-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsquare_free.py
70 lines (65 loc) · 3.31 KB
/
square_free.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) 2021 kamyu. All rights reserved.
#
# Google Code Jam 2021 Round 3 - Problem B. Square Free
# https://codingcompetitions.withgoogle.com/codejam/round/0000000000436142/0000000000813e1a
#
# Time: O(R^2 * C^2)
# Space: O(R + C)
#
def inplace_counting_sort(nums, reverse=False): # Time: O(len(nums)+max(nums)), Space: O(max(nums))
count = [0]*(max(nums)+1)
for num in nums:
count[num] += 1
for i in xrange(1, len(count)):
count[i] += count[i-1]
for i in reversed(xrange(len(nums))): # inplace but unstable sort
if nums[i] < 0: # processed
continue
while i != count[nums[i]]-1:
count[nums[i]] -= 1
nums[count[nums[i]]], nums[i] = ~nums[i], nums[count[nums[i]]]
count[nums[i]] -= 1
nums[i] = ~nums[i]
for i in xrange(len(nums)):
nums[i] = ~nums[i] # restore values
if reverse: # unstable sort
nums.reverse()
def possible(S, D): # Time: O(R * C), Space: O(R + C)
inplace_counting_sort(S, reverse=True) # Time: O(R + C), Space: O(C)
inplace_counting_sort(D, reverse=True) # Time: O(R + C), Space: O(R)
S_prefix = [0]
for i in xrange(len(S)): # Time: O(R), Space: O(R)
S_prefix.append(S_prefix[-1] + S[i])
D_suffix = [0]
for i in reversed(xrange(len(D))): # Time: O(C), Space: O(C)
D_suffix.append(D_suffix[-1] + D[i])
D_suffix.reverse()
# consider a graph running max flow algorithm where edge from source to each Sx is with capacity S[x], edge from each Sx to each Dy is with capacity 1, edge from each Dy to sink is with capacity D[y],
# if sum(S) != sum(D), it is impossible,
# otherwise, we want all nodes with full capacity,
# it is possible
# <=> sum(S[x] for x in X)-sum(D[y] for y in Y) <= |X|*(C-|Y|) for all 0 <= |X| <= R and 0 <= |Y| <= C
# <=> sum(S[x] for x in X')-sum(D[y] for y in Y') <= |X|*|Y| for all 0 <= |X| <= R and 0 <= |Y| <= C
# and X' is the biggist |X| of S and Y' is the smallest C-|Y| of D
# <=> -(sum(S)-sum(S[x] for x in X'))+(sum(D)-sum(D[y]) for y in Y') <= |X|*|Y| for all 0 <= |X| <= R and 0 <= |Y| <= C
# and X' is the biggist |X| of S and Y' is the smallest C-|Y| of D
# <=> sum(D[y] for y in Y'')-sum(S[x] for x in X'') <= |X|*|Y| for all 0 <= |X| <= R and 0 <= |Y| <= C
# and Y'' is the biggest |Y| of D and X'' is the smallest R-|X| of S
return S_prefix[-1] == D_suffix[0] and \
all(S_prefix[i]-D_suffix[j] <= i*j for i in xrange(len(S_prefix)) for j in xrange(len(D_suffix))) # Time: O(R * C)
def square_free():
R, C = map(int, raw_input().strip().split())
S = map(lambda x: C-int(x), raw_input().strip().split())
D = map(lambda x: R-int(x), raw_input().strip().split())
if not possible(S[:], D[:]):
return "IMPOSSIBLE"
result = [['/']*C for _ in xrange(R)]
for i in xrange(R):
for j in xrange(C):
if not (S[i] >= 1 and D[j] >= 1 and possible([S[k]-int(k == i) for k in xrange(len(S))], [D[k]-int(k == j) for k in xrange(len(D))])):
continue
result[i][j] = '\\' # lexicographically smallest, assumed '\\' < '/'
S[i], D[j] = S[i]-1, D[j]-1
return "POSSIBLE\n"+"\n".join("".join(row) for row in result)
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, square_free())