-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber_theory_functions.py
136 lines (103 loc) · 2.88 KB
/
number_theory_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from sage.all import *
from sage.misc.functional import N as NUM
def ilog(b, N):
ans = 0
while N >= b:
ans += 1
N //= b
return ans
def iroot(N, k):
# Return the integer k-th root of N, rounded towards zero.
return Integer(N).nth_root(k, truncate_mode=True)[0]
def is_power(N):
# Return (True, exponent, root) if its kth-power (k>=2) or (False, None, None)
mx = ilog(2, N)+1
for k in range(2, mx+1):
x = iroot(N, k)
if x**k == N:
return (True, k, x)
return (False, None, None)
def ceil_sqrt(N):
s = isqrt(N)
while s**2 < N:
s += 1
return s
def is_square(N):
s = isqrt(N)
return s**2 == N
def prime_sieve(N):
primes = []
isprime = [True] * N
isprime[0] = isprime[1] = False
for i in range(2, N):
if isprime[i]:
primes.append(i)
for j in range(2*i, N, i):
isprime[j] = False
return primes
def factor_with_base(base, N, CFRAC_EAS=None):
# returns a tuple (factorization, remaining part of N)
L = len(base)
v = vector(ZZ, L, sparse=True)
for i in range(L):
while N % base[i] == 0:
N //= base[i]
v[i] += 1
if (CFRAC_EAS is not None) and (i in CFRAC_EAS) and (N > CFRAC_EAS[i]):
return (v, N)
return (v, N)
def number_from_factorization(factorization):
n = 1
for e in factorization:
n *= e[0]**e[1]
return n
def compute_with_base(base, v, M=None):
L = len(base)
assert len(base) == len(v)
x = 1
for i in range(L):
if M is None:
x *= base[i]**Integer(v[i])
else:
x = x * power_mod(base[i], Integer(v[i]), M) % M
return x
def square_root_mod_p(a, p):
# Uses the Tonelli-Shanks algorithm
a, p = map(Integer, (a, p))
if p == 2:
return [a % 2]
if kronecker(a, p) != 1:
return None
v = p-1
e = 0
while v % 2 == 0:
v //= 2
e += 1
q = (p-1)/2**e
z = None
while z is None:
k = randint(1, p-1)
z = power_mod(k, q, p)
if kronecker(z, p) != -1:
z = None
def S(a, b):
# assert power_mod(a, (p-1)/2**b, p) == 1
if b == e:
return 0
else:
if power_mod(a, (p-1)/2**(b+1), p) == 1:
return S(a, b+1)
else:
a_ = a * power_mod(z, 2**b, p) % p
s_ = S(a_, b+1)
return 2**(b-1) * q + s_
s = S(a, 1)
x = power_mod(a, (q+1)/2, p) * power_mod(z, s, p) % p
x_ = -x % p
# assert x**2 % p == a, x_**2 % p == a
return [x, x_]
def L_notation(N, alpha=1, c=1):
n = NUM(N, digits=10**4) # use 10000 digits for precise computation
return ceil(
exp( c * log(n)**alpha * log(log(n))**(1-alpha) )
)