-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
174 lines (170 loc) · 5.83 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.nn as nn
import torch.nn.functional as F
class conv(nn.Module):
def __init__(self,in_ch,out_ch):
super(conv,self).__init__()
self.conv=nn.Sequential(
nn.Conv3d(in_ch,out_ch,(3,3,3),padding=(1,1,1)),
nn.BatchNorm3d(out_ch),
nn.PReLU(),
)
def forward(self, x):
x=self.conv(x)
return x
class inconv(nn.Module):
def __init__(self,in_ch,out_ch):
super(inconv,self).__init__()
self.conv=nn.Sequential(
nn.Conv3d(in_ch,out_ch,3,padding=1),
nn.BatchNorm3d(out_ch),
nn.PReLU(),
)
def forward(self, x):
x=self.conv(x)
return x
class res_block(nn.Module):
''''''
def __init__(self,in_ch,out_ch,d=1):
super(res_block,self).__init__()
self.doubleconv = nn.Sequential(
nn.Conv3d(in_ch, out_ch, (3, 3, 1), padding=(d, d, 0), dilation=(d, d, 1)),
nn.BatchNorm3d(out_ch),
nn.PReLU(),
nn.Conv3d(out_ch, out_ch, (3, 3, 1), padding=(d, d, 0), dilation=(d, d, 1)),
nn.BatchNorm3d(out_ch),
nn.PReLU()
)
def forward(self, x):
x1 = self.doubleconv(x)
x =x+ x1
return x
class anistropic_conv(nn.Module):
'''1X1X3'''
def __init__(self,in_ch,out_ch):
super(anistropic_conv,self).__init__()
self.aniconv=nn.Sequential(
nn.Conv3d(in_ch,out_ch,(1,1,3),padding=(0,0,1),dilation=1),
nn.BatchNorm3d(out_ch),
nn.PReLU(),
)
def forward(self,x):
x1=self.aniconv(x)
return x1
class Block_3(nn.Module):
def __init__(self,in_ch,out_ch,flag):
super(Block_3,self).__init__()
if flag==1:
self.block = nn.Sequential(
res_block(in_ch, out_ch, 1),
res_block(out_ch, out_ch, 2),
res_block(out_ch, out_ch, 3),
anistropic_conv(out_ch, out_ch)
)
else:
self.block = nn.Sequential(
res_block(in_ch, out_ch, 3),
res_block(out_ch, out_ch, 2),
res_block(out_ch, out_ch, 1),
anistropic_conv(out_ch, out_ch)
)
def forward(self, x):
x1=self.block(x)
return x1
class Block_2(nn.Module):
def __init__(self,in_ch,out_ch,flag):
super(Block_2,self).__init__()
self.flag=flag
self.block=nn.Sequential(
res_block(in_ch,out_ch),
res_block(out_ch,out_ch),
anistropic_conv(out_ch,out_ch),
)
self.pooling=nn.Sequential(
nn.Conv3d(out_ch, out_ch, kernel_size=(3,3,1), stride=(2,2,1),padding=(1,1,0)),
nn.BatchNorm3d(out_ch),
nn.PReLU(),
)
def forward(self, x):
x1=self.block(x)
out=self.pooling(x1)
if self.flag==1:
return x1,out
else:
return out
class up(nn.Module):
def __init__(self,in_ch,out_classes,flag):
super(up,self).__init__()
if flag==2:
self.conv = nn.Sequential(
nn.Conv3d(in_ch, out_classes, (3, 3, 1), padding=(1, 1, 0)),
nn.ConvTranspose3d(out_classes, out_classes, kernel_size=(3,3,1), \
stride=(2,2,1),padding=(1,1,0),output_padding=(1,1,0)),
nn.BatchNorm3d(out_classes),
nn.PReLU(),
)
if flag==4:
self.conv = nn.Sequential(
nn.Conv3d(in_ch, out_classes, (3, 3, 1), padding=(1, 1, 0)),
nn.ConvTranspose3d(out_classes, out_classes, kernel_size=(3,3,1), \
stride=(2,2,1),padding=(1,1,0),output_padding=(1,1,0)),
nn.BatchNorm3d(out_classes),
nn.PReLU(),
nn.ConvTranspose3d(out_classes,out_classes, kernel_size=(3,3,1), \
stride=(2,2,1),padding=(1,1,0),output_padding=(1,1,0)),
nn.BatchNorm3d(out_classes),
nn.PReLU(),
)
if flag==1:
self.conv = nn.Sequential(
nn.Conv3d(in_ch, out_classes, (3, 3, 1), padding=(1, 1, 0)),
)
def forward(self, x):
x=self.conv(x)
return x
class WNET(nn.Module):
def __init__(self,n_channels,out_ch,n_classes):
super(WNET,self).__init__()
self.conv=conv(n_channels,out_ch)
self.block0=Block_2(out_ch,out_ch,0)
self.block1=Block_2(out_ch,out_ch,1)
self.block2 = Block_3(out_ch, out_ch,1)
self.block3 = Block_3(out_ch, out_ch, 0)
self.up0=up(out_ch,n_classes,2)
self.up1 = up(out_ch, n_classes*2, 4)
self.up2 = up(out_ch, n_classes*4, 4)
self.out=up(7*n_classes,n_classes,1)
def forward(self, x):
x=self.conv(x)
x=self.block0(x)
x0,x=self.block1(x)
x0=self.up0(x0)
x=self.block2(x)
x1=self.up1(x)
x=self.block3(x)
x=self.up2(x)
x=torch.cat([x0,x1,x],dim=1)
x=self.out(x)
return F.sigmoid(x)
class ENET(nn.Module):
def __init__(self,n_channels,out_ch,n_classes):
super(ENET, self).__init__()
self.conv = conv(n_channels, out_ch)
self.block0 = Block_2(out_ch, out_ch, 1)
self.block1 = Block_2(out_ch, out_ch, 1)
self.block2 = Block_3(out_ch, out_ch, 1)
self.block3 = Block_3(out_ch, out_ch, 0)
self.up1 = up(out_ch, n_classes * 2, 2)
self.up2 = up(out_ch, n_classes * 2, 2)
self.out = up(5 * n_classes, n_classes, 1)
def forward(self, x):
x = self.conv(x)
x,_ = self.block0(x)
x0, x = self.block1(x)
x = self.block2(x)
x1 = self.up1(x)
x = self.block3(x)
x = self.up2(x)
x = torch.cat([x0, x1, x], dim=1)
x = self.out(x)
return F.sigmoid(x)