forked from facebookresearch/deepcluster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_linear.py
319 lines (266 loc) · 11.2 KB
/
eval_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from util import AverageMeter, learning_rate_decay, load_model, Logger
parser = argparse.ArgumentParser(description="""Train linear classifier on top
of frozen convolutional layers of an AlexNet.""")
parser.add_argument('--data', type=str, help='path to dataset')
parser.add_argument('--model', type=str, help='path to model')
parser.add_argument('--conv', type=int, choices=[1, 2, 3, 4, 5],
help='on top of which convolutional layer train logistic regression')
parser.add_argument('--tencrops', action='store_true',
help='validation accuracy averaged over 10 crops')
parser.add_argument('--exp', type=str, default='', help='exp folder')
parser.add_argument('--workers', default=4, type=int,
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', type=int, default=90, help='number of total epochs to run (default: 90)')
parser.add_argument('--batch_size', default=256, type=int,
help='mini-batch size (default: 256)')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum (default: 0.9)')
parser.add_argument('--weight_decay', '--wd', default=-4, type=float,
help='weight decay pow (default: -4)')
parser.add_argument('--seed', type=int, default=31, help='random seed')
parser.add_argument('--verbose', action='store_true', help='chatty')
def main():
global args
args = parser.parse_args()
#fix random seeds
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
best_prec1 = 0
# load model
model = load_model(args.model)
model.cuda()
cudnn.benchmark = True
# freeze the features layers
for param in model.features.parameters():
param.requires_grad = False
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
# data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if args.tencrops:
transformations_val = [
transforms.Resize(256),
transforms.TenCrop(224),
transforms.Lambda(lambda crops: torch.stack([normalize(transforms.ToTensor()(crop)) for crop in crops])),
]
else:
transformations_val = [transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize]
transformations_train = [transforms.Resize(256),
transforms.CenterCrop(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize]
train_dataset = datasets.ImageFolder(
traindir,
transform=transforms.Compose(transformations_train)
)
val_dataset = datasets.ImageFolder(
valdir,
transform=transforms.Compose(transformations_val)
)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=int(args.batch_size/2),
shuffle=False,
num_workers=args.workers)
# logistic regression
reglog = RegLog(args.conv, len(train_dataset.classes)).cuda()
optimizer = torch.optim.SGD(
filter(lambda x: x.requires_grad, reglog.parameters()),
args.lr,
momentum=args.momentum,
weight_decay=10**args.weight_decay
)
# create logs
exp_log = os.path.join(args.exp, 'log')
if not os.path.isdir(exp_log):
os.makedirs(exp_log)
loss_log = Logger(os.path.join(exp_log, 'loss_log'))
prec1_log = Logger(os.path.join(exp_log, 'prec1'))
prec5_log = Logger(os.path.join(exp_log, 'prec5'))
for epoch in range(args.epochs):
end = time.time()
# train for one epoch
train(train_loader, model, reglog, criterion, optimizer, epoch)
# evaluate on validation set
prec1, prec5, loss = validate(val_loader, model, reglog, criterion)
loss_log.log(loss)
prec1_log.log(prec1)
prec5_log.log(prec5)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if is_best:
filename = 'model_best.pth.tar'
else:
filename = 'checkpoint.pth.tar'
torch.save({
'epoch': epoch + 1,
'arch': 'alexnet',
'state_dict': model.state_dict(),
'prec5': prec5,
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, os.path.join(args.exp, filename))
class RegLog(nn.Module):
"""Creates logistic regression on top of frozen features"""
def __init__(self, conv, num_labels):
super(RegLog, self).__init__()
self.conv = conv
if conv==1:
self.av_pool = nn.AvgPool2d(6, stride=6, padding=3)
s = 9600
elif conv==2:
self.av_pool = nn.AvgPool2d(4, stride=4, padding=0)
s = 9216
elif conv==3:
self.av_pool = nn.AvgPool2d(3, stride=3, padding=1)
s = 9600
elif conv==4:
self.av_pool = nn.AvgPool2d(3, stride=3, padding=1)
s = 9600
elif conv==5:
self.av_pool = nn.AvgPool2d(2, stride=2, padding=0)
s = 9216
self.linear = nn.Linear(s, num_labels)
def forward(self, x):
x = self.av_pool(x)
x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
return self.linear(x)
def forward(x, model, conv):
if hasattr(model, 'sobel') and model.sobel is not None:
x = model.sobel(x)
count = 1
for m in model.features.modules():
if not isinstance(m, nn.Sequential):
x = m(x)
if isinstance(m, nn.ReLU):
if count == conv:
return x
count = count + 1
return x
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train(train_loader, model, reglog, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# freeze also batch norm layers
model.eval()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
#adjust learning rate
learning_rate_decay(optimizer, len(train_loader) * epoch + i, args.lr)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input.cuda())
target_var = torch.autograd.Variable(target)
# compute output
output = forward(input_var, model, reglog.conv)
output = reglog(output)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.verbose and i % 100 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'
.format(epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
def validate(val_loader, model, reglog, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
softmax = nn.Softmax(dim=1).cuda()
end = time.time()
for i, (input_tensor, target) in enumerate(val_loader):
if args.tencrops:
bs, ncrops, c, h, w = input_tensor.size()
input_tensor = input_tensor.view(-1, c, h, w)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input_tensor.cuda(), volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
output = reglog(forward(input_var, model, reglog.conv))
if args.tencrops:
output_central = output.view(bs, ncrops, -1)[: , ncrops / 2 - 1, :]
output = softmax(output)
output = torch.squeeze(output.view(bs, ncrops, -1).mean(1))
else:
output_central = output
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
top1.update(prec1[0], input_tensor.size(0))
top5.update(prec5[0], input_tensor.size(0))
loss = criterion(output_central, target_var)
losses.update(loss.data[0], input_tensor.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.verbose and i % 100 == 0:
print('Validation: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'
.format(i, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
if __name__ == '__main__':
main()