-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNSextended.py
176 lines (136 loc) · 4.13 KB
/
NSextended.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Begin demo
from dolfin import *
import time
time0 = time.time()
# Print log messages only from the root process in parallel
parameters["std_out_all_processes"] = False;
# Load mesh from file
mesh = Mesh("lshape.xml.gz")
# Define function spaces (P2-P1)
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
phi=TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)
psi=TestFunction(Q)
# Set parameter values
dt = 0.01
T = 3
nu = 0.01
C = 10. #Diffution constant
# Define time-dependent pressure boundary condition
#p_in = Expression("2000*sin(3.0*t)", t=0.0)
class MyExpression(Expression):
#This is a sinus wave that is zero if negative.
def __init__(self, t = 0.0):
self.t = t
Expression.__init__(self)
def eval(self, values, x):
tmp_value = 2000*sin(3.0*self.t)
if tmp_value < 0.0:
values[0] = 0.0
else: values[0] = tmp_value
p_in = MyExpression();
# Define the rate function
#R = Expression("(3*(1-x[0])*x[0]*(1-x[1])*x[1])*(t + 1)", t = 0.0)
R = Constant(0)
# Define boundary conditions
noslip = DirichletBC(V, (0, 0),
"on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]
# Define boundray conditions on phi
noslipphi = DirichletBC(Q, 0, "on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflowphi = DirichletBC(Q, 1, "x[1] > 1.0 - DOLFIN_EPS")
outflowphi = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcphi = [noslipphi, inflowphi, outflowphi]
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)
phi0=Function(Q)
#phi1 = Expression("1.0")#Constant(1)
#phi0.assign(phi1)
# Define coefficients
k = Constant(dt)
f = Constant((0, 0))
# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u)*u0, v)*dx + \
nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx #Semi implicit
a1 = lhs(F1)
L1 = rhs(F1)
# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx
# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")
phifile=File("results/phi.pvd")
# Time-stepping
t = dt
while t < T + DOLFIN_EPS:
# Update pressure boundary condition
p_in.t = t
R.t = t
# Compute tentative velocity step
begin("Computing tentative velocity")
b1 = assemble(L1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1, "gmres", "default")
end()
# Pressure correction
begin("Computing pressure correction")
b2 = assemble(L2)
[bc.apply(A2, b2) for bc in bcp]
solve(A2, p1.vector(), b2, "gmres", "amg")
end()
# Velocity correction
begin("Computing velocity correction")
b3 = assemble(L3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3, "gmres", "default")
end()
#Phi solveing
##Assembleing
F4 = (1/k)*inner(phi-phi0, psi)*dx + inner(dot(u1,grad(phi)),psi)*dx \
+ C*inner(grad(phi),grad(psi))*dx + inner(R*phi, psi)*dx#Is this implicit?
a4 = lhs(F4)
L4 = rhs(F4)
A4 = assemble(a4)
b4 = assemble(L4)
##
begin("Computeing phi")
[bc.apply(A4, b4) for bc in bcphi]
solve(A4, phi0.vector(), b4, "gmres", "amg")
end()
# Plot solution
#plot(p1, title="Pressure", rescale=True)
#plot(u1, title="Velocity", rescale=True)
#plot(phi0,title="phi ",rescale=True)
# Save to file
ufile << u1
pfile << p1
phifile<<phi0
# Move to next time step
u0.assign(u1)
t += dt
print "t =", t
print 'Program used %g sec.' % (- time0 + time.time())
# Hold plot
interactive()