-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodel.js
318 lines (281 loc) · 8.2 KB
/
model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// handwriting mdn-lstm model ported to JS
if (typeof module != "undefined") {
}
var Model = {};
(function(global) {
"use strict";
// init (import weights from weights.js)
var string_to_uint8array = function(b64encoded) {
var u8 = new Uint8Array(atob(b64encoded).split("").map(function(c) {
return c.charCodeAt(0); }));
return u8;
}
var uintarray_to_string = function(u8) {
var b64encoded = btoa(String.fromCharCode.apply(null, u8));
return b64encoded;
};
function encode_array(raw_array) {
var i;
var N = raw_array.length;
var x = [];
for (i=0;i<N;i++) {
x.push(raw_array[i]+127);
}
var u8 = new Uint8Array(x);
return uintarray_to_string(u8);
}
function decode_string(b64encoded) {
var i;
var raw_array = string_to_uint8array(b64encoded);
var N = raw_array.length;
var x = [];
for (i=0;i<N;i++) {
x.push(raw_array[i]-127);
}
return x;
}
function encode_2d_array(raw_2d_array) {
var i;
var N = raw_2d_array.length;
var x = [];
var temp;
for (i=0;i<N;i++) {
temp = encode_array(raw_2d_array[i]);
x.push(temp);
}
return x;
}
function decode_2d_string(raw_2d_array) {
var i;
var N = raw_2d_array.length;
var x = [];
var temp;
for (i=0;i<N;i++) {
temp = decode_string(raw_2d_array[i]);
x.push(temp);
}
return x;
}
var bdata = JSON.parse(lstm_data);
var raw_output_w = decode_2d_string(bdata[0]);
var raw_output_b = decode_string(bdata[1]);
var raw_LSTM_Wxh = decode_2d_string(bdata[2]);
var raw_LSTM_Whh = decode_2d_string(bdata[3]);
var raw_LSTM_bias = decode_string(bdata[4]);
var scale_output_w = 1.5;
var scale_output_b = 2.5;
var scale_LSTM_Wxh = 2.0;
var scale_LSTM_Whh = 0.8;
var scale_LSTM_bias = 1.5;
var output_w = nj.array(raw_output_w);
var output_b = nj.array(raw_output_b);
var LSTM_Wxh = nj.array(raw_LSTM_Wxh);
var LSTM_Whh = nj.array(raw_LSTM_Whh);
var LSTM_bias = nj.array(raw_LSTM_bias);
output_w = output_w.divide(127);
output_w = output_w.multiply(scale_output_w);
output_b = output_b.divide(127);
output_b = output_b.multiply(scale_output_b);
LSTM_Wxh = LSTM_Wxh.divide(127);
LSTM_Wxh = LSTM_Wxh.multiply(scale_LSTM_Wxh);
LSTM_Whh = LSTM_Whh.divide(127);
LSTM_Whh = LSTM_Whh.multiply(scale_LSTM_Whh);
LSTM_bias = LSTM_bias.divide(127);
LSTM_bias = LSTM_bias.multiply(scale_LSTM_bias);
// settings
var num_units=500;
var N_mixture=20;
var input_size=3;
var W_full=nj.concatenate([LSTM_Wxh.T, LSTM_Whh.T]).T; // training size
var bias=LSTM_bias;
var forget_bias=1.0;
var h_w = output_w;
var h_b = output_b;
var scale_factor = 6.0;
var zero_state = function() {
return [nj.zeros(num_units), nj.zeros(num_units)];
};
var random_state = function() {
var std_ = 0.50;
var h = nj.zeros(num_units);
var c = nj.zeros(num_units);
var i = 0;
for(i=0;i<num_units;i++) {
h.set(i, randn(0, std_));
c.set(i, randn(0, std_));
}
return [h, c];
};
var copy_state = function(state) {
var h = state[0].clone();
var c = state[1].clone();
return [h, c];
};
var zero_input = function() {
return [0, 0, 0];
};
var random_input = function() {
var std_ = 0.1;
var x = nj.zeros(input_size);
var pen_s = 0;
if (randf(0, 1) > 0.9) pen_s = 1;
x.set(0, randn(0, std_));
x.set(1, randn(0, std_));
x.set(2, pen_s);
return x;
};
var update = function(x_, s) {
var x = nj.zeros(input_size);
x.set(0, x_[0]/scale_factor);
x.set(1, x_[1]/scale_factor);
x.set(2, x_[2]);
var h = s[0];
var c = s[1];
var concat = nj.concatenate([x, h]);
var hidden = nj.dot(concat, W_full);
hidden = nj.add(hidden, bias);
var i=nj.sigmoid(hidden.slice([0*num_units, 1*num_units]));
var g=nj.tanh(hidden.slice([1*num_units, 2*num_units]));
var f=nj.sigmoid(nj.add(hidden.slice([2*num_units, 3*num_units]), forget_bias));
var o=nj.sigmoid(hidden.slice([3*num_units, 4*num_units]));
var new_c = nj.add(nj.multiply(c, f), nj.multiply(g, i));
var new_h = nj.multiply(nj.tanh(new_c), o);
return [new_h, new_c];
}
var get_pdf = function(s) {
var h = s[0];
var NOUT = N_mixture;
var z=nj.add(nj.dot(h, h_w), h_b);
var z_eos = nj.sigmoid(z.slice([0, 1]));
var z_pi = z.slice([1+NOUT*0, 1+NOUT*1]);
var z_mu1 = z.slice([1+NOUT*1, 1+NOUT*2]);
var z_mu2 = z.slice([1+NOUT*2, 1+NOUT*3]);
var z_sigma1 = nj.exp(z.slice([1+NOUT*3, 1+NOUT*4]));
var z_sigma2 = nj.exp(z.slice([1+NOUT*4, 1+NOUT*5]));
var z_corr = nj.tanh(z.slice([1+NOUT*5, 1+NOUT*6]));
z_pi = nj.subtract(z_pi, z_pi.max());
z_pi = nj.softmax(z_pi);
return [z_pi, z_mu1, z_mu2, z_sigma1, z_sigma2, z_corr, z_eos];
};
var sample_pi_idx = function(z_pi) {
var x = randf(0, 1);
var N = N_mixture;
var accumulate = 0;
var i = 0;
for (i=0;i<N;i++) {
accumulate += z_pi.get(i);
if (accumulate >= x) {
return i;
}
}
console.log('error sampling pi index');
return -1;
};
var sample_eos = function(z_eos) {
// eos = 1 if random.random() < o_eos[0][0] else 0
var eos = 0;
if (randf(0, 1) < z_eos.get(0)) {
eos = 1;
}
return eos;
}
/*
def adjust_temp(pi_pdf, temp):
pi_pdf = np.log(pi_pdf) / temp
pi_pdf -= pi_pdf.max()
pi_pdf = np.exp(pi_pdf)
pi_pdf /= pi_pdf.sum()
return pi_pdf
*/
var adjust_temp = function(z_old, temp) {
var z = nj.array(z_old);
var i;
var x;
//console.log("before="+z_old.get(0));
for (i=z.shape[0]-1;i>=0;i--) {
x = z.get(i);
x = Math.log(x) / temp;
z.set(i, x);
}
x = z.max();
z = nj.subtract(z, x);
z = nj.exp(z);
x = z.sum();
z = nj.divide(z, x);
//console.log("after="+z.get(0));
return z;
};
var sample = function(z, temperature) {
// z is [z_pi, z_mu1, z_mu2, z_sigma1, z_sigma2, z_corr, z_eos]
// returns [x, y, eos]
var temp=0.65;
if (typeof(temperature) === "number") {
temp = temperature;
}
var z_0 = adjust_temp(z[0], temp);
var z_6 = nj.array(z[6]);
//var z6 = Math.exp(Math.log(z_6.get(0))/temp);
//z_6.set(0, z6);
var idx = sample_pi_idx(z_0);
var mu1 = z[1].get(idx);
var mu2 = z[2].get(idx);
var sigma1 = z[3].get(idx)*temp;
var sigma2 = z[4].get(idx)*temp;
var corr = z[5].get(idx);
var eos = sample_eos(z_6);
var delta = birandn(mu1, mu2, sigma1, sigma2, corr);
return [delta[0]*scale_factor, delta[1]*scale_factor, eos];
}
// Random numbers util (from https://github.com/karpathy/recurrentjs)
var return_v = false;
var v_val = 0.0;
var gaussRandom = function() {
if(return_v) {
return_v = false;
return v_val;
}
var u = 2*Math.random()-1;
var v = 2*Math.random()-1;
var r = u*u + v*v;
if(r == 0 || r > 1) return gaussRandom();
var c = Math.sqrt(-2*Math.log(r)/r);
v_val = v*c; // cache this
return_v = true;
return u*c;
}
var randf = function(a, b) { return Math.random()*(b-a)+a; };
var randi = function(a, b) { return Math.floor(Math.random()*(b-a)+a); };
var randn = function(mu, std){ return mu+gaussRandom()*std; };
// from http://www.math.grin.edu/~mooret/courses/math336/bivariate-normal.html
var birandn = function(mu1, mu2, std1, std2, rho) {
var z1 = randn(0, 1);
var z2 = randn(0, 1);
var x = Math.sqrt(1-rho*rho)*std1*z1 + rho*std1*z2 + mu1;
var y = std2*z2 + mu2;
return [x, y];
};
var set_scale_factor = function(scale) {
scale_factor = scale;
};
global.zero_state = zero_state;
global.zero_input = zero_input;
global.random_state = random_state;
global.copy_state = copy_state;
global.random_input = random_input;
global.update = update;
global.get_pdf = get_pdf;
global.randf = randf;
global.randi = randi;
global.randn = randn;
global.birandn = birandn;
global.sample = sample;
global.set_scale_factor = set_scale_factor;
})(Model);
(function(lib) {
"use strict";
if (typeof module === "undefined" || typeof module.exports === "undefined") {
//window.jsfeat = lib; // in ordinary browser attach library to window
} else {
module.exports = lib; // in nodejs
}
})(Model);