64, 256)
upsample(64, 4), # (bs, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
strides=2,
padding='same',
kernel_initializer=initializer,
activation='tanh') # (bs, 256, 256, 3)
x = inputs
# Downsampling
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
generator = Generator()
#Discriminator
def Discriminator():
initializer = tf.random_normal_initializer(0., 0.02)
inp = tf.keras.layers.Input(shape=[256, 256, INPUT_CHANNELS], name='input_image')
tar = tf.keras.layers.Input(shape=[256, 256, INPUT_CHANNELS], name='target_image')
x = tf.keras.layers.concatenate([inp, tar]) # (bs, 256, 256, channels*2)
if (NLAYERS == 3): #patchGAN
down1 = downsample(64, 4, False)(x) # (bs, 128, 128, 64)
down2 = downsample(128, 4)(down1) # (bs, 64, 64, 128)
down3 = downsample(256, 4)(down2) # (bs, 32, 32, 256)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
conv = tf.keras.layers.Conv2D(512, 4, strides=1,
kernel_initializer=initializer,
use_bias=False)(zero_pad1) # (bs, 31, 31, 512)
batchnorm1 = tf.keras.layers.BatchNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)
last = tf.keras.layers.Conv2D(1, 4, strides=1,
kernel_initializer=initializer)(zero_pad2) # (bs, 30, 30, 1)
elif (NLAYERS == 5): #imageGAN
down1 = downsample(64, 4, False)(x) # (bs, 128, 128, 64)
down2 = downsample(128, 4)(down1) # (bs, 64, 64, 128)
down3 = downsample(256, 4)(down2) # (bs, 32, 32, 256)
down4 = downsample(512, 4)(down3) # (bs, 16, 16, 512)
down5 = downsample(512, 4)(down4) # (bs, 8, 8, 512)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down5) # (bs, 10, 10, 512)
conv = tf.keras.layers.Conv2D(512, 4, strides=1,
kernel_initializer=initializer,
use_bias=False)(zero_pad1) # (bs, 7, 7, 512)
batchnorm1 = tf.keras.layers.BatchNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 9, 9, 512)
last = tf.keras.layers.Conv2D(1, 4, strides=1,
kernel_initializer=initializer)(zero_pad2) # (bs, 6, 6, 1)
else:
tf.print('ERROR: N_layers is not implemented!')
return tf.keras.Model(inputs=[inp, tar], outputs=last)
discriminator = Discriminator()
# directory for saved tested images
testingpath = os.path.join(PATH, "testing")
#Note: each .npz file was constructed so that the first variable is the ssh scalar. It has dimension width*(2 width)*1.
def load(image_file):
count=0
input_list=tf.constant(0, dtype=tf.float32)
real_list=tf.constant(0, dtype=tf.float32)
for onefile in image_file:
data=np.load(onefile)
image=data
#Normalization is already done in SnapPrints.
image= tf.convert_to_tensor(image, dtype=tf.float32) #I don't know why this has to be done but it does.
w = tf.shape(image)[1]
#Note: in facade data in the example code, the real (target) images are to the left of input image. Note that here the order is reversed!
w = w // 2
input_image = image[:, :w, :] #Take left half; order reversed from the tensorflow tutorial code.
real_image = image[:, w:, :]
input_image = tf.cast(input_image, tf.float32)
real_image = tf.cast(real_image, tf.float32)
input_image=tf.expand_dims(input_image, axis=0) #for dataset packing.
real_image=tf.expand_dims(real_image, axis=0)
if count==0:
input_list=input_image
real_list=real_image
else:
input_list=tf.concat([input_list,input_image],0)
real_list=tf.concat([real_list,real_image],0)
count=count+1
return input_list, real_list
def resize(input_image, real_image, height, width):
input_image = tf.image.resize(input_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
real_image = tf.image.resize(real_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return input_image, real_image
def load_image_test(image_file):
input_image, real_image = load(image_file)
input_image, real_image = resize(input_image, real_image,
IMG_HEIGHT, IMG_WIDTH)
bothimages=tf.data.Dataset.from_tensor_slices((input_image,real_image))#clumsy; there may be better ways to do this.
return bothimages
test_dataset=glob.glob(PATH+'/test/*.npy')
test_dataset = load_image_test(test_dataset)
test_dataset = test_dataset.batch(BATCH_SIZE)
#Load the latest checkpoint and generate images
# restoring the latest checkpoint in checkpoint_dir
checkpoint_dir = os.path.join(a.output_dir, "training/training_checkpoints/")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)).assert_consumed #reports error if it's not restored.
if manager.latest_checkpoint:
print("Restored from {}".format(manager.latest_checkpoint))
i_checkpoint=np.load((a.output_dir+"/i_checkpoint.npy"))
mem_cost_list=np.load((a.output_dir+"/memory_epoch.npy"))
else:
print("Initializing from scratch.")
i_checkpoint=np.int_(1) #An optional integer, or an integer-dtype Variable or Tensor, used to number the checkpoint.
mem_cost_list=np.array([0])
def random_crop(input_image, real_image):#***changed big time
stacked_image = tf.stack([input_image, real_image], axis=0)
cropped_image = tf.image.random_crop(
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, INPUT_CHANNELS])
return cropped_image[0], cropped_image[1]
@tf.function()
def random_jitter(input_image,real_image):
input_image, real_image = resize(input_image, real_image, 286, 286)
input_image, real_image = random_crop(input_image, real_image)
if tf.random.uniform(()) > 0.5:
# random mirroring
input_image = tf.image.flip_left_right(input_image)
real_image = tf.image.flip_left_right(real_image)
#Include random rotation and vertical flipping too:
if tf.random.uniform(()) > 0.5:
#flipud
input_image = tf.image.flip_up_down(input_image)
real_image = tf.image.flip_up_down(real_image)
if tf.random.uniform(()) > 0.5:
#rot90
input_image = tf.image.rot90(input_image,k=1)
real_image = tf.image.rot90(real_image,k=1)
return input_image, real_image
def change_image_train(input_image,real_image): #Changed indentation
train_dataset = random_jitter(input_image,real_image)
return train_dataset
input_image_train, real_image_train = load(glob.glob(PATH+'/train/*.npy'))
train_dataset = tf.data.Dataset.from_tensor_slices((input_image_train,real_image_train))
train_dataset = train_dataset.map(change_image_train,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(BUFFER_SIZE) #Note: in tf2, reshuffle_each_iteration=True
train_dataset = train_dataset.batch(BATCH_SIZE)
#Check if the shapes look right
print('shape of the first two pairs of "images" in the training data set:')
for f,g in train_dataset.take(2):
print(f.shape)
print(g.shape)
#Generator loss
LAMBDA = a.LAMBDA
def generator_loss(disc_generated_output, gen_output, target):
gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
# mean absolute error
l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
total_gen_loss = gan_loss + (LAMBDA * l1_loss)
return total_gen_loss, gan_loss, l1_loss
#Discriminator loss
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(disc_real_output, disc_generated_output):
real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output) #loss from recognizing generated output
total_disc_loss = real_loss + generated_loss
return total_disc_loss
EPOCHS = a.max_epochs
#import datetime
log_dir=os.path.join(a.output_dir, "training/logs/")
summary_writer = tf.summary.create_file_writer(
log_dir + "fit/")
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt"+str(i_checkpoint))
#Make one prediction (this is not just pedagogical; if I delete it, somehow the graph would not be completely updated at each iteration, and there would be memory leak.)
for example_input, example_target in test_dataset.take(1):
prediction = generator(example_input, training=True)
@tf.function
def train_step(input_image, target, epoch):
gc.collect()#added this
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator(input_image, training=True)
disc_real_output = discriminator([input_image, target], training=True)
disc_generated_output = discriminator([input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
disc_loss = discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss,
generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(disc_loss,
discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(generator_gradients,
generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
discriminator.trainable_variables))
with summary_writer.as_default():
tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
tf.summary.scalar('disc_loss', disc_loss, step=epoch)
testingpath= os.path.join(a.output_dir, "testing/")
def fit(train_ds, epochs, test_ds,mem_cost_list,i_checkpoint):
for epoch in range(epochs):
start = time.time()
"""
#**(debugging) save the train_ds at the start of epoch
ids=0
for inp,tar in train_ds:
ids=ids+1
with open(os.path.join(PATH,'','train_ds/train_ds_ep_%i' % epoch+'_%i.npz' % ids), 'wb') as f:
np.savez(f, inp=inp,tar=tar)
"""
print("Epoch: ", epoch)
print('Memory used:')
mem=psutil.virtual_memory()
print(mem.used)
mem_cost_list=np.append(mem_cost_list,[mem.used]) #Not going to change the written file yet
# Train
for n, (input_image, target) in train_ds.enumerate():
print('.', end='')
if (n+1) % 100 == 0:
print()
train_step(input_image, target, epoch)
print()
#saving (checkpoint) the model every few epochs
epochsave=10 #Saving every 10 epochs; you can modify this if you want to save more/less frequently.
if (epoch + 1) % epochsave == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1,
time.time()-start))
i_checkpoint=i_checkpoint+1
with open(a.output_dir+'/memory_epoch.npy','wb') as f:
np.save(f, mem_cost_list)
with open(a.output_dir+'/i_checkpoint.npy','wb') as f:
np.save(f, i_checkpoint)
fit(train_dataset, EPOCHS, test_dataset,mem_cost_list,i_checkpoint)