-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
330 lines (270 loc) · 11.4 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# @author : Bingyu Xin
# @Institute : CS@Rutgers
## MS-SSIM loss is modified from https://github.com/VainF/pytorch-msssim/blob/master/pytorch_msssim/ssim.py
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
def _fspecial_gauss_1d(size, sigma):
r"""Create 1-D gauss kernel
Args:
size (int): the size of gauss kernel
sigma (float): sigma of normal distribution
Returns:
torch.Tensor: 1D kernel (1 x 1 x size)
"""
coords = torch.arange(size).to(dtype=torch.float)
coords -= size // 2
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
g /= g.sum()
return g.unsqueeze(0).unsqueeze(0)
def gaussian_filter(input, win):
r""" Blur input with 1-D kernel
Args:
input (torch.Tensor): a batch of tensors to be blurred
window (torch.Tensor): 1-D gauss kernel
Returns:
torch.Tensor: blurred tensors
"""
assert all([ws == 1 for ws in win.shape[1:-1]]), win.shape
if len(input.shape) == 4:
conv = F.conv2d
elif len(input.shape) == 5:
conv = F.conv3d
else:
raise NotImplementedError(input.shape)
C = input.shape[1]
out = input
for i, s in enumerate(input.shape[2:]):
if s >= win.shape[-1]:
out = conv(out, weight=win.transpose(2 + i, -1), stride=1, padding=0, groups=C)
else:
warnings.warn(
f"Skipping Gaussian Smoothing at dimension 2+{i} for input: {input.shape} and win size: {win.shape[-1]}"
)
return out
def _ssim(X, Y, data_range, win, size_average=True, K=(0.01, 0.03)):
r""" Calculate ssim index for X and Y
Args:
X (torch.Tensor): images
Y (torch.Tensor): images
win (torch.Tensor): 1-D gauss kernel
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
Returns:
torch.Tensor: ssim results.
"""
K1, K2 = K
# batch, channel, [depth,] height, width = X.shape
compensation = 1.0
C1 = (K1 * data_range) ** 2
C2 = (K2 * data_range) ** 2
win = win.to(X.device, dtype=X.dtype)
mu1 = gaussian_filter(X, win)
mu2 = gaussian_filter(Y, win)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = compensation * (gaussian_filter(X * X, win) - mu1_sq)
sigma2_sq = compensation * (gaussian_filter(Y * Y, win) - mu2_sq)
sigma12 = compensation * (gaussian_filter(X * Y, win) - mu1_mu2)
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) # set alpha=beta=gamma=1
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
ssim_per_channel = torch.flatten(ssim_map, 2).mean(-1)
cs = torch.flatten(cs_map, 2).mean(-1)
return ssim_per_channel, cs
def ssim(
X,
Y,
data_range=255,
size_average=True,
win_size=11,
win_sigma=1.5,
win=None,
K=(0.01, 0.03),
nonnegative_ssim=False,
):
r""" interface of ssim
Args:
X (torch.Tensor): a batch of images, (N,C,H,W)
Y (torch.Tensor): a batch of images, (N,C,H,W)
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
nonnegative_ssim (bool, optional): force the ssim response to be nonnegative with relu
Returns:
torch.Tensor: ssim results
"""
if not X.shape == Y.shape:
raise ValueError("Input images should have the same dimensions.")
for d in range(len(X.shape) - 1, 1, -1):
X = X.squeeze(dim=d)
Y = Y.squeeze(dim=d)
if len(X.shape) not in (4, 5):
raise ValueError(f"Input images should be 4-d or 5-d tensors, but got {X.shape}")
if not X.type() == Y.type():
raise ValueError("Input images should have the same dtype.")
if win is not None: # set win_size
win_size = win.shape[-1]
if not (win_size % 2 == 1):
raise ValueError("Window size should be odd.")
if win is None:
win = _fspecial_gauss_1d(win_size, win_sigma)
win = win.repeat([X.shape[1]] + [1] * (len(X.shape) - 1))
ssim_per_channel, cs = _ssim(X, Y, data_range=data_range, win=win, size_average=False, K=K)
if nonnegative_ssim:
ssim_per_channel = torch.relu(ssim_per_channel)
if size_average:
return ssim_per_channel.mean()
else:
return ssim_per_channel.mean(1)
def ms_ssim(
X, Y, data_range=255, size_average=True, win_size=11, win_sigma=1.5, win=None, weights=None, K=(0.01, 0.03)
):
r""" interface of ms-ssim
Args:
X (torch.Tensor): a batch of images, (N,C,[T,]H,W)
Y (torch.Tensor): a batch of images, (N,C,[T,]H,W)
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
weights (list, optional): weights for different levels
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
torch.Tensor: ms-ssim results
"""
if not X.shape == Y.shape:
raise ValueError("Input images should have the same dimensions.")
for d in range(len(X.shape) - 1, 1, -1):
X = X.squeeze(dim=d)
Y = Y.squeeze(dim=d)
if not X.type() == Y.type():
raise ValueError("Input images should have the same dtype.")
if len(X.shape) == 4:
avg_pool = F.avg_pool2d
elif len(X.shape) == 5:
avg_pool = F.avg_pool3d
else:
raise ValueError(f"Input images should be 4-d or 5-d tensors, but got {X.shape}")
if win is not None: # set win_size
win_size = win.shape[-1]
if not (win_size % 2 == 1):
raise ValueError("Window size should be odd.")
smaller_side = min(X.shape[-2:])
assert smaller_side > (win_size - 1) * (
2 ** 4
), "Image size should be larger than %d due to the 4 downsamplings in ms-ssim" % ((win_size - 1) * (2 ** 4))
if weights is None:
weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
weights = torch.FloatTensor(weights).to(X.device, dtype=X.dtype)
if win is None:
win = _fspecial_gauss_1d(win_size, win_sigma)
win = win.repeat([X.shape[1]] + [1] * (len(X.shape) - 1))
levels = weights.shape[0]
mcs = []
for i in range(levels):
ssim_per_channel, cs = _ssim(X, Y, win=win, data_range=data_range, size_average=False, K=K)
if i < levels - 1:
mcs.append(torch.relu(cs))
padding = [s % 2 for s in X.shape[2:]]
X = avg_pool(X, kernel_size=2, padding=padding)
Y = avg_pool(Y, kernel_size=2, padding=padding)
ssim_per_channel = torch.relu(ssim_per_channel) # (batch, channel)
mcs_and_ssim = torch.stack(mcs + [ssim_per_channel], dim=0) # (level, batch, channel)
ms_ssim_val = torch.prod(mcs_and_ssim ** weights.view(-1, 1, 1), dim=0)
if size_average:
return ms_ssim_val.mean()
else:
return ms_ssim_val.mean(1)
class SSIM(torch.nn.Module):
def __init__(
self,
size_average=True,
win_size=11,
win_sigma=1.5,
channel=3,
spatial_dims=2,
K=(0.01, 0.03),
nonnegative_ssim=False,
):
r""" class for ssim
Args:
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
channel (int, optional): input channels (default: 3)
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
nonnegative_ssim (bool, optional): force the ssim response to be nonnegative with relu.
"""
super(SSIM, self).__init__()
self.win_size = win_size
self.win = _fspecial_gauss_1d(win_size, win_sigma).repeat([channel, 1] + [1] * spatial_dims)
self.size_average = size_average
self.K = K
self.nonnegative_ssim = nonnegative_ssim
def forward(self, X, Y, data_range):
return ssim(
X,
Y,
data_range=data_range,
size_average=self.size_average,
win=self.win,
K=self.K,
nonnegative_ssim=self.nonnegative_ssim,
)
class MS_SSIM(torch.nn.Module):
def __init__(
self,
size_average=True,
win_size=11,
win_sigma=1.5,
channel=3,
spatial_dims=2,
weights=None,
K=(0.01, 0.03),
):
r""" class for ms-ssim
Args:
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
channel (int, optional): input channels (default: 3)
weights (list, optional): weights for different levels
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
"""
super(MS_SSIM, self).__init__()
self.win_size = win_size
self.win = _fspecial_gauss_1d(win_size, win_sigma).repeat([channel, 1] + [1] * spatial_dims)
self.size_average = size_average
self.weights = weights
self.K = K
def forward(self, X, Y, data_range=1.):
return ms_ssim(
X,
Y,
data_range=data_range,
size_average=self.size_average,
win=self.win,
weights=self.weights,
K=self.K,
)
class CompoundLoss(nn.Module):
def __init__(self, ssim_type='ssim'):
super().__init__()
self.l1loss = nn.L1Loss()
if ssim_type == 'ssim':
self.msssim = SSIM(win_size=7, size_average=True, channel=1, K=(0.01, 0.03))
elif ssim_type == 'ms-ssim':
self.msssim = MS_SSIM(win_size=7, size_average=True, channel=1, K=(0.01, 0.03))
self.alpha = 0.84
def forward(self, pred, target, data_range=1.):
l1_loss = self.l1loss(pred, target)
ssim_loss = 1 - self.msssim(pred.unsqueeze(1), target.unsqueeze(1), data_range)
return (1 - self.alpha) * l1_loss + self.alpha * ssim_loss