-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUdemy-DataScienceCourse-S1-20180907.twb
658 lines (657 loc) · 41.9 KB
/
Udemy-DataScienceCourse-S1-20180907.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20191.19.0714.2346 -->
<workbook original-version='18.1' source-build='2019.1.6 (20191.19.0714.2346)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<IntuitiveSorting />
<IntuitiveSorting_SP2 />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='PART1-S1-OfficeSupplies' inline='true' name='federated.187ofmh14yshsz1e9dy370yvld4b' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='PART1-S1-OfficeSupplies' name='textscan.11f5js61yv9sff10r3935176a56v'>
<connection class='textscan' directory='/Users/jukkan01/dev/projects/SDSCourses/datascienceandtableau' filename='PART1-S1-OfficeSupplies.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.11f5js61yv9sff10r3935176a56v' name='PART1-S1-OfficeSupplies.csv' table='[PART1-S1-OfficeSupplies#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en' separator=','>
<column datatype='date' name='OrderDate' ordinal='0' />
<column datatype='string' name='Region' ordinal='1' />
<column datatype='string' name='Rep' ordinal='2' />
<column datatype='string' name='Item' ordinal='3' />
<column datatype='integer' name='Units' ordinal='4' />
<column datatype='real' name='Unit Price' ordinal='5' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_GB"</attribute>
<attribute datatype='string' name='currency'>"¤"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>OrderDate</remote-name>
<remote-type>133</remote-type>
<local-name>[OrderDate]</local-name>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias>OrderDate</remote-alias>
<ordinal>0</ordinal>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Region</remote-name>
<remote-type>129</remote-type>
<local-name>[Region]</local-name>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias>Region</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Rep</remote-name>
<remote-type>129</remote-type>
<local-name>[Rep]</local-name>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias>Rep</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Item</remote-name>
<remote-type>129</remote-type>
<local-name>[Item]</local-name>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias>Item</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Units</remote-name>
<remote-type>20</remote-type>
<local-name>[Units]</local-name>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias>Units</remote-alias>
<ordinal>4</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Unit Price</remote-name>
<remote-type>5</remote-type>
<local-name>[Unit Price]</local-name>
<parent-name>[PART1-S1-OfficeSupplies.csv]</parent-name>
<remote-alias>Unit Price</remote-alias>
<ordinal>5</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='TotalSales' datatype='real' name='[Calculation_1486680497441079296]' role='measure' type='quantitative'>
<calculation class='tableau' formula='[Units]*[Unit Price]' />
</column>
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Order Date' datatype='date' name='[OrderDate]' role='dimension' type='ordinal' />
<column datatype='string' name='[Rep]' role='dimension' type='nominal' />
<column-instance column='[Rep]' derivation='None' name='[none:Rep:nk]' pivot='key' type='nominal' />
<layout dim-ordering='alphabetic' dim-percentage='0.500544' measure-ordering='alphabetic' measure-percentage='0.499456' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[none:Rep:nk]' palette='color_blind_10_0' type='palette'>
<map to='#1170aa'>
<bucket>"Alex"</bucket>
</map>
<map to='#1170aa'>
<bucket>"Thomas"</bucket>
</map>
<map to='#57606c'>
<bucket>"Matthew"</bucket>
</map>
<map to='#5fa2ce'>
<bucket>"Morgan"</bucket>
</map>
<map to='#7b848f'>
<bucket>"Rachel"</bucket>
</map>
<map to='#a3acb9'>
<bucket>"James"</bucket>
</map>
<map to='#a3cce9'>
<bucket>"Richard"</bucket>
</map>
<map to='#c85200'>
<bucket>"Nick"</bucket>
</map>
<map to='#c8d0d9'>
<bucket>"Susan"</bucket>
</map>
<map to='#fc7d0b'>
<bucket>"Bill"</bucket>
</map>
<map to='#ffbc79'>
<bucket>"Smith"</bucket>
</map>
</encoding>
</style-rule>
</style>
<date-options start-of-week='monday' />
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run>Total Sales - by Region and Representative</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='PART1-S1-OfficeSupplies' name='federated.187ofmh14yshsz1e9dy370yvld4b' />
</datasources>
<datasource-dependencies datasource='federated.187ofmh14yshsz1e9dy370yvld4b'>
<column caption='TotalSales' datatype='real' name='[Calculation_1486680497441079296]' role='measure' type='quantitative'>
<calculation class='tableau' formula='[Units]*[Unit Price]' />
</column>
<column datatype='string' name='[Region]' role='dimension' type='nominal' />
<column datatype='string' name='[Rep]' role='dimension' type='nominal' />
<column datatype='real' name='[Unit Price]' role='measure' type='quantitative' />
<column datatype='integer' name='[Units]' role='measure' type='quantitative' />
<column-instance column='[Region]' derivation='None' name='[none:Region:nk]' pivot='key' type='nominal' />
<column-instance column='[Rep]' derivation='None' name='[none:Rep:nk]' pivot='key' type='nominal' />
<column-instance column='[Calculation_1486680497441079296]' derivation='Sum' name='[sum:Calculation_1486680497441079296:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<shelf-sorts>
<shelf-sort-v2 dimension-to-sort='[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Rep:nk]' direction='DESC' is-on-innermost-dimension='true' measure-to-sort-by='[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]' shelf='columns' />
</shelf-sorts>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<format attr='title' class='0' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]' scope='rows' value='Total Sales' />
</style-rule>
<style-rule element='cell'>
<format attr='width' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Rep:nk]' value='71' />
<format attr='text-format' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]' value='c"$"#,##0,.0K;-"$"#,##0,.0K' />
</style-rule>
<style-rule element='label'>
<format attr='font-size' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]' value='12' />
<format attr='font-size' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Rep:nk]' value='12' />
<format attr='font-size' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Region:nk]' value='12' />
<format attr='text-format' field='[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]' value='c"$"#,##0,.0K;-"$"#,##0,.0K' />
</style-rule>
<style-rule element='worksheet'>
<format attr='display-field-labels' scope='cols' value='false' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Region:nk]' />
<text column='[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]' />
</encodings>
<customized-label>
<formatted-text>
<run> <</run>
<run>[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]</run>
<run>></run>
</formatted-text>
</customized-label>
<style>
<style-rule element='datalabel'>
<format attr='color-mode' value='auto' />
<format attr='font-weight' value='bold' />
<format attr='font-size' value='12' />
</style-rule>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
</style-rule>
<style-rule element='pane'>
<format attr='minwidth' value='-1' />
<format attr='maxwidth' value='-1' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.187ofmh14yshsz1e9dy370yvld4b].[sum:Calculation_1486680497441079296:qk]</rows>
<cols>([federated.187ofmh14yshsz1e9dy370yvld4b].[none:Region:nk] / [federated.187ofmh14yshsz1e9dy370yvld4b].[none:Rep:nk])</cols>
</table>
<simple-id uuid='{D89E14A9-DDF6-42A6-A463-D82C1B7C2D41}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='2147483647'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='126'>
<card pane-specification-id='0' param='[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Region:nk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Region:nk]</field>
<field>[federated.187ofmh14yshsz1e9dy370yvld4b].[none:Rep:nk]</field>
</color-one-way>
</highlight>
<default-map-tool-selection tool='2' />
</viewpoint>
<simple-id uuid='{5EA3BAC1-A58A-45DA-85AE-469C191F6FF4}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzde3gU9d3//+fMLLs5cwgEAoiQGA1nkUbkKMhJsIAgiEWEHqSoVVq9bfu1
VsVqe9d6t9bW1uv28KtgwUMkcjJAAgrIQRCEBMMxBJJwDAkJ2ZDsaWZ+f+RmS0wgiWQ2wrwf
18XFZvezM+/Z/cy8dmZ256OYpmkihBDCdtTmLkAIIUTzkAAQQgibkgAQQgibumoDQNd1zp8/
39xlCHHNOHHiRHOXIBqgKd+nqzYAxLXL5/Mh300QwnqO5i5AXF3Onz/PsmXLME2Tli1b8v3v
f7/e5wQCAY4dO0bXrl0bNI/09HTuvPNOwsLCrrBaca2rqqpi0aJFtGzZEoCbb76ZpKSkep9X
UFBAfHw8LVq0sLrE7zQJANEoK1asYMSIEcTHxxMIBAA4e/YsJ0+e5KabbkLTNM6dO4fb7aay
spKkpCROnDjBhg0bUBSFDh06UFlZSXR0NCdPnqRTp04UFhbi8XhISEiw/QopGkfXddq1a8ek
SZOC9xmGQUFBAT6fj4SEBBwOBxUVFRQWFhIXF0dYWBgbNmzg1ltvJTY2lrZt2zbjEjQvOQQk
GswwDAKBAPHx8QA4HA7Ky8tZu3YtgUCAjz/+GF3XeeONNygoKODgwYPs2bOHsrIyKisrOXPm
DH6/n/T0dP79739z4sQJjh8/zvHjx6moqODDDz9s5iUUVyO3201hYSGFhYWcP3+egoICTp48
SVlZGWlpaQQCAT744AMCgQBZWVlUVVVRWVlJcXEx5eXlzV1+s5I9ANFghmGgqjU/Mxw8eJDI
yEgUReHs2bP4fD4SExMZPHhwcKW85ZZbyMvL43vf+x4AHo+HyZMn06ZNGzweD4cOHaKkpITS
0lI59i8araKigmPHjgEQFhZGXFwcubm5VFVVUVxcjKqqOBwOTp8+Tb9+/YiNjSU+Pp6bb76Z
yMjIZq6+eckegGgwh8OBz+ejsrKyxn1Op5OWLVsyfvx4HI66P1MYhhG8HRMTQ6tWrQBYu3Yt
SUlJTJgwgbi4OAkA0Wjx8fEMHDiQgQMH0q5dOzIyMujZsycTJkwgNjYWVVWZNWsWPXr0YOnS
pbjdbgDpa8gegGikUaNGsWDBAjp06ICiKNx55518/fXXeDwefD5fnSeFXS4XpaWlrFy5kkGD
BtV4rGXLlmzfvp1t27Zx6tSpUC2GuIYcOHCADz74AIB+/foRExPDF198QSAQoLi4GI/Hw9Kl
S4MfOlq0aEGnTp1YtmwZycnJ9O/fvznLb1bK1XotIF3X8Xg8tt+Faw6GYeDxeAgPD0dRFAzD
wOv1EhYWhqIol3xOZWVl8HDRxdxuN2FhYXICuJmdOHGCjh07NncZV8w0TdxuNxEREcE9UsMw
cLvdREVFoWkaUP0NIofDcdX1u6Z8n2QPQDSaqqpERETU+Ds8PLze50RFRdX5WHR0dJPWJ+xN
URRiYmJq3KeqavCrohfU12ft4KoOgMrKyhrHloUQ357X6w0eHxffXU35Pl3VARARESGHgIRo
Im63W/bGrgJN+T7Jt4CEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKm
JACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmLA0A0zQJBAJWzkIIIcS3ZFkA
mKbJkSNHWLNmDT6fD6i+jOmOHTvYtWtX8L6L2+/bt49t27ZRXl4OwKlTp4LX+y8qKqKqqsqq
coUQwnYsC4DMzEz2799PaWkpW7ZswTRNtm/fTnR0NJqm8d5779Vov2bNGsrKymjTpg2LFy/G
NE02bNiAYRiUl5ezYsUKnE6nVeUKIYTtWDYgTFFREaNHj6agoICUlBQARo4cCUB5eTlZWVk1
2o8dOzY4vuzGjRuDn/wNwyAtLY3JkycHx/IUQghx5SwLgHHjxrF8+XLOnTtHfHw8nTt3xu12
k5qaSn5+Pg8//HCN9oqicO7cOZYsWcLAgQPRNA1d13nzzTfp3r07bdq0AaoHgzcMA13X8fv9
eL1eqxZBCFsJBAKyPl0FmvJ9UkzTNJtkSnVwu93s2bOHPXv2MGfOHFS1+ojT2bNnSU1N5ac/
/SmKogBQXFzMkiVLmDZtWnBj/8EHH3DXXXexaNEiZs6cWWP4R13X8Xg8MiSkEE3kxIkTdOzY
sbnLEPVoyvfJsnMAGzdu5OTJk3i9XjRNwzRNsrOzCQQChIWFBdvl5eVhGAZr1qxh0qRJhIWF
UVlZyYVcCgsL4+677yY1NfVbDQCfmZlJfn5+8G9d1zlx4gQVFRV1tjcMg/PnzwPVJ6b9fn+w
lotvC2FHpmly4MCB5i5DNBHLAqBnz57k5eVRUFDA5MmTUVUVv99PWloaq1evZuLEiXg8Htas
WYOiKHTt2pUvv/ySdevW8dlnn+H3++nVqxeqqtK+fXsGDRpEcXFxg+dvGAZPPvkkDzzwAHfc
cQfp6elUVFRwyy238MMf/pBbbrmFhQsXBtubpkl6ejr9+/fnpZdeCt43cOBASktL2blzJ7fd
dpt8E0nYViAQYNGiRTz22GOkp6cD8PXXX/OrX/2KuXPnsnTp0lrPOXHiBC+++CKVlZUAZGVl
sWbNGgDWrVvH6tWrQ7cAohbLzgHExsYybNgwjh07RmxsLAD9+/enf//+wTaFhYVMmTIFRVEY
PHhwrWn07NkzePvGG29s1PzdbjerV6/m73//O7169aJdu3aEh4ezdetWIiIiWLVqFQsWLGDW
rFnB5+zYsYPx48fXmpbX62XevHm88sorRERENKoOIa4Vb7zxBps3b6Zt27Zs3ryZ8ePHk5eX
x8CBA2nTpg0PPfQQPXv2JCkpCYBNmzYxd+5cysrKePTRR4mIiGDv3r1kZ2fTr18/5s2bFwwS
0Tws/SFYRETEZTfc1113He3bt7dk3lFRUfTu3ZvHH3+c1NRUIiIi0DSN7OxsZs6cydNPP81z
zz0XbK8oCs8++2yter1eL7Nnz6Z3794MGzbMklqFuBq43W5atGhBQkICv//97wGYMGECw4YN
w+v1EhUVRatWrYLte/TowZdffkmHDh1qTKeiooInn3ySRx99lOuvvz6kyyBqumYvBaFpGosX
L+aRRx5h7969PProowAkJCTwwAMP0KdPH9555516p+NwOBg2bBh79+6t9eM1Iexk3rx5dOvW
jb///e9MnjyZyspKdF3nF7/4BQ899BDDhw+ndevWwfZt2rTB5XLVms6SJUtYtWoVU6ZMCWX5
og7XbACcPXuWf/zjH5imybhx4zh9+jQnT57kxIkTjBkzhjlz5rBx40ZM0+TTTz/l/Pnz+Hw+
dF0PfsUUqoPk4Ycf5qabbuJ//ud/mnmphGg+hmHw61//mmeeeQaHw8G2bdtwOBy8++67HDp0
iIMHD5KZmVnvdGbPns1TTz3Fk08+KV+qaGaWnQNobuHh4Zw5c4aPP/6Y5ORkXnnlFXw+H08/
/TQFBQW0adOGl19+mcLCQn7xi1+QmZnJrFmzgt+vnTZtGmlpafTv358WLVrw8ssvM3fuXIqK
ioiLi2vmpRMi9F588UW+/PJLSktLCQQC9OjRg5/+9Ke0atWK6OhocnJyuOGGG1i8eDEFBQXc
csstfPbZZxw/fpwXXniBadOmBaf12GOPMW7cOD766KMa94vQsvR3AFZq6O8A3njjDaZMmULb
tm3rfHzBggV07dqV22+/3Yoyhbhq1Pf9ctM02bt3L2+88QZ/+MMfiIyM5OzZs2zcuBGPx8Og
QYPo3LkzkyZN4q9//Suqqtb4CvYNN9yA0+mkoqKChIQEioqKOHnyJH379g3F4l0zmvJ3ANd8
AOi6jqqqwR+cCSHq1pANSyAQYOvWrQwdOrTOx30+H7t27WLAgAFWlCiQAADkl8BCNDX5JfDV
oSnfp2vqHMDbn3zF8s0HLZ9Py0gXC5+ebPl8hGhOpu7Dt/2tkMzL0W0oWofeIZmX+I9rKgCE
EE1I9+H74p8hmZUS3loCoBlcs18DFUIIcXkSAEIIYVMSAEIIYVMSAEIIYVMSAEIIYVMSAEII
YVMSAEIIYVOWBoBpmgQCAStnIYQQ4luyLABM0+TIkSOsWbMmeB19t9vNjh072LVrV61r618Y
a/Srr74KhsapU6eC4wAXFRXJcIxCCNGELAuAzMxM9u/fT2lpKVu2bME0TbZv3050dDSapvHe
e+/VaP/ll1+Sl5eHaZosX74cgA0bNmAYBuXl5axYsQKn02lVuUIIYTuWXQqiqKiI0aNHU1BQ
QEpKCgAjR44EoLy8nKysrBrt9+/fz8yZM1EUhZycnOAnf8MwSEtLY/LkyWiaZlW5QghhO5YF
wLhx41i+fDnnzp0jPj6ezp0743a7SU1NJT8/n4cffjjY1jRNNE1DVat3SKKjo/F4POi6zptv
vkn37t1p06YNUH0VUMMwgqN2XRjA5cJjoXLxfIW4FgQCgZr9OoRDoAb0AKasUw1S6326ApYF
QGxsLFOnTmXPnj188sknzJkzh+joaH784x9z9uxZUlNT+elPfxq8Tr9hGJimiaIoVFVV4XK5
0DSN2bNns2jRIgYMGEBkZCSapgXDQtf1GmOOhnIPoa6xToW4mjkcjhr92lT8hCoCHJoDp6xT
DfLN9+lKWHYOYOPGjZw8eRKv14umaZimSXZ2NoFAgLCwsGC7C8f94+Li2L9/PyUlJQQCgeDG
PCwsjLvvvpvU1NTgYSEhhBBXzrIA6NmzJ3l5eRQUFDB58mRUVcXv95OWlsbq1auZOHEiHo+H
NWvWoCgKI0eO5OjRo6xfv567774bgF69eqGqKu3bt2fQoEEUFxdbVa4QQtiOpYeAhg0bxrFj
x4iNjQWgf//+9O/fP9imsLCQKVOmoCgKDoeDcePG1ZhGz549g7dvvPFGq0oVQghbsnRAmIiI
iMtuuK+77jorZy+EEOIy5FIQQghhUxIAQghhUxIAQghhUxIAQghhUxIAQghhUxIAQghhUxIA
QghhUxIAQghhUxIAIWSaJgcPHmzuMoQQApAACBmfz8c777zDvHnzyMzMBKCsrIw///nPzJ07
lw8//BDTNIPtKyoq+MMf/sBDDz1ERkYGUD1ozmeffQbAqlWr+PTTT0O/IEKIa4YEQIj89a9/
ZdOmTbRp04bNmzcD8MYbb2CaJjNmzOCFF16osXfw4osvUlJSwowZM3j88cfJz89n9+7dbNmy
hcLCQp588km6d+/eXIsjhLgGWHotIPEfbrebFi1acN111zF//nwAfvnLX6IoCidOnMA0zRrX
+G7Xrh1nzpwhPDycmJgYwsPDg9P5xS9+wf/7f/+P+Pj45lgUIcQ1QvYAQuTXv/41bdq04S9/
+QszZszA6/WiKArp6enccccdPPfcc3Tt2jXYfsiQIXzyySfMnz+f+Ph4WrZsCcC///1vtm7d
yl133dVMSyKEuFbIHkCIKIrCU089Rfv27VmzZg3Z2dlUVVXx1FNP8cknn5CYmFij/Ysvvshb
b73FgAEDuO+++9i0aRMADz/8MLqu8/TTT/PPf/4zOKKaEEI0lgRAiDz11FPs27eP0tJSDMPg
hhtu4Mknn6R169a8+uqrADz66KN8/vnnnD9/nltvvZX58+czdOhQdu7cyUsvvUReXh5QvTcx
cuRIVq1axfjx45tzsYQQVzEJgBB59dVX2bVrF4sXL+Z3v/sdERERPP744zVGOYuNjSU1NZW3
3nqLjh07smXLFo4dO8b69evp1KkT3//+9/H5fLhcLlJTUykpKWnGJRJCXO0sDQCfz8epU6fo
0qWLlbO5KiiKQs+ePZkyZQoRERFA9ZCXF6uqquL3v/89nTt3BqrPA1zs4pO+8fHxchJYCHFF
LAuAU6dOkZmZSXFxMYMHD+bWW29l9+7dZGdnoygKSUlJ3HbbbcH2ubm5bN68GU3TSEhIYNCg
Qaxbt47hw4ejqiorV65kxIgRREVFWVWy5VwuF4MGDbrk4+Hh4TWGzBRCCCtZFgBr165l4sSJ
HDx4kKSkJKB6A/fAAw8AsHDhwhoBsHnzZu6//340TeNf//oXAwcOpLi4GNM0+fLLL2nZsuVV
tfGv8vpZuulASOZ1W49OdItvHZJ5CSGuHZYFQOfOnVm9ejXx8fG0atUKgJtuugnTNNm9ezcx
MTE12nfv3p3Vq1cTERFB+/btURQF0zTZv38/+/fvDwaHYRiYpomu6xiGQSAQCE7DMExC5eL5
1qWi0sv7674OSS3tWoZzXbvokMxLXLu+uT4R0EM3b9Ood50S1Wq9T1fAst8B3H777aSkpLB7
925SU1MB0HWdJUuWcObMGSZNmlSjvdvtplWrVrRu3Zrz589jmiamaXL06FGioqLk645CCNHE
LNsD8Pl8tGvXjqFDh5KTk4Ou66xatYoePXrQo0ePGm0Nw+DYsWPMnj0bgLy8PNxuN6qqcued
d7Ju3Tq++uorbrnlFlT1P5mlqioOh+Oiv0MXEhfPty6apoWoktqvgxDfxjf7kWmEsA8r0ocb
qinXd8te8U8//ZSTJ09SUVFBUlISiqKwb98+zp8/z549e3A6nUyaNIlFixZx//3306VLFxYv
Xkx4eDh+v5/o6Ojgp/7Ro0fz7rvv0qlTJ9q3b29VyUIIYSuWBcC4ceNwu93k5ubSr18/oPra
NxcrLCykU6dOqKrKiBEj8Pl8BAKB4Nck77333mDbC3sHQgghmoal+1zh4eHccMMNl3w8Li6O
Tp06Bf92Op04nU4rSxJCCPF/LA0Ah8NBdPSlv51y8dUvhRBChJZcDVQIIWxKAkAIIWxKAkAI
IWxKAkAIIWxKAkAIIWxKAkAIIWxKAkAIIWxKAkAIIWxKAkAIIWxKAkAIIWxKAkAIIWxKAkAI
IWxKAkAIIWxKAkAIIWxKAkAIIWzK0gAwTbPJRq8XQgjRtCwLANM0OXLkCGvWrMHn8wGg6zrZ
2dl8+eWXVFVV1XrOqVOn2Lx5MwUFBcG/DcMAoKioqM7nCCGE+HYsC4DMzEz2799PaWkpW7Zs
AWDp0qUEAgGioqJ4//33a7TPy8tj/fr1dO7cmfLycgA2bNiAYRiUl5ezYsUKGS5SCCGakGVD
QhYVFTF69GgKCgpISUkBYMqUKSiKgt/vZ+vWrTXab9++ncmTJ9OiRQtU9T+5ZBgGaWlpTJ48
GU3TrCpXCCFsx7IAGDduHMuXL+fcuXPEx8fTuXNnFEWhqKiIpUuXMnbs2GBb0zQ5c+YMH3/8
Mbquo2ka06dPR9d13nzzTbp3706bNm2A6sNIhmGg6zp+vx+v1xucjq7rVi1OLRfPty4XDnuF
QiAQqLceIepTqx+Fsg/rAUzpww3SlOu7ZQEQGxvL1KlT2bNnD5988glz5syhsLCQtWvXMmPG
DKKiooJtFUUhJiaG6dOnoygKy5cv5+zZs2iaxuzZs1m0aBEDBgwgMjISTdPQNA1VVdF1vcbA
8qHcQ6hvQHun1whRJeBwOOqtR4j6fLMfmYqfUEWAQ3PglD7cIE25vlt2DmDjxo2cPHkSr9cb
3DCvXbuWe+65B1VVqaysBKqP/RuGwfXXX8/OnTvRdZ3S0lIiIyMBCAsL4+677yY1NTV4QlgI
IcSVsywAevbsSV5eHgUFBUyePBlFUejatSuff/4569at4/PPP6eqqoo1a9agKArDhg2joqKC
1NRUhgwZQlhYGL169UJVVdq3b8+gQYMoLi62qlwhhLAdSw8BDRs2jGPHjhEbGwvAyJEja7Qp
LCwMnhhWFIXhw4fXeLxnz57B2zfeeKNVpQohhC1ZFgAAERERl91wX3fddVbOXgghxGXIpSCE
EMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACE
EMKmJACEEMKmJACEEMKmJACEEMKmJACEEMKmJACEEFctr9cb0rHArzUSAEKIq5LX6+WPf/wj
n332WXC42LNnz7J06VLS09Px+/21nlNWVkZ6ejqlpaWYpsnWrVsJBALous7GjRubbLD1q4Wl
AeDxeMjJyalxX2VlJefOnbvkc/x+P4FAAADDMDBNs9ZtIYS9eb1exowZQ0ZGBn/6059IS0vD
7XYzevRotm/fzttvv83TTz9d4zmmafLUU0/x4x//mP3792MYBo888gjnz59n0aJFvPbaa7Ro
0aKZlqh5WDYiWFZWFjt27KC8vJwTJ04wevRoVq1ahdvtxuVyoes6U6ZMqfEcj8fD3/72N4YM
GcKgQYNITU3lnnvuwTRN3nnnHWbMmBEcLF4IYV/nzp3j7NmzPPLII9x1111cd911BAIB1q5d
S+vWrfnkk0/417/+VeM527dvp6ioqNbQsydPnuSll15izZo1qKq9DopYtrTZ2dlMnz6dIUOG
MGrUKACGDBnCvffey8SJE3G73TXam6bJ6tWrGTZsWK3709PTGT58uGz8hRAAtGvXjtmzZ/PM
M88wb948jh49SosWLWjZsiVvvPEGv/zlL3n22WeD7f1+P88++yy///3vURQleP+5c+cYPnw4
P/jBD+jcuXNzLEqzsmwPICUlhYULFxIbG0ufPn1wuVxER0fj9/tZvnx5rbGC8/LyiIyMpH37
9pw8eRKoPuyzcuVKHA4HSUlJAOi6jmEY6LqO3++vccwulCeD6jtW6PP5QlQJBAIB2x27FE2v
Vj8KZR/WA5iN7MOPPfYYDoeDiooKnnjiCd5//32ee+45srKyyMzMpG3btsHlWbZsGXv37uVP
f/oT27Zt4y9/+Quvv/460dHRvPbaa/zqV79izpw5tGrVyorFa1JNub5bFgDJycl07NiRjIwM
FixYwJw5c6ioqGDx4sWMGjWKxMTEYNtAIMDy5csZOXIkR44coaSkhPLyclRVpUePHmzevBld
19E0LfhPVVV0XcflcgWno2maVYtTy8XzrYvTa4SoEnA4HPXWI0R9vtmPTMVPqCLAoTlwNqIP
HzlyhKeeeooWLVoQGRlJx44dKSsr4+233+aVV15h27ZtxMbGMmjQIP74xz8ya9YsMjMzATh9
+jTTpk2jZcuWqKrK4MGDuf/++3n66ad58803a+whfBc15fpu2SGgo0ePApCQkIDT6cQwDJYv
X87UqVNrbPwvJNm4ceNwOp2oqoqqqsE3ITExkZSUFFatWmVVqUKIq0yXLl148MEHOX/+PL17
9+bll19GURR+9rOfkZubS3Z2NocPH2bHjh3s3LmTzp07k5ycTHJyMj/60Y8YNGgQDoeDhx56
CJfLxRNPPEGPHj0oLS1t7kULKcv2AMrKyli/fj3l5eWMGDECRVEwDIO1a9cC4HQ6mThxIq+/
/jrz5s0jOTkZgFatWlFSUkJ0dDRxcXEoikKvXr0oKiri9OnTtG/f3qqShRBXCU3TGDVqFOXl
5YwePZqIiAgiIiKYP39+jXbLli3jtddeq3F0YOrUqcHbc+fODd5+4oknLK/7u8ayALj55ptJ
TEwkNzeX3r17A/DAAw/UaJOXl8eYMWNqnHnv0KEDHTp0AGDEiBHB+0eOHGlVqUKIq9Q3v0n4
TZMmTQpRJVcnywIAICoqir59+17y8YSEBCtnL4S4hhilRzEqzlg+H8XhRIu/9HbrWmJpACiK
8p0/oSKEuDr4di7Ev+dDy+ejxHQk6icZls/nu8Bev3oQQggRJAEghBA2JQEghBA2JQEghBA2
JQEghBA2JQEghBA2JQEghBA2JQEghBA2JQEghBA2JQEghBA2JQEghBA2JQEghBA2JQEghBA2
JQEghBA2JQEghBA2ZWkA6LpuuzE2hRDiamFZAHg8HtatW8eSJUsoLCwEoKSkhLS0ND744IPg
fRe43W6WL1/O+++/z8GDBwHYs2cPhmEAsGvXLioqKqwqVwghbMeyAFixYgXXX3893bp1C264
d+/ezahRo7j77rvJyKg54s7u3bsZNGgQU6dOZePGjei6zt69ezEMg/z8fHJzc4mKirKqXCGE
sB3LhoRUVRW3201MTAzdu3cH/jOwe3FxMQ5HzVkPHToUqN4TME0zOFC8x+MhIyODWbNmWVWq
EELYkmUBMGnSJNavX8/OnTvRdZ3bbrsN0zTZtWsXWVlZ3HvvvbWec+DAATZs2MDUqVNRFAVd
11m4cCE33ngjLpcLqD6vYBgGuq7j9/vxer3B5+u6btXi1HLxfOvi8/lCVAkEAoF66xGiPrX6
USj7sB7ArKcP60Zo1m/TNL/T61NTru+WBYDD4WDAgAG0adOGrKwsUlJS2LlzJ2fOnOGHP/xh
rcHiDxw4wK5du/jJT36CpmkAaJrGgw8+yAcffMDx48fp1KkTmqahaRqqqqLrejAYLrQPlYvn
Wxen1whRJdWvdX31CFGfb/YjU/ETqghwaA6c9fRhU9UIxVqlKMp3en1qyvXdsnMAy5YtY9Om
Tezbtw9VVVFVlW3bttGxY0d2797Nnj17ME2T9evXYxgGGzduJDExkezsbLKysggEAtUFqipT
p05l5cqVVFVVWVWuEELYjmV7ABMmTODw4cMcPXo0eOz/rrvuwu/3A9Wf1svKyjh16hSqqjJ2
7NjgBl5RFBRFYcSIEWiahsPhYPr06fj9fsLDw60qWQghbMXSk8BdunQhMjIyeEI3ISGhRpvi
4mImTZoEQJcuXWpNIy4uLni7VatWVpUqhBC2ZFkAQPVx8o4dO17y8bZt21o5eyGEEJchl4IQ
QgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQ
QgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibkgAQQgibsjQAPB4POTk5Ne6rrKzk
3Llzl2zvdruDfxuGgWmatW4LIYS4cpaNCJaVlcWOHTsoLy/nxIkTjB49mlWrVuF2u3G5XOi6
zpQpU4LtDx8+zPr164mKiqJjx44MHTqU1NRU7rnnHkzT5J133mHGjBlERkZaVeDzY8EAACAA
SURBVLIQQtiKZQGQnZ3N9OnT2bdvH9/73vcAGDJkCNHR0ZimycKFC2u037p1KzNnzsTpdPLO
O+8wZMgQAEzTJD09neHDh8vGXwghmpBlAZCSksLChQuJjY2lT58+uFwuoqOj8fv9LF++nBtv
vDHY1jRNFEXB5XIBEBMTg8fjwTAMVq5cicPhICkpCQBd1zEMA13X8fv9eL3e4HR0XbdqcWq5
eL518fl8IaoEAoFAvfUIUZ9a/SiUfVgPYNbTh3UjNOu3aZrf6fWpKdd3ywIgOTmZjh07kpGR
wYIFC5gzZw4VFRUsXryYUaNGkZiYeMnn6rqOpmmoqkqPHj3YvHlz8L4L/1RVRdf1YGgAaJpm
1eLUcvF86+L0GiGqBBwOR731CFGfb/YjU/ETqghwaA6c9fRhU9UIxVp18YfR76KmXN8tOwl8
9OhRABISEnA6nRiGwfLly5k6dWqNjf+FJHO5XJSUlOD3+3G73TidTgASExNJSUlh1apVVpUq
hBC2ZNkeQFlZGevXr6e8vJwRI0agKAqGYbB27VoAnE4nEydO5PXXX2fevHmMGjWKZcuWYZom
I0aMACAuLg5FUejVqxdFRUWcPn2a9u3bW1WyEELYimUBcPPNN5OYmEhubi69e/cG4IEHHqjR
Ji8vjzFjxqCqKq1atWL27Nk1Hr8QBAAjR460qlQhhLAlywIAICoqir59+17y8YSEBCtnL4QQ
4jIsDQBFUVAUxcpZCCGE+JbkUhBCCGFTEgBCCGFTEgBCCGFTEgBCCGFTEgBCCGFTEgBCCGFT
DQ6AzZs388UXX1hZixBCiBBq8O8AikuKcWiW/mxACCFECDX6ENCmzZtkT0AIIa4Bjf5IX1Jc
gqOFg+LiYhRFITY21oq6hBBCWOxbnwTetHkT27Zta8pahBBChFCD9wAGDxqMoijB0bsu/C+E
EOLq1OAAaNu2rZV1CCGECDH5HYAQQthUowLANE3ee+89DMPgxRdf5KmnnsLj8VhVmxBCCAs1
KgC8Xi8HDx7k4MGDREdHM3DgQHbu3HnJ9rquU1paesVFCmt4PB4MI3SD1wshvlsaFQAtWrTg
1KlT/Otf/2L48OGUl5cTFRVVZ1uPx8O6detYsmQJhYWFQPUexMGDB9m9e3et9mVlZXz88cd8
+OGHwfZ79uwJbqB27dpFRUVFoxZOXFpVVRXPP/88W7duxTTN4P15eXkcOnSoRtuzZ8+SkZER
/Ldz505M02TLli3ous7Zs2flG2FCXIUaFQCapvGb3/yGadOm0adPH2644YbgeL/ftGLFCq6/
/nq6desW3HCvX7+ew4cPc/jw4Trb33777UyaNIn09HRM02Tv3r0YhkF+fj65ubmXDBvROOfP
n2fkyJGsX7+e559/ntWrV2OaJk888QT9+vUjPT29RvuSkhJWrlzJypUref755/nb3/6GruvM
nTsXr9fLa6+9xt69e5tpaYQQ31ajfghmmiaFhYV89NFHnD17lpKSEvr27Ut4eHittqqq4na7
iYmJoXv37kD1IO8+n48VK1bUat+6dWtOnjxJTEwMERERwa+YejweMjIymDVr1rdZPlGHM2fO
4PP5mDlzJvfff3/wG1533HEH8fHxtdonJSUFN/pDhgzhscceCz6Wn59PVlYWv/nNb0JWvxCi
aTQqACoqKkhNTeXRRx9l69atREVFkZ2dzYABA2q1nTRpEuvXr2fnzp3ous5tt9122Wl37dqV
nTt34nK56NixI1B9DmHhwoXceOONuFyu4H2GYaDrOn6/H6/XG5yGruuNWZwrcvF86+Lz+UJU
CQQCgXrruViHDh2YOHEizz//PBs3buTll1+mc+fOjB49mn379l1yeqtXr6ZNmzb06tULn89H
UVERt99+O7/+9a/RdT2kr79oerXe91D2YT2AWU8f1o3Q9C/TNBu1PoVaY9f3y2n0pSAcDgfh
4eGYpsn+/fu54YYbLtluwIABtGnThqysLFJSUtA0rc62hmGwc+dOZs2ahaIofPTRR1RUVKBp
Gg8++CAffPABx48fp1OnTmiahqZpqKqKruvBYAAuOX0rXDzfuji9oTu56nA46q3nm5599lmi
oqI4f/48v/vd71iwYEFwWqqq1pqeYRj89a9/5fnnnycsLIxAIEC7du3485//zNtvv83jjz+O
qsq3iq9m3+xHpuInVBHg0Bw46+nDpqoRirVKUZRGr0+h9G3W90tp1BobFRXFqFGjePbZZ0lP
T6d169b07NmzzrbLli1j06ZN7Nu3D1VVUVWVw4cPs3fvXoqLi8nJySEQCLB+/XqgeoO6fft2
vv76a4qLi4OHlVRVZerUqaxcuZKqqqorW1oBwNdff82sWbPYuXMn+fn5dOjQgaqqKjIzMzlw
4AD79+9ny5Yt+Hw+5s+fT2VlJZs2bUJVVQYPHhycjqIoDB06lM6dO7N06dJmXCIhxLfRqD0A
RVEYO3YsY8eOrbfthAkTOHz4MEePHmXkyJFA9Sf08PBwhg8fjqIolJWVcerUKVRV5d577+XA
gQN4vV5++MMfomkaI0aMQNM0HA4H06dPx+/313m+QTROcnIyM2bM4J///CcjRozggQcewOPx
8MUXX9ChQwcAvvrqKyorKzl06BBhYWG43W5eeuml4F6Wqqo8/PDDtGjRgscee4yMjAwMw5C9
ACGuIg0KANM0+eMf/0hubm6tx37729/SrVu3WverqkqXLl2IjIwMbhS6du1ao01xcTGTJk0K
tr9wsviCuLi44O1WrVo1pFTRAA6HgzvvvJPy8nImTJiAy+XC5XLxzDPP1GiXmprKK6+8gqqq
3HXXXTUeU1WVRx55BIBu3boxd+7ckNUvhGgaDQoARVF46qmnGj3xi0/o1kWuL9S87r333ss+
Pm3atBBVIoRoDo3+GuiiRYvYsGFD8O+nn366zj0A8d1SWHSOsgrrv9kQGxNOx7bRls9HCHHl
GhUAVVVVfPnll0ydOpXOnTvzxRdfEBMTY1Vtogmlrt/Lht35ls9n/G1JzJ3Y3/L5CCGuXKMv
BREZGUlcXByHDh0iKiqKnJwcq2oTQghhoUYFgMPhYNy4cfTp0yd4Ubjvfe97VtUmhBDCQg0+
BOT1eikrK2Po0KF4PB769u1LcnIyERERVtYnbCI/Px+v18uNN97Y3KUIYRsN3gNYtWoV27Zt
wzRN5s+fz6FDh5g/fz4lJSVW1idsYP369cycOZMf/vCHrF27FoBz584xf/78Or99lp+fz7hx
4+jevTsvvvgiAI8//jgFBQVUVlYydepUTp06FdJlEOJq1OA9gIKCAsaOHUtRURHFxcX88Y9/
5N1332X//v01fh0qRGOYpsnPf/5znnjiCUzTJDq6+htEv/71r6msrKxzvIJ58+bxox/9iGnT
pgU39Hv37qWqqooXXniB7t270759+5AuhxBXowbvAfTu3Zt3332Xl19+mcmTJwevDCrf5RdX
QlEUOnTowPvvv4/P5yMlJQWA119/nZ/+9Ke12uu6TlZWFjt37mTu3LkcO3Ys+NjixYtZs2YN
v/nNb4JXkxVCXFqD9wCGDx9OeHg4gUCAwYMHY5omffv2lWO24op9/PHHPPfcc/z1r39l165d
/POf/7zkBtzr9WIYBkOHDsXn8zFr1iyysrKA6gGEWrduTYsWLUJZvhBXrQbvASiKwm233caQ
IUNQFCV4eQD5pCWuRCAQYO/evQwZMoQ333yTrVu3XvKy0hUVFTidTtq2bUtycjITJkzAMAwC
gQAA//3f/0379u35xz/+EcpFEOKq1ejLQQvRlEzT5A9/+APbt2/H4XDw9NNP43A4mDx5Mrm5
uZw6dYrBgwezatUqBg4cyJIlS/jd737H+PHjiYmJYfLkyTUuEPi3v/2NwYMHM3bsWJKTk5tx
yYT47mvwxeDee+89jh8/XuuxmTNn1jmKlBAN0aJFC9LS0li2bBk33HBD8PLiH3/8cY12GzZs
4O677+amm24iOTmZO+64g4qKCtq1a4eiKKxZsybY9sCBAyFdBiGuVg3eAxg8eHCd1+OXq3SK
pjBw4MDLXuq7X79+DBo0KHjIMSIiQn6DIsQVavDVQK+//nqg+uugO3bswDRNoPqSzXKNfnGl
Lr70d13kmlNCNL1GnQPw+/389re/pUePHrRr146cnByGDx9uUWniWrXl60I+2XooJPN67ke3
43SEbqhQIa4mjQ6Abt26MWjQIMLDw+nQoQOHDh0iNjbWqvrENaikvIqvjxSFZF6mYYZkPkJc
jRp1Mbjw8HBat25N3759efPNN/nwww8vewLY4/HUulqoaZr4fHUPNW0YBmfOnMHv9wf/vnCo
6eLbQgghrlyjvwY6e/ZsWrZsyd///ncqKioueWw2KyuLHTt2UF5ezokTJxg9ejT5+flkZGTQ
pk0b7rnnnhrtz549y5IlS4LDRo4ePZrU1FTuueceTNPknXfeYcaMGURGRjZ+KYUQQtTSqD0A
wzB4+eWXgerhHtetW8f27dvrbJudnc306dMZMmQIo0aNAqp/9HPffffV2X7Dhg1MmzaN0aNH
M3r06OD9pmmSnp7O8OHDZeMvhBBNqMF7AKdOneLVV19lz549/OY3vwHgyJEj/OUvf6mzfUpK
CgsXLiQ2NpY+ffrgcrlITEys8/CPaZqcPn2azMxMvF4vCQkJDBo0CMMwWLlyJQ6Hg6SkJKD6
WjCGYaDrOn6/H6/3P8McXuoXpFa4eL51udRhLisEAoF66zH02hdVs4Ku6/XWov/fL3dDwevz
gRm6fnE1q9WPQtmH9QBmff3GCM37aJpmvX24OTVkfW+oBgdA27ZtmTdvHu+88w4//vGPAWjd
ujVOp7PO9snJyXTs2JGMjAwWLFjAnDlzLnvZCKfTyZQpU1BVlcWLF9OrVy9UVaVHjx5s3rwZ
XdfRNC34T1VVdF3H5XIFp6Fpofu2x8XzrYvTG5oNLlQP1FNfParWqJ29b03TtHpr0Ryh+wG6
y+nE5ZQfvDfEN/uRqfgJVQQ4NAfOevqNqWqEYq1SFKXePtycGrK+N1SDtwoOh4P4+Hhmz57N
Rx99xL///W/27dt3yfZHjx4FICEhAafTWedlfeE/n6RjY2ODl/Z1uVzBsEhMTCQlJYVVq1Y1
tFQhhBAN0KiPhT6fj2eeeYZbbrmFMWPG8Oabb3LkyJE625aVlZGWlsamTZvo378/qqqybt06
VqxYQWlpKUuXLqWyspLXX38d0zQZNWoUGzZs4L333qNt27ZER0cTFxeHoij06tWL8PBwTp8+
3SQLLYQQopHfAiovL6dz584MHDgQgFGjRpGXl0e3bt1qtb355ptJTEwkNzeX3r17AzBy5Mga
bfLy8hgzZgyqqhIZGcmMGTNqPD5ixIjg7W8+VwghxJVpVADExsbi9/t54YUXiIyMJCcnh1de
eeWS7aOioujbt+8lH09ISGjM7IUQQjShBgeA2+2mRYsW/P73v+fgwYN4PB4effTRS54EhuqT
KTJegBBCfDc1OADS0tJITk5mwIAB3HTTTVbWJIQQIgQadQgoMzOz1rXWx48fL+MCCyHEVahR
AdCqVatal+11hPA73UIIIZpOo7beKSkpDBgwwKpahBBChFCDA+CBBx6QE7pCCHENaXAAqGpo
LiUghBAiNGSrLoQQNiUBIIQQNiUBIIQQNiUBIIQQNiUBIEQdqqqqmrsEISwnASDEN5w4cYKf
//znwfEpoHqUqI0bN14yGL7++ms2btyIaZqUlJSQk5MDVI+kt2vXrpDULURjSQAIcZGtW7cy
btw4srOzmTp1Kn6/n+PHjzN8+HBGjx5NaWlpreeUlpYyc+ZM5s6dC8CuXbt45ZVXME2T+++/
n+PHj4d6MYRoEAkAIS6ybds2xo8fz6RJk/j8889xOBzous4rr7xC//7963zO/Pnz+a//+q9a
P5R8++23ad++PXfddVcoShei0SQAhLjIzJkzycnJ4c9//jMvvvgihmHQpUsXbrnlljrbZ2dn
c/DgQaZMmVLj/o8++ohf/OIXvPTSS/ILevGdZWkA6Lpe5y6zEN9Vbdu2Zfny5cyePZstW7bU
Oxb1b3/7W7xeLw8//DAnTpzgrbfeAuDuu+/mkUce4dVXX8U0zVCULkSjWXYpT4/Hw8aNGyko
KGDs2LFcd911mKbJoUOHqKys5Oabb671nAsn2rp06UK3bt3Ys2cPPXv2RFVVdu3aRVJSElFR
UVaVLASvvvoqpaWl5OfnU1ZWRrt27SgoKGD//v2UlZWxYcMGbr31Vqqqqvjiiy/429/+hsfj
wePxsHnzZu666y727t2Lw+HghRdeYMCAAXz++ecMGzasuRdNiFos2wNYsWIF119/Pd26daOi
ogKA9evXc/jwYQ4fPlzncw4dOkReXh4nT54EYO/evRiGQX5+Prm5ubLxF5abNWsW119/PW63
m5deeolbb72VkydPsmXLFu69914OHDhAfn4+r732Gq1bt6Zr164kJyfTs2dPnnjiCeLj40lI
SGDixIm4XC4WLVrE0aNHm3uxhKiTZXsAqqridruJiYmhe/fuQPUg7z6fjxUrVtRq7/V62bp1
K8OGDeP06dPB+z0eDxkZGcyaNcuqUoUIat26NT/60Y9QVTX4qX3AgAG1LoO+f//+Gsf9W7Ro
wc9+9jOgeqzrC+Nd9+zZk549e4aoeiEax7IAmDRpEuvXr2fnzp3ous5tt912ybamaZKRkcGo
UaPw+XzB+3VdZ+HChdx44424XK7gfYZhoOs6fr8fr9dbo32oXDzfuly8HFYLBAL11mPoRkhq
0XW93lr0QCAktQB4fT4wG98v7rvvvssux09+8pOQvsehUKsfhbIP6wHM+vqNEZr12zTNevtw
c2rI+t5QlgWAw+FgwIABtGnThqysLFJSUtA0rc62Pp+PY8eO4fP5OHfuHBUVFXTt2hVN03jw
wQf54IMPOH78OJ06dULTNDRNQ1VVdF0PBgNwyelb4eL51sXpDc0GF6pf6/rqUbXQfOFL07R6
a9FCOIqcy+nE5bz8/HKOFGGE4DxtXOtI2reOtH5G39I3+5Gp+AlVBDg0B856+o2paoRirVIU
pd4+3Jwasr43eFpNMpU6LFu2DKfTydmzZ1FVFVVVOXz4MG63m+LiYnJycrjpppvYtGkTw4YN
4+GHHwbgyJEjnDx5ko4dOwLVh5KmTp3KwoULmTVrFuHh4VaVLGzquf9vPf4Q7CHdN7IXPxjZ
y/L5CNFQlgXAhAkTOHz4MEePHmXkyJFA9afD8PBwhg8fjqIolJWVcerUqRqDzcTHx9OmTRug
+pyBpmk4HA6mT5+O3++XABBCiCZi6UngLl26EBkZGdzAd+3atUab4uJiJk2aVOO+sLAwwsLC
AGoMQN+qVSurShVCiGtOVVVVvR+YLT0w7HK5gody6tK2bVv5RC+EEE3s1KlT/PznP69xHSrT
NNmyZQtutzt4n1wKQgghriG7du1i7NixZGVl8YMf/IDy8nKKiooYM2YMd9xxR/B3ViABIIQQ
15QdO3YwfPhwJk2axIYNG4iOjsYwDF544YVav0gP3ffxhBBCWG7atGlkZGTw7rvvUllZybPP
PkuHDh3o0KFDrbayByCEENeQVq1akZqayoMPPsi+fftIS0u7ZFvZAxBCiGvIG2+8QX5+Pnl5
eZSUlBAXF8fx48fJycmhpKSETZs2YZpm9e+zmrtYIYQQTee+++7jpptuwu1288wzzzBixAiK
iorYsmULEyZMoKCggCNHjvC///u/sgcghBDXkpiYGGbNmoVpmsEf4fbr149+/frVaHf06FHZ
AxBCiGvR7NmzL/v4Qw89JHsAQghxtfMeOID5La6GLAEghBBXuTMv/xnj/wbeagw5BCSEEDYl
ASCEEDYlASCEEDYlASCEEDYlASCEEDYlASCEEDZlaQB4PB5ycnJq3GeaJj5f3UNNezweSktL
Mc3qEboNw6jzthBCiCtnWQBkZWWxaNEiMjIyyMzMBCA/P5+33nqLFStW1Gq/adMm0tLS2LJl
C++++y4Aqamp6LqO3+/n7bffprKy0qpyhRDCdiwLgOzsbKZPn86QIUMYNWoUAIFAgPvuu6/O
9n379mXGjBmMHz8eVVUJBAJA9R5Deno6w4cPJzIy0qpyhRDCdiz7JXBKSgoLFy4kNjaWPn36
4HK5SExMvOThnwuj1mRmZtKuXTscDgeGYbBy5UocDgdJSUkA6LqOYRjBPQOv1xuchv4tfgr9
bV0837pcajmtEAgE6q3H0I2Q1KLrer216P8X7qHg9fnAvHy/CNWBRb0B71NzqtWPQtmH9QBm
ff3GCM36bZrm1fU+Aea37MWWBUBycjIdO3YkIyODBQsWMGfOHBRFuWR7r9fLokWL+N73vkef
Pn0AUFWVHj16sHnzZnRdR9O04D9VVdF1HZfLFZyGpmlWLU4tF8+3Lk5vaDa4AA6Ho956VC00
5/s1Tau3Fs0RuiuQuJxOXM7Lz+/SvbJpaQ14n5rTN/uRqfgJVQQ4NAfOel4bU9UIxVqlKMpV
9T4BKCjfKgIs2yocPXoUgISEBJxOJ4ZR91vn9XoxTZPVq1czcuTI4Mb/gsTERFJSUli1apVV
pQohhC1ZFgBlZWWkpaWxadMm+vfvj6qqrFu3jhUrVlBaWsrSpUuprKzk9ddfxzRN/H4/X3zx
BR988AGpqal4vV7i4uJQFIVevXoRHh7O6dOnrSpXCCFsx7J98ZtvvpnExERyc3Pp3bs3QHBw
ggvy8vIYM2YMqqoyderUWtMYMWJE8PY3nyuEEOLKWHowNioqir59+17y8YSEBCtnL4QQ4jIs
DQBFUS574lcIIUTzkUtBCCGETUkACCGETUkACCGETUkACCGETUkACCGETUkACCGETUkACCGE
TUkACCGETUkACCGETUkACCGETUkACCGETUkACCGETUkACCGETUkACCGETUkACCGETVkaAB6P
h5ycnBr3maaJz1f3UNMejwe32x382zAMTNOsdVsIIcSVsywAsrKyWLRoERkZGWRmZgKQn5/P
W2+9xYoVK2q1P3z4MIsWLSI9PZ3PP/8cgNTUVHRdx+/38/bbb1NZWWlVuUIIYTuWBUB2djbT
p09nyJAhjBo1CoBAIMB9991XZ/utW7cyc+ZM7r33XnJzc4Of9k3TJD09neHDhxMZGWlVuUII
YTuWDQmZkpLCwoULiY2NpU+fPrhcLhITE+s8/GOaJoqi4HK5AIiJicHj8WAYBitXrsThcJCU
lASArusYhhHcM/B6vcHp6Lpu1eLUcvF863Kpw1xWCAQC9dZj6EZIatF1vd5a9EAgJLUAeH0+
MC/fL0J1YFFvwPvUnGr1o1D2YT2AWV+/MUKzfpumeXW9T4D5LXuxZQGQnJxMx44dycjIYMGC
BcyZM6fB4wPruo6maaiqSo8ePdi8eXPwvgv/VFVF1/VgaABommbV4tRy8Xzr4vSGZoML4HA4
6q1H1UJzvl/TtHpr0RyWDkVdg8vpxOW8/PxCNWq11oD3qTl9sx+Zip9QRYBDc+Cs57UxVY1Q
rFUXfxj9LqprfVdQvlUEWLZVOHr0KAAJCQk4nU4Mo+637kKSuVwuSkpK8Pv9uN1unE4nAImJ
iaSkpLBq1SqrShVCCFuyLADKyspIS0tj06ZN9O/fH1VVWbduHStWrKC0tJSlS5dSWVnJ66+/
jmmajBo1ipUrV7Jo0SJGjBgBQFxcHIqi0KtXL8LDwzl9+rRV5QohhO1Yti9+8803k5iYSG5u
Lr179wZg5MiRNdrk5eUxZswYVFWlVatWzJ49u8bjF4KgrucKIYS4MpYejI2KiqJv376XfDwh
IcHK2QshhLgMSwNAUZQGn/gVQggRWnIpCCGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJ
ACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJ
ACGEsClLA0DXdUpLS62chRBCiG/JsgDweDysW7eOJUuWUFhYCEBlZSVpaWl8/PHHVFVV1Whf
VlbGxx9/zIcffhhsv2fPnuBg8rt27aKiosKqcoUQwnYsC4AVK1Zw/fXX061bNyoqKjBNk+XL
lzNo0CAGDBjAihUrarW//fbbmTRpEunp6Zimyd69ezEMg/z8fHJzc4mKirKqXCGEsB3LhoSM
i4sjOzub9u3b0717d3RdR9d1OnTogGmaeL3eGu1vuukmvvjiC8LCwujSpQuKomCaJvv372fP
nj3cc889ABiGgWma6LqOYRgEAoHgNAzDtGpxarl4vnXRdT1ElVDrdaiLaYbmtTEbUMuFvbpQ
0HWdesohVL2mIa9Nc6rVjwIh7MNmA/qNGaJ+Y5pX1/t0BSzbAxg2bBj9+/dn9+7dpKamVs9M
rZ6doijB2xe43W5iYmJo3bo1brcb0zQxTZOjR4/icrlwOp1WlSqEELZk2R6Az+ejXbt2DB06
lJycHAC8Xm/wE3zNT+4Gx44dY/bs2QDk5eXhdrtRVZU777yTdevW8dVXX3HLLbfUCA5VVXE4
HBf9HboB6C+eb100TQtRJbVfh7ooSmheG6UBtXwz/K2kaVr9r02IamnIa9OcvtmPTCOEfVip
/7UJKCoh2SdRlKvqfboSli3lp59+ysmTJ6moqCApKQlN0+jfvz8LFizANE0GDBiAYRgsWrSI
+++/ny5durB48WLCw8Px+/1ER0cHN1qjR4/m3XffpVOnTrRv396qkoUQwlYsC4Bx48bhdrvJ
zc2lX79+APTu3ZukpCQAwsLCKCwspFOnTqiqyogRI/D5fAQCASIiIgC49957g9O7sHcghBCi
aVi6nxMeHs4NN9xQ476wsLDg7bi4ODp16hT82+l0yrF+IYQIEUsDwOFwEB0dfcnHXS6XlbMX
QghxGXIpCCGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJznnZWQAACEVJREFU
ACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsCkJACGEsClL
A+CbY/8KIYT47rAsAEzT5MiRI6xZswafzxe8Lzs7mz179mCaZq3nnDp1is2bN1NQUBD82zAM
AIqKiqiqqrKqXCGEsB3LAiAzM5P9+/dTWlrKli1bAMjIyMDtdnPu3DnWrl1bo31eXh7/f3v3
EtPUtgZw/L+721pAMcpACA9FjcagUaTGB0oaI+ILFGNEJ4JgQB2IRBxIlCjBaEw0aiKKqAMV
oyi+GTBQERJzIhoHmmBIJMrDhocgKEJpd9cdmNtrrxxRz23pPWf9Rjvtate3utfe3+7aj1VV
VUVYWBg9PT0APH78GKfTSU9PD/fu3ZPTRUqS5LOcTif19fXDHcYv8VgCaGtrIyYmhqlTp2Kx
WHA6nbS2thIbG0tsbCxWq9Wt/NOnT0lOTiY8PJzp06e7Xnc6ndy8eZPk5GRUVfVUuJIkSb/N
ZrNx4cIFsrOzefToEQAdHR3k5uaya9cu2tvb3crX1NSQl5dHXl4excXFAJSWltLS0oIQgpMn
T9Lc3OzxuD02J/Dy5cu5e/cu3d3dhISEEBISgsFgAEBRFLeduRCC9vZ2bt26haZpqKpKSkoK
mqZRUlLCtGnTGDt2LACapuF0OtE0Dbvdjs1mc32Ppmmeas53vq13MP8e9vIGh8MxZDxOzemV
WDRNGzIWzYvnhWwDAyB+3C++H4z0DO0n1tNw+q4febMPaw7EUP3G6Z3tWwjxy+vp4MGDWK1W
AgMDqa6uZsGCBWRmZjJnzhwAMjMzuXr1qqv8tWvXGD16NDExMYwZMwabzcaNGzeYNGkSNTU1
VFZWsmXLlkHjGGx7F7/Ziz2WAIKCgli3bh0vX76koqKCjIwM13i+EMK1DF8TQmBgICkpKSiK
wt27d+ns7ERVVVJTUyktLWXu3LkEBASgqiqqqqLT6dA0zW1ieW/+QxhqQnujzTs7XAC9Xj9k
PDrVOxd8qao6ZCyq3mPd7jsjjEZGGH9cn+KlWNSfWE/D6b/7kVDseCsF6FU9xiF+G6FT8cZW
pSjKL6+nL1++4OfnR0REBPv27aOvr4/6+nouXbqEqqqYzWbsdjsjR44E4M2bN6xatYrIyEhm
zpyJTqdDp9Px/v17CgsLuXPnDv7+/oPWNdj2rqD8Vgrw2F6huroaq9WKzWZz7bQNBgMtLS00
Nzfj5+cHfB37dzqdjB8/nufPn6NpGl1dXQQEBABgMplYs2YN169fd0sakiRJviI/P58RI0Zw
5MgR0tLS6O7uRq/XYzKZMJlMKIriNiqwYsUK3rx5w86dO9m0aZPropjc3FwmTJhAZGSkV+L2
WAKIioqioaGBxsZGkpOTURSFpKQknj17xosXL0hMTKSvr4/KykoURSEuLo7Pnz9z/fp1Fi5c
iMlkYvr06eh0OsaNG8eCBQvo6OjwVLiSJEm/TVVV9uzZw6FDh2hsbMRqtTIwMEB3dzddXV0I
IVxH9EIItm3bxrFjx7h//z7Pnz93XeF45coVent7uXPnjlfi9ugQUFxcHM3NzQQFBQFfj+ZX
r17tKtPU1MTatWtRFAVFUbBYLG7fERUV5VqeMmWKp0KVJEn6S3Jycnj79i2dnZ0oisLkyZNZ
u3YtqamproNfk8nE5s2bycrKYvfu3ZjNZt69e0d0dLRrRMRgMFBcXExSUhLz588nODjYo3F7
dDDW39//hzvu8PBwT1YvSZLkFWfOnKG2tpZbt26xf/9+TCYTBw4c4MGDBwghWLJkCQ0NDXz4
8AGz2czt27d58uQJfn5+WCwWFEWhoKCAiIgIRo0aRXl5uVeGvL13Nk6SJOlvSqfTMWPGDIQQ
mEwm4Ouw0NKlS93KnT59Gr1eT1BQEImJiW7vfTvi8e2yJ8kEIEmS9D/g7+/PvHnz/vT9iRMn
ejGanyMTgCRJ0i8S/d0MvCj1Sl1GcxqKYfBLQv8qmQAkSZJ+kejvYeCPIq/UZZiZ4rEEIB8H
LUmS9A8lE4Ak+bjq6mq3h4wJIWhtbeXTp0+DlhdC8OXLFzRNQwiB3W533Whkt9vlDZWSi0wA
kuSjhBDk5+eTkpJCQkIC5eXlCCE4fPgw8fHxREdH8/Dhw+8+d/HiRYKCgqioqABg0aJFtLW1
UVdXR3R0NL29vd5uiuSj5DkASfJRmqZx+fJlSkpKCA0NJSwsjP7+fs6ePcurV6949eoVe/fu
ZfHixa7PfPz4kdOnT7Nhwwa373I4HGzfvp2jR48yatQobzdF8lHyH4Ak+ShVVbFYLGzdupWy
sjL8/PywWq2Eh4cTEBDArFmzaGhocJUXQlBYWEh2drbbTl7TNDIyMggLCyMhIWE4miL5KJkA
JMlHKYrC+fPnycnJoampifT0dIxGo+tRwA6HA/03T1Z9/fo1ZWVlDAwMUFdXR1VVFb29veh0
OiwWC3V1dfT39w9XcyQfJBOAJPmo3t5ejh8/jsPhYOXKlbS2thIcHExXVxf19fWUl5cTExOD
EIKqqipsNht5eXn09fW5PTNeURTS0tJYtGgRBQUFw9wqyZfIcwCS5KOMRiOfP3+mvLycyMhI
ioqK0Ov1nDp1io0bNzJmzBjOnTvHhw8fyMrKora2llmzZgFfJyQym80EBAQwe/ZsjEYjhYWF
pKen09LSQmho6DC3TvIFMgFIko8yGAzs27ePsLAwli1bRkhICADx8fHEx8e7ypWVlXHixAkC
AwNdr+3YscO1XFT0nxuWrl275oXIpf8XMgFIko/btGkTOt2fj9auX7/ei9FIfycyAUiSj/Pm
VKfSP8u/AM3lYJlnWdJOAAAAAElFTkSuQmCC
</thumbnail>
</thumbnails>
</workbook>