-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathsketch_basic.js
88 lines (65 loc) · 2.72 KB
/
sketch_basic.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// Basic Example of Unconditional Handwriting Generation.
var sketch = function( p ) {
"use strict";
// variables we need for this demo
var dx, dy; // offsets of the pen strokes, in pixels
var pen, prev_pen; // keep track of whether pen is touching paper
var x, y; // absolute coordinates on the screen of where the pen is
var rnn_state; // store the hidden states of rnn's neurons
var pdf; // store all the parameters of a mixture-density distribution
var temperature = 0.65; // controls the amount of uncertainty of the model
var screen_width, screen_height; // stores the browser's dimensions
var line_color;
var restart = function() {
// reinitialize variables before calling p5.js setup.
// make sure we enforce some minimum size of our demo
screen_width = Math.max(window.innerWidth, 480);
screen_height = Math.max(window.innerHeight, 320);
// start drawing from somewhere in middle of the canvas
x = 50;
y = p.random(100, screen_height-100);
// initialize the scale factor for the model. Bigger -> large outputs
Model.set_scale_factor(10.0);
// initialize pen's states to zero.
[dx, dy, prev_pen] = Model.zero_input(); // the pen's states
// randomize the rnn's initial states
rnn_state = Model.random_state();
// define color of line
line_color = p.color(p.random(64, 224), p.random(64, 224), p.random(64, 224))
};
p.setup = function() {
restart(); // initialize variables for this demo
p.createCanvas(screen_width, screen_height);
p.frameRate(60);
p.background(255, 255, 255, 255);
p.fill(255, 255, 255, 255);
};
p.draw = function() {
// using the previous pen states, and hidden state, get next hidden state
rnn_state = Model.update([dx, dy, prev_pen], rnn_state);
// get the parameters of the probability distribution (pdf) from hidden state
pdf = Model.get_pdf(rnn_state);
// sample the next pen's states from our probability distribution
[dx, dy, pen] = Model.sample(pdf, temperature);
// only draw on the paper if the pen is touching the paper
if (prev_pen == 0) {
p.stroke(line_color);
p.strokeWeight(2.0);
p.line(x, y, x+dx, y+dy); // draw line connecting prev point to current point.
}
// update the absolute coordinates from the offsets
x += dx;
y += dy;
// update the previous pen's state to the current one we just sampled
prev_pen = pen;
// if the rnn starts drawing close to the right side of the canvas, reset demo
if (x > screen_width - 50) {
restart();
}
if (p.frameCount % 30 == 0) {
p.background(255, 255, 255, 16); // fade out a bit.
p.fill(255, 255, 255, 32);
}
};
};
var custom_p5 = new p5(sketch, 'sketch');